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Introduction

Shape visualization and processing are fundamental tasks in many fields from mechanical engineer-
ing to physics, biology, chemical engineering, medicine, astronomy, etc., and are the subject of very
active research in image processing and computer graphics. For there is a huge variety of appli-
cations and a large variety of capture systems, there are many discrete models for representing a
shape: point clouds, meshes, pixel/voxel representations, splines, level sets representations, etc. All
these models carry very different informations, and it is hopeless to look after equivalence relations
between them. It makes sense however to try to look at all these models in a common framework,
possibly weaker, which would provide a common formalism for studying a large variety of both
discrete and continuous shapes.

Such a common framework has been proposed in [Bue14, Bue15]: the class of varifolds. Varifolds
have been introduced by Almgren in 1965 [Alm65] to study the existence of critical points of the
area functional. They have several nice properties in a variational context: compactness, mass
continuity, criteria of rectifiability, a notion of multiplicity, and a weak notion of curvature called
the first variation [All72, Sim83]. In addition, the varifold structure is flexible enough to describe
not only classical continuous objects as curves, surfaces, rectifiable sets, etc., but also ”discrete”
objects like meshes, point clouds, volumetric representations. etc.

Previous contributions in the literature also involve tools from geometric measure theory to
define a convenient notion of curvature or to study more generally discrete surface approximation.
For instance, a unified notion of curvature measure valid both for surfaces and their discrete ap-
proximations, and based on normal cycles, is introduced in [CSM06]. First defined for surfaces
and triangulations [Mor08], it has been recently extended in [CCLT09] to more general discretiza-
tions like point clouds. The accuracy of the approximation of the surface is measured in terms of
Hausdorff distance while the error between the curvature measure of the surface and the curvature
measure of the approximation is controlled in terms of the Bounded Lipschitz distance which is
similar to the Wasserstein distance. Shape comparison is another application of geometric measure
theory: Charon and Trouvé[CT13] endow triangulated surfaces with a varifold structure, and de-
fine a distance between varifolds, both computable from a numerical point of view and adapted to
shape matching.

In the first section of this paper, we follow [Bue15] and introduce discrete volumetric varifolds
and point cloud varifolds to represent both volumetric surface models and point clouds. We study
convergence issues, and in particular, in Theorem 2.6 , we estimate in terms of the Bounded Lips-
chitz distance the quality of the approximation of rectifiable varifolds by either discrete volumetric
varifolds or point cloud varifolds.
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We already mentioned that any varifold can be endowed with a notion of generalized curvature,
namely the first variation. However, the convergence of a sequence of varifolds (Vi)i does not imply
the convergence of the associated first variations, unless the latter are uniformly bounded, that is,
if

sup
i
||δVi|| < +∞ .

This condition is not always satisfied neither by weakly–∗ converging sequences of discrete volu-
metric varifolds, nor by point cloud varifolds, hence the following question arises:

Question 1. What conditions on a weakly–∗ converging sequence of varifolds (possibly not rectifi-
able) ensure that the limit varifold has bounded first variation? that the first variations converge?

We start from the following observation: even when a varifold does not have bounded first
variation, the first variation is by definition a linear form on C1

c , which can thus always be tested
on a C1 or Lipschitz function, so that it is possible to regularize the first variation δV of a varifold V
with a Lipschitz or even more regular kernel ρε. This regularization δV ∗ρε has an explicit expression
(given in Proposition 3.1). Such regularization allows to give an answer to Question 1 (see Theorem
3.5). Moreover, it provides a notion of approximate curvature for a varifold V (depending on the
choice of a regularizing kernel ρε):

Hε = − δV ∗ ρε
‖V ‖ ∗ ρε

, (1)

which converges ‖V ‖–almost everywhere to the classical mean curvature as soon as the varifold V
has bounded first variation (see Proposition 3.6).

It remains to study the behavior of the approximate mean curvature (1) on sequences of discrete
varifolds. We thus need to make a connection between the scale parameter ε of the approximation
and the scale of the discrete objects (the size δi of the mesh Ki, assuming that we are considering a
sequence of discrete volumetric varifolds Vi associated to a varifold V and to a sequence of meshes
(Ki)i, see Definition 9).

Question 2. Are there conditions on the infinitesimal sequences (εi)i and (δi)i ensuring that the
approximate mean curvatures of discrete volumetric varifolds (Vi)i associated with a rectifiable var-
ifold V and with the sequence of meshes (Ki)i of size δi → 0, converge to the mean curvature of
V ?

The answer is yes, under some additional assumptions on the regularity of V and ρ, as well as
on the relation between the parameters εi and δi, see Proposition 2.4 and Theorem 3.10.

Then, in order to understand better the approximate first variation provided by the regular-
ization δV ∗ ρε, we address the question of representing δV ∗ ρε as the first variation of some
conveniently chosen varifold:

Question 3. Given a d–varifold V , is the regularization δV ∗ ρε of the first variation δV , the first

variation δ
(
V̂ε

)
of some varifold V̂ε? If this is the case, is V̂ε the regularization (in a sense to be

defined) of V ?

The construction of V̂ε can be done explicitly (Theorem 4.2). Indeed for every ψ ∈ C0
c(Ω×Gd,n),〈

V̂ε, ψ
〉

= 〈V, (y, S) 7→ ψ(·, S) ∗ ρε(y)〉 .
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We observe that the mass ‖V̂ε‖ = ‖V ‖ ∗ ρε is the convolution of ‖V ‖ and in Proposition 4.4, we
point out that the tangential part ν̂εx of V̂ε = ‖V̂ε‖ ⊗ ν̂εx is generally neither a Dirac mass nor a
combination of Dirac masses.

The final section of the paper is devoted to numerical experiments in order to illustrate on 2D
subsampled parametric test shapes and on 3D point clouds our notion of approximate mean curva-
ture. In particular, we study the behavior with respect to the choice of a regularizing parameter,
or the ratio between the number of points and the scale parameter ε.

Notations

From now on, we fix d, n ∈ N with 1 ≤ d < n and an open set Ω ⊂ Rn. We adopt the following
notations.

• A4B = (A ∪B) \ (A ∩B) is the symmetric difference.

• Br(x) = {y | |y − x| < r} is the open ball in Rn of center x and radius r.

• Bδ =
⋃
x∈B Bδ(x) = {y ∈ Rn | d(y,B) ≤ δ}.

• ωd = Ld(B1(0)) is the d–volume of the unit ball in Rd.

• Being A,B two open sets then A ⊂⊂ Ω means that A is relatively compact in B.

• Let A ⊂ Ω then Ac = Ω \A denotes the complementary of A in Ω.

• Gd,n is the Grassmannian of all d-dimensional vector subspaces of Rn equipped with the
metric

d(T, P ) = ‖ΠT −ΠP ‖

with ΠT ∈Mn(R) being the matrix of the orthogonal projection onto T and ‖ · ‖ a norm on
Mn(R). Measures on Ω×Gd,n are considered with respect to the Borel algebra on Ω×Gd,n.

• Given a continuous Rm–valued function f defined in Ω, its support spt f is the closure in Ω
of {y ∈ Ω | f(y) 6= 0}.

• Ck
c (Ω) is the space of real continuous compactly supported functions of class Ck (k ∈ N) in

Ω.

• C0
o(Ω) is the closure of C0

c(Ω) for the sup norm.

• Lipk(Ω) is the space of Lipschitz functions in Ω with Lipschitz constant ≤ k.

• We denote by |µ| the total variation of a measure µ.

• Mloc(Ω)m is the space of Rm–valued Radon measures andM(Ω)m is the space of Rm–valued
finite Radon measures.

• Ln is the n–dimensional Lebesgue measure.

• Hd is the d–dimensional Hausdorff measure.
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1 Generalities on varifolds

We recall here a few facts about varifolds, see [Sim83] for a more complete survey of varifolds
theory.

Definition 1 (Rectifiable d–varifold). Given an open set Ω ⊂ Rn, let M be a countably d–rectifiable
set and θ be a non negative function with θ > 0 Hd–almost everywhere in M . A rectifiable d–varifold
V = v(M, θ) in Ω is a positive Radon measure on Ω×Gd,n of the form V = θHd|M ⊗ δTxM i.e.

ˆ
Ω×Gd,n

ϕ(x, T ) dV (x, T ) =

ˆ
M
ϕ(x, TxM) θ(x) dHd(x) ∀ϕ ∈ Cc(Ω×Gd,n,R)

where TxM is the approximative tangent space at x which exists Hd–almost everywhere in M . The
function θ is called the multiplicity of the rectifiable varifold.

Let us turn to the general notion of varifold:

Definition 2 (General d–varifold). Let Ω ⊂ Rn be an open set. A d–varifold in Ω is a positive
Radon measure on Ω×Gd,n.

Remark 1.1. As Ω × Gd,n is locally compact, Riesz Theorem allows to identify Radon measures
on Ω × Gd,n and continuous linear forms on Cc(Ω × Gd,n) (we used this fact in the definition of
rectifiable d–varifolds) and the convergence in the sense of varifolds is then the weak–∗ convergence.

Definition 3 (Convergence of varifolds). A sequence of d–varifolds (Vi)i weakly–∗ converges to a
d–varifold V in Ω if, for all ϕ ∈ Cc(Ω×Gd,n),

〈Vi, ϕ〉 =

ˆ
Ω×Gd,n

ϕ(x, P ) dVi(x, P ) −−−→
i→∞

〈V, ϕ〉 =

ˆ
Ω×Gd,n

ϕ(x, P ) dV (x, P ) .

Definition 4 (Mass). The mass of a general varifold V is the positive Radon measure defined by
‖V ‖(B) = V (π−1(B)) for every B ⊂ Ω Borel, with{

π : Ω×Gd,n → Ω
(x, S) 7→ x

In particular, the mass of a d–rectifiable varifold V = v(M, θ) is the measure ‖V ‖ = θHd|M .

The set of d–varifolds is endowed with a notion of generalized curvature called first variation.

Definition 5 (First variation of a varifold). The first variation of a d–varifold in Ω ⊂ Rn is the
linear functional

δV : C1
c(Ω,Rn) → R
X 7→

´
Ω×Gd,n divPX(x) dV (x, P )

It is a distribution of order 1.

For P ∈ G and X = (X1, . . . , Xn) ∈ C1
c(Ω,Rn), the operator divP is defined as

divP (x) =

n∑
j=1

〈∇PXj(x), ej〉 =

n∑
j=1

〈ΠP (∇Xj(x)), ej〉 whith (e1, . . . , en) the canonical basis of Rn.

The linear functional δV is generally not continuous with respect to the C0
c topology. When it is

true, we say that the varifold has locally bounded first variation:
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Definition 6 (Locally bounded first variation). We say that a d–varifold on Ω has locally bounded
first variation when the linear form δV is continuous that is to say, for every compact set K ⊂ Ω
there is a constant cK such that for every X ∈ C1

c(Ω,Rn) with sptX ⊂ K,

|δV (X)| ≤ cK sup
K
|X| .

If a d–varifold V has locally bounded first variation, the linear form δV can be extended into
a continuous linear form on Cc(Ω,Rn), and by Riesz Theorem, there exists a Radon measure on Ω
(still denoted δV ) such that

δV (X) =

ˆ
Ω
X · δV for every X ∈ Cc(Ω,Rn)

Thanks to Radon-Nikodym Theorem, we can derive δV with respect to ‖V ‖ and there exist a
function H ∈

(
L1
loc(Ω, ‖V ‖)

)n
and a measure δVs singular to ‖V ‖ such that

δV = −H‖V ‖+ δVs .

The function H is called the generalized mean curvature vector. Thanks to the divergence theorem,
it coincides with the classical notion of mean curvature if V = v(M, 1) with M a C2 submanifold.
We now define and study varifolds structures on discrete objects.

