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In this paper we address the existence, the asymptotic behavior and stability in Lp

and Lp��, 3
2 < p ≤ �, for solutions to the steady state 3D Navier–Stokes equations

with possibly very singular external forces. We show that under certain smallness
conditions of the forcing term there exists solutions to the stationary Navier–Stokes
equations in Lp spaces, and we prove the stability of these solutions. Namely, we
prove that such small steady state solutions attract time dependent solutions with
large initial velocity driven by the same forcing. We also give non-existence results
of stationary solutions in Lp, for 1 ≤ p ≤ 3

2 .
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1. Introduction

In this paper we consider the solutions to the three-dimensional steady state Navier–
Stokes equations in the whole space �3,{

� · �U ⊗ U�+ �P = �U + f

� · U = 0�
(1.1)

Here U = �U1� U2� U3� is the velocity, P the pressure and f = �f1� f2� f3� a given time
independent external force. Equation (1.1) will be complemented with a boundary
condition at infinity of the form U�x�→ 0 in a weak sense: typically, we express
this condition requiring that U belongs to some Lp spaces. Three problems will be
addressed.
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Lp-Solutions 217

We will first establish the existence of solutions U ∈ Lp, with 3
2 < p ≤ �, to

equations (1.1) for (small) functions f as general as possible, and non-existence
results in the range 1 ≤ p ≤ 3

2 .
Next we will study the asymptotic properties as �x� → � for a relevant subclass

of the solutions obtained.
The third problem at hand is the stability of the solutions in the sense of

solutions to (1.1) being “fixed point” in Lp to the non-stationary incompressible
Navier–Stokes equations in �3

�tu+ u · �u+ �p = �u+ f

� · u = 0

u�0� = u0�

(1.2)

where u, p are the time dependent velocity and pressure of the flow. We assume f
to be constant in time, but our methods could also be applied to the more general
case of time dependent forces suitably converging to a steady state forcing term.
We will show that small stationary solutions U of (1.1) will attract all global non-
stationary solutions u to (1.2) verifying mild regularity conditions, and emanating
from possibly large data u0. This will be achieved by first proving that a wide class
of global solutions of (1.2) must become small in L3�� after some time, and then
applying the stability theory of small solutions in L3�� as developed, e.g., in [9, 19,
29]. In addition, for small solutions, we will extend the results on the stability in the
existing literature by giving necessary and sufficient conditions to have u�t�→ U in
Lp as t → �.

The existence and stability of stationary solutions is well understood in the
case of bounded domains. See for example [10]. For related results in exterior
domains we refer the reader to [11–13, 16]. A wider list of references regarding
connected literature can be found in [3]. For example, the existence and the stability
of stationary solutions in Lp with p ≥ n, where n is the dimension of the space, is
obtained in [23], under the condition that the Reynolds number is sufficiently small,
and in [19, 29] under the assumption that the external force is small in a Lorentz
space. Similar results in the whole domain �n, always for p ≥ n, have been obtained
also in [8, 9, 18].

On the other hand, not so much can be found in the literature about the
existence and stability of stationary solutions in �n with p < n. This problem have
been studied recently in the case n = 3 and p = 2 in [3]. In this paper we extend the
results of [3] to the range 3

2 < p ≤ �, and improve such results also in the case p = 2
by considering a more general class of forcing functions. The methods in this paper
differ completely from the ones used in [3]. In the former paper the construction of
solutions with finite energy was based on a well known formal observation: if � is
the fundamental solution for the heat equation then

∫ �
0 ��t� ·�dt is the fundamental

solution for Poisson’s equation. Using that idea it was possible to make a time
dependent PDE similar to the Navier–Stokes equation with f as initial data with a
solution that can be formally integrated in time to find a solution of (1.1).

As we shall see, the conditions on f in the present paper which yield that U ∈ Lp

are, essentially, necessary and sufficient. This will be made possible by a systematic
use of suitable function spaces.

One could also complement the system (1.1) with different type of boundary
condition at infinity. For example, conditions of the form U�x�→ U� as �x�→�,
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218 Bjorland et al.

where U� ∈ �3 and U� �= 0 are also of interest. However the properties of
stationary solutions satisfying such condition are already quite well understood. We
refer to the treatise of Galdi [14] for a comprehensive study of this question.

On the other hand, the understanding of the problem in the case U� = 0
is less satisfactory. For example, the construction of solutions obeying to the
natural energy equality (obtained multiplying the equation (1.1) by U and formally
integrating by parts), without putting any smallness assumption on f , is still an
open problem. The main difficulty, for example when 	 = �3 (or when Poincaré’s
inequality is not available), is that the usual a priori estimate on the Dirichlet
integral

	�U	L2 ≤ 	f	Ḣ−1

ensures only that U ∈ Ḣ1 ⊂ L6: but to give a sense to the integral in the formal
equality ∫ [

� · �U ⊗ U�
] · U dx = 0

one would need, e.g., that U belongs also to L4.
More generally, one motivation for developing the Lp theory (especially for low

values of p) of stationary solutions is that this provides additional information on
the asymptotic properties of U in the far field. On the other hand, condition like
U ∈ Lp for large p are usually easily recovered via the standard regularity theory,
as bootstrapping procedures show that weak solutions U ∈ Ḣ1 are regular if f is so.
See also [23] for this case.

The paper will be organized as follows. After the introduction we have a section
of general notation, where we recall definitions of several function spaces which will
be needed in the sequel.

Section 2 deals with the existence of solutions in Lp, 3
2 < p ≤ �. Section 3

addresses the pointwise behavior in �3 of the solutions and the asymptotic profiles.
We note that the study of the asymptotic profiles has been largely dealt with in the
literature, starting with the well known results of Finn [13] in exterior domains. Our
results being in the whole domain are simpler, but we are able to get them with
weaker conditions. Non-existence results of (generic) solutions in U ∈ Lp, p ≤ 3

2 will
also follow from such analysis.

Section four handles the stability of stationary solutions. More precisely in the
setting of the Navier–Stokes equation we investigate the stability of the stationary
solution U in the Lp and the Lorentz Lp��-norms. We consider a possibly large
L3�� non-stationary solution and a stationary solution U ∈ L3�� ∩ Lp or U ∈ L3�� ∩
Lp�� which is small in L3��. We show that the non-stationary solution eventually
becomes small in L3�� (but does not converge to 0 in this space), we prove some
decay estimates for it and we give a necessary and sufficient condition to have that
u�t�→ U in Lp or Lp��.

The fact that small steady state solutions U attract small non-stationary
solutions was proved by several authors in different functional settings, see, e.g.
[8, 9, 18, 19, 29]. The main novelty of our approach is that we can prove the same
result for a class of large solutions. At best of our knowledge, this was known only
in the particular case U = 0 (see [1, 15]). Our main tool will be a decomposition
criterion for functions in Lorentz-spaces.
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Lp-Solutions 219

1.1. Notations

1.1.1. Function Spaces. We recall that the fractional Sobolev spaces (or Bessel
potential spaces) are defined, for s ∈ � and 1 < p < �, as

Hs
p = 
f ∈ � ′��3� � �−1�1+ ���2� s2 f̂ ∈ Lp�

and their homogeneous counterpart is

Ḣs
p = 
f ∈ � ′��3� � �−1���sf̂ ∈ Lp�

Their differential dimension is s − 3
p
. We will only deal with the case s − 3

p
< 0, so

that the elements of Ḣs
p can indeed be realized as tempered distributions. As usual,

we will simply write Hs and Ḣs instead of Hs
2 and Ḣ

s
2 for the classical Sobolev spaces.

The fractional Sobolev spaces can be identified with particular Triebel-Lizorkin
spaces, namely Fs�2

p and Ḟ s�2
p . This identification will be useful, because it allows us

to handle the limit case for p = 1: the corresponding spaces are defined as above,
but replacing L1 with its natural substitute, i.e., the Hardy space �1. Similarly, in
the limit case p = � one replaces L� space with BMO. The classical reference for
function spaces is [28].

We will make extensive use of the Lorentz spaces Lp�q, with 1 < p < � and
1≤ q ≤ �. For completeness we recall their definition.

Let �X� �� be a measure space. Let f be a scalar-valued �-measurable function
and

�f �s� = �
x � f�x� > s�

Then re-arrangement function f ∗ is defined as usual by:

f ∗�t� = inf
s � �f �s� ≤ t�

By definition, for 1 < p < �,

Lp�q��n� = 
f � �n → �� measurable � 	f	Lp�q < ��

where

	f	Lp�q =


q

p

[∫ �

0

(
t
1
p f ∗�t�

)q] 1
q

� if q < ��

sup
t>0

{
t
1
p f ∗�t�

}
� if q = ��

We note that it is standard to use the above as a norm even if it does not satisfy
the triangle inequality since one can find an equivalent norm that makes the space
into a Banach space.

In particular, Lp�� agrees with the weak Lp space (or Marcinkiewicz space)

Lp∗ = 
f � �n → � � f measurable, 	f	Lp∗ < ��
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220 Bjorland et al.

The quasi-norm

	f	Lp∗ = sup
t>0

t��f �t��
1
p

is equivalent to the norm on Lp��, for 1 < p < �.
Our measure � will be chosen to be the Lebesgue measure. The Lebesgue

measure of a set A will be denoted by mes(A). For basic properties of these spaces
useful reference are also [20, 30]. It is well-known that the space Lp�q, 1 < p < � and
1 ≤ q ≤ �, is the interpolated space Lp�q = �L1� L��1− 1

p �q
. Here �·� ·�1− 1

p �q
denotes the

interpolated space by the real interpolation method. Using the reiteration theorem
for interpolation, see [20, Theorem 2.2], one has that Lp�q = �Lp1�q1� Lp2�q2 ���q for
all 1 < p1 < p2 < �, 1 ≤ q� q2� q2 ≤ �, 0 < � < 1 and 1

p
= 1−�

p1
+ �

p2
. In particular,

one has that Lp1�q1 ∩ Lp2�q2 ⊂ Lp�q for all 1 < p1 < p < p2 < � and 1 ≤ q� q2� q2 ≤ �.
The Hölder inequality in Lorentz spaces can be stated in the following form.

