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◮ Stückelberg - Petermann RG R (Causal perturbation
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Different versions of RG, their relations are not completely
understood.
This talk is restricted to perturbation theory and treats:

◮ Stückelberg - Petermann RG R (Causal perturbation
theory) Non-uniqueness of S-matrix.
Change S → Ŝ of the renormalization presription can
be absorbed in a renormalization of the interaction
V → Z (V ):

Ŝ(V ) = S(Z (V )) ∀ V

R = {appearing Z} is a group - group of finite
renormalizations of S .
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◮ RG in the sense of Wilson: dependence of the theory
on a cutoff Λ.
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◮ RG in the sense of Wilson: dependence of the theory
on a cutoff Λ.

In terms of regularized Feynman propagator pΛ one
defines regularized S-matrix SΛ.
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◮ RG in the sense of Wilson: dependence of the theory
on a cutoff Λ.

In terms of regularized Feynman propagator pΛ one
defines regularized S-matrix SΛ.

Definition of the effective potential VΛ at scale Λ: Let
V original interaction. Then
SΛ(VΛ) = S(V ) i.e. VΛ := S−1

Λ ◦ S (V )
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S unknown → One computes VΛ by solving flow equation
(Polchinski, Salmhofer, Kopper etc.):

Def VΛ ⇒
d

dΛ
VΛ = FΛ(VΛ ⊗ VΛ)

where FΛ is linear and explicitly known.



Connection
between the

renormalization
groups of

Stückelberg-
Petermann and

Wilson

M. Dütsch
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S unknown → One computes VΛ by solving flow equation
(Polchinski, Salmhofer, Kopper etc.):

Def VΛ ⇒
d

dΛ
VΛ = FΛ(VΛ ⊗ VΛ)

where FΛ is linear and explicitly known.

S(V ) is obtained by intergrating flow equation and
computing

lim
Λ→∞

SΛ(VΛ)
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Restrict talk to Minkowski space M and real scalar field ϕ.
field configuration space: C∞(M) (“off-shell formalism”)
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field configuration space: C∞(M) (“off-shell formalism”)

Definition of observables:
functionals F : C∞(M) → C,
F is infinitely differentiable, supp δnF

δϕn is compact
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Restrict talk to Minkowski space M and real scalar field ϕ.
field configuration space: C∞(M) (“off-shell formalism”)

Definition of observables:
functionals F : C∞(M) → C,
F is infinitely differentiable, supp δnF

δϕn is compact

◮ F0 : δnF
δϕn is smooth (non-local functionals)

◮ F : δnF
δϕn is a distribution (includes local functionals)

◮ (F ⊃)Floc: (local functionals)
δnF
δϕn (x1, . . . , xn) = 0 if xi 6= xj for some (i , j)
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Restrict talk to Minkowski space M and real scalar field ϕ.
field configuration space: C∞(M) (“off-shell formalism”)

Definition of observables:
functionals F : C∞(M) → C,
F is infinitely differentiable, supp δnF

δϕn is compact

◮ F0 : δnF
δϕn is smooth (non-local functionals)

◮ F : δnF
δϕn is a distribution (includes local functionals)

◮ (F ⊃)Floc: (local functionals)
δnF
δϕn (x1, . . . , xn) = 0 if xi 6= xj for some (i , j)

In F ,Floc additional condition on WF( δ
nF
δϕn ) which is a

microlocal version of translation invariance.
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Example for a local observable:
F (ϕ) =

∫

dx f (x) L(ϕ(x), ∂ϕ(x), ...),
f ∈ D, L ∈ C∞ does not need to be a polynomial.
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Example for a local observable:
F (ϕ) =

∫

dx f (x) L(ϕ(x), ∂ϕ(x), ...),
f ∈ D, L ∈ C∞ does not need to be a polynomial.

All functionals F ∈ F are localized:
supp F ≡ supp δF

δϕ
is compact.
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Example for a local observable:
F (ϕ) =

∫

dx f (x) L(ϕ(x), ∂ϕ(x), ...),
f ∈ D, L ∈ C∞ does not need to be a polynomial.

All functionals F ∈ F are localized:
supp F ≡ supp δF

δϕ
is compact.

Commutative product: (F · G )(ϕ)
def
= F (ϕ) · G (ϕ).
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Example for a local observable:
F (ϕ) =

∫

dx f (x) L(ϕ(x), ∂ϕ(x), ...),
f ∈ D, L ∈ C∞ does not need to be a polynomial.