We now recall what is the Bounded Lipschitz distance between two Radon measures. It is also
called the flat metric and it can be seen as a modified 1–Wasserstein distance which allows the
comparison of measures with different masses. In contrast, the 1–Wasserstein distance between two
measures with different masses is infinite.

Definition 7 (Bounded Lipschitz distance / Flat distance). Let µ and ν be two Radon measures
on a locally compact metric space (X, d), the quantity

∆1,1(µ, ν) = sup

{∣∣∣∣ˆ
X
ϕdµ−

ˆ
X
ϕdν

∣∣∣∣ : ϕ ∈ Lip(X), ‖ϕ‖∞ ≤ 1 and lip(ϕ) ≤ 1

}
defines a distance in the space of Radon measure in X, called the Bounded Lipschitz distance.

Remark 1.2. As for Wasserstein distances (see [Vil09]), the Bounded Lipschitz distance has a dual
formulation (see [PR14]).

We shall also use the following localized notion of ∆1,1 convergence, in the case of varifolds:

Definition 8. Let Ω ⊂ Rn be an open set and let µ and ν be two d–varifolds in Ω. For any open
ball B ⊂ Ω we define

∆1,1
B (µ, ν) = sup

{∣∣∣∣∣
ˆ

Ω×Gd,n
ϕdµ−

ˆ
Ω×Gd,n

ϕdν

∣∣∣∣∣ :
ϕ ∈ Lip(Ω×Gd,n), ‖ϕ‖∞ ≤ 1, lip(ϕ) ≤ 1
and sptϕ ⊂ B ×Gd,n

}
.
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2 Discrete varifolds

Most surface representations can be endowed with a varifold structure (triangulations, point clouds,
pixelizations). Here we focus on non-structured discretizations for a couple of reasons. First, non-
structured discretizations are more flexible as they do not require or impose a-priori constraints
on the geometry or topology of the surfaces: one may think for instance to the Plateau problem,
that is, to the minimization of the area of surfaces spanning some common boundary, but with-
out any a-priori assumption on the topology of the competing surfaces. Second, more structured
discretizations can be treated with more specific tools from discrete geometry [BSSZ08], while for
less structured ones (like pixelizations and point clouds) the frameworks proposed in the existing
literature are quite limited and mainly focused on the reconstruction of regular or triangulated
surfaces (see for instance [HDD+92]). For instance, in this second case it is more difficult to design
robust approximation schemes or curvature estimators.

We consider two main classes of such discretizations: volumetric varifolds (which were intro-
duced in [Bue15]) and point cloud varifolds.

2.1 Volumetric varifolds and point cloud varifolds

A mesh of an open set Ω is a countable and locally finite partition

K =
⊔
K∈K

K

of Ω. For the moment, no other assumptions on the shape of the cells or on the geometry of the
mesh are needed except that the size of the mesh

δ = sup
K∈K

diamK

is finite.
Let us introduce the notion of discrete volumetric varifold (see [Bue15]). Let Ω ⊂ Rn be an

open set and let K be a mesh of Ω. Roughly speaking, given for instance a d–rectifiable set M ⊂ Rn
(a curve, a surface...) we can define for any cell K ∈ K, a mass mK (the length of the piece of
curve in the cell, the area of the piece of surface in the cell...) and a mean tangent plane PK as

mK = Hd(M ∩K) and PK ∈ arg min
S∈Gd,n

ˆ
M∩K

|TxM − S| dHd(x) ,

and similarly, given a rectifiable d–varifold V , defining

mK = ‖V ‖(K) and PK ∈ arg min
S∈Gd,n

ˆ
K×Gd,n

|P − S| dV (x, P ) ,

gives what we call a volumetric approximation of V . This yields the following definition of discrete
volumetric varifold:

Definition 9. Let Ω ⊂ Rn be an open set. Consider a mesh K of Ω and a set of pairs {(mK , PK)}K∈K ⊂
R+ ×Gd,n. We can associate this set of pairs with the d–varifold

VK =
∑
K∈K

mK

|K|
Ln|K ⊗ δPK , where |K| = Ln(K) .
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This d–varifold is not rectifiable since its support is n–rectifiable but not d–rectifiable. We will refer
to the set of d–varifolds of this special form as discrete volumetric varifolds.

We now define a varifold structure on point clouds.

Definition 10 (Point cloud varifolds). Let {xi}i=1...N ⊂ Rn be a point cloud, weighted by the
masses {mi}i=1...N and provided with directions {Pi}i=1...N ⊂ Gd,n. We can thus associate the set
of triplets {({xi,mi, Pi) : i = 1, . . . , N} with a d–varifold on Rn ×Gd,n:

V =

N∑
i=1

mi δxi ⊗ δPi ,

so that for ϕ ∈ C0
c(Ω×Gd,n),

ˆ
ϕdV =

N∑
i=1

ϕ(xi, Pi) .

2.2 A one-to-one correspondence between volumetric varifolds and point cloud
varifolds

First of all, let us point out the following fact:

Proposition 2.1. Let Ω ⊂ Rn be an open set. Consider a mesh K of Ω of size η = sup
K∈K

diamK

and a family {xK ,mK , PK}K∈K ⊂ Rn × R+ × Gd,n such that xK ∈ K, for all K ∈ K. Define the
volumetric varifold V vol

K and the point cloud varifold V pt
K as

V vol
K =

∑
K∈K

mK

|K|
Ln|K ⊗ δPK and

∑
K∈K

mKδxK ⊗ δPK .

Then, for any B ⊂ Ω, setting Bη = {x ∈ Ω : d(x,B) ≤ η}, we obtain µη := ‖V vol
K ‖(Bη) =

‖V pt
K ‖(Bη) and µ = ‖V vol

K ‖(Ω) = ‖V pt
K ‖(Ω), and moreover

∆1,1
B (V vol

K , V pt
K ) ≤ ηµη and thus ∆1,1(V vol

K , V pt
K ) ≤ ηµ
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Proof. Let ϕ ∈ Lip1(Rn ×Gd,n) such that sptϕ ⊂ B ⊂ Ω, then∣∣∣∣∣
ˆ

Ω×Gd,n
ϕdV vol

K −
ˆ

Ω×Gd,n
ϕdV pt

K

∣∣∣∣∣ =

∣∣∣∣∣∑
K∈K

mK

|K|

ˆ
K
ϕ(x, PK)Ln(x)−

∑
K∈K

mKϕ(xK , PK)

∣∣∣∣∣
≤

∑
K∈K

B∩K 6=∅

mK

 
K
|ϕ(x, PK)− ϕ(xK , PK)| dLn(x)

≤
∑
K∈K

B∩K 6=∅

 
K

lip(ϕ)︸ ︷︷ ︸
=1

|x− xK | dLn(x)

≤ η
∑
K∈K

B∩K 6=∅

mK

= η ‖V vol
K ‖

 ⋃
B∩K 6=∅

K

 = η ‖V pt
K ‖

 ⋃
B∩K 6=∅

K

 .

And we conclude since
⋃

B∩K 6=∅

K ⊂ {x ∈ Ω : d(x,B) ≤ η}.

Remark 2.2. Proposition 2.1 allows to switch between discrete volumetric and point cloud varifolds,
up to some quantified error in terms of bounded Lipschitz distance. Indeed, given a discrete
volumetric varifold

V vol
K =

∑
K∈K

mK

|K|
Ln|K ⊗ δPK

one can choose a finite set of points xK ∈ K, one for each K ∈ K, and define the point cloud
varifold

V pt
K =

∑
K∈K

mKδxK ⊗ δPK ,

so that by Proposition 2.1 one has

∆1,1(V vol
K , V pt

K ) ≤ η‖V vol
K ‖(Ω) .

Conversely, given a point cloud varifold

V pt
N =

N∑
i=1

miδxi ⊗ δPi ,

one can consider a mesh K with mesh-size η smaller than the minimum distance between xi and
xj for i, j = 1, . . . , N with i < j. Then one defines mK = mi and PK = Pi if and only if xi ∈ K,
while mK = 0 and PK = any d-plane, if and only if xi /∈ K for all i = 1, . . . , N (note that the
previous assumption on the mesh size implies that at most one point xi belongs to the same cell
K). Finally, one defines the discrete volumetric varifold

V vol
K =

∑
K∈K

mK

|K|
Ln|K ⊗ δPK .
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It is the immediate to check that ‖V vol
K ‖(Ω) =

∑
jmj = ‖VN‖(Ω) < +∞ and, thanks to Proposition

2.1, to conclude that
∆1,1(VN , V

vol
K ) ≤ η‖VN‖(Ω) .

2.3 Approximation of rectifiable varifolds by discrete varifolds

In this section, we prove that the family of discrete volumetric varifolds and the family of point
cloud varifolds approximate well the space of rectifiable varifolds in the sense of weak–∗ convergence.
Moreover, we give a way of quantifying this approximation in terms of the mesh size and the mean
oscillation of tangent planes.

Proposition 2.3. Let Ω ⊂ Rn be an open set and V a d–varifold in Ω. Let let (Ki)i∈N be a sequence
of meshes of Ω, and set

δi = sup
K∈Ki

diam(K) ∀ i ∈ N .

Then, there exist a sequence of point cloud varifolds (V pt
i )i and a sequence of volumetric varifolds

(V vol
i )i such that for any B ⊂ Ω,

max
(

∆1,1
B (V, V pt

i ), ∆1,1
B (V, V vol

i )
)
≤ δi‖V ‖(Bδi) +

∑
K∈Ki

min
P∈Gd,n

ˆ
(Bδi∩K)×Gd,n

‖P − S‖ dV (x, S) .

(2)

Proof. Let us explain the construction for a fixed i. We define the volumetric varifold V vol
i and the

point cloud varifold V pt
i as

V vol
i =

∑
K∈Ki

mi
K

|K|
Ln ⊗ δP iK and V pt

i =
∑
K∈Ki

mi
KδxiK

⊗ δP iK ,

with

mi
K = ‖V ‖(K), xiK ∈ K and P iK ∈ arg min

P∈Gd,n

ˆ
K×Gd,n

‖P − S‖ dV (x, S) .

Then, for any open ball B ⊂ Ω and ϕ ∈ Lip1(Rn ×Gd,n) with sptϕ ⊂ B ×Gd,n, we set

∆vol
i (ϕ) =

ˆ
Ω×Gd,n

ϕdV vol
i −

ˆ
Ω×Gd,n

ϕdV

and obtain∣∣∣∆vol
i (ϕ)

∣∣∣ =

∣∣∣∣∣∣
∑
K∈Ki

ˆ
K∩B

ϕ(x, P iK)
‖V ‖(K)

|K|
dLn(x)−

∑
K∈Ki

ˆ
(K∩B)×Gd,n

ϕ(y, T ) dV (y, T )

∣∣∣∣∣∣
≤

∑
K∈Ki
K∩B 6=∅

 
x∈K

ˆ
(y,T )∈K×Gd,n

∣∣ϕ(x, P iK)− ϕ(y, T )
∣∣︸ ︷︷ ︸

≤(|x−y|+‖P iK−T‖)

dV (y, T ) dLn(x)

≤ δi
∑
K∈Ki
K∩B 6=∅

‖V ‖(K) +
∑
K∈Ki

ˆ
K×Gd,n

∥∥P iK − T∥∥ dV (y, T )

≤ δi ‖V ‖(Bδi) +
∑
K∈Ki

min
P∈Gd,n

ˆ
(Bδi∩K)×Gd,n

‖P − T‖ dV (y, T ) .
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By a similar computation we derive the analogous estimate for V pt
i : setting

∆pt
i (ϕ) =

ˆ
Ω×Gd,n

ϕdV vol
i −

ˆ
Ω×Gd,n

ϕdV

we find

∣∣∣∆pt
i (ϕ)

∣∣∣ =

∣∣∣∣∣∣
∑
K∈Ki

ϕ(xiK , P
i
K)‖V ‖(K) dLn(x)−

∑
K∈Ki

ˆ
(K∩B)×Gd,n

ϕ(y, T ) dV (y, T )

∣∣∣∣∣∣
≤

∑
K∈Ki
K∩B 6=∅

 
x∈K

ˆ
(y,T )∈K×Gd,n

∣∣ϕ(x, P iK)− ϕ(y, T )
∣∣︸ ︷︷ ︸

≤(|x−y|+‖P iK−T‖)

dV (y, T ) dLn(x)

≤ δi ‖V ‖(Bδi) +
∑
K∈Ki

min
P∈Gd,n

ˆ
(Bδi∩K)×Gd,n

‖P − T‖ dV (y, T ) ,

which concludes the proof.