Proposition 1.1. Suppose that

1 < p� p1� p2 < �� 1 ≤ q� q1� q2 ≤ �� 1
p
= 1
p1

+ 1
p2

and
1
q
= 1
q1

+ 1
q2
�

Then the pointwise product is a bounded bilinear operator from Lp1�q1 × Lp2�q2 to Lp�q,
from Lp�q × L� to Lp�q and from Lp�q × Lp

′�q′ to L1 where 1
p
+ 1

p′ = 1 and 1
q
+ 1

q′ = 1.

The proof of this proposition can be found in [20, Proposition 2.3]. The similar
property for convolution is proved in [20, Proposition 2.4] and reads as follows.

Proposition 1.2. Assume that

1 < p� p1� p2 < �� 1 ≤ q� q1� q2 ≤ �� 1+ 1
p
= 1
p1

+ 1
p2

and
1
q
= 1
q1

+ 1
q2
�

Then the convolution is a bounded bilinear operator from Lp1�q1 × Lp2�q2 to Lp�q, from
Lp�q × L1 to Lp�q and from Lp�q × Lp

′�q′ to L� where 1
p
+ 1

p′ = 1 and 1
q
+ 1

q′ = 1.

We also recall the definition of the Morrey–Campanato spaces. In their
homogeneous version, for 1 ≤ q ≤ p, their elements are all the Lqloc��

3� functions f
satisfying

	f	�p�q
= sup

x0∈�3

sup
R>0

R
3
p− 3

q

( ∫
�x−x0�<R

�f�x��q dx
) 1

q

< ��

We recall that

Lp = Lp�p = �p�p ⊂ Lp�� ⊂ �p�q� 1 ≤ q < p < �� (1.3)

with continuous injections. The �p�q spaces are of course increasing in the sense of
the inclusion as q decreases. On the other hand, the Lp�q- spaces increase with q.
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Lp-Solutions 221

For � ≥ 0, we introduce the space Ė� of all measurable functions (or vector field)
f in �3, such that

	f	Ė� ≡ ess sup
x∈�3

�x���f�x�� < ��

1.1.2. Other Notations. We denote by � = Id − ��−1div the Leray projector onto
the divergence-free vector field. Notice that � is a pseudodifferential operator
of order zero, which is bounded in Hs

p, Ḣ
s
p and Lp�q, for 1 < p < �, 1 ≤ q ≤ �

and s ∈ �. Thus, when f belongs to those spaces, the validity of an Helmholtz
decomposition f = �f + �g implies that one could assume, without restriction, that
f is divergence-free.

However, we will not make this assumption in order to avoid unpleasant
restrictions, especially when working in weighted spaces (notice that � is not
bounded in Ė�) or in L

1. Indeed, it has some interest to consider integrable external
forces with non-zero mean, which prevents div f = 0.

2. Solutions in Lp��3�

The equations (1.1) are invariant by the natural scaling �U� p� f� �→ �U�� p�� f��
for all � > 0 and U� = �U��·�, P� = �2P��·� and f� = �3f��·�. Following a well
established procedure, not only for Navier–Stokes, we consider the following
program:

(1) Existence: first construct (rough) solutions U in a scaling invariant setting, i.e. in
a functional space with the same homogeneity of L3 assuming that the norm of
f is small in a function space (as large as possible) with the same homogeneity
of L1.

(2) Propagation: deduce from additional properties of f (oscillations,
localization, � � � ) additional properties for U (localization, asymptotic
properties, � � � ).

We will not discuss the propagation of the regularity since this issue is already
well understood (see [14]). For example for, not necessarily small, external forces
belonging to Ḣ−1 ∩Hs, with s > 3

2 , one deduces that solutions with finite Dirichlet
integral are twice continuously differentiable and solve (1.1) in the classical sense.

Concerning the first part of this program, in order to give a sense to the
nonlinearity one wants to have U ∈ L2

loc. As noticed in [21], the largest Banach
space X, continuously included in L2

loc��
3�, which is invariant under translations

and such that 	U�	X = 	U	X , is the Morrey–Campanato space �3�2. Therefore, the
weakest possible smallness assumption under which one can hope to apply the first
part of the program should be

	�−1f	�3�2
< ��

However, it seems impossible to prove the existence of a solution under this
type of condition. Indeed, U ⊗ U would belong to � 3

2 �1
, and the singular integrals

involved in equivalent formulations of (1.1) are badly behaved in Morrey spaces of
L1
loc functions (see the analysis of Taylor [26] and in particular equation (3.37) of his

paper).
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222 Bjorland et al.

Here the situation is less favorable than for the free non-stationary Navier–
Stokes equations, where the existence of a global in time solution can be ensured
if the initial datum of the Cauchy problem is small in �3�2 (or even under more
general smallness assumptions, see [20]). The complication, in our case, arises from
the lack of the regularizing effect of the heat kernel.

On the other hand, the above difficulty disappears in the slightly smaller
spaces �3�q. Indeed, Kozono and Yamazaki established the following result:

Theorem 2.1 (See [18]). Let 2 < q ≤ 3. Then there exists a positive number �q and a
strictly monotone function �q��� on �0� �q� satisfying �q�0� = 0, such that the following
holds:

• For every f ∈ �′��3� there exists at most one solution U in �3�q satisfying
	U	�3�q

< �q��q�.
• For every tempered distribution f such that �−1f ∈ �3�q, and � = 	�−1f	�3�q

<

�q, there exists a solution U ∈ �3�q of (1.1), such that 	U	�3�q
≤ �q���.

This result provides a satisfactory answer to Part 1 of the above program, but it
seems difficult to make progress in Part 2 using such functional setting. For example,
a very strong additional condition like f ∈ �0��

3� (the space of functions in the
Schwartz class with vanishing moments of all order), and f small, but only in the
�3�q-norm (with 2 < q < 3), seems to imply no interesting asymptotic properties
for U (such as U ∈ Lp with low p).

On the other hand the �3�q spaces, as q ↑ 3, become very close to L3�� as can
be seen from relation (1.3). The purpose of our first theorem is to show that one can
obtain propagation results according to Part 2 of our program, by strengthening a
little the smallness assumption, and requiring that

	�−1f	L3�� < �1� (2.1)

The continuous embedding of L3 into the weak space L3�� implies that
condition (2.1) will be fulfilled if, i.e., f ∈ Ḣ−2

3 with small Ḣ−2
3 -norm. Moreover, the

continuous embedding

Ḣ− 3
2 ⊂ Ḣ−2

3

shows that the case of forces f ∈ Ḣ− 3
2 with small Ḣ− 3

2 -norm is also encompassed
by (2.1).

We now state our first theorem.

Theorem 2.2. There exists an absolute constant �1 > 0 with the following properties:

• If f ∈ � ′��3� is such that �−1f ∈ L3�� and satisfying condition (2.1), then there
exists a solution U ∈ L3�� of (1.1) such that

	U	L3�� ≤ 2	�−1�f	L3�� � (2.2)

(The uniqueness holds in the more general setting of Theorem 2.1).
• Let 3

2 < p < �. If U is the above solution then we have more precisely

U ∈ L3�� ∩ Lp if and only if �f ∈ Ḣ−2
p �
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Lp-Solutions 223

In this case (and if p �= 3) U ∈ Lq for all q such that 3 < q ≤ p (or p ≤ q < 3).
Moreover, U belongs to L3�� ∩ L� (respectively, U ∈ L3�� ∩ BMO) if and only
if �−1�f ∈ L� (respectively, �−1�f ∈ BMO).

Remark 2.3. Important examples of solutions that can be obtained through this
theorem are those corresponding to external forces f = �f1� f2� f3� with components
of the with components of the form ��, where � is the Dirac mass at the origin.
Notice that f �∈ Ḣ−3/2. However, assumption (2.1) is fulfilled, because �−1f�x� =
�
�x� �c1� c2� c3�.

In fact, due to the invariance under rotations of (1.1), in this case one one
can always fix a coordinate system in a way such that f = ���� 0� 0�. The solutions
that one obtains in this way are well-known: they are the axi-symmetric solutions
(around the x1 axis) discovered by Landau sixty years ago, with ordinary differential
equations methods. These are solutions that are singular at the origin—in fact the
components of the velocity field are homogeneous functions of degree −1 — and
smooth outside zero. They can also be seen as self-similar stationary solutions of
the non-stationary Navier–Stokes equations.

We refer to [8] for an explicit expressions and other interesting properties about
these solutions and to [25] (see also [27]) for related uniqueness results.

Remark 2.4. The particular case p = 2 is physically relevant since it corresponds
to finite energy solutions. The conclusion U ∈ L2 was obtained by Bjorland and
Schonbek [3], under a technical smallness assumption non invariant under scaling.
Part (2) of Theorem 2.2 improves their result. Indeed the same conclusion can
be reached under the more general conditions (2.1) and f ∈ Ḣ−2. In particular, it
follows that f ∈ Ḣ− 3

2 ∩ Ḣ−2 with f small in Ḣ− 3
2 would be enough to get U ∈ L2.

This fact was pointed out to the first and the last author by an anonymous referee
of their paper [3].

Roughly speaking, for f ∈ Ḣ− 3
2 , the additional requirement f ∈ Ḣ−2 (which

turns out to be also necessary for obtaining U ∈ L2, up to a modification of f with
an additive potential force, which in any case would change only the pressure of the
flow), is formally equivalent to the additional vanishing condition f̂ ��� = o���� 12 � as
��� → 0.

Remark 2.5. The first conclusion of Theorem 2.2 bears some relations with the
work of Kozono and Yamazaki [19] and Yamazaki [29], where they also obtained
existence results of (possibly non-stationary) solutions in Lorentz-spaces and in
unbounded domains. However, the assumptions in [19, 29] on the external force
reads f = divF , with F small in L

3
2 ��. Their condition is more stringent than our

condition (2.1) because it involves more regularity (one more derivative, or more
precisely, one less anti-derivative) on f .