All functionals F ∈ F are localized:
supp F ≡ supp δF

δϕ
is compact.

Commutative product: (F · G )(ϕ)
def
= F (ϕ) · G (ϕ).

Poisson algebra of free fields

∆R , ∆A: retarded, advanced propagator of KG-operator
In terms of ∆ = ∆R − ∆A (commutator function) one
defines Poisson bracket and obtains Poisson algebra of free
fields.

{F , G}
def
=

∫

dxdy
δF

δϕ(x)
∆(x − y)

δG

δϕ(y)
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Definition of ⋆p (product with propagator p):

Let p ∈ S ′(M) with suitable properties which depend on
whether the functionals F and G are non-local (F , G ∈ F0)
or not (F , G ∈ F)

F ⋆p G :=
∑

n≥0

~
n

n!

∫

dx1...dy1...
δnF

δϕ(x1)...δϕ(xn)

p(x1 − y1)...p(xn − yn)
δnG

δϕ(y1)...δϕ(yn)
.



Connection
between the

renormalization
groups of

Stückelberg-
Petermann and

Wilson

M. Dütsch
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Definition of ⋆p (product with propagator p):

Let p ∈ S ′(M) with suitable properties which depend on
whether the functionals F and G are non-local (F , G ∈ F0)
or not (F , G ∈ F)

F ⋆p G :=
∑

n≥0

~
n

n!

∫

dx1...dy1...
δnF

δϕ(x1)...δϕ(xn)

p(x1 − y1)...p(xn − yn)
δnG

δϕ(y1)...δϕ(yn)
.

The appearing product of distributions exists for F , G ∈ F0

due to the wave front set property of the observables.
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Definition of ⋆p (product with propagator p):

Let p ∈ S ′(M) with suitable properties which depend on
whether the functionals F and G are non-local (F , G ∈ F0)
or not (F , G ∈ F)

F ⋆p G :=
∑

n≥0

~
n

n!

∫

dx1...dy1...
δnF

δϕ(x1)...δϕ(xn)

p(x1 − y1)...p(xn − yn)
δnG

δϕ(y1)...δϕ(yn)
.

The appearing product of distributions exists for F , G ∈ F0

due to the wave front set property of the observables.

⇒ ⋆p is associative
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⋆-product quantization

p = H = Hadamard function, satisfies

H(z) − H(−z) = i∆(z) .
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⋆-product quantization

p = H = Hadamard function, satisfies

H(z) − H(−z) = i∆(z) .

F ⋆H G exists ∀F , G ∈ F (since ∃ (H(z))n)



Connection
between the

renormalization
groups of

Stückelberg-
Petermann and

Wilson

M. Dütsch
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⋆-product quantization

p = H = Hadamard function, satisfies

H(z) − H(−z) = i∆(z) .

F ⋆H G exists ∀F , G ∈ F (since ∃ (H(z))n)

F ⋆H G is a ⋆-product, i.e. it is ~-dependent deformation of
F · G ,

lim
~→0

F ⋆H G = F · G ,

with

lim
~→0

1

i~
(F ⋆H G − G ⋆H F ) = {F , G} .
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Time ordered product

The time ordered product corresponding to ⋆-product ⋆H

must satisfy

T (ϕ(x)ϕ(y)) :=

{

ϕ(x) ⋆H ϕ(y) if x0 > y0

ϕ(y) ⋆H ϕ(x) if y0 > x0

= ϕ(x) ⋆HF
ϕ(y)

where HF (z) := Θ(z0)H(z) + Θ(−z0)H(−z)(= HF (−z)).
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Time ordered product

The time ordered product corresponding to ⋆-product ⋆H

must satisfy

T (ϕ(x)ϕ(y)) :=

{

ϕ(x) ⋆H ϕ(y) if x0 > y0

ϕ(y) ⋆H ϕ(x) if y0 > x0

= ϕ(x) ⋆HF
ϕ(y)

where HF (z) := Θ(z0)H(z) + Θ(−z0)H(−z)(= HF (−z)).