We now study, for a given varifold V , the convergence of the term∑
K∈Ki

min
P∈Gd,n

ˆ
(Bδi∩K)×Gd,n

‖P − T‖ dV (y, T ) .

Proposition 2.4. Let Ω ⊂ Rn be an open set and let (Ki)i∈N be a sequence of meshes of Ω. Set
δi = sup

K∈Ki
diam(K) and assume that δi → 0 as i→∞. Let V = v(M, θ) be a rectifiable d–varifold

in Ω with mass ‖V ‖(Ω) < +∞. Then it holds∑
K∈Ki

min
P∈Gd,n

ˆ
(Ω∩K)×Gd,n

‖P − T‖ dV (y, T ) −−−→
i→∞

0 . (3)

Moreover, if there exist constants C,C ′, β, γ > 0 and a decomposition Ki = Kregi t Ksingi for all i,
such that

‖TxM − TyM‖ ≤ C|x− y|β, ∀x, y ∈ K, ∀K ∈ Kregi (4)

and
‖V ‖

(
Ksingi

)
≤ C ′δγi , (5)

then one can find C ′′ > 0 such that∑
K∈Ki

min
P∈Gd,n

ˆ
(Bδi∩K)×Gd,n

‖P − T‖ dV (y, T ) ≤ C ′′δmin(β,γ)
i ‖V ‖(Bδi) (6)

for all B ⊂ Ω and all i ∈ N.

Proof. Step 1. For all i, there exists Ai : Ω→Mn(R) constant in each cell K ∈ Ki and such that

ˆ
Ω×Gd,n

∥∥Ai(y)− T
∥∥ dV (y, T ) =

ˆ
y∈Ω

∥∥Ai(y)− TyM
∥∥ d‖V ‖(y) −−−−→

i→+∞
0 .
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Indeed, let ε > 0, as x 7→ TxM ∈ L1(Ω,Mn(R), ‖V ‖) then, there exists A : Ω→Mn(R) ∈ Lip(Ω)
such that ˆ

y∈Ω
‖A(y)− TyM‖ d‖V ‖(y) < ε .

For all i and K ∈ Ki, define for x ∈ K,

Ai(x) = AiK =
1

‖V ‖(K)

ˆ
K
A(y) d‖V ‖(y) .

Thenˆ
y∈Ω

∥∥Ai(y)− TyM
∥∥ d‖V ‖(y) ≤

ˆ
y∈Ω

∥∥Ai(y)−A(y)
∥∥ d‖V ‖(y) +

ˆ
y∈Ω
‖A(y)− TyM‖ d‖V ‖(y)

≤ ε+
∑
K∈Ki

ˆ
y∈K

∥∥∥∥ 1

‖V ‖(K)

ˆ
K
A(u) d‖V ‖(u)−A(y)

∥∥∥∥ d‖V ‖(y)

≤ ε+
∑
K∈Ki

1

‖V ‖(K)

ˆ
y∈K

ˆ
u∈K
‖A(u)−A(y)‖ d‖V ‖(u) d‖V ‖(y)

≤ ε+ δilip(A)‖V ‖(Ω) ≤ 2ε for i large enough.

Step 2. For all i, there exists T i : Ω→ Gd,n constant in each cell K ∈ Ki such that

ˆ
Ω×Gd,n

∥∥T i(y)− T
∥∥ dV (y, T ) =

ˆ
y∈Ω

∥∥T i(y)− TyM
∥∥ d‖V ‖(y) −−−−→

i→+∞
0 .

Indeed, let ε > 0, thanks to Step 1, fix i and Ai : Ω→Mn(R) such that∑
K∈Ki

ˆ
K

∥∥Ai(y)− TyM
∥∥ d‖V ‖(y) < ε ,

so that

ˆ
K

∥∥Ai(y)− TyM
∥∥ d‖V ‖(y) = εiK with

∑
K∈Ki

εiK < ε. In particular, for all K ∈ Ki, there

exists yK ∈ K such that ∥∥Ai(yK)− TyKM
∥∥ ≤ εiK
‖V ‖(K)

.

Define T i : Ω→ Gd,n, constant in each cell, by T i(y) = TyKM for K ∈ Ki and y ∈ K, and then,

ˆ
Ω×Gd,n

∥∥T i(y)− T
∥∥ dV (y, T ) =

∑
K∈Ki

ˆ
K
‖TyKM − TyM‖ d‖V ‖(y) (7)

≤
∑
K∈Ki

ˆ
K
‖TyKM − Ai(y)︸ ︷︷ ︸

=Ai(yK)

‖ d‖V ‖(y) +

ˆ
Ω×Gd,n

∥∥Ai(y)− T
∥∥ dV (y, T )

≤
∑
K∈Ki

ˆ
K

εiK
‖V ‖(K)

d‖V ‖(y) + ε

≤ 2ε .

11



Step 3.
∑
K∈Ki

min
P∈Gd,n

ˆ
(Ω∩K)×Gd,n

‖P − T‖ dV (y, T ) −−−→
i→∞

0.

Indeed, thanks to Step 2, let T i : Ω→ Gd,n constant in each cell K ∈ Ki: for all y ∈ K, T i(y) = T iK ,

and such that

ˆ
Ω×Gd,n

∥∥T i(y)− T
∥∥ dV (y, T ) −−−−→

i→+∞
0. We have,

∑
K∈Ki

min
P∈Gd,n

ˆ
(Ω∩K)×Gd,n

‖P − T‖ dV (y, T ) ≤
∑
K∈Ki

ˆ
K×Gd,n

∥∥T iK − T∥∥ dV (y, T )

=

ˆ
Ω×Gd,n

∥∥T i(y)− T
∥∥ dV (y, T )

−−−−→
i→+∞

0 .

Step 4. Assume now that (4) and (5) hold, then define T iK = TyKM for each cell K ∈ Ki and
for some yK ∈ K. Then

∑
K∈Ki

min
P∈Gd,n

ˆ
(Bδi∩K)×Gd,n

‖P − T‖ dV (y, T ) ≤
∑
K∈Ki

ˆ
K∩Bδi

‖TyKM − TyM‖ d‖V ‖(y)

≤
∑

K∈Kregi

ˆ
K∩Bδi

‖TyKM − TyM‖ d‖V ‖(y)

+
∑

K∈Kregi

ˆ
K∩Bδi

‖TyKM − TyM‖ d‖V ‖(y)

≤
∑
K∈Ki

ˆ
K∩Bδi

C|yK − y|β dV (y, T ) + 2‖V ‖(Ksing ∩Bδi)

≤ Cδβi ‖V ‖(B
δi) + 2C ′δγi

≤ C ′′δmin(β,γ)
i ‖V ‖(Bδi) .

Remark 2.5. A remarkable case where assumptions (4) and (5) are both satisfied is when the
varifold V is associated with the interface set of a quasiminimal N -cluster in R2 and R3 (see
[Tay76, Dav10]). Such clusters arise for instance as minimizers of the total length/area of their set
of interfaces, under volume constraints or up to additional bulk energy terms. By showing (6) we
provide a quantitative estimate on the local oscillation of tangent planes, which will be used in the
proof of Theorem 2.6 below.

We can now show that rectifiable varifolds can be approximated by discrete varifolds (either
point cloud varifolds or volumetric varifolds).

Theorem 2.6. Let Ω ⊂ Rn be an open set, let (Ki)i∈N be a sequence of meshes of Ω, and set

δi = sup
K∈Ki

diam(K) ∀ i ∈ N .

Let V = v(M, θ) is a rectifiable d–varifold in Ω with ‖V ‖(Ω) <∞. Then there exist a sequence of
point cloud varifolds (V pt

i )i and a sequence of volumetric varifolds (V vol
i )i such that

12



• V pt
i

∗−−−⇀
i→∞

V and V vol
i

∗−−−⇀
i→∞

V .

• ∆1,1(V pt
i , V ) −−−→

i→∞
0 and ∆1,1(V vol

i , V ) −−−→
i→∞

0

If moreover (4) and (5) hold, then there exists C > 0 such that for all B ⊂ Ω,

max
(

∆1,1
B (V pt

i , V ), ∆1,1
B (V vol

i , V )
)
≤ C‖V ‖(Bδi) δ

min(β,γ)
i . (8)

Proof. Let (V pt
i )i and (V vol

i )i be the two sequences of discrete varifolds constructed in Proposition

2.3. In the following we write Vi instead of either V pt
i or V vol

i , for more simplicity. By (2) and (3)
applied with B = Ω, we have that

∆1,1(Vi, V ) ≤ δi‖V ‖(Ω) +
∑
K∈Ki

min
P∈Gd,n

ˆ
(Ω∩K)×Gd,n

‖P − S‖ dV (x, S) −−−→
i→∞

0 .

This implies that for any ϕ ∈ Lip(Ω×Gd,n),

〈Vi, ϕ〉 −−−−→
i→+∞

〈V, ϕ〉 . (9)

If ϕ ∈ Lipk(Ω × Gd,n), consider 1
kϕ ∈ Lip1(Ω × Gd,n) and use the linearity of (9). It remains to

check the case ϕ ∈ C0
c(Ω×Gd,n) to have the weak–∗ convergence. Let ϕ ∈ C0

c(Ω×Gd,n) and ε > 0.
We can extend ϕ into ϕ ∈ C0

c(Ω×Mn(R)) by Tietze-Urysohn theorem since Gd,n is closed. Then,
by density of Lip(Ω×Mn(R)) in C0

c(Ω×Mn(R)) with respect to the uniform topology, there exists
ψ ∈ Lip(Ω×Mn(R)) such that

∥∥ϕ− ψ∥∥∞ < ε. Let now ψ ∈ Lip(Ω×Gd,n) be the restriction of ψ
to Ω×Gd,n, then,

|〈V, ϕ〉 − 〈Vi, ϕ〉| ≤ |〈V, ϕ〉 − 〈V, ψ〉|+ |〈V, ψ〉 − 〈Vi, ψ〉|+ |〈Vi, ψ〉 − 〈Vi, ϕ〉|
≤ ‖V ‖(Ω)‖ϕ− ψ‖∞ + |〈V, ψ〉 − 〈Vi, ψ〉|+ ‖Vi‖(Ω)‖ϕ− ψ‖∞ .

As ‖Vi‖(Ω) = ‖V ‖(Ω) for all i by definition of Vi and |〈V, ψ〉 − 〈Vi, ψ〉| −−−−→
i→+∞

0 by (9), there exists

i large enough such that
|〈V, ϕ〉 − 〈Vi, ϕ〉| ≤ (2‖V ‖(Ω) + 1) ε ,

which concludes the general case.
Finally, the local estimate (8) is a consequence of Propositions 2.3 and 2.4 (more precisely it

directly follows from the estimates (2) and (6)).