The first part of Theorem 2.2 is also related to the work of Cannone and
Karch [9]. There, the authors constructed non-stationary solutions of Navier–Stokes
in the whole space in L�

t �L
3��� with initial data small in L3�� and external force such

that

sup
t>0

∥∥∥∥ ∫ t

0
e�t−s���f�s�ds

∥∥∥∥
L3��
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224 Bjorland et al.

is small. With some modifications of their proofs it would be possible to deduce the
first conclusion of our theorem from their result, by considering time-independent
external forces (in this case the above condition boils down to (2.1)). We prefer
however to give a self-contained proof directly in the stationary case, because this
allows us to obtain necessary and sufficient conditions. Moreover, none of these
papers addressed the construction of solution in Lp with p < 3.

We recall a well known fixed point Lemma for bilinear forms that will be needed
in the sequel. The proof can be found in [7].

Lemma 2.6. Let X be a Banach space and B � X × X → X a bilinear map. Let 	 · 	X
denote the norm in X. If for all x1� x2 ∈ X one has

	B�x1� x2�	X ≤ �	x1	X	x2	X�

Then for all y ∈ X satisfying 4�	y	X < 1, the equation

x = y + B�x� x��

has a solution x ∈ X satisfying and uniquely defined by the condition

	x	X ≤ 2	y	X�

Remark 2.7. The proof of this lemma also shows that x = limk→� xk where
the approximate solutions xk are defined by x0 = y and xk = y + B�xk−1� xk−1�.
Moreover 	xk	X ≤ 2	y	X for all k.

Proof of Theorem 2.2. We use a method of mixed bilinear estimates, inspired
from [17]. Let us set

U0 ≡ −�−1�f� B�U� V� ≡ �−1�� · �U ⊗ V��

Then the system (1.1) can be rewritten as

U = U0 + B�U�U� (2.3)

and the solutions of this equations are indeed weak solutions of (1.1). This equation
can be solved applying the standard fixed point method as described in Lemma 2.6
in space L3��. We have the estimate

	B�U� V�	L3�� ≤ C1	U	L3��	V	L3��� (2.4)

for some C1 > 0 independent on U and V . Note that an estimate similar to (2.4) has
been proved e.g. by Meyer in [21] in the case of the non-stationary Navier–Stokes
equations (the bilinear operator B is slightly different in that case).

To prove (2.4), we only have to observe that the symbol m̂��� of the pseudo-
differential operator �−1� div is a homogeneous function of degree −1, such that
m̂��� ∈ C���3\
0�. Thus, the corresponding kernel m is a homogeneous function
of degree −2, smooth outside the origin (more precisely m = �mj�h�k�j�h�k=1�2�3 and
mj�h�k are homogeneous functions of degree −2).
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In particular,

B�U� V� = m�D��U ⊗ V� with m ∈ L
3
2 ���

Thence,

	m�D�v	Lp2�q1 ≤ C�p1� q1�	v	Lp1�q1 �
1
p2

= 1
p1

+ 2
3
− 1�

{
1 < p1 < 3�

1 ≤ q1 ≤ �� (2.5)

by the Young inequality stated in Proposition 1.2. Applying this to v = U ⊗ V and
using Proposition 1.1 to deduce that for U� V ∈ L3�� one has that v ∈ L

3
2 ��, we get

estimate (2.4) with C1 = C� 32 ���. Hence by Lemma 2.6 it follows that, provided that
4	U0	C1 < 1, there exists a solution of (2.3) satisfying (2.2).

To prove Part 2, we make use of approximate solutions of ��U� = U0 +
B�U�U�. That is we choose a sequence satisfying Uk = U0 + B�Uk−1� Uk−1� and use
Remark 2.7 to state that Uk → U in L3�� as k→ �. We show now that

	B�Uk� Uk�	Lp ≤ C�p�	Uk	L3��	Uk	Lp�
3
2
< p < �� (2.6)

valid for some positive function p �→ C�p�, continuous on � 32 ���. To obtain this
estimate we use the Hölder inequality given in Proposition 1.1 to deduce that 	Uk ⊗
Uk	

L
3p
3+p �p

≤ C2�p�	Uk	Lp	Uk	L3�� . Relation (2.5) for p1 = 3p
3+p and q1 = p completes

the proof of (2.6).
By Part 1, applied to the approximations Uk, we know that 	Uk	L3�� ≤ 2	U0	L3�� .

Choose 	U0	L3�� ≤ c0�1, then we get from (2.6), for 3
2 < p < �

	Uk+1	Lp ≤ 	U0	Lp + 2c0C�p��1	Uk	Lp � (2.7)

If �f ∈ Ḣ−2
p , then U0 ∈ Lp and so, by induction, 	Uk	Lp < � for all k. Provided

2c0C�p��1 < 1, iterating inequality (2.7) implies that Uk is uniformly bounded in Lp

with respect to k, and hence U ∈ Lp.
However, C�p� blows up as p → 3

2 or p → �, and we want to have a smallness
assumption independent of p. To circumvent this difficulty, we replace, if necessary,
the constant �1 of Part 1 of the theorem with a smaller absolute constant (still
denoted �1), in a such way that 2c0�1 < 1/ sup2≤p≤7 C�p�. Then the above argument
yields the conclusion of the “if part” of the theorem in the case 2 ≤ p ≤ 7. To prove
the “only if” part one simply uses estimate (2.6) with Uk = U together with (2.3) to
get U0 = −�−1�f ∈ Lp, hence �f ∈ Ḣ−2

p .
Let us now consider the case �f ∈ Ḣ−2

p , 3
2 < p < 2. Then U0 ∈ Lp ∩ L3�� and by

interpolation U0 ∈ L2, so using the case 2 ≤ p ≤ 7 we get that U ∈ L2. On the other
hand, according to Proposition 1.2 the space L

3
2 �� is stable under convolution with

L1-functions so

B�U�U� = m�D��U ⊗ U� ∈ L
3
2 ���

But from estimate (2.4) we know that B�U�U� ∈ L3��. By interpolation, B�U�U� ∈
Lp. Combining this with equality (2.3) yields U ∈ Lp. Conversely, suppose that
U ∈Lp. Since we already know that the solution U ∈ L3��, we deduce by
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226 Bjorland et al.

interpolation that U ∈ L2. The argument above shows that B�U�U� ∈ Lp. Hence by
(2.4) it follows that U0 ∈ Lp, and this, in turn is equivalent to �f ∈ Ḣ−2

p .
We now consider the case U0 ∈ Lp with 7 < p ≤ � (this is equivalent to �f ∈

Ḣ−2
p if p < �). Since U0 ∈ L3��, we have by interpolation that U0 ∈ L4 ∩ L7. From

the previous case, we infer that U ∈ L4 ∩ L7. By interpolation, we also have that
U ∈ L6�2. Using Proposition 1.1 this implies that U ⊗ U ∈ L3�1, so from Proposition
1.2 and recalling m ∈ L

3
2 �� we get that

B�U�U� = m�D��U ⊗ U� ∈ L��

But we also know that B�U�U� ∈ L3��, so by interpolation B�U�U� ∈ Lp. From
(2.3) we conclude that U ∈ Lp. The same argument also shows that U ∈ Lp implies
U0 ∈Lp.

Finally, the BMO case follows in the same way. Indeed, the argument above
shows that if U0 or U belong to BMO, then B�U�U� ∈ L�. But L� ⊂ BMO, so
B�U�U� ∈ BMO. From relation (2.3) we see that U ∈ BMO iff U0 ∈ BMO. This
completes the proof of Theorem 2.2. �

Remark 2.8. With the same proof, one can show the following equivalent condition
for the stationary solution U constructed in Theorem 2.2 to belong to Lp�r . If p ∈
� 32 ��� and r ∈ �1��� then U ∈ Lp�r if and only if �−1�f ∈ Lp�r .

3. Pointwise Behavior in �3 and Asymptotic Profiles

In the previous section we dealt with forces such that �−1f ∈ L3��. Since the typical
example of a function in L3�� is �x�−1, it is natural to ask which supplementary
properties are satisfied when ��−1f�x�� ≤ ��x�−1. below provides a rather complete
answer.

In particular, we will obtain exact asymptotic profiles in the far field for
decaying solutions of (1.1). Starting with the work of Finn (see [13] and the
references therein), a lot is known about the spatial asymptotics of stationary
solutions in unbounded domains. The case of the whole space that we treat in this
section is of course simpler than the case of exterior domains or aperture domains
considered e.g. in [14]. Nevertheless, focusing on this case allow us to put weaker
(and more natural) smallness assumptions on the force, thus providing a more
transparent presentation of the problem.

We observe here that, despite the unboundedness of � in the Ė� spaces, it is
fairly easy to ensure e.g. that �−1�f ∈ Ė1. Indeed, one has for example that

	�−1�f	Ė1
≤ C�	f	Ė3

+ 	f	L1�� (3.1)

Notice that all the norms in inequality (3.1) are invariant under scaling. The
above inequality can be proved with a simple size estimate (using that �−1�
is a convolution operator with a kernel m̃ satisfying �m̃�x�� ≤ C�x�−1). The same
conclusion �−1�f ∈ Ė1 can be obtained also via the Fourier transform (using
classical results in [24]), assuming, e.g., f = � · F where F is a two dimensional
tensor with homogeneous components of degree −2, smooth outside the origin.

Let us recall the imbedding Ė1 ↪→ L3��, thus a smallness assumption in the space
Ė1 implies a smallness assumption in L3��.
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Lp-Solutions 227

The spirit of Theorem 3.1 below is close to a previous work of the second author
(see [6]) in which similar conclusions are shown for the time-dependent Navier–
Stokes equation in the whole space.

Theorem 3.1. There exists an absolute constant �2 > 0 (with �2 a priori smaller than
the constant �1 of Theorem 2.2) such that:

• If f ∈ � ′��3� is such that �−1�f ∈ Ė1 and 	�−1�f	Ė1
< �2, then the solution

U ∈ L3�� obtained in Theorem 2.2 satisfies

	U	Ė1
≤ 2	�−1�f	Ė1

�

• Let 0 ≤ � ≤ 2. Under the additional assumption �−1�f ∈ Ė�, we have also U ∈
Ė�.• In particular, if �−1�f ∈ Ė0 ∩ Ė2, with small Ė1-norm, then U satisfies the
pointwise estimate

�U�x�� ≤ C�1+ �x��−2�

In this case the solution U has the following profile as �x� → �:

U�x� = −�−1�f�x�+m�x� �

( ∫
U ⊗ U

)
+ O

(�x�−3 log��x��)� (3.2)

where m = �mj�h�k� is the kernel of �−1� div and mj�h�k�x� are homogeneous
functions of degree −2, C� outside zero. Furthermore,

m�x� �

( ∫
U ⊗ U

)
≡ 0 if and only if ∃c ∈ � s.t.