Definition for non-local F1, ...,Fn ∈ F0:
T (F1 ⊗ ... ⊗ Fn) := F1 ⋆HF

... ⋆HF
Fn (product with

propagator HF )
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Time ordered product

The time ordered product corresponding to ⋆-product ⋆H

must satisfy

T (ϕ(x)ϕ(y)) :=

{

ϕ(x) ⋆H ϕ(y) if x0 > y0

ϕ(y) ⋆H ϕ(x) if y0 > x0

= ϕ(x) ⋆HF
ϕ(y)

where HF (z) := Θ(z0)H(z) + Θ(−z0)H(−z)(= HF (−z)).

Definition for non-local F1, ...,Fn ∈ F0:
T (F1 ⊗ ... ⊗ Fn) := F1 ⋆HF

... ⋆HF
Fn (product with

propagator HF )

⋆HF
is symmetric ⇒ ⋆HF

is not a ⋆-product



Connection
between the

renormalization
groups of

Stückelberg-
Petermann and

Wilson

M. Dütsch
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Time ordered product

The time ordered product corresponding to ⋆-product ⋆H

must satisfy

T (ϕ(x)ϕ(y)) :=

{

ϕ(x) ⋆H ϕ(y) if x0 > y0

ϕ(y) ⋆H ϕ(x) if y0 > x0

= ϕ(x) ⋆HF
ϕ(y)

where HF (z) := Θ(z0)H(z) + Θ(−z0)H(−z)(= HF (−z)).

Definition for non-local F1, ...,Fn ∈ F0:
T (F1 ⊗ ... ⊗ Fn) := F1 ⋆HF

... ⋆HF
Fn (product with

propagator HF )

⋆HF
is symmetric ⇒ ⋆HF

is not a ⋆-product

F1 ⋆HF
... ⋆HF

Fn exists only for non-local F1, ...,Fn ∈ F0,
since 6 ∃(HF (z))n .
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Time ordered product of local functionals

Assumption: All observables ∈ Floc, F are polynomial in ϕ.
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M. Dütsch

Introduction

Star-product
quantization

Stückelberg -
Petermann RG

Regularized
time-ordered
product

Flow of effective
potential

Comparism with
usual flow equation
formalism

Conclusions

Time ordered product of local functionals

Assumption: All observables ∈ Floc, F are polynomial in ϕ.

Tn : F⊗n
loc

→ F

Tn(F1 ⊗ ... ⊗ Fn) =′′ F1 ⋆HF
... ⋆HF

F ′′
n

can be defined by renormalization as follows:
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Time ordered product of local functionals

Assumption: All observables ∈ Floc, F are polynomial in ϕ.

Tn : F⊗n
loc

→ F

Tn(F1 ⊗ ... ⊗ Fn) =′′ F1 ⋆HF
... ⋆HF

F ′′
n

can be defined by renormalization as follows:

Tn’s are linear and totally symmetric maps defined in terms
of S-matrix (= generating functional)

S : Floc → F

Tn(V
⊗n) = S (n)(0)(V⊗n) ≡

dn

dλn
S(λV )|λ=0 .



Connection
between the

renormalization
groups of

Stückelberg-
Petermann and

Wilson

M. Dütsch
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Defining axioms for S-matrix (causal perturbation
theory)

Causality S(A + B) = S(A) ⋆H S(B) if supp A is later
than supp B.

Starting element S(0) = 1, S (1)(0) = id

Field Independence δS/δϕ = 0
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Defining axioms for S-matrix (causal perturbation
theory)

Causality S(A + B) = S(A) ⋆H S(B) if supp A is later
than supp B.

Starting element S(0) = 1, S (1)(0) = id

Field Independence δS/δϕ = 0

(Poincaré invariance)

(Unitarity) S(−V ) ⋆H S(V ) = 1 (complex conjugation)

(Scaling) S scales almost homogeneously under
(x , m) 7→ (ρx , ρ−1m). (Violation only by
powers of log ρ.)



Connection
between the

renormalization
groups of

Stückelberg-
Petermann and

Wilson

M. Dütsch

Introduction

Star-product
quantization

Stückelberg -
Petermann RG

Regularized
time-ordered
product

Flow of effective
potential

Comparism with
usual flow equation
formalism

Conclusions

Defining axioms for S-matrix (causal perturbation
theory)

Causality S(A + B) = S(A) ⋆H S(B) if supp A is later
than supp B.

Starting element S(0) = 1, S (1)(0) = id

Field Independence δS/δϕ = 0

(Poincaré invariance)

(Unitarity) S(−V ) ⋆H S(V ) = 1 (complex conjugation)

(Scaling) S scales almost homogeneously under
(x , m) 7→ (ρx , ρ−1m). (Violation only by
powers of log ρ.)