3 Regularized first variation and quantitative conditions of recti-
fiability for sequences of varifolds

Given a sequence of approximating d–varifolds (Vi)i weakly–∗ converging to some d–varifold, a
sufficient condition for V to have locally bounded first variation, i.e. for δV to be a Radon measure,
is

sup
i
‖δVi‖ < +∞ . (10)
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However, point clouds do not have bounded first variation and, as shown in Example 6 in [Bue15],
the typical sequences of discrete volumetric varifolds that one would consider as approximations
of a smooth varifold have non-uniformly bounded first variations. Therefore, it is not natural to
require that the first variation δVi of Vi is a (uniformly bounded) Radon measure. Nevertheless, it
is a distribution of order 1, hence a uniform control of a suitable sequence of regularizations of δVi
will be enough to ensure that the limit varifold V has a locally bounded first variation. Moreover,
these regularizations will provide a “scale-dependent” notion of first variation particularly suitable
for discrete varifolds.

3.1 Regularized first variation

We fix a non negative function ρ ∈ C1(Rn) such that
ˆ
ρ = 1 and spt ρ ⊂ B1(0) , (11)

and for any ε > 0 we let ρε(x) =
1

εn
ρ
(x
ε

)
. The ε-regularized first variation of a varifold is

introduced in the following proposition.

Proposition 3.1. Let Ω ⊂ Rn be an open set and V be a d–varifold in Ω with finite mass
‖V ‖(Ω). Then, its first variation δV can be naturally extended as a linear continuous functional
on C1

c(Rn,Rn). Moreover, δV ∗ ρε ∈ L1(Rn) and for all x ∈ Rn one has

δV ∗ ρε(x) =

ˆ
Bε(x)×Gd,n

∇Sρε(y − x) dV (y, S) =
1

εn+1

ˆ
Bε(x)×Gd,n

∇Sρ
(
y − x
ε

)
dV (y, S) . (12)

Proof. First of all, notice that (x, S) 7→ divSX(x) is continuous and bounded, while V is a finite
Radon measure, thus for any X ∈ C1

c (Rn,Rn) one can define

δV (X) =

ˆ
Ω

divSX(x) dV (x, S)

and obtain
δV (X) ≤ ‖V ‖(Ω) ‖X‖C1 ,

which means that the linear extension is continuous with respect to the C1-norm. By definition,
for any X ∈ C1

c(Rn,Rn) we have by definition

〈δV ∗ ρε, X〉 = 〈δV,X ∗ ρε〉 = 〈V, (y, S) 7→ divS(X ∗ ρε)(y)〉 .

For every y ∈ Rn we find divS(X ∗ ρε)(y) = X ∗ ∇Sρε(y) :=
∑n

i=1Xi ∗ ∂Si ρε(y), thus by Fubini-
Tonelli’s theorem we get

〈δV ∗ ρε, X〉 =

ˆ
Ω×Gd,n

(X ∗ ∇Sρε)(y) dV (y, S)

=

ˆ
Ω×Gd,n

ˆ
x∈Rn

X(x)∇Sρε(y − x) dLn(x) dV (y, S)

=

ˆ
x∈Rn

X(x)

(ˆ
Bε(x)×Gd,n

∇Sρε(y − x) dV (y, S)

)
dLn(x) ,
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which proves (12). The fact that δV ∗ ρε ∈ L1(Rn) is an immediate consequence of the Lipschitz
property of the kernel ρε.

Remark 3.2. Notice that δV ∗ ρε is well-defined on Rn even when δV is not bounded.

Remark 3.3. If we take a Lipschitz kernel that is not of class C1, formula (12) still holds, but only
for Ln-almost all x ∈ Rn. This may be a problem, since we rather need the formula to be valid for
‖V ‖-almost all x ∈ Ω. However, in some cases it is possible to prove (12) even though the kernel is
no more than Lipschitz. Indeed, when the varifold V is d-rectifiable one can “intrinsically” define
the tangential gradient of a Lipschitz function ‖V ‖-almost everywhere: in this case, formula (12)
turns out to be valid. Let us better explain this point with a simple example. Let us consider the
tent kernel T : Rn → R+ defined by

T (z) = max
(
λ−1
n (1− |z|), 0

)
, (13)

where λn =
´
|z|≤1(1 − |z|) dLn(z). We take a d-rectifiable varifold V = v(M, θ) with bounded

mass and first variation, then according to Proposition 3.2 in [LM09] the first variation measure
δV (Br(x)) of a ball can be expressed in terms of integrated conormals on the boundary. More
precisely, for ‖V ‖-almost all x ∈M and for almost every r > 0 it holds

δV (Br(x)) = −
ˆ
∂Br(x)∩M

η(y)θ(y) dHd−1(y) ,

where η(y) =
ΠTyM (y − x)

|ΠTyM (y − x)|
is the outward conormal vector. If we average this relation by inte-

grating in r ∈ (0, ε), we obtain via coarea formula

1

ε

ˆ ε

r=0
δV (Br(x)) dr = −1

ε

ˆ
Bε(x)∩M

ΠTyM (y − x)

|y − x|
θ(y) dHd(y)

= −1

ε

ˆ
Bε(x)×Gd,n

ΠS(y − x)

|y − x|
dV (y, S) . (14)

At the same time, (12) formally becomes

δV ∗ Tε(x) = − 1

λnεn+1

ˆ
Bε(x)×Gd,n

ΠS(y − x)

|y − x|
dV (y, S) , (15)

hence we see that (14) and (15) are the same formula, up to a scaling factor due to normalization
of the tent function.

In the case of the tent function, it is also possible to define the ε-regularized first variation of
a d-varifold even when the varifold is not rectifiable. The idea is to notice that the tent function
can be uniformly approximated by smooth functions, such that the gradients uniformly converge
in any compact subset of B1(0) \ {0}. Therefore, formula (12) can be recovered for the limit tent
kernel, unless ‖V ‖({x}) > 0. In order to fix the problem occurring when single points are charged
by the mass of the varifold, one can observe that all radial regularizations of the tent kernel have
a null gradient at the origin, hence the formula will become valid as soon as we understand that,
formally, the tent function has a null gradient at the origin (see in particular Example 3.9).
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In the next two results we exploit some basic properties of the ε-regularized first variation.

Proposition 3.4. Let Ω ⊂ Rn be an open set and V be a d-varifold in Ω with ‖V ‖(Ω) < +∞.
Then for any X ∈ C1

c(Rn,Rn),

|〈δV ∗ ρε, X〉 − 〈δV,X〉| ≤ ‖V ‖(Ω ∩ (sptX +Bε(0))) ‖ρε ∗X −X‖C1 −−−→
ε→0

0 .

Moreover, if V has bounded first variation then

δV ∗ ρε
∗−−−⇀

ε→0
δV .

Proof. Let X ∈ C1
c(Rn,Rn). As 〈δV ∗ ρε, X〉 = 〈δV, ρε ∗X〉 then

|〈δV ∗ ρε, X〉 − 〈δV,X〉| = |〈δV, ρε ∗X −X〉| ≤ ‖V ‖(Ω) ‖ρε ∗X −X‖C1 .

And ‖ρε ∗X −X‖C1 −−−→
ε→0

0 leads to the conclusion. If moreover V has bounded first variation,

then for all X ∈ C0
c(Rn,Rn),

|〈δV ∗ ρε, X〉 − 〈δV,X〉| ≤ ‖δV ‖ ‖ρε ∗X −X‖∞ −−−→ε→0
0 .

In the next theorem (technically, a partial generalization of Allard’s compactness theorem for
rectifiable varifolds) we show that, given an infinitesimal sequence (εi)i of positive numbers and
a sequence of d-varifolds (Vi)i with uniformly bounded total masses, such that δVi ∗ ρεi satisfies
a uniform boundedness assumption, there exists a subsequence of Vi that weakly-∗ converges to a
limit varifold V with bounded first variation. If additionally the masses ‖V ‖i of the varifolds in
the sequence satisfy a uniform lower density bound, then V is rectifiable. Notice that the sequence
Vi is required to be neither of bounded first variation, nor rectifiable.

Theorem 3.5. Let Ω ⊂ Rn be an open set and (Vi)i be a sequence of d-varifolds. Assume that
there exists a positive, decreasing and infinitesimal sequence (εi)i, such that

M := sup
i
{‖Vi‖(Ω) + ‖δVi ∗ ρεi‖L1} < +∞ . (16)

Then there exists a subsequence (Vϕ(i))i weakly–∗ converging in Ω to a d–varifold V , V has bounded
first variation and ‖V ‖(Ω)+ |δV |(Ω) ≤M . Moreover, if we further assume the existence of θ0, r0 >
0 such that, for any 0 < r < r0 and for ‖Vi‖-almost every x ∈ Ω,

‖Vi‖(Br(x)) ≥ θ0r
d , (17)

then the limit varifold V obtained above is d-rectifiable.

Proof. Since M is finite, there exists a subsequence (Vϕ(i))i weakly–∗ converging in Ω to a d–varifold
V . By Proposition 3.4, for any X ∈ C1

c(Ω,Rn) we obtain∣∣∣〈δVϕ(i) ∗ ρεϕ(i) , X〉 − 〈δV,X〉
∣∣∣ ≤ ∣∣∣〈δVϕ(i) ∗ ρεϕ(i) , X〉 − 〈δVϕ(i), X〉

∣∣∣+
∣∣〈δVϕ(i), X〉 − 〈δV,X〉

∣∣
≤ ‖Vi‖(Ω)︸ ︷︷ ︸
≤C<+∞

∥∥∥X ∗ ρεϕ(i) −X∥∥∥
C1

+
∣∣〈δVϕ(i), X〉 − 〈δV,X〉

∣∣
−−−→
i→∞

0 .
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Consequently, for any X ∈ C1
c(Ω,Rn) one has |〈δV,X〉| ≤ sup

i
‖δVi ∗ ρεi‖L1 ‖X‖∞. We con-

clude that δV extends into a continuous linear form in C0
c(Ω,Rn) whose norm is bounded by

supi ‖δVi ∗ ρεi‖L1 , thus ‖V ‖(Ω) + |δV |(Ω) ≤M .
Assuming the additional hypothesis (17), we can pass to the limit and prove the same inequality

for V . By Theorem 5.5(1) in [All72] we obtain the last part of the claim.

3.2 Approximate mean curvature

In the previous section we have considered the ε-regularization of the first variation of a varifold.
Here we introduce some ε-approximations of the generalized mean curvature of a rectifiable varifold
V = v(M, θ) with bounded first variation (i.e., of the absolutely continuous part of the first variation
with respect to the mass) and study their properties with special emphasis on quantified error
estimates. To this end, it is worth recalling that the first variation measure δV can be decomposed
as the sum of an absolutely continuous part −H ‖V ‖ and of a singular part δVs, and that the Borel
function H appearing in this decomposition is the so-called generalized mean curvature of V .

In the next proposition we consider a first type of approximation, based on convolution of both
first variation and mass by means of the same family of kernels {ρε}ε>0. This will be the privileged
choice here, even though more general choices could be made (see Remark 3.8).

Proposition 3.6. Let Ω ⊂ Rn be an open set and let V = v(M, θ) be a rectifiable d–varifold with
bounded first variation δV = −H ‖V ‖+ δVs. Assume that ρ is a radial kernel and define

Hε(x) = − δV ∗ ρε(x)

‖V ‖ ∗ ρε(x)
.

Then, for ‖V ‖–almost any x ∈ Ω it holds

Hε(x) −−−→
ε→0

H(x) .