∫
UhUk = c�h�k� (3.3)

for h� k = 1� 2� 3, where �h�k = 0 or 1 if h �= k or h = k.

Remark 3.2. Let us be more explicit with our notation: by definition, for j = 1� 2� 3,[
m�x� �

∫
�U ⊗ U�

]
j

=
3∑

h�k=1

mj�h�k�x�

( ∫
Uh�y�Uk�y�dy

)
�

Moreover mj�h�k�x� = �hMj�k�x�, where Mj�k is the tensor appearing in the
fundamental solution of the Stokes equation. The computation of M goes back to
Lorentz (1896). See [14, Vol. I, p. 190] for the explicit formula.

Remark 3.3. For example, it follows from this theorem that, if f ∈ � ��3� is such
that 0 �∈ supp f̂ and f satisfies the previous smallness assumption, then

U�x� � m�x� �

( ∫
U ⊗ U

)
� as �x� → �

provided that the right-hand side does not vanish. Indeed, we have in this case
�−1�f ∈ � ��3�. In particular �U�x�� ≤ C�1+ �x��−2. But the improved estimate
U�x� = o��x�−2� as �x� → � holds if and only if the flow satisfies the orthogonality
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228 Bjorland et al.

relations (3.3). Of course, generically it is not the case. This implies the optimality
of the restriction � ≤ 2 in Theorem 3.1 as well as the optimality of the restriction
p > 3

2 appearing in Theorem 2.2. It is possible to relax the condition that 0 �∈ suppf̂
assuming, instead that �f̂ ���� ≤ C���k for a sufficiently large k > 0. As noticed in [3],
this is essentially an oscillatory condition on f , describing the large time behavior
of the solution of the Cauchy problem for the heat equation.

Remark 3.4. Examples of (exceptional) stationary flows satisfying the
orthogonality relations (3.3), and such that U�x� = O

(�x�−3 log��x��), are easily
constructed by taking f satisfying the assumptions of the previous remark and
additional suitable symmetries. An axi-symmetry condition would not be enough:
one rather needs here polyhedral-type symmetries. The suitable symmetries to
be imposed on f can be classified exactly as done in [4], in the case of the non-
stationary Navier–Stokes equations. For example the two conditions Rf�x� =
f�Rx� and Sf�x� = f�Sx� where R� S are the orthogonal transformations in �3

R � �x1� x2� x3� �→ �x2� x3� x1� and S � �x1� x2� x3� �→ �−x1� x2� x3� are sufficient. See [4]
for explicit examples of this type of vector fields.

On the other hand, explicit examples of solutions U = Uf which do not satisfy
the orthogonality relations can be obtained simply by taking f = �f0 with � > 0
sufficiently small and f0 ∈ Ḣ−2 satisfying the conditions of Part 2 of Theorem 2.2
with p = 2 (this implies that Uf0

∈ L2). If, in addition, there is no c ∈ � such that∫
��−1�f0�h��

−1�f0�k = c�h�k�

then Uf cannot satisfy the orthogonality relations, provided � > 0 is small enough.
The proof of this claim relies on an argument that has been used in [5] in the
setting of the non-stationary Navier–Stokes equations. These observations lead us
to the following theorem, containing the announced non-existence result of generic
solutions in Lp, p ≤ 3

2 .

Theorem 3.5. Let f0 = �f1� f2� f3� be a divergence-free vector field such that f̂ ∈
C�

0 ��
3� and 0 �∈ supp�f̂ �. Assume also that the matrix

( ∫ �f̂0�j�f̂0�k

���4 d�

)
j�k

is not a scalar multiple of the identity. Then there exists �0 > 0 such that the solution
of (1.1) with f = �f0 and 0 < � ≤ �0 satisfies,

c

(
x

�x�
)
�x�−2 ≤ �U�x�� ≤ C�x�−2� �x� � 1� (3.4)

where C > 0 is independent on x and c� x
�x� � > 0 on a set of positive surface measure on

the unit sphere. In particular, U �∈ Lp��3� for all 1 ≤ p ≤ 3
2 .

Proof of Theorem 3.1. We already have, by Theorem 2.2, a solution in L3��. To see
that such solution belongs more precisely, to Ė1 we only have to prove the estimate

	B�U� V�	Ė1
≤ C	U	Ė1

	V	Ė1
� (3.5)
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for some C > 0 independent on U and V . Indeed, an application of Lemma 2.6
shows the existence and the uniqueness of the solution U in Ė1. This solution also
belongs to L3�� since Ė1 ⊂ L3��. Of course, the re-application of the fixed point
argument requires that we replace the constant �1 > 0 of Theorem 2.2 by a smaller
one. Relation (3.5) is a particular case of the following lemma:

Lemma 3.6. Let �1� �2 be two real numbers such that 1 < �1 + �2 < 3. There exists a
constant C such that

	B�U� V�	Ė�1+�2−1
≤ C	U	Ė�1 	V	Ė�2 �

Moreover

	B�U�U�	Ė2
≤ C�	U	2

Ė 3
2

+ 	U	2L2��

Proof. Recall that B�U� V� = m ∗ �U ⊗ V� with m homogeneous of degree −2. Since
�m�x�� ≤ C�x�−2 we can bound

B�U� V� =
∫
m�x − y� � �U ⊗ V��y�dy ≤ C	U	Ė�1 	V	Ė�2

∫ 1
�x − y�2�y��1+�2 dy�

It is easy to show that the last integral is a function of �x� homogeneous of order
1− �1 − �2, so it can be bounded by C�x�1−�1−�2 .

To show the second part, we decompose

B�U� V� =
( ∫

�y�≤ �x�
2

+
∫

�x�
2 ≤�y�

)
m�x − y� � �U ⊗ V��y�dy = I1 + I2�

We have

�I2� ≤ C	U	2
Ė 3

2

∫
�x�
2 ≤�y�

1
�x − y�2�y�3 dy ≤

C

�x�2 	U	2
Ė 3

2

where we used the same scaling argument as above to deduce the last inequality.
Next, we write for I1

�I1� ≤ C
∫
�y�≤ �x�

2

1
�x − y�2 �U�y��

2 dy ≤ C

�x�2
∫
�y�≤ �x�

2

�U�y��2 dy ≤ C

�x�2 	U	2L2 �
�

Let us now prove Part 2 of Theorem 3.1. We have the additional information
�−1�f ∈ Ė�. We argue as in the proof of Theorem 2.2. That is we define ��U� =
U0 + B�U�U� and we choose a sequence satisfying Uk = ��Uk−1�. From Lemma 3.6
we have the estimate

	B�Uk� Uk�	Ė� ≤ C�	Uk	Ė1
	Uk	Ė� � 0 < � < 2�

for some positive function � �→ C�, continuous on �0� 2�. As in Theorem 2.2 part
2 it follows that the sequence of approximate solutions Uk remains bounded in Ė�,
provided that �−1�f ∈ Ė�, for some � ∈ �0� 2�, and

2C�	�−1�f	Ė1
< 1�
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The continuity of C� allows to obtain the conclusion of the theorem (with a
smallness assumption independent on �), at least for e.g. � ∈ [

1
2 �

7
4

]
. We had to

exclude a neighborhood of � = 0 and of � = 2, where C� blows-up.
In the case 7

4 < � ≤ 2, we know that �−1�f ∈ Ė1 ∩ Ė� ⊂ Ė1 ∩ Ė 7
4
. So, from the

previous case we deduce that the solution U satisfies U ∈ Ė1 ∩ Ė 7
4
⊂ L2 ∩ Ė 3

2
. Using

again Lemma 3.6 we infer that B�U�U� ∈ Ė2. But we also know that B�U�U� ∈ Ė1 so
B�U�U� ∈ Ė�. The conclusion in the case 7

4 < � ≤ 2 now follows from equation (2.3).
It remains to consider the case 0 < � < 1

2 (the case � = 0 is contained in
Theorem 2.2, since Ė0 = L�). As above, we show that U ∈ Ė 1

2
∩ Ė1 so U ∈ Ė �+1

2
.

From Lemma 3.6 we get that B�U�U� ∈ Ė� so U ∈ Ė�. The proof of Part 2 of
Theorem 3.1 is now completed.

Let us prove Part 3. We will show using decay properties of m and a Taylor
expansion that for any solution such that �U�x�� ≤ C�1+ �x��−2, we have

�−1�� · �U ⊗ U��x� = m�x� �
∫
U ⊗ U + O

(�x�−3 log��x��)� as �x� → �� (3.6)

But,

�−1�� · �U ⊗ U��x� =
∫
m�x − y� � U ⊗ U�y�dy

= m�x� �
∫
U ⊗ U −m�x� �

∫
�y�≥�x�/2

U ⊗ U

+
∫
�y�≤�x�/2

�m�x − y�−m�x�� � U ⊗ U�y�dy

+
∫
�x−y�≤�x�/2

m�x − y� � U ⊗ U�y�dy

+
∫
�y�≥�x�/2��x−y�≥�x�/2

m�x − y� � U ⊗ U�y�dy�

The only properties on the kernel m that we will use are �m�x�� ≤ C�x�−2 and
��m�x�� ≤ C�x�−3. We need to show that all the terms on the RHS of the last
inequality (excepted the first one) are bounded by C�x�−3 log �x� for large �x�. This
follow easily since U ∈ L2 ∩ Ė2. For large �x�, the second, the fourth and the last
term on the right-hand side are in fact bounded by C�x�−3. The third term is
bounded by C�x�−3 log �x�, for large �x�, as it can be checked applying the Taylor
formula to m. This implies both the asymptotic profiles (3.6) and (3.2).