Theorem (Existence): S exists, but is non-unique.
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Defining axioms for S-matrix (causal perturbation
theory)

Causality S(A + B) = S(A) ⋆H S(B) if supp A is later
than supp B.

Starting element S(0) = 1, S (1)(0) = id

Field Independence δS/δϕ = 0

(Poincaré invariance)

(Unitarity) S(−V ) ⋆H S(V ) = 1 (complex conjugation)

(Scaling) S scales almost homogeneously under
(x , m) 7→ (ρx , ρ−1m). (Violation only by
powers of log ρ.)

Theorem (Existence): S exists, but is non-unique.

Proof: construction of the time ordered products Tn by
induction on n (Epstein-Glaser).



Connection
between the

renormalization
groups of

Stückelberg-
Petermann and

Wilson

M. Dütsch
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Stückelberg - Petermann RG

Definition: Stückelberg - Petermann RG R is the group of
analytic bijections Z : Floc → Floc with

Starting element
Z (0) = 0 , Z (1)(0) = id , Z = id + O(~)

Locality Z is local:
Z (A+B +C ) = Z (A+B)−Z (B)+Z (B +C )
if supp A ∩ supp C = ∅

Field Independence δZ/δϕ = 0
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Stückelberg - Petermann RG

Definition: Stückelberg - Petermann RG R is the group of
analytic bijections Z : Floc → Floc with

Starting element
Z (0) = 0 , Z (1)(0) = id , Z = id + O(~)

Locality Z is local:
Z (A+B +C ) = Z (A+B)−Z (B)+Z (B +C )
if supp A ∩ supp C = ∅

Field Independence δZ/δϕ = 0

(Poincaré invariance)

(Unitarity)

(almost homogeneous Scaling)
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Change of renormalization prescription

Main Theorem (Uniqueness): (i) Given two
renormalization prescriptions S and Ŝ there exists a unique
Z ∈ R with Ŝ = S ◦ Z .
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Change of renormalization prescription

Main Theorem (Uniqueness): (i) Given two
renormalization prescriptions S and Ŝ there exists a unique
Z ∈ R with Ŝ = S ◦ Z .
(ii) Conversely, given an S-matrix S and an arbitrary Z ∈ R,

then Ŝ :
def
= S ◦ Z is a new S-matrix.
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Change of renormalization prescription

Main Theorem (Uniqueness): (i) Given two
renormalization prescriptions S and Ŝ there exists a unique
Z ∈ R with Ŝ = S ◦ Z .
(ii) Conversely, given an S-matrix S and an arbitrary Z ∈ R,

then Ŝ :
def
= S ◦ Z is a new S-matrix.

Sketch of Proof: (ii) direct verification
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Change of renormalization prescription

Main Theorem (Uniqueness): (i) Given two
renormalization prescriptions S and Ŝ there exists a unique
Z ∈ R with Ŝ = S ◦ Z .
(ii) Conversely, given an S-matrix S and an arbitrary Z ∈ R,

then Ŝ :
def
= S ◦ Z is a new S-matrix.

Sketch of Proof: (ii) direct verification

(i) inductive construction of Z (n) ≡ Z (n)(0) , n ∈ N :
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example Ŝ(V ) = S(Z (V )) to 3rd order in V

Ŝ (3)(V⊗3) = S (3)(V⊗3)+c S (2)(V ⊗Z (2)(V⊗2))+Z (3)(V⊗3)

(where S (n) ≡ S (n)(0), c = combinatorical factor)



Connection
between the

renormalization
groups of

Stückelberg-
Petermann and

Wilson

M. Dütsch
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example Ŝ(V ) = S(Z (V )) to 3rd order in V

Ŝ (3)(V⊗3) = S (3)(V⊗3)+c S (2)(V ⊗Z (2)(V⊗2))+Z (3)(V⊗3)

(where S (n) ≡ S (n)(0), c = combinatorical factor)

S (3)(V⊗3) + c S (2)(V ⊗ Z (2)(V⊗2)) = (S ◦ Z2)
(3)(V⊗3)

where

Z2(V ) :=

2
∑

k=1

Z (k)(V⊗k)/k! ∈ R
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example Ŝ(V ) = S(Z (V )) to 3rd order in V