Moreover, if the singular part δsV is null and the generalized mean curvature H is L-Lipschitz on
M , then for ‖V ‖-almost all x ∈M we have

|Hε(x)−H(x)| ≤ Lε . (18)

Proof. For x ∈ Ω we find

|Hε(x)−H(x)| = 1

‖V ‖ ∗ ρε(x)
|(H ‖V ‖ − δVs) ∗ ρε(x)−H(x) (‖V ‖ ∗ ρε(x))|

≤ 1

‖V ‖ ∗ ρε(x)
|(H ‖V ‖) ∗ ρε(x)−H(x) (‖V ‖ ∗ ρε(x))|+ |δVs ∗ ρε(x)|

‖V ‖ ∗ ρε(x)

≤ 1

‖V ‖ ∗ ρε(x)

ˆ
y∈Rn

|H(x)−H(y)| ρε(x− y) d‖V ‖(y) +
|δVs| ∗ ρε(x)

‖V ‖ ∗ ρε(x)

For ‖V ‖-almost every x, by definition of the approximate tangent plane and since ρ ∈ C0
c(Ω) is

radial, we obtain

εn−d‖V ‖ ∗ ρε(x) =
1

εd

ˆ
Ω
ρ

(
y − x
ε

)
d‖V ‖(y) −−−→

ε→0
θ(x)

ˆ
TxM

ρ(y) dHd(y) = Cρθ(x) > 0 . (19)
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Then, for ‖V ‖-almost any x ∈ Ω (at any Lebesgue point x of H ∈ L1(‖V ‖)),

1

‖V ‖ ∗ ρε(x)

ˆ
y∈Rn

|H(x)−H(y)| ρε(x− y) d‖V ‖(y)

≤ ‖V ‖(Bε(x))

‖V ‖ ∗ ρε(x)

1

‖V ‖(Bε(x))

‖ρ‖∞
εn

ˆ
y∈Bε(x)

|H(x)−H(y)| d‖V ‖(y)

≤ ‖ρ‖∞
ε−d‖V ‖(Bε(x))

εn−d‖V ‖ ∗ ρε(x)︸ ︷︷ ︸
−−−→
ε→0

1

Cρ

 
y∈Bε(x)

|H(x)−H(y)| d‖V ‖(y)︸ ︷︷ ︸
−−−→
ε→0

0

−−−→
ε→0

0 .

And similarly, for ‖V ‖–almost every x,

|δVs| ∗ ρε(x)

‖V ‖ ∗ ρε(x)
≤ ‖ρ‖∞

ε−d‖V ‖(Bε(x))

εn−d‖V ‖ ∗ ρε(x)︸ ︷︷ ︸
−−−→
ε→0

1

Cρ

|δVs|(Bε(x))

‖V ‖(Bε(x))︸ ︷︷ ︸
−−−→
ε→0

0

−−−→
ε→0

0 .

Finally, if δVs = 0 and H is L-Lipschitz, then for ‖V ‖-almost all x we obtain

1

‖V ‖ ∗ ρε(x)

ˆ
y∈Rn

|H(x)−H(y)| ρε(x− y) d‖V ‖(y) ≤ L

‖V ‖ ∗ ρε(x)

ˆ
y∈Rn

|x− y| ρε(x− y) d‖V ‖(y)

≤ Lε ,

which proves (18).

Remark 3.7. The assumption that ρ is radial can be weakened. Indeed it is enough to require thatˆ
P
ρ(y) dHd(y) > 0 for all P ∈ Gd,n .

Notice that when ρ(y) = ζ(|y|) is a radial kernel, for all P ∈ Gd,n one has that

ˆ
P
ρ(y) dHd(y) =

ˆ 1

r=0

ˆ
∂Br(x)∩P

ρ(y) dHd−1(y) =

ˆ 1

r=0
rdHd−1(∂B1(0) ∩ P )ζ(r) dr

= Hd−1(Sd−1)

ˆ 1

0
rdζ(r) dr = Cρ

is strictly positive and does not depend on P .

Remark 3.8. Taking two different radial kernels ρ and ξ we may define

Hρ,ξ,ε = −
Cξ
Cρ

δV ∗ ρε(x)

‖V ‖ ∗ ξε(x)
,

where Cξ and Cρ are defined in the obvious way as in (19). Then, under the same assumptions of
Proposition 3.6, we get

Hρ,ξ,ε −−−→
ε→0

H(x) . (20)
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Indeed for ‖V ‖–almost every x, concerning the singular part one has

|δVs| ∗ ρε(x)

‖V ‖ ∗ ξε(x)
≤ ‖ρ‖∞

ε−d‖V ‖(Bε(x))

εn−d‖V ‖ ∗ ξε(x)︸ ︷︷ ︸
−−−→
ε→0

1

Cξ

|δVs|(Bε(x))

‖V ‖(Bε(x))︸ ︷︷ ︸
−−−→
ε→0

0

−−−→
ε→0

0 .

On the other hand, being M rectifiable, and by the definition of approximate tangent plane, for
‖V ‖–almost every x we have

1

‖V ‖ ∗ ξε(x)
(H ‖V ‖) ∗ ρε(x) =

ε−d
ˆ
H(y)ρ

(
y − x
ε

)
d‖V ‖(y)

ε−d
ˆ
ξ

(
y − x
ε

)
d‖V ‖(y)

−−−→
ε→0

H(x)

ˆ
TxM

ρ dHd
ˆ
TxM

ξ dHd
=
Cρ
Cξ

H(x) ,

which implies (20) (see the proof of Proposition 3.6). We also remark that the needed regularity
of the second kernel ξ is lower than that of ρ. Indeed, since ξ is used to regularize a distribution
of order 0 (the mass measure ‖V ‖) we may only require that ξ is a bounded non-negative Borel
function. This is consistent with some special choices of kernels ρ, ξ that will be considered in
section 5.

Example 3.9 (Regularization of the first variation of a point cloud). Let V =
N∑
j=1

mjδxj ⊗ δPj be

the varifold associated with a point cloud. The first variation of V is not a Radon measure so that
we need (12) to compute its ε-regularization:

δV ∗ ρε(x) =

ˆ
Bε(x)

∇Sρε(y − x) dV (y, S) =
∑

xj∈Bε(x)

mj∇Pjρε(xj − x) ,

and

δV ∗ ρε(x)

‖V ‖ ∗ ρε(x)
=

1

ε

∑
xj∈Bε(x)mj∇Pjρ(

xj−x
ε )∑

xj∈Bε(x)mjρ(
xj−x
ε )

.

In particular, if ρ is the tent kernel, taking into account Remark 3.3 we get

δV ∗ ρε(x)

‖V ‖ ∗ ρε(x)
=

1

ε

∑
xj∈Bε(x)\{x}mjΠPj

xj−x
|xj−x|∑

xj∈Bε(x)mj

(
1− |xj−x|ε

) .
Let us notice that the choice of the size ε is important: it must be large enough to contain more
than the central point, but not to large to avoid over-smoothing.
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3.3 Pointwise convergence of the approximate mean curvature

In this section, we exhibit quantitative conditions linking the size of the successive meshes δi and
the approximation scales εi and ensuring that for a d-rectifiable varifold V satisfying (4) and (5)),
the approximate mean curvature

− δVi ∗ ρεi(x)

‖Vi‖ ∗ ρεi(x)

of the sequence of discrete varifolds (Vi)i obtained by projecting V on a sequence of meshes with
infinitesimal mesh-size, converges to the mean curvature. At this point we also need to impose extra
technical conditions on the convolution kernels, which are required to be radial, of class W 2,∞, and
with a decreasing profile.

Theorem 3.10 (Pointwise convergence). Let Ω ⊂ Rn be an open set and let V = v(M, θ) be
a rectifiable d–varifold in Ω with finite mass ‖V ‖(Ω) and bounded first variation. Assume that
ρ ∈ W2,∞ is radial, ρ(x) = ζ(|x|), with ζ ∈ W2,∞(R+) decreasing. Let (Vi)i be sequence of d–
varifolds weakly–∗ converging to V , for which there exist two positive, decreasing and infinitesimal
sequences (ηi)i, (δi)i, such that for any ball B ⊂ Ω one has

‖V ‖ ({y ∈ B : d(y, ∂B) > ηi}) ≤ ‖Vi‖(B) ≤ ‖V ‖ (Bηi) (21)

and
∆1,1
B (V, Vi) ≤ di‖V ‖(Bηi) . (22)

Finally, let εi ↓ 0 be such that
di
ε2
i

−−−→
i→∞

0 and
ηi
εi
−−−→
i→∞

0. Then for ‖V ‖–almost any x ∈ Ω,

∣∣HVi
εi (x)−HV

εi (x)
∣∣ ≤ C‖ρ‖W2,∞

di
ε2
i

for i large enough,

HVi
εi (x) = − δVi ∗ ρεi(x)

‖Vi‖ ∗ ρεi(x)
−−−→
i→∞

H(x) ,

where C is a constant depending on Cρ.

Proof. Let ε > 0. First of all, thanks to Proposition 3.6, for ‖V ‖–almost any x,∣∣∣∣− δVi ∗ ρε(x)

‖Vi‖ ∗ ρε(x)
−H(x)

∣∣∣∣ ≤ ∣∣∣∣ δVi ∗ ρε(x)

‖Vi‖ ∗ ρε(x)
− δV ∗ ρε(x)

‖V ‖ ∗ ρε(x)

∣∣∣∣+
∣∣HV

ε (x)−H(x)
∣∣︸ ︷︷ ︸

−−−−→
ε→0

0

≤ |δVi ∗ ρε(x)− δV ∗ ρε(x)|
‖Vi‖ ∗ ρε(x)

+ |δV ∗ ρε(x)|
∣∣∣∣ 1

‖Vi‖ ∗ ρε(x)
− 1

‖V ‖ ∗ ρε(x)

∣∣∣∣+ oε(1) .

(23)

Step 1: We study the convergence of the first term in (23). Thanks to assumption (22), for all
ϕ ∈ Lip(Ω×Gd,n) such that sptϕ ⊂ B ×Gd,n,

|〈Vi, ϕ〉 − 〈V, ϕ〉| ≤ di lip(ϕ) ‖V ‖(Bηi) . (24)

Since ρ ∈W2,∞(Ω), the function

(y, S) ∈ Ω×Gd,n 7→ ∇Sρ
(
y − x
ε

)
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has a Lipschitz constant ≤ 1

ε
‖ρ‖W2,∞ and support in Bε(x)×Gd,n. By (24),

|δVi ∗ ρε(x)− δV ∗ ρε(x)| = 1

εn+1

∣∣∣∣∣
ˆ

Ω×Gd,n
∇Sρ

(
y − x
ε

)
dVi(y, S)−

ˆ
Ω×Gd,n

∇Sρ
(
y − x
ε

)
dV (y, S)

∣∣∣∣∣
≤ di
εn+2

‖ρ‖W2,∞‖V ‖(Bε+ηi(x) ∩ Ω) . (25)

Let us now bound ‖Vi‖ ∗ ρε(x) from below. As ρ(x) = ζ(|x|) for all x, with ζ ∈ W2,∞(R+). In
particular ζ is absolutely continuous, ζ(1) = 0 and

ζ(r) = −
ˆ 1

s=r
ζ ′(s) ds .

Consequently,

‖Vi‖ ∗ ρε(x) =

ˆ
y∈Bε(x)

ρε(y − x) d‖Vi‖(y) =
1

εn

ˆ
y∈Bε(x)

ζ

(
|y − x|
ε

)
d‖Vi‖(y)

= − 1

εn

ˆ
y∈Bε(x)

ˆ 1

s=
|y−x|
ε

ζ ′(s) ds d‖Vi‖(y) = − 1

εn+1

ˆ
y∈Bε(x)

ˆ ε

u=|y−x|
ζ ′(u) du d‖Vi‖(y)

= − 1

εn+1

ˆ ε

u=0
ζ ′(u)

ˆ
y∈Bu(x)

d‖Vi‖(y) du = − 1

εn+1

ˆ ε

u=0
ζ ′(u)‖Vi‖(Bu(x)) du . (26)

By assumption (21) we get that, for all s > ηi,

‖V ‖(Bs−ηi(x)) ≤ ‖Vi‖(Bs(x)) ≤ ‖V ‖(Bs+ηi(x)) .