To conclude, it remains to show that the homogeneous functions∑
h�k

mj�h�k�x�
∫
UhUk� j = 1� 2� 3�

vanish identically if and only if the matrix
∫
U ⊗ U is a scalar multiple of the

identity. We reproduce a computation similar to that in [6, 22]: taking the Fourier
transform, the above vanishing condition is proved to be equivalent to

∑
h�k

m̂j�h�k���
∫
UhUk =

∑
h

i�h
���2

∫
UjUh −

∑
h�k

i�j�h�k
���4

∫
UhUk = 0� for a.e. � ∈ �3�

The conclusion is now obvious. �
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We end this section with the proof of Theorem 3.5.

Proof of Theorem 3.5. We start by choosing �0 sufficiently small such that

�0	�−1�f0	L3�� ≤ �1�

where �1 is the smallness constant from Theorem 2.2. According to Theorem 2.2, for
0 < � ≤ �0 there exists a unique solution U ∈ L3�� ∩ L2 of (1.1) with f = �f0 such
that 	U	L3�� ≤ 2�	�−1�f0	L3�� . It suffices to show that the orthogonality relations
(3.3) does not hold true for U .

LetW0 = −�−1�f0 and U0 = �W0. The hypothesis implies that the matrix
∫
W0 ⊗

W0 is not a scalar multiple of the identity. This means that there exists j �= k such that
either

∫
W

j
0W

k
0 �= 0 or

∫ �Wj
0 �2 �=

∫ �Wk
0 �2, where Wj

0 denotes the jth component of W0.
We will suppose that

∫
W

j
0W

k
0 �= 0, the other case being entirely similar.

We have∣∣∣∣ ∫ UjUk −
∫
U
j
0U

k
0

∣∣∣∣ =
∣∣∣∣ ∫ �U j − U

j
0 �U

k +
∫
U
j
0 �U

k − Uk
0 �

∣∣∣∣
≤ 	U − U0	L2�	U	L2 + 	U0	L2�� (3.7)

From (2.3) and (2.6) with p = 2 and Uk replaced by U we deduce that

	U − U0	L2 = 	B�U�U�	L2 ≤ C�2�	U	L2	U	L3�� ≤ 2C�2��	W0	L3��	U	L2 � (3.8)

Therefore

	U	L2 ≤ 	U0	L2 + 	U − U0	L2 ≤ �	W0	L2 + 2C�2��0	W0	L3��	U	L2 �

If we further strengthen the smallness assumption on �0 by

�0 ≤
1

4C�2�	W0	L3��

we get that

	U	L2 ≤ 2�	W0	L2 �

Relation (3.8) combined with the previous estimate implies that

	U − U0	L2 ≤ 4C�2��2	W0	L3��	W0	L2 �

Using the two previous bounds in (3.7) implies that∣∣∣∣ ∫ UjUk − �2
∫
W

j
0W

k
0

∣∣∣∣ ≤ 12C�2��3	W0	L3��	W0	2L2 �

Finally ∣∣∣∣ ∫ UjUk

∣∣∣∣ ≥ �2
∣∣∣∣ ∫ W

j
0W

k
0

∣∣∣∣−
∣∣∣∣ ∫ UjUk − �2

∫
W

j
0W

k
0

∣∣∣∣
≥ �2

∣∣∣∣ ∫ W
j
0W

k
0

∣∣∣∣− 12C�2��3	W0	L3��	W0	2L2 > 0
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if we further assume that

�0 ≤
∣∣ ∫ Wj

0W
k
0

∣∣
24C�2�	W0	L3��	W0	2L2

�
�

4. Stability of the Stationary Solutions

Consider now a mild formulation of the Navier–Stokes equations with time
independent forcing function f satisfying, as usual, to a smallness condition as in (2.1),

u�t� = et�u0 +
∫ t

0
e�t−s���f ds −

∫ t

0
e�t−s���� · �u⊗ u��s�ds� (4.1)

The two main goals of this section are the following. First we want to establish
conditions on u0 to ensure that the above system has a solution u ∈ L���+� Lp���.
Next, we want to find the largest possible class of solutions u to (4.1) for which
we can say that u�t� converges to the steady solution U given by Theorem 2.2
corresponding to the same force f . This class will be general enough to include non-
stationary solutions in L3�� with large initial data. We will show in particular that
a priori global solutions, verifying a mild regularity condition but initially large in
L3��, become small in L3�� after some time. Only the singularity at infinity of the
initial velocity needs to be small in some sense which is made rigorous in (4.17). For
example, we allow an initial velocity u0 bounded by C/�x� everywhere and bounded
by �/�x� for large x, with C arbitrary and � small.

We recall that a priori large non-stationary solutions in Ḃ
−1+ 3

p
p�q and VMO−1 of

the Navier–Stokes equations without forcing are known to converge to zero in these
spaces (see [1, 15]). However, in our case, convergence to zero will not necessarily
hold true for 	u�t�− U	L3�� , due to the fact that the smooth function in � ��3� are
not dense in L3��. Thus, only weaker convergence results should be expected.

Theorem 4.3 collects our results on the stability of small solutions u, extending,
for flows in �3 with time independent forcing term, those of [2, 9, 19, 29] to the case
3
2 < p < 3, and providing some additional information also for p > 3. Theorem 4.7
contains the convergence result of large solutions u to small stationary solutions U .
Its proof relies on some energy estimates inspired by [1, 15] and on the results on
the stability of small solutions prepared in Theorem 4.3.

To begin we first recall a lemma which will be useful for estimating the integral
terms on the right-hand side of (4.1) in Lp�� spaces. We notice that for the case
p = 3� q = 3/2 the Lemma below was obtained in several papers, among them the
first seems to be in Yamazaki’s paper [29]. Variants of this lemma can also be found
in [21], in a slightly less general form, and in [20].

Lemma 4.1. Given any p ∈ � 32 ��� let q = 3p
p+3 . For 0 ≤ � < t, the operator

L̃�����t� =
∫ t

�
e�t−s���� · ��s�ds

satisfies

	L̃�����t�	Lp�� ≤ C�p� sup
0<s<t

	��s�	Lq�� (4.2)

where C�p� denotes a constant independent of �.
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Proof. Let F�t� be the kernel of the operator et�� div. First recall the rescaling
relation

F�x� t� = t−2F�x/
√
t� 1�

and that F�·� 1� ∈ L1 ∩ L�.
We consider separately the following two pieces

A1 =
∫ t

t−�∗
F�t − s� ∗ ��s�ds and A2 =

∫ t−�∗

�
F�t − s� ∗ ��s�ds�

The idea of the estimate is to find, given any fixed �, a �∗ so that �A2� < �/2. With
this choice of �∗ we can estimate the Lebesgue measure of the set 
x � L̃����� > �
in terms of A1 only. In that direction we establish two preliminary estimates. The
first is a an application of Young’s inequality stated in Proposition 1.2:

	A2	L� ≤ C
∫ t−�∗

�
	F�t − s�	L��1	�	Lq��ds�

Here, � = 3p
2p−3 . The estimate 	F�t − s�	L��1 ≤ C�t − s�−1− 3

2p (that follows from the
rescaling properties of F ) implies

	A2	L� ≤ C�p���∗�−
3
2p 	�	X��tq

� (4.3)

Here we have introduced the notation X��t
q = L����� t�� Lq���. Similarly, 	F�t −

s�	L1 ≤ �t − s�−
1
2 and

	A1	Lq�� ≤
∫ t

t−�∗
	F�t − s�	L1	�	Lq��ds ≤ ��∗�

1
2 	�	X��tq

� (4.4)

We proceed with the bound for 	L̃����	Lp�� . Using the definition of the norm
and the triangle inequality,

	L̃�����t�	Lp�� ≤ sup
�>0

�mes
x � �A1� + �A2� > �
1
p �

For each � > 0 we may choose �∗ such that the right-hand side of (4.3) is equal to
�/2. With this choice of �∗,

�mes
x � �A1� + �A2� > �
1
p ≤ �mes
x � �A1� > �/2

1
p �

Also, using (4.4):

�mes
x � �A1� > �/2
1
p ≤ �1−

q
p 	A1	

q
p

Lq�� ≤ C	�	X��tq �

Taking the supremum over all � > 0 establishes (4.2). �

The following lemma concerns the large time behavior in L3�� of solutions of
the heat equation. It will provide a better understanding of the statements of our
two next theorems.
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Lemma 4.2. Let f ∈ L3��.

• Let � > 0 be arbitrary. Then f can be decomposed as f = f1 + f2 with f1 ∈ L2

and 	f2	L3�� < � if and only if lim supR→0 Rmes
�f � > R
1
3 < ��

• If limR→0 Rmes
�f � > R
1
3 = 0 then et�f → 0 in L3�� as t → �.

• There exists some g ∈ L3�� such that et�g → 0 in L3�� as t → � and such that
lim supR→0 Rmes
�g� > R

1
3 �= 0.

Proof. Assume first that f = f1 + f2 with f1 ∈ L2 and 	f2	L3�� ≤ �. We estimate

mes
�f1� > R ≤ 1
R2

∫
�3

�f1�2

so that lim supR→0 Rmes
�f1� > R
1
3 = 0� We also have that

lim sup
R→0

Rmes
�f2� > R
1
3 ≤ sup

R>0
Rmes
�f2� > R

1
3 = 	f2	L3�� < ��

Let � ∈ �0� 1�. Since 
�f � > R ⊂ 
�f1� > �R ∪ 
�f2� > �1− ��R we have that

lim sup
R→0

Rmes
�f � > R
1
3

≤ lim sup
R→0

R
(
mes
�f1� > �R+mes
�f2� > �1− ��R

) 1
3

≤ lim sup
R→0

Rmes
�f1� > �R
1
3 + lim sup

R→0
Rmes
�f2� > �1− ��R

1
3

= 1
�
lim sup
R→0

Rmes
�f1� > R
1
3 + 1

1− �
lim sup
R→0

Rmes
�f2� > R
1
3

≤ 1
1− �

	f2	L3�� �

Letting �→ 0 implies that lim supR→0 Rmes
�f � > R
1
3 ≤ 	f2	L3�� < ��

Conversely, assume that lim supR→0 Rmes
�f � > R
1
3 < �� There exists R�

such that

sup
0<R<R�

Rmes
�f � > R
1
3 < ��

We set f1 = f�
�f �>R� and f2 = f�
�f �≤R� where � denotes the characteristic function.
Clearly �f2� ≤ R� and �f2� ≤ �f � so that

	f2	L3�� = sup
0<R<R�

Rmes
�f2� > R
1
3 ≤ sup

0<R<R�

Rmes
�f � > R
1
3 < ��

It remains to show that f1 ∈ L2��3�. Let N� ∈ 	 be such that R� > 2N� . Then


�f � > R� ⊂
⋃
n≥N�


2n < �f � ≤ 2n+1
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so ∫
�3

�f1�2 =
∫

�f �>R�

�f �2 ≤
�∑

n=N�

∫

2n<�f �≤2n+1

�f �2 ≤
�∑

n=N�
4n+1 mes
2n < �f �

≤
�∑

n=N�

4
2n

	f	3L3�� < ��

This shows the first part of the lemma.
Assume now that limR→0 Rmes
�f � > R

1
3 = 0 and let � > 0 be arbitrary. Using

the first part we decompose f = f1 + f2 with f1 ∈ L2 and 	f2	L3�� < �. The standard
decay estimates for the heat equation implies that 	et�f1	L3�� < Ct−