Ŝ (3)(V⊗3) = S (3)(V⊗3)+c S (2)(V ⊗Z (2)(V⊗2))+Z (3)(V⊗3)

(where S (n) ≡ S (n)(0), c = combinatorical factor)

S (3)(V⊗3) + c S (2)(V ⊗ Z (2)(V⊗2)) = (S ◦ Z2)
(3)(V⊗3)

where

Z2(V ) :=

2
∑

k=1

Z (k)(V⊗k)/k! ∈ R

Part (ii) ⇒ S ◦ Z2 is admissible S-matrix which coincides
with Ŝ in orders k ≤ 2. Setting

Z (3) := Ŝ (3) − (S ◦ Z2)
(3) , Z3(V ) := Z2(V ) +

Z (3)(V⊗3)

3!

it follows Z3 ∈ R . �



Outline

Introduction

Star-product quantization

Stückelberg - Petermann RG

Regularized time-ordered product

Flow of effective potential

Comparism with usual flow equation formalism

Conclusions



Connection
between the

renormalization
groups of

Stückelberg-
Petermann and

Wilson

M. Dütsch
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Regularized Feynman propagator

Propagator of time-ord. product is HF (z)(= HF (−z)).
As a cutoff we approximate HF by a family of symmetric
testfunctions (or sufficiently regular distributions) (pΛ)Λ>0:

lim
Λ→∞

pΛ = HF in appropriate topology

and for Λ = 0 it is required that p0 = 0.
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M. Dütsch

Introduction

Star-product
quantization

Stückelberg -
Petermann RG

Regularized
time-ordered
product

Flow of effective
potential

Comparism with
usual flow equation
formalism

Conclusions

Regularized time-ordered product

Def: regularized time-ordered product

TΛ(F⊗n) := F ⋆pΛ
... ⋆pΛ

F

is well-defined ∀F ∈ F since pΛ is smooth
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Regularized time-ordered product

Def: regularized time-ordered product

TΛ(F⊗n) := F ⋆pΛ
... ⋆pΛ

F

is well-defined ∀F ∈ F since pΛ is smooth

Def: regularized S-matrix (corresponding generating
functional)

SΛ : F → F ; SΛ(F ) =
∑

n

1

n!
TΛ(F⊗n) = eF

⋆pΛ
.
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Proposition:

SΛ is invertible (in contrast to S).
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Proposition:

SΛ is invertible (in contrast to S).

Proof: write ⋆pΛ
alternatively as

F ⋆pΛ
G = τΛ (τ−1

Λ F · τ−1
Λ G ) ,

where
τΛF

.
= exp(i~ΓΛ)F

with

ΓΛ
.
=

1

2

∫

dx dy pΛ(x − y)
δ2

δϕ(x)δϕ(y)
.
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Proposition:

SΛ is invertible (in contrast to S).

Proof: write ⋆pΛ
alternatively as

F ⋆pΛ
G = τΛ (τ−1

Λ F · τ−1
Λ G ) ,

where
τΛF

.
= exp(i~ΓΛ)F

with

ΓΛ
.
=

1

2

∫

dx dy pΛ(x − y)
δ2

δϕ(x)δϕ(y)
.

With that
SΛ = τΛ ◦ exp ◦ τ−1

Λ

and hence
∃ S−1

Λ = τΛ ◦ log ◦ τ−1
Λ . �
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Example: Euklidean theory with mass m > 0

(following Salmhofer). Let K (x) be a smooth approximation
of θ(1 − x). We set (in momentum space)

p̂Λ(k) :=
1

(2π)2 (k2 + m2)
K (

k2

Λ2
) (k2 ≡ k2

0 + ~k2)
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Example: Euklidean theory with mass m > 0

(following Salmhofer). Let K (x) be a smooth approximation
of θ(1 − x). We set (in momentum space)

p̂Λ(k) :=
1

(2π)2 (k2 + m2)
K (

k2

Λ2
) (k2 ≡ k2

0 + ~k2)

Obviously (pointwise)

lim
Λ→∞

p̂Λ(k) =
1

(2π)2 (k2 + m2)
, lim

Λ→0
p̂Λ = 0 .
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Example: Euklidean theory with mass m > 0

(following Salmhofer). Let K (x) be a smooth approximation
of θ(1 − x). We set (in momentum space)

p̂Λ(k) :=
1

(2π)2 (k2 + m2)
K (

k2

Λ2
) (k2 ≡ k2

0 + ~k2)