So that, since −ζ ′ ≥ 0 and thanks to (26),

‖Vi‖ ∗ ρε(x) ≥ 1

εn+1

ˆ ε

u=ηi

−ζ ′(u)‖V ‖(Bu−ηi(x)) du ≥ 1

εn+1

ˆ ε−ηi

u=0
−ζ ′(u+ ηi)‖V ‖(Bu(x)) du

≥ 1

εn+1

ˆ ε−ηi

u=0
−
(
ζ ′(u) + lip(ζ ′)ηi

)
‖V ‖(Bu(x)) du since ζ ′ ∈W1,∞ . (27)

Moreover, by (26) (applied with ε− ηi instead of ε),

1

ε− ηi

ˆ ε−ηi

u=0
−ζ ′(u)‖V ‖(Bu(x)) du =

ˆ
y∈Bε−ηi (x)

ζ

(
|y − x|
ε− ηi

)
d‖V ‖(y) , (28)

and
1

ε

ˆ ε−ηi

u=0
‖V ‖(Bu(x)) du ≤ ‖V ‖(Bε(x)) . (29)

By (27), (28) and (29), we have

‖Vi‖ ∗ ρε(x) ≥ 1

εn
ε− ηi
ε

ˆ
y∈Bε−ηi (x)

ζ

(
|y − x|
ε− ηi

)
d‖V ‖(y)− 1

εn
lip(ζ ′)ηi‖V ‖(Bε(x)) (30)
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Let us consider a sequence εi ↓ 0 and such that
di
ε2
i

−−−→
i→∞

0 and
ηi
εi
−−−→
i→∞

0. In particular,

εi − ηi −−−→
i→∞

0 with ηi ≤ εi. Thanks to (30), we obtain

‖V ‖(Bεi(x))

εni ‖Vi‖ ∗ ρεi(x)
≤ ‖V ‖(Bεi(x))

εi − ηi
εi

ˆ
y∈Bεi−ηi (x)

ζ

(
|y − x|
εi − ηi

)
d‖V ‖(y)− lip(ζ ′)ηi‖V ‖(Bεi(x))

≤ 1

εi − ηi
εi

1

‖V ‖(Bεi(x))

ˆ
y∈Bεi−ηi (x)

ζ

(
|y − x|
εi − ηi

)
d‖V ‖(y)− lip(ζ ′)ηi︸ ︷︷ ︸

=o(ηi)

. (31)

Moreover, as ‖V ‖ = v(M, θ) is d–rectifiable, we have:

‖V ‖(Bεi(x)) ∼i→∞ θ(x)εdi ; (32)

and, thanks to the definition of approximate tangent plane,

1

θ(x)(εi − ηi)d

ˆ
y∈Bεi−ηi (x)

ζ

(
|y − x|
εi − ηi

)
d‖V ‖(y) −−−→

i→∞

ˆ
B1(0)∩TxM

ζ(|z|) dHd(z) . (33)

By (32) and (33), we have

εi − ηi
εi

1

‖V ‖(Bεi(x))

ˆ
y∈Bεi−ηi (x)

ζ

(
|y − x|
εi − ηi

)
d‖V ‖(y)

=

(
1− ηi

εi

)
θ(x)(εi − ηi)d

‖V ‖(Bεi(x))

1

θ(x)(εi − ηi)d

ˆ
y∈Bεi−ηi (x)

ζ

(
|y − x|
εi − ηi

)
d‖V ‖(y) (34)

∼i→∞
(

1− ηi
εi

)(
εi − ηi
εi

)d ˆ
B1(0)∩TxM

ζ(|z|) dHd(z)

−−−→
i→∞

ˆ
B1(0)∩TxM

ρ(z) dHd(z) = Cρ < +∞ (35)

Finally, by (31) and (35),
‖V ‖(Bεi(x))

εni ‖Vi‖ ∗ ρεi(x)
is bounded by 2

Cρ
> 0 when i→ +∞ and by (25)

|δVi ∗ ρεi(x)− δV ∗ ρεi(x)|
‖Vi‖ ∗ ρεi(x)

≤ 1

‖Vi‖ ∗ ρεi(x)

1

εn+2
i

‖ρ‖W2,∞di‖V ‖ (Bεi+ηi(x))

≤ 2

Cρ
‖ρ‖W2,∞

di
ε2
i

‖V ‖ (Bεi+ηi(x))

‖V ‖ (Bεi(x))

≤ 4

Cρ
‖ρ‖W2,∞

di
ε2
i

−−−−→
i→+∞

0 ,

as
‖V ‖ (Bεi+ηi(x))

‖V ‖ (Bεi(x))
∼i→∞

θ(x)(εi + ηi)
d

θ(x)εdi
−−−→
i→∞

1 .
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Step 2: It remains to study the second term in (23). Applying again (24),

|‖V ‖ ∗ ρεi(x)− ‖Vi‖ ∗ ρεi(x)| ≤ 1

εi
lip(ρεi)di‖V ‖(Bεi+ηi(x)) ≤

1

εn+1
i

lip(ρ)di‖V ‖(Bεi+ηi(x)) , (36)

and thus,

|δV ∗ ρεi(x)|
∣∣∣∣ 1

‖Vi‖ ∗ ρεi(x)
− 1

‖V ‖ ∗ ρεi(x)

∣∣∣∣ =
|δV ∗ ρεi(x)|
‖V ‖ ∗ ρεi(x)︸ ︷︷ ︸
−−−→
i→∞

H(x)

1

‖Vi‖ ∗ ρεi(x)
|‖V ‖ ∗ ρεi(x)− ‖Vi‖ ∗ ρεi(x)|

≤ 2|H(x)| 1
εi
‖ρ‖W1,∞

1

‖Vi‖ ∗ ρεi(x)

1

εni
‖V ‖(Bεi(x))︸ ︷︷ ︸

≤ 4

Cρ

di

−−−→
i→∞

0 .

Thanks to Step 1 and Step 2, we proved that for ‖V ‖–almost any x,∣∣HVi
εi (x)−HV

ε (x)
∣∣ ≤ 4

Cρ
‖ρ‖W2,∞

di
ε2
i

+ 2|H(x)|‖ρ‖W1,∞
4

Cρ

di
εi

∼i→∞
4

Cρ
‖ρ‖W2,∞

di
ε2
i

.

Therefore,

− δVi ∗ ρεi(x)

‖Vi‖ ∗ ρεi(x)
−−−→
i→∞

H(x) ,

and moreover, if M is smooth, thanks to Proposition 3.6∣∣HVi
εi (x)−H(x)

∣∣ ≤ C1 ‖ρ‖W2,∞
di
ε2
i

+ C2 εi .

Remark 3.11. If we want to consider two different radial kernels ρ ∈ W2,∞ and ξ ∈ W1,∞, then
with the same proof (and under the same assumptions) as in Theorem 3.10,∣∣∣∣− δVi ∗ ρεi(x)

‖Vi‖ ∗ ξεi(x)
+

δV ∗ ρεi(x)

‖V ‖ ∗ ξεi(x)

∣∣∣∣ ≤ C1 ‖ρ‖W2,∞
di
ε2
i

,

with C1 depending on Cξ.

Corollary 3.12. Let Ω ⊂ Rn be an open set, let (Ki)i∈N be a sequence of meshes of Ω, and set
δi = sup

K∈Ki
diam(K). Let V = v(M, θ) is a rectifiable d–varifold in Ω with ‖V ‖(Ω) < ∞, with

bounded first variation and satisfying (4) and (5) for some β, γ > 0. Let εi be a positive decreasing
sequence such that

δ
min(β,γ)
i

ε2
i

−−−→
i→∞

0 .
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Then there exist a sequence of point cloud varifolds (V pt
i )i and a sequence of volumetric varifolds

(V vol
i )i (equally denoted by (Vi)i) such that for ‖V ‖–almost any x, HVi

εi (x) −−→
i→0

H(x) with

∣∣HVi
εi (x)−HV

εi (x)
∣∣ ≤ C1 ‖ρ‖W2,∞

δ
min(β,γ)
i

ε2
i

and ∣∣HVi
εi (x)−H(x)

∣∣ ≤ C1 ‖ρ‖W2,∞
δ

min(β,γ)
i

ε2
i

+ C2 εi .

for i large enough and for some constant C1 > 0.

Proof. Consider the sequences of volumetric varifolds (V vol
i )i and point cloud varifolds (V pt

i )i given

by Theorem 2.6, then assumptions of Theorem 3.10 are satisfied with ηi = δi and di = δβi .

4 Representation of the regularized first variation

In this section, we try to answer Question 3:

• Given a d–varifold V , is the regularization δV ∗ ρε of the first variation δV , the first variation

δ
(
V̂ε

)
of some varifold V̂ε?

• And if so, is V̂ε the regularization (in a sense to be defined) of V ?

In short, is there a kind of convolution ∗̂ such that the following formula makes sense

δV ∗ ρε = δ
(
V̂ε

)
= δ (V ∗̂ρε) ?

Let us first explain what V̂ε cannot be. As V is a Radon measure in Ω × Gd,n, notice that V ∗ ρε
does not have a canonical sense. A natural idea would be to:

1. first regularize the mass ‖V ‖, defining ‖V̂ε‖ = (‖V ‖ ∗ ρε) dLn,

2. then set V̂ε = (‖V ‖ ∗ ρε(x)) dLn ⊗ δTε(x) and compute the tangential part Tε(x) from ‖V̂ε‖.

For, instance, if V = v(Γ, 1) is associated with a curve Γ in R2, set uε(x) = d(x,Γ) and set

Tε(x) = ∇uε
|∇uε|

⊥
(which gives the tangential direction to the level lines of uε) so that V̂ε would be:

V̂ε = (‖V ‖ ∗ ρε(x)) dL2 ⊗ δTε(x) = (‖V ‖ ∗ ρε(x)) L2 ⊗ δ ∇uε(x)
|∇uε(x)|

⊥ .

Let us consider a simple example to test this construction:

Example 4.1. Let V = v(N, 1) where N is the cross constituted by the union of the lines N1 =
{x1 = 0} and N2 = {x2 = 0} in R2, then δV = 0 and thus δV ∗ ρε = 0. But with the previous
construction, we obtain V̂ε = (‖V ‖ ∗ ρε(x)) dL2 ⊗ δTε(x) represented in Figure 1.

Qualitatively, we observe that δ(V̂ε) is composed of a singular part concentrated on the red set
in Figure 1 and an absolute part due to the fact that ‖V ‖∗ρε(x) is not constant along the level-sets
{d(x,Γ) = λ}. Exact computations can be done by dividing the cross along the red set into 4
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(a) (b)

Figure 1: A cross (left) and the support (right) of the diffuse varifold proposed in Example 4.1.

parts and applying Fubini Theorem to integrate on the level-sets {d(x,Γ) = λ}, and then apply
the divergence Theorem in each integral; but qualitatively, we can see that with this definition,

δ
(
V̂ε

)
6= 0 = δV ∗ ρε .