1
4 	f1	L2 → 0 as

t → �. Moreover, 	et�f2	L3�� ≤ 	f2	L3�� < �. We infer that

lim sup
t→�

	et�f	L3�� ≤ lim sup
t→�

�	et�f1	L3�� + 	et�f2	L3��� ≤ ��

Letting �→ 0 yields lim supt→� 	et�f	L3�� = 0, as required.
To prove the third part of the lemma, we choose

g�x� = ei�x�2

�x� � �x� = �1+ �x�2� 1
2 �

It is a straightforward calculation to check that

lim sup
R→0

Rmes
�g� > R
1
3 =

(
4�
3

) 1
3

�

On the other hand, we will show that e
1
4�g ∈ L2 which by the decay estimates for

the heat equation implies that 	et�g	L3�� < C�t − 1
4 �

− 1
4 	e 1

4�g	L2 → 0 as t → �.
Since the kernel of the operator e

1
4� is �−

3
2 e−�x�2 one has that

e
1
4�g�x� = �−

3
2

∫
�3

ei�x−y�2

�x − y�e
−�y�2 dy

= �−
3
2 ei�x�

2
∫
�3
e−2ix·y e

�i−1��y�2

�x − y�dy

= �−
3
2
ei�x�2

�x�2
∫
�3

(
1− 1

4
�y

)
e−2ix·y e

�i−1��y�2

�x − y�dy

= �−
3
2
ei�x�2

�x�2
∫
�3
e−2ix·y

(
1− 1

4
�y

)[
e�i−1��y�2

�x − y�
]
dy�

The integral in the last term is bounded uniformly with respect to x. Indeed,
all derivatives of e�i−1��y�2 are integrable and all derivatives of 1

�x−y� are uniformly

bounded in x and y. We deduce that �e 1
4�g�x�� ≤ C�x�−2 which implies that e

1
4�g ∈

L2. This completes the proof of the lemma. �

We state now our stability result for small solutions.
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Theorem 4.3. There exists an absolute constant �3 > 0 with the following properties:

• If f� u0 ∈ � ′��3� are such that

	�−1�f	L3�� + 	u0	L3�� < �3 (4.5)

then there is a unique solution u ∈ L���+� L3��� of (4.1), weakly continuous
with respect to t ∈ �0���, satisfying

sup
s>0

	u�s�	L3�� ≤ 2	u0	L3�� + 4	�−1�f	L3�� � (4.6)

• Let p ∈ � 32 ��� and suppose in addition to (4.5) that u0 ∈ Lp��. If u is the above
solution then,

u ∈ L���+� L
p��� if and only if �−1�f ∈ Lp���

• Let p ∈ � 32 ���, and q > min
3� p. Suppose in addition to (4.5) that u0 ∈ Lp��

and �−1�f ∈ Lp��. Let also U ∈ L3�� ∩ Lp�� be the unique stationary solution
given by Theorem 2.2 (see also Remark 2.8). (We assume here that �3 ≤ �1, the
constant introduced in Theorem 2.2).

(i) There is a function ��q� > 0 such that if �3 < ��q� then, for some constant
C > 0,

	u�t�− U	Lq ≤ Ct−
3
2 �

1
min�3�p�− 1

q �� ∀min
p� 3 < q < �� (4.7)

In particular, u�t�− U → 0 in Lq as t → � for all q > min
3� p.
(ii) If 3

2 < p ≤ 3, then u�t� ⇀ U weakly in Lp�� as t → �. Moreover, u�t�→
U strongly in Lp�� if and only if et��u0 − U�→ 0 in Lp��.

(iii) If 3
2 < p < 3, then the conclusion of the previous item can be strengthened

as follows:

	u�t�− U − et��u0 − U�	Lq ≤ Ct
1
2+ 3

2q− 3
p (4.8)

for all 3p
6−p ≤ q ≤ p and for some constant C > 0 independent of t.

In particular, u�t�− U → 0 in Lq if and only if et��u0 − U�→ 0 in Lq as t →
�, for all 3p

6−p < q ≤ p.

Notice that in (4.7) neither u�t� nor U belong in general to Lq. Similarly, the
terms appearing in the left-hand side of (4.8) in general do not belong, separately,
to Lq. In other words, the difference u�t�− U is better behaved than the solutions
themselves.

Remark 4.4. In the particular case p = q = 2, the preceding theorem contains an
interesting variant of the stability result for finite-energy solutions obtained in [3]
with a different method. Indeed, consider a stationary solution U ∈ L2 ∩ L3�� and a
perturbation w0 ∈ L2 ∩ L3��. According to conclusion (iii), the solution u of the non-
stationary Navier–Stokes equations starting from u0 = U − w0 satisfies, under the
above smallness assumptions, u�t�→ U in L2 as t → � (we use here that et�w0 → 0
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in L2). Explicit convergence rates can be given, e.g., if the perturbation belongs to
additional function spaces. For instance, when w0 ∈ L

3
2 �� ∩ L3�, then

	u�t�− U	2 ≤ Ct−1/4� as t → ��

Remark 4.5. Let us present some further immediate consequences of this theorem.
If the perturbation satisfies w0 ∈ L3, then et�w0 → 0 in L3 and so in L3�� as t → �.
This in turn implies, by (ii),

u�t�→ U in L3�� as t → ��

More generally, according to the second part of Lemma 4.2, such a conclusion
remains valid when limR→0 Rmes
�w0� > R

1
3 = 0. However, notice that neither w0 ∈

L3�� is sufficient nor limR→0 Rmes
�w0� > R
1
3 = 0 is necessary to ensure this result.

In the same way, in the case 3
2 < p < 3, the condition limR→0 Rmes
�w0� >

R
1
p = 0 implies that u�t�→ U ∈ Lp�� as t → �. But in this case the stronger

condition w0 ∈ Lp would imply also, by (iii), the stronger conclusion u�t�→ U in Lp.

Remark 4.6. The proof of Theorem 4.3 below will show that Equation (4.8) holds
true for the wider range max�1� p2 � ≤ q < 3p

3−p . We did not state the full range for q
because the most interesting case is q ≤ p and also because it would require showing
that in the case p < 3, the statement (i) is true with a constant ��q� independent of
q. This additional fact is easy to prove with a recursive argument, but since it is not
really necessary we prefer to skip it.

Proof of Theorem 4.3. We estimate the forcing term in (4.1) by integrating the heat
kernel in time then relying on a fixed point argument making use of Lemma 4.1.
The relation ∫ t

0
e�t−s��ds = et��−1 − �−1 (4.9)

that follows since both operators have the same symbols, gives∥∥∥∥ ∫ t

0
e�t−s���f ds

∥∥∥∥
L3��

≤ 2	�−1�f	L3�� � (4.10)

We used above that et� is a convolution operator with a function of norm L1 equal
to 1. Given (4.10), the first part of this theorem follows from the work of Cannone
and Karch [9]. But the proof takes only a few lines, so we give it for the sake of the
completeness.

Using again that the kernel of et� is of L1 norm equal to 1 we deduce that
	et�u0	L3�� ≤ 	u0	L3�� . Therefore, if we denote ũ0 = et�u0 +

∫ t

0 e
�t−s���f ds one has

that

	ũ0	L���+�L3��� ≤ 	u0	L3�� + 2	�−1�f	L3�� �
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To apply the fixed point argument we introduce the notation B̃�u� v� = L̃0�u⊗
v� and rewrite (4.1) as

u = ũ0 − B̃�u� u�� (4.11)

The bound (4.2), with p = 3, and hence q = 3
2 combined with the Hölder inequality

from Proposition 1.1 yields

	B̃�u� v��t�	L3�� ≤ C

(
sup
s>0

C	u�s�	L3��

)(
sup
s>0

	v�s�	L3��

)
�

We apply this estimate combined with the fixed point argument given in
Lemma 2.6 to the operator �̃�u� = ũ0 − B̃�u� u� in the space L���+� L3���.
This approach yields the existence of a unique solution u ∈ L���+� L3���
provided 4C	ũ0	L���+�L3��� < 1. Lemma 2.6 also insures that the solution satisfies
	u	L���+�L3��� ≤ 2	ũ0	L���+�L3���, establishing part 1 of the theorem.

To prove the second part of the theorem we establish first the cases p ∈
�2� 7� with a fixed point argument then treat the other cases with an interpolation
argument. First, combine (4.2) with the Hölder inequality to establish

	B̃�u� u��t�	Lp�� ≤ C�p�

(
sup
s>0

	u�s�	Lp��
)(

sup
s>0

	u�s�	L3��

)
� (4.12)

Let C̃ be the maximum value of the constant in the above equation for p ∈ �2� 7�,
we require 8�3 < 1/C̃. Considering again the sequence of approximate solutions �ui�
constructed in the usual way, and making use of (4.6) we see

	ui+1�t�	Lp�� ≤ sup
s>0

	ũ0	Lp�� + 1
2
sup
s>0

	ui�s�	Lp�� �

From this estimate the “if” statement in the second claim follows for p ∈ �2� 7�.
If p ∈ � 32 � 2�, through interpolation we find that for all r ∈ �2� 3� we have that

ũ0 ∈ L���+� Lr��� and therefore u ∈ L���+� Lr���. Appealing to (4.2) and again
combining it with the Hölder inequality we see

	B̃�u� u��t�	Lp�� ≤ C sup
t>0

	u�s�	2Lr�� (4.13)

where r = 6p
p+3 ∈ �2� 3�, hence the right-hand side is bounded. Combining this

estimate with (4.11) is enough to prove the “if” statement in the case p ∈ (
3
2 � 2

)
. If

p ∈ �7��� we again interpolate to get u ∈ L���+� Lr��� for all r ∈ �3� 6�. Choosing
again r = 6p

p+3 ∈ �3� 6� in (4.13) finishes the “if” statement in the second claim. To
establish the “only if” part of the claim combine (4.12) with (4.11) and notice that
the right-hand side of (4.9) tends to −�−1 as t → �. The weak continuity u�t�→
u�t′� for t → t′ and t′ ∈ �0��� (the continuity is actually in the strong topology of
L3�� for t′ ∈ �0���) is proved as in [21].