Obviously (pointwise)

lim
Λ→∞

p̂Λ(k) =
1

(2π)2 (k2 + m2)
, lim

Λ→0
p̂Λ = 0 .

pΛ,Λ0 := pΛ0 − pΛ (0 < Λ ≤ Λ0 < ∞)

contribution only for Λ2 < k2 < Λ2
0 (UV- and IR-cutoff).
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Example: ǫ-regularized relativistic theory with m > 0

(following Keller, Kopper and Schophaus). Let ǫ > 0 and

p̂Λ(k) :=
i e−Λ−1(kηǫk+(ǫ+i)m2)

(2π)2 (kηǫk + (ǫ + i)m2)
,

where
kηǫk := k2

0 (ǫ − i) + ~k2 (ǫ + i) ,

hence Re(kηǫk + (ǫ + i)m2) > 0 ∀k .
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Example: ǫ-regularized relativistic theory with m > 0

(following Keller, Kopper and Schophaus). Let ǫ > 0 and

p̂Λ(k) :=
i e−Λ−1(kηǫk+(ǫ+i)m2)

(2π)2 (kηǫk + (ǫ + i)m2)
,

where
kηǫk := k2

0 (ǫ − i) + ~k2 (ǫ + i) ,

hence Re(kηǫk + (ǫ + i)m2) > 0 ∀k .

Obviously (pointwise)

lim
ǫ↓0

lim
Λ→∞

p̂Λ(k) =
1

(2π)2 (m2 − k2 − i0)
, lim

Λ→0
p̂Λ = 0 .
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Construction of S (renormalization) by adding
counterterms and removing cutoff

SΛ diverges for Λ → ∞,
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Construction of S (renormalization) by adding
counterterms and removing cutoff

SΛ diverges for Λ → ∞,
but for a renormalizable model there exists ∀Λ a ZΛ ∈ R
with

lim
Λ→∞

SΛ ◦ ZΛ = S .

ZΛ adds the local counter terms which are needed that limit
exists.
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Definition of effective potential in terms of (unknown) S

Know that S exists (e.g. from Epstein - Glaser).
Define VΛ (“effective potential at scale Λ”) by
(Exact theory with interaction V )=(cutoff theory with VΛ)

S(V ) = SΛ(VΛ) , i.e. VΛ := S−1
Λ ◦ S (V )

In general VΛ is not an element of Floc.
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Definition of effective potential in terms of (unknown) S

Know that S exists (e.g. from Epstein - Glaser).
Define VΛ (“effective potential at scale Λ”) by
(Exact theory with interaction V )=(cutoff theory with VΛ)

S(V ) = SΛ(VΛ) , i.e. VΛ := S−1
Λ ◦ S (V )

In general VΛ is not an element of Floc.

For Λ = 0 we have S0(V ) = eV , hence

V0 = log ◦ S(V ) ,

but limΛ→∞ VΛ does not exist in general.
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Theorem (Flow equation)

d

dΛ
VΛ = −

1

2

d

dλ
|λ=Λ(VΛ ⋆pλ

VΛ)

= −
~

2

∫

dx dy
d pΛ(x − y)

dΛ

δVΛ

δϕ(x)
⋆pΛ

δVΛ

δϕ(y)
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Theorem (Flow equation)

d

dΛ
VΛ = −

1

2

d

dλ
|λ=Λ(VΛ ⋆pλ

VΛ)

= −
~

2

∫

dx dy
d pΛ(x − y)

dΛ

δVΛ

δϕ(x)
⋆pΛ

δVΛ

δϕ(y)

Sketch of Proof

0 =
d

dΛ
SΛ(VΛ) =

d

dλ
|λ=ΛSλ(VΛ) +

d VΛ

dΛ
⋆pΛ

SΛ(VΛ)

⇒
d VΛ

dΛ
= −

d

dλ
|λ=ΛSλ(VΛ) ⋆pΛ

SΛ(VΛ)−1

Using Sλ(F ) = eF
⋆pλ

it results the assertion.
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Construction of S by solving flow equation

Flow equation can be integrated in perturbation theory
(expansion in V : VΛ = V + O(V 2))

d

dΛ
V

(n)
Λ =

n−1
∑

k=1

−
1

2

d

dλ
|λ=Λ(V

(k)
Λ ⋆pλ

V
(n−k)
Λ ) .