The construction we proposed is not the right one, yet the idea of convolving the spatial part
is reasonable, but the tangential part must be constructed from V and not from ‖V̂ε‖:

Theorem 4.2. Let Ω ⊂ Rn be an open set and V a d–varifold in Ω with finite mass ‖V ‖(Ω) < +∞.
Let ε > 0 and ρε as in (11). Define the d–varifold V̂ε as:〈

V̂ε, ψ
〉

= 〈V, (y, S) 7→ ψ(·, S) ∗ ρε(y)〉 for every ψ ∈ C0
c(Ω×Gd,n) ;

or equivalently,

ˆ
Ω×Gd,n

ψ(y, S) dV̂ε(y, S) =

ˆ
(y,S)∈Ω×Gd,n

ˆ
x∈Rn

ψ(x, S)ρε(y − x) dLn(x) dV (y, S) . (37)

Then,

1. ‖V̂ε‖ = ‖V ‖ ∗ ρε,

2. δ
(
V̂ε

)
= δV ∗ ρε.

Proof. Let us first compute ‖V̂ε‖, for ϕ ∈ C0
c(Ω),〈

‖V̂ε‖, ϕ
〉

=
〈
V̂ε, ϕ

〉
=

ˆ
(y,S)∈Ω×Gd,n

ˆ
x∈Rn

ϕ(x)ρε(y − x) dLn(x) dV (y, S)

=

ˆ
y∈Ω

ˆ
x∈Rn

ϕ(x)ρε(y − x) dLn(x) d‖V ‖(y) = 〈‖V ‖, ϕ ∗ ρε〉

= 〈‖V ‖ ∗ ρε〉 .
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We now compute the first variation of V̂ε. Let X ∈ C1
c(Ω,Rn),〈

δ
(
V̂ε

)
, X
〉

=
〈
V̂ε, (y, S) 7→ divSX(y)

〉
=

ˆ
(y,S)∈Ω×Gd,n

ˆ
x∈Rn

divSX(x)ρε(y − x) dLn(x) dV (y, S) ,

and for fixed (y, S) ∈ Ω×Gd,n,

divS(x 7→ ρε(y − x)X(x)) = ρε(y − x)divSX(x)−∇Sρε(y − x) ·X(x) . (38)

Moreover, ˆ
(y,S)∈Ω×Gd,n

ˆ
x∈Rn

∇Sρε(y − x) ·X(x) dLn(x) dV (y, S)

=

ˆ
x∈Rn

ˆ
(y,S)∈Ω×Gd,n

∇Sρε(y − x) dV (y, S) ·X(x) dLn(x)

=

ˆ
x∈Rn

δV ∗ ρε(x) ·X(x) dLn(x) thanks to (12)

= 〈δV ∗ ρε, X〉 , (39)

and since x 7→ ρε(y − x)X(x) is compactly supported, for a fixed S ∈ Gd,n,

ˆ
x∈Rn

divS(x 7→

ρε(y − x)X(x)) dLn(x) = 0 so thatˆ
(y,S)∈Ω×Gd,n

ˆ
x∈Rn

divS(x 7→ ρε(y − x)X(x)) dLn(x) dV (y, S) = 0 . (40)

Hence, thanks to (38), (39) and (40), we have,〈
δ
(
V̂ε

)
, X
〉

= 〈δV ∗ ρε, X〉 .

Example 4.3. Let us come back to the example of the cross V = v(N, 1) in R2 with N = N1∪N2 and
N1 = {x1 = 0} and N2 = {x2 = 0}. Define the 2–varifolds V1 = v(N1, 1) and V2 = v(N2, 1) so that

V = V1 +V2. Notice that the definition of V 7→ V̂ε in (37) is linear. So that δ(V̂ε) = δ(V̂1ε) + δ(V̂2ε)
and the fact that

δ(V̂1ε) = δ(V̂2ε) = 0

is quite intuitive. Let us check it by simple computations, for ψ ∈ C0
c(R2 ×G1,2),ˆ

R2×G1,2

ψ(y, S) dV̂ε(y, S) =

ˆ
(y,S)∈R2×G1,2

ˆ
x∈R2

ψ(x, S)ρε(y − x) dL2(x) dV1(y, S)

+

ˆ
(y,S)∈R2×G1,2

ˆ
x∈Rn

ψ(x, S)ρε(y − x) dL2(x) dV2(y, S)

=

ˆ
x∈R2

ψ(x, T1)

ˆ
y∈R2

ρε(y − x) d‖V1‖(y) dL2(x)

+

ˆ
x∈R2

ψ(x, T2)

ˆ
y∈R2

ρε(y − x) d‖V2‖(y) dL2(x) ,
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where T1, T2 ∈ G1,2 respectively denote the direction of N1 and N2. Thus, for X ∈ C1
c(R2,R2),

ˆ
R2×G1,2

divSX(y) dV̂ε(y, S) =

ˆ
x∈R2

divT1X(x)

ˆ
y∈R2

ρε(y − x) d‖V1‖(y) dL2(x)

+

ˆ
x∈R2

divT2X(x)

ˆ
y∈R2

ρε(y − x) d‖V2‖(y) dL2(x) .

Moreover, in each set {d(x,N1) = λ},
´
y∈R2 ρε(y − x) d‖V1‖(y) = cλ is constant. Then, thanks to

Fubini Theorem and the divergence Theorem,

ˆ
x∈R2

divT1X(x)

ˆ
y∈R2

ρε(y − x) d‖V1‖(y) dL2(x) =

ˆ ε

λ=−ε

ˆ
{d(x,N1)=λ}

divT1X(x)cλ dH1(x) dλ

= 0 .

Notice that the idea of convolving the spatial part was right so that the point was to build the
right tangential part. In the following proposition, we study the tangential part of V̂ε defined in
(37).

Proposition 4.4. Let Ω ⊂ Rn be an open set and V = ‖V ‖⊗νx a d–varifold in Ω with finite mass
‖V ‖(Ω) < +∞. Let ε > 0 and ρε as in (11). Let V̂ε defined as in (37). Then, V̂ε = ‖V̂ε‖ ⊗ ν̂εx
where, for ‖V̂ε‖–almost every x ∈ Rn, ν̂εx is a probability measure in Gd,n and, for all ψ ∈ C0(Gd,n),

ˆ
Gd,n

ψ(S) dν̂εx(S) =

´
y∈Ω

´
Gd,n

ψ(S) dνy(S) ρε(y − x) d‖V ‖(y)´
y∈Ω ρε(y − x) d‖V ‖(y)

, (41)

or equivalently, for any Borel set A ∈ Gd,n,

ν̂εx(A) =

´
y∈Ω νy(A) ρε(y − x) d‖V ‖(y)´

y∈Ω ρε(y − x) d‖V ‖(y)
. (42)

Proof. Let ϕ ∈ C0
c(Rn) and ψ ∈ C0(Gd,n).〈

V̂ε, ϕ(x)ψ(S)
〉

=

ˆ
x∈Rn

ϕ(x)

ˆ
y∈Ω

ˆ
S∈Gd,n

ψ(S) dνy(S)ρε(y − x) d‖V ‖(y) dLn(x)

=

ˆ
x∈Rn

ϕ(x)

ˆ
S∈Gd,n

dν̂εx(S) d‖V̂ε‖(x)

=

ˆ
x∈Rn

ϕ(x)

ˆ
S∈Gd,n

dν̂εx(S)

ˆ
y∈Ω

ρε(y − x) d‖V ‖(y) dLn(x) .

Consequently, for Ln–almost every x,

ˆ
S∈Gd,n

ψ(S) dν̂εx(S) =

´
y∈Ω

´
S∈Gd,n ψ(S) dνy(S)ρε(y − x) d‖V ‖(y)´

y∈Ω ρε(y − x) d‖V ‖(y)
.
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Example 4.5. Coming back again to the example of the cross V = v(N, 1) withN = {x1 = 0}∪{x2 =
0} ⊂ R2, let V̂ε associated with V by formula (37). We already know that ‖V̂ε‖ = ‖V ‖ ∗ ρε. We
now want to identify the tangential part ν̂εx in the decomposition V̂ε = ‖V̂ε‖ ⊗ ν̂εx. Thanks to
Proposition 4.4, for ‖V̂ε‖–almost every x ∈ R2 and for any Borel set A ⊂ R2,

ν̂εx(A) =

´
y∈Ω νy(A) ρε(y − x) d‖V ‖(y)´

y∈Ω ρε(y − x) d‖V ‖(y)
,

and applying it with A = {T1}, then A = {T2} where T1, T2 ∈ G1,2 respectively denote the direction
of N1 = {x1 = 0} and N2 = {x2 = 0}, we have for i = 1, 2,

ν̂εx({Ti}) =

´
{y∈Ω : y∈Ni} ρε(y − x) d‖V ‖(y)´

y∈Ω ρε(y − x) d‖V ‖(y)
and ν̂εx(R2 \ {T1, T2}) = 0 .

Hence ν̂εx is a convex combination of δT1 and δT2 whose coefficients depend on the distances d(x,N1)
and d(x,N2), as represented in Figure 2.

Remark 4.6. Notice that in the general definition (37) of V̂ε , ν̂εx is generally not a sum of Dirac
masses, unless the tangent plane to V is constant on a set of ‖V ‖–mass strictly positive.

Figure 2: Graphical representation of the relative weights of δT1 and δT2 , associated with vertical
and horizontal directions respectively, in the convex decomposition of ν̂εx in Example 4.5.

5 Numerical computation of generalized mean curvature for 2D
and 3D point clouds

This section is devoted to numerical experiments which illustrate how the regularized mean cur-
vature computed on 2D and 3D point clouds behaves depending on the regularization kernel, the
regularization parameter ε, and the sampling resolution. Given a point cloud varifold V , we com-
pute its ε-regularized mean curvature vector at a point xi of the cloud with the formula below,
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which has been introduced in the previous sections:

− δV ∗ ρε(xi)
‖V ‖ ∗ ρε(xi)

, (43)

Recall that, if W is a rectifiable d–varifold with bounded first variation δW = −H ‖W‖ + (δW )s,
ρ ∈ C1

c (B1(0)) is a radial kernel, and (Vk) is a suitable sequence of approximating point cloud
varifolds, we proved in Theorem 3.10 and Corollary 3.12 that for ‖W‖–almost any x,

HVk
εi (x) = − δVk ∗ ρεk(x)

‖Vk‖ ∗ ρεk(x)
−−−→
k→∞

H(x) .

The approximate mean curvature given by formula (43) can be easily written for a point cloud
varifold VN =

∑N
j=1mjδxj ⊗ δPj and for ρ(y) = ζ(|y|):

HN
ε (x) = − δVN ∗ ρε(x)

‖VN‖ ∗ ρε(x)
= −

N∑
j=1

mjζ
′
(
|xj − x|

ε

)
ΠPj (xj − x)

|xj − x|
N∑
j=1

mjεζ

(
|xj − x|

ε

) . (44)

We recall that (44) can be considered also for more general kernels (for instance, kernels that are
only W 1,∞-regular, see Remark 3.3).

We will first study the approximation on 2D point cloud varifolds built from parametrized
curves, and for different choices of radial kernels and various sampling resolutions. We will also
illustrate that our ε-regularized curvature provides a good approximation of the generalized mean
curvature at straight crossing points. We lastly propose in Section 5.2 preliminary tests on 3D
point clouds.

5.1 Tests on 2D parametric shapes

5.1.1 Test shapes and kernel profiles

We study the experimental behavior of (44) on different 2D parametric shapes, for different kernels,
for various numbers N of points in the cloud, and various values of the radius ε of the ball supporting
ρε. We shall denote as Nneigh the mean number of points in a ball of radius ε centered at a point
of the cloud. The 2D parametric test shapes are (see Figure 3):

(a) A circle of radius 0.5;

(b) An ellipse parametrized by x(t) = a cos(t), y(t) = b sin(t), t ∈ (0, 2π) with a = 1 and b = 0.5.
The curvature vector is given by H(t) = |H(t)|n(t), with n(t) the inner unit normal and

|H(t)| = a2

b

(
1− e2 cos2(t)

)− 3
2 , e2 = 1−

(
b

a

)2

.