It remains to prove the third part of the theorem, the stability results for
stationary solutions. We begin with Claim (i). Let q > min
3� p. It is worth noticing
that for q > 3, a stability result in the Lq��-norm, as well as a decay estimate of
the form 	u�t�− v�t�	Lq ≤ Ct−

3
2 �

1
3− 1

q � was stated in [9, Proposition 4.3]. However,
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it seems that the argument briefly sketched in [9] cannot be directly applied
to the case where the second solution v�t� is stationary, because a non-obvious
generalization of Lemma 4.1 would be needed. Therefore, we provide a detailed
proof of estimate (4.7).

Let w = U − u and w0 = U − u0. Then this difference w satisfies the mild PDE

w�t� = et�w0 −
∫ t

0
e�t−s���� · �u⊗ w + w⊗ U��s�ds� (4.14)

Moreover, our smallness assumptions on u0 and f and the usual fixed point
Lemma 2.6 imply that w can be obtained as the limit in L���+� L3��� of the
approximating sequence �wk�, defined by

wk+1 = et�w0 − B̃�u� wk�− B̃�wk� U��

where the recursive relation starts with w0�x� t� = et�w0. Moreover, this sequence
�wk� is bounded in L���+� Lp���.

By the semigroup property (recall that F�x� t� denotes the kernel of et�� div):

B̃�u� v��t� = et�/2B̃�u� v��t/2�+
∫ t

t/2
F�t − s� ∗ �u⊗ v��s�ds�

We deduce

wk+1�t� = et�w0 − et�/2B̃�u� wk��t/2�− et�/2B̃�wk� U��t/2�

−
∫ t

t/2
F�t − s� ∗ �u⊗ wk��s�ds −

∫ t

t/2
F�t − s� ∗ �wk ⊗ U��s�ds�

Now let r = min�3� p� and denote

M = max
{
	w0	Lr��� 	U	Lr��� sup

s>0
	u�s�	Lr��

}
�

By Lemma 4.1 and using that the sequence wk is bounded in L���+� L3���,

	B̃�u� wk��t/2�	Lr�� + 	B̃�wk� U��t/2�	Lr�� ≤ CrM�

A heat kernel estimate now implies, for all q > r and for some constant C ′
r > 0

independent of q,

	wk+1�t�	Lq�� ≤ C ′
rMt

− 3
2 �

1
r − 1

q � +
∥∥∥∥ ∫ t

t/2
F�t − s� ∗ �u⊗ wk��s�ds

∥∥∥∥
Lq��

+
∥∥∥∥ ∫ t

t/2
F�t − s� ∗ �wk ⊗ U��s�ds

∥∥∥∥
Lq��

�

From Lemma 4.1 with Hölder’s inequality we have∥∥∥∥ ∫ t

t/2
F�t − s� ∗ �u⊗ wk��s�ds

∥∥∥∥
Lq��

+
∥∥∥∥ ∫ t

t/2
F�t − s� ∗ �wk ⊗ U��s�ds

∥∥∥∥
Lq��

≤ C ′′
q �3 sup

s∈�t/2�t�
	wk�s�	Lq�� �

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
I
f
t
i
m
i
e
,
 
D
r
a
g
o
s
]
 
A
t
:
 
2
0
:
2
2
 
1
5
 
D
e
c
e
m
b
e
r
 
2
0
1
0



240 Bjorland et al.

Let

Wk�t� ≡ sup
�∈�t���

	wk���	Lq�� �

then

Wk+1�t� ≤ C ′
rMt

− 3
2 �

1
r − 1

q � + C ′′
q �3Wk�t/2��

Iterating this inequality implies

Wk�t� ≤ C ′
rM

k−1∑
n=0

(
C ′′
q �3 2

3
2 �

1
r − 1

q �
)n
t−

3
2 �

1
r − 1

q � + (
C ′′
q �3

)k
W0�t/2

k�

≤ 2C ′
rMt

− 3
2 �

1
r − 1

q � + C�r� q�
(
C ′′
q �32

3
2 �

1
r − 1

q �
)k
t−

3
2 �

1
r − 1

q ��

provided

C ′′
q �32

3
2 �

1
r − 1

q � <
1
2
�

A slightly more stringent smallness condition and independent on r > 3
2 is, e.g.,

�3 < ��q� �= 1
4C ′′

q

� (4.15)

Now assuming (4.15) and letting k→ � we get,

	w�t�	Lq�� ≤ 2C ′
rMt

− 3
2 �

1
r − 1

q �� for r = min�3� p� and q > r� (4.16)

Writing the above estimate for q − � and q + �, for some � > 0 small enough and
interpolating the Lq-space between Lq−��� and Lq+��� shows that the above estimate
remains valid with 	w�t�	Lq on the left-hand side. This establishes the stability
result (4.7).

We now prove Claim (ii). The weak convergence u�t� ⇀ U in Lp�� for 3
2 < p ≤ 3

is obvious since the solution u�t� is bounded in Lp�� and goes to U in the sense of
distributions (even in Lq, q > 3, as implied by the previous part of the proof).

On the other hand, the proof of the necessary and sufficient condition for the
strong convergence result in the L3��-norm is given in [9, Theorem 2.2] and in [9,
Corollary 4.1], hence we will skip it. The necessary and sufficient condition for the
strong convergence result in the Lp��-norm, with 3

2 < p < 3 is a direct consequence
of Claim (iii) which we now prove.

Let now 3
2 < p < 3 and 3p

6−p ≤ q ≤ p. Given these restrictions, there exists some
q1 ∈ �p� 4� such that the following relations hold true:

1
q
− 1
p
≤ 1
q1

≤ 1
p
�

1
q1

< min
(
1− 1

p
�
1
3
+ 1
q
− 1
p

)
�
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We go back to the equation for w given in (4.14). We estimate 	w�t�− w0�t�	Lq
using Propositions 1.1 and 1.2, the bound 	w�t�	Lq1�� ≤ Ct

− 3
2

(
1
p− 1

q1

)
(consequence

of (4.7) with q = q1) and the fact that U ∈ Lp�� and u ∈ L���0���� Lp���. We get

	w�t�− w0�t�	Lq ≤ C
∫ t

0
�t − s�

− 1
2+ 3

2 �
1
q− 1

p− 1
q1
�	�u⊗ w + w⊗ U��s�	

L
q1p
p+q1 ��

ds

≤ C
∫ t

0
�t − s�

− 1
2+ 3

2 �
1
q− 1

p− 1
q1
�	w�s�	Lq1��

(	u�s�	Lp�� + 	U	Lp��
)
ds

≤ C
∫ t

0
�t − s�

− 1
2+ 3

2 �
1
q− 1

p− 1
q1
�
s
− 3

2 �
1
p− 1

q1
�
ds

≤ Ct
1
2+ 3

2q− 3
p �

The theorem is now completely proved.
We finally show our stability result for large solutions.

Theorem 4.7. There exists an absolute constant �4 > 0 with the following property.
Let u ∈ L�

loc��0���� L3��� ∩ L4
loc��0���� L4� be a global solution of the evolutionary

Navier–Stokes equations with a constant in time forcing f such that �−1�f ∈ L3�� ∩ L4

and

A�u0� f� ≡ lim sup
R→0

Rmes
�u0� > R
1
3 + 	�−1�f	L3�� < �4� (4.17)

Let U ∈ L3�� ∩ L4 be the unique stationary solution constructed in Theorem 2.2. Then
we have that

• lim supt→� 	u�t�	L3�� ≤ 22A�u0� f�;• u�t� ⇀ U weakly in L3�� as t → �;
• u�t�→ U in L3�� as t → � if and only if et��u0 − U�→ 0 strongly in L3�� as
t → �.

Proof. The idea of the proof is the same as in [15] where it was proved that any
global solution of the Navier–Stokes equations without external force goes to 0

in the Besov spaces Ḃ
−1+ 3

p
p�q when the time becomes large (see also [1] for the case

of VMO−1). It consists in decomposing the initial velocity in a small part plus a
square integrable part. The small part remains small by the small data theory and
the square-integrable part will become small at some point by using some energy
estimates.