Connection
between the

renormalization
groups of

Stückelberg-
Petermann and

Wilson

M. Dütsch
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Construction of S by solving flow equation

Flow equation can be integrated in perturbation theory
(expansion in V : VΛ = V + O(V 2))

d

dΛ
V

(n)
Λ =

n−1
∑

k=1

−
1

2

d

dλ
|λ=Λ(V

(k)
Λ ⋆pλ

V
(n−k)
Λ ) .

VΛ diverges in general for Λ → ∞. But

lim
Λ→∞

SΛ(VΛ)

exists and gives the wanted S(V ).
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Usual procedure (Euklidean, following Salmhofer)

Def. of effective action GΛ,Λ0

eGΛ,Λ0
(ψ) :=

∫

dµpΛ,Λ0
(φ) e−λV (φ+ψ) ,

where pΛ,Λ0 := pΛ0 − pΛ and V = unrenormalized
interaction.
Degrees of freedom in the region Λ2 < p2 < Λ2

0 are
integrated out.
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Usual procedure (Euklidean, following Salmhofer)

Def. of effective action GΛ,Λ0

eGΛ,Λ0
(ψ) :=

∫

dµpΛ,Λ0
(φ) e−λV (φ+ψ) ,

where pΛ,Λ0 := pΛ0 − pΛ and V = unrenormalized
interaction.
Degrees of freedom in the region Λ2 < p2 < Λ2

0 are
integrated out.

Flow equation

Computing ∂
∂Λ of this functional integral one derives the

flow equation. Perturbation theory: flow eq. expresses
∂G

(r)
Λ,Λ0
∂Λ (= term of order r in coupling constant λ)

in terms of G
(k)
Λ,Λ0

, k < r (inductively known).
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Solving the flow equation

G
(r)
Λ,Λ0

= G
(r)
Λ0,Λ0

−

∫ Λ0

Λ
dΛ′

∂G
(r)
Λ′,Λ0

∂Λ′

(
∂G

(r)

Λ′,Λ0
∂Λ′ inductively known by flow equation).
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Solving the flow equation

G
(r)
Λ,Λ0

= G
(r)
Λ0,Λ0

−

∫ Λ0

Λ
dΛ′

∂G
(r)
Λ′,Λ0

∂Λ′

(
∂G

(r)

Λ′,Λ0
∂Λ′ inductively known by flow equation).

Freedom in choosing boundary value GΛ0,Λ0 :
For GΛ0,Λ0 = V : limΛ0→∞ GΛ,Λ0 does not exist (usual
UV-divergences)!
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Solving the flow equation

G
(r)
Λ,Λ0

= G
(r)
Λ0,Λ0

−

∫ Λ0

Λ
dΛ′

∂G
(r)
Λ′,Λ0

∂Λ′

(
∂G

(r)

Λ′,Λ0
∂Λ′ inductively known by flow equation).

Freedom in choosing boundary value GΛ0,Λ0 :
For GΛ0,Λ0 = V : limΛ0→∞ GΛ,Λ0 does not exist (usual
UV-divergences)! Therefore,

GΛ0,Λ0 = V + Λ0-dependent local counterterms ,

such that this limit exists.
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Solving the flow equation

G
(r)
Λ,Λ0

= G
(r)
Λ0,Λ0

−

∫ Λ0

Λ
dΛ′

∂G
(r)
Λ′,Λ0

∂Λ′

(
∂G

(r)

Λ′,Λ0
∂Λ′ inductively known by flow equation).

Freedom in choosing boundary value GΛ0,Λ0 :
For GΛ0,Λ0 = V : limΛ0→∞ GΛ,Λ0 does not exist (usual
UV-divergences)! Therefore,

GΛ0,Λ0 = V + Λ0-dependent local counterterms ,

such that this limit exists.

The theory is ’perturbatively renormalizable’ if this is
possible by a finite number of counterterms.
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In case of φ4
4

GΛ0,Λ0 = λφ4(1 +
∑

r≥2

c
(r)
Λ0

) +
∑

r≥2

(a
(r)
Λ0

φ2 + b
(r)
Λ0

(∂φ)2) .
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Comparison with our formalism

◮

VΛ := S−1
Λ ◦ S(V ) corresponds to lim

Λ0→∞
GΛ,Λ0 .

In particular for Λ = 0 we have

eV0 = S(V ) ≃ lim
Λ