(c) A ”flower” parametrized by r(θ) = 0.5(1 + 0.5 sin(6θ + π
2 )).

(d) A ”eight” figure parametrized by x(t) = 0.5 sin(t) (cos t+ 1), y(t) = 0.5 sin(t) (cos t− 1), t ∈
(0, 2π).
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Remark 5.1. The experiments on the ”eight” figure will confirm a property of our approximation
of the mean curvature: straight crossings have 0 curvature. More generally our model is able
to approximate correctly ”singular” configurations whose canonically associated varifold has no
singular first variation, i.e. (δV )s = 0.
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Figure 3: 2D parametric test shapes

We will test formula(44) with various profiles ζ defined on [0, 1], extended to R+ by 0, and
renormalized by a constant (if necessary) to ensure that

´ 1
0 ζ = 1:

• The aforementioned ”tent” kernel ζtent(r) = (1− r);

• The ”exponential” kernel ζexp(r) = exp
(
− 1

1−r2

)
;

• The ”double parabola” kernel ζparabola(r) = 1− 2r2 if r < 1
2 and ζ(r) = 2(1− r)2 otherwise;

• The ”inverse tent” kernel ζinverse
tent

(r) = r.

Notice that the last kernel (extended by 0 when r > 1) is not continuous, and thus δV convolved

with ρ
inverse
tent

ε (with ρ
inverse
tent (y) = ζinverse

tent
(|y|)) is not even a function. Therefore, we rather use the

following formula for the approximate mean curvature associated with the ”inverse tent” kernel:

− δVN ∗ ρtentε

‖V ‖ ∗ ρ
inverse
tent

ε

= −

N∑
j=1

1{|xj−x|<ε}mj
ΠPj (xj − x)

|xj − x|
N∑
j=1

1{|xj−x|<ε}mj |xj − x|

, (45)

where ρtentε is associated with a “tent” profile, which is Lipschitz, and ρ
inverse
tent

ε is associated with an
“inverse tent” profile, which is bounded. Being the mass ‖V ‖ a Radon measure, the denominator
is well-defined.
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To associate a point cloud with each parametric test shape under study, we proceed as follows:
we compute the exact unit tangent vector T (t) at the N points {0, h, 2h, . . . , (N − 1)h} for h = 2π

N ,
and we set

VN =
N∑
j=1

mjδ(x(jh),y(jh)) ⊗ δT (jh) .

Doing as if the local point density were constant in the cloud, we consider that the weight mj

of each point is the same that is, for all j, mj = m, which yields a simplification of (44). This
assumption makes sense for the uniformly sampled circle, but is slightly unrealistic for shapes with
varying curvature or with non uniform parameterization. We will propose later a further projection
onto the normal to compensate, at least partially, for the non uniformily.
For all shapes under study, the vector curvature H(t) can be computed explicitly and evaluated
at all tj = jh, j = 0 . . . N − 1. To test the accuracy of the approximation (44), we compute the
following average error on the vector curvature

E =
1

N

N∑
j=1

|HN
ε (xj)−H(tj)| , (46)

or the relative average error on the vector curvature

Erel =
1

N

N∑
j=1

|HN
ε (xj)−H(tj)|
|H(tj)|

, (47)

5.1.2 Numerical behavior of the approximate mean curvature

The first test is a comparison of the convergence speed of the approximate curvature on the circle
of radius 0.5, for the various kernels. As the norm of the curvature is constant, it is sufficient to
compute the average error (46) for the relative error only differs by a multiplicative constant. A
natural question is how to let N go to ∞ and ε go to 0. In Corollary 3.12, the convergence is
controlled by δi

ε2i
. Since in our current experimental setting δi is of order 1

N , it would be natural

to consider N and ε such that N → +∞, ε → 0 and 1
N ε2

→ 0. We actually expect that the
convergence rate, at least for smooth shapes, is better and occurs even for looser controls of 1

N ε2
.

This is supported by both experiments of Figures 4(a) and 4(b). In Figure 4(a), we use a log-log
scale to represent the average error (46) as a function of the number of sample points N on the
circle, and we set ε = 1√

N
, i.e. 1

N ε2
= 1. The results in Figure 4(b) are computed with ε = 500

N ,

and the convergence rate remains good despite the fact that 1
N ε2
→∞.

The fact that the most regular kernel (the exponential) has the best behavior is not a surprise:
indeed the convergence result in Corollay 3.12 requires that the kernel ρ has a bounded W2,∞ norm.
However, the fact that the “tent” kernel produces a poor convergence speed whereas the variant
containing the “inverse tent” kernel yields a very good convergence speed, was not really expected.
It could to due to the fact that the reversed tent kernel in the denominator of (45) seems to act as
a ”corrector” for the reconstruction of the mean curvature, but this is still the purpose of ongoing
work.
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Figure 4: Average error (log-log scale) for the approximate mean curvature of the subsampled
parametric circle, for increasing values of N and ε = 1√

N
(left) or ε = 500

N (right).
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The advantages of Formula (44) are numerous: it is very easy to compute, there is no need
to know an approximation of the local length or area, it does not depend on the orientation of
the point cloud (because the formula is grounded on varifolds which have no orientation) and it
preserves the 0–singular curvature. But there is a major drawback, the preservation of 0–curvature
at straight crossings is obtained thanks to a phenomenon of compensation. Indeed, the term

1{|xj−x|<ε}
ΠPj (xj − x)

|xj − x|

is of order 1 and has to be compensated by a “symmetric point” (with respect to the normal at
x) in the ball Bε(x) to produce a term of order ε with orientation given by the normal n(x) to x.
This is not specific to our discrete formula, it occurs also at the continuous level as represented in
Figure 5.

Figure 5: Compensation of the contributions to the mean curvature vector of points which are
symmetric with respect to the normal axis at x, see (15).

But this compensation phenomenon generates great instability at the discrete level, as illustrated
in the following simple example:

Example 5.2. Sample the segment S = [0, 1]× {0} ⊂ R2 into a uniform point cloud, for instance

VN =
N∑
j=1

1

N
δ( j

N
,0) ⊗ δe1 with e1 the horizontal direction .

Then pick a point x0 and consider computing the approximated curvature at x0, in a ball of radius
ε. Assume that, due for instance to noise in the sampling process, the point cloud is actually not
completely uniform, and that in B(x0, ε) there are n+ points (in the cloud) greater than x0, and
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n− points smaller, with |n+ − n−| ≥ 1. Then, formula (44) gives the non zero curvature:

∣∣HN
ε (x0)

∣∣ =

∣∣∣∣∣∣∣∣∣∣∣

N∑
j=1

1{|xj−x0|<ε}mj
Πe1(xj − x0)

|xj − x0|
N∑
j=1

1{|xj−0|<ε}mj |xj − x0|

∣∣∣∣∣∣∣∣∣∣∣
=

m|n+ − n−|
N∑
j=1

1{|xj−0|<ε}m|xj − x0|

' |n+ − n−|
|n+ + n−|ε

' 1

Nneighε
.

Letting Nneigh, the number of points contained in an ε-neighborhood of a point of the cloud, be
very large, so that the product εNneigh is also large, makes this spurious curvature small. However,
whereas it is possible in this example to choose the sampling resolution, it it not the case for general
point clouds. The only way then to let the ratio decrease is to increase ε, which may result in a
global lack of accuracy.

There is a way to remedy – at least partially – the numerical instability due to a lack of
compensation by projecting the result onto the normal vector, though it becomes more sensitive to
the accuracy of the normal.

5.1.3 Formula with projection onto the normal vector

We propose to compose, in Formula (44), the projector onto the tangent ΠPj with a projector
onto the normal ΠP⊥j0

at the central point with index j0. Brakke[Bra78] actually proved that,

for an integral varifold with bounded first variation, the generalized mean curvature vector H is
orthogonal to the approximate tangent plane. Therefore, the projection onto the normal vector
is transparent at the continuous level. At the discrete level, however, it makes a difference: it
removes a part of the error due to the fact that a variation in the density of points is a variation
of mass and thus creates a tangential component of the curvature vector. In the next experiments,
we therefore use a new definition of the approximate mean curvature. For a point cloud varifold
VN =

∑N
j=1mjδxj ⊗ δPj , at a point x with the normal direction at x denoted as P⊥0 , we compute

the mean curvature vector as

HN,normal
ε = −

N∑
j=1

1{|xj−x|<ε}mjζ
′
(
|xj − x|

ε

)
ΠP⊥0

(
ΠPj (xj − x)

|xj − x|

)
N∑
j=1

1{|xj−x|<ε}mjεζ

(
|xj − x|

ε

) . (48)

We first test this formula on the circle of radius 0.5 with exact normals, and assuming that the
weights mj are all equal (since the sampling is uniform). We represent in Figure 6the curvature
vectors computed for N = 105 points and ε = 0.001. Arrows indicate the vectors and colors indicate
their norms, to be compared with the exact value |H| = 2.

We also test the formula on two other test shapes, first the ellipse using ε = 1√
N

and various

kernels (see Figure 7), then the ”flower” (Figure 8). In addition to the curvature vectors, we compute
the average relative error for various values of N , and we observe similar order of convergence. The
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Figure 6: Approximate curvature vectors along the discrete circle of radius 0.5. Arrows indicate
the curvature vectors and colors indicate their norms.
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Figure 7: Testing formula (48) on the ellipse
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Figure 8: Testing formula (48) on the ”flower” (left lower figures are details of the left upper figure).

results obtained with the ”flower” illustrate the quality of the approximation even at points where
the curvature is very high.

It remains a lot to understand on the choice of optimal parameters depending on the sampling
resolution, and the precise difference between the various kernels: is the reversed tent kernel still a
good choice for noisy shapes? and if it seems to be the best choice, why? This is completely open
so far.

5.2 3D point clouds experiments

This section is devoted to the numerical illustration of formula (48) used on 3D point clouds. All
computations in this section were done using a C++ code and the libraries nanoflann and eigen.
The visualization is made with CloudCompare.

We first test formula (48) on a ball of radius 1, parametrized with spherical coordinates, and
using the exponential and the inverse tent kernels, see Figure 9. We could use the exact normal as
we did for 2D point clouds, but since we want to handle more general point clouds (not given with
their normal vectors), we compute instead the normal direction at each point thanks to a classical
regression. More precisely, we compute the covariance matrix of centered coordinates (in a ball
of radius ε

2)) and we define as the normal the eigenvector associated with the smallest eigenvalue.

Denoting as Ñ the number of points on the equatorial circle in the discretized ball, ε is prescribed
as previously done by the relation Ñε2 = 1, and we study the evolution of the average error on the
mean curvature vector (46) with respect to the total number of points N .

The last experiments in this section were made on non parametrized point clouds: a dragon
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Figure 9: Average error on the mean curvature vector of a 3D ball of radius 1: evolution of the
error with the number of points N , using either the exponential kernel or the inverse tent kernel.

with N = 435 000 points (the norm of the mean curvature vectors are represented with colors in
Figure 10), and a buddha statue with 543 524 points (Figure 11).

We conclude this section with a list of what we believe are the advantages of our approximate
mean curvature: the formula is simple, it does neither require to pre-compute an orientation nor a
triangulation of the point cloud. It is in addition very flexible: it can be applied to lots of surface
representations as soon as a consistent varifold structure is defined on the discrete objects. Future
work will be devoted to a better understanding of the numerical properties of the formula, and how
it can be used in applications, for instance for the smoothing of point clouds using mean curvature
flow.
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(a)

(b) Details on the dragon’s tail (c) Details on the dragon’s head

Figure 10: Intensity of the mean curvature of a dragon (435 000 points, diameter= 1) with ε = 0.007.
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Figure 11: Intensity of the mean curvature of a buddha statue (543 524 points, horizontal side
length=0.41, height=1)
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