Here we use Lemma 4.2 to decompose u0 = v0 + w0 where v0 ∈ L2 ∩ L3��

and 	w0	L3�� < 2A�u0� f�. Assuming that 3�4 < �3 where �3 is the constant from
Theorem 4.3, we can apply that theorem to construct a global solution w of the
Navier–Stokes equations with forcing term f , initial velocity w0 and such that

	w�t�	L3�� ≤ 8A�u0� f� for all t ≥ 0�

Moreover, according to relation (4.7) the solution w satisfies the following decay
estimate supt>0 t

1
8 	w�t�− U	L4 < �. Since U ∈ L4 we infer that w ∈ L4

loc��0���� L4�.
The difference v = u− w verifies the following PDE:

�tv− �v+ u · �v+ v · �w + �p′ = 0 (4.18)

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
I
f
t
i
m
i
e
,
 
D
r
a
g
o
s
]
 
A
t
:
 
2
0
:
2
2
 
1
5
 
D
e
c
e
m
b
e
r
 
2
0
1
0



242 Bjorland et al.

whose integral form reads

v�t� = et�v0 −
∫ t

0
e�t−s���� · �u⊗ v+ v⊗ w��s�ds� (4.19)

We show first that v ∈ C0��0���� L2�. The first term on the right-hand side
above clearly belongs to this space. We show that so does the second term. The
kernel F�t� of the operator et�� div is of the form F�x� t� = t−2F� x√

t
� 1� with F�·� 1� ∈

L1 ∩ L� ⊂ Lp�q for all 1 < p < � and 1 ≤ q ≤ �. In particular, 	F�t�	
L

6
5 �2

≤ t−
3
4 so

that F ∈ L1
loc��0���� L 6

5 �2�. By the Hölder inequality we also have that u⊗ v+ v⊗
w ∈ L�

loc��0���� L 3
2 ���. Since the last term in (4.19) is the space-time convolution of

F with u⊗ v+ v⊗ w, we infer that it belongs to C0��0���� L2�.
For 0 < � < 1, let J� be a smoothing operator that multiplies in the frequency

space by a cut-off function bounded by 1 which is a smoothed out version of
the characteristic function of the annulus 
� < ��� < 1

�
. We also introduce an

approximation of the identity  � in time.
Given the additional regularity found for v above, we remark that we can

multiply the equation of v expressed in (4.18) by  � ∗  � ∗ J 2
� v and integrate in space

and time from t0 to t, with t0 > 0, to obtain that

	 � ∗ J�v�t�	2L2 + 2
∫ t

t0

	� � ∗ J�v�s�	2L2 ds

= 	 � ∗ J�v�t0�	2L2 + 2
∫ t

0

∫
�3
u · �� � ∗  � ∗ J 2

� v� · v

+ 2
∫ t

0

∫
�3
v · �� � ∗  � ∗ J 2

� v� · w� (4.20)

We let now �→ 0. Given the time continuity of v with values in L2, we have that
 � ∗ J�v�t�→ J�v�t� and  � ∗ J�v�t0�→ J�v�t0� in L2 as �→ 0. The other terms in
(4.20) pass easily to the limit �→ 0. Therefore, taking first the limit �→ 0 in (4.20),
and second t0 → 0 and using again that v ∈ C0�0���� L2� we get that

	J�v�t�	2L2 + 2
∫ t

0
	�J�v�s�	2L2 ds = 	J�v0	2L2 + 2

∫ t

0

∫
�3
u · �J 2

� v · v

+ 2
∫ t

0

∫
�3
v · �J 2

� v · w� (4.21)

We bound the last two terms on the right-hand side as follows

2
∫ t

0

∫
�3
u · �J 2

� v · v+ 2
∫ t

0

∫
�3
v · �J 2

� v · w ≤ 2
∫ t

0
	�J 2

� v	L2	v	L4�	u	L4 + 	w	L4�

≤ 1
2

∫ t

0
	�J�v	2L2 +

∫ t

0
	v	2L4�	u	2L4 + 	w	2L4��

Plugging this in (4.21) yields

	J�v�t�	2L2 +
∫ t

0
	�J�v�s�	2L2 ds ≤ 	J�v0	2L2 +

∫ t

0
	v	2L4�	u	2L4 + 	w	2L4��
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Since u� v� w ∈ L4
loc��0���� L4�, the right-hand side above is uniformly bounded

with respect to �. Letting �→ 0 implies thanks to the Beppo-Levi theorem that∫ t

0 	�v�s�	2L2 ds < �, that is v ∈ L2
loc��0����H1�.

We go back to (4.21) and estimate

2
∫ t

0

∫
�3
u · �J 2

� v · v = 2
∫ t

0

∫
�3
u · �J 2

� v · �1− J 2
� �v

≤ 2	u	L4�0�t�L4�	�v	L2�0�t�L2�	�1− J 2
� �v	L4�0�t�L4�

→ 0 as �→ 0� (4.22)

We observe now that Ḣ1��3� ↪→ L6�2��3�. This imbedding follows from the
Young inequality for Lorentz spaces after noticing that �−��− 1

2 is a convolution
operator with a function bounded by C

�x�2 which therefore belongs to L
3
2 ��. We use

this fact together with the Hölder inequality to bound the last term in (4.21) as
follows

2
∫ t

0

∫
�3
v · �J 2

� v · w ≤ C
∫ t

0
	v	L6�2	�J 2

� v	L2	w	L3�� ≤ CA�u0� f�
∫ t

0
	�v	2L2 � (4.23)

Using (4.22) and (4.23) in (4.21), letting �→ 0 and using the Beppo-Levi theorem
we infer that

	v�t�	2L2 + 2
∫ t

0
	�v�s�	2L2 ds ≤ 	v0	2L2 + CA�u0� f�

∫ t

0
	�v	2L2 �

If we further assume that C�4 ≤ 1, then CA�u0� f� ≤ 1 so the relation above implies
that v ∈ L���+� L2� ∩ L2��+� Ḣ1�. By interpolation and from the imbedding Ḣ

1
2 ⊂

L3�� we infer that v ∈ L4��+� Ḣ
1
2 � ⊂ L4��+� L3���. So there exists a time T = T��4�

such that 	v�T�	L3�� < A�u0� f�. Since we also have that 	w�T�	L3�� < 8A�u0� f� we
infer that 	u�T�	L3�� < 9A�u0� f�. Assuming further that 10�4 < �3, Theorem 4.3
allows to construct a small solution starting from time T , a solution whose L3��

norm will be bounded by 22A�u0� f�. We will prove below a uniqueness result stating
that u must be equal to this small solution starting from time T . Once this is proved,
the first part of the theorem follows. Moreover, using again that our solution u
becomes small after the time T , the second and the third part of the theorem
are consequences of Theorem 4.3. Except that the equivalent condition for u�t� to
converge strongly to U in L3�� is that et��u�T�− U�→ 0 strongly in L3�� as t → �.
To finish the proof it therefore suffices to show that

et��u�T�− U�
t→�−→ 0 in L3�� ⇐⇒ et��u0 − U�

t→�−→ 0 in L3���

This is a consequence of the following sequence of equivalence relations:

et��u�T�− U�
t→�−→ 0 in L3�� ⇐⇒ et��w�T�− U�

t→�−→ 0 in L3��

⇐⇒ w�t�
t→�−→ U in L3��

⇐⇒ et��w0 − U�
t→�−→ 0 in L3��

⇐⇒ et��u0 − U�
t→�−→ 0 in L3���
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We used above that v�T�� v0 ∈ L2 and the decay estimates for the heat equation to
deduce the first and fourth lines of the relation above, and Theorem 4.3 twice for w,
starting from time t = 0 and from time t = T to deduce the second and third lines.
This completes the proof provided that we prove the announced uniqueness result.

Let ū be the small solution starting from time T with initial velocity u�T�
constructed in Theorem 4.3 and set v̄ = ū− w. As above we have that v̄ ∈
C0��T���� L2� ∩ L2��T���� Ḣ1�. Then v− v̄ solves the following equation:

�t�v− v̄�− ��v− v̄�+ u · ��v− v̄�+ �v− v̄� · �ū = −�p1�

As in the previous argument, one can prove that this relation can be multiplied by
v− v̄ and integrated from T to t to get that, for all t ≥ T ,

	�v− v̄��t�	2L2 + 2
∫ t

T
	��v− v̄�	2L2 =

∫ t

T

∫
�v− v̄� · ��v− v̄� · ū

≤ C
∫ t

T
	��v− v̄�	2L2	ū	L3��

≤ CA�u0� f�
∫ t

T
	��v− v̄�	2L2

≤
∫ t

T
	��v− v̄�	2L2

provided that A�u0� f� is sufficiently small. We infer that v�t� = v̄�t�, that is u�t� =
ū�t� for all t ≥ T . This completes the proof of the theorem. �

Remark 4.8. We also have stability in Lp�� for large solutions. More precisely,
suppose that in addition to the hypothesis of Theorem 4.7 we assume that u0 ∈
Lp�� with p ∈ � 32 � 3�. Then u ∈ L���+� Lp���, u�t� ⇀ U weakly in Lp�� and u�t�−
et��u0 − U�→ U in Lp�� as t → �. This follows easily after applying Theorem 4.3
starting from the time T when the solution becomes small. One only needs to show
the following two facts:

• if u0 ∈ Lp�� and �−1�f ∈ Lp�� then u ∈ L��0� T� Lp���;
• e�t−T���u�T�− U�− ut��u0 − U�→ 0 strongly in Lp�� as t → �.

To prove the first assertion, we observe that, with the notation from the proof
of Theorem 4.3 (namely the notation used in relation (4.11)) one has that ũ0 ∈
L���+� Lp���. Moreover, by the Hölder inequality and using the standard decay
estimates for the heat equation we can bound

	B̃�u� u��t�	Lp ≤
∫ t

0
	e�t−s���� · �u⊗ u��s�	Lp ds

≤ C
∫ t

0
�t − s�−

3
2+ 3

2p 	u�s�	2L3��

≤ Ct−
1
2+ 3

2p sup
0<s<t

	u�s�	2L3�� � (4.24)

We infer that B̃�u� u� ∈ L��0� T� Lp� ⊂ L��0� T� Lp���, so by (4.11) we also have that
u ∈ L��0� T� Lp���. To show the second assertion, we observe that it is sufficient to
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prove that

u�T�− U − et��u0 − U� ∈ Lq��

for some q < p. But u− U verifies the PDE

�t�u− U�− ��u− U�+ u · �u− U · �U = −�p2

whose mild formulation implies that

u�T�− U − et��u0 − U� = −
∫ T

0
e�T−s���� · �u⊗ u− U ⊗ U��s�ds�

The same estimate as in (4.24) shows now that the right-hand side belongs to Lq��

for any 3
2 < q < 3, in particular for some q < p.

Moreover, if u0 ∈ Lp, then the previous argument shows that u ∈ L��0� T� Lp�.
From Theorem 4.3 applied starting from time T we infer that u ∈ L���+� Lp� and
u�t�→ U in Lp as t → �.

Remark 4.9. We observe that the condition imposed on the initial velocity by
the hypothesis of Theorem 4.7 does not imply that u0 is close in L3�� to
the smooth functions in � ��3�. Indeed, that would require to have that the
quantity lim supR→� Rmes
�u0� > R

1
3 is small too. This condition is not necessary

in Theorem 4.7.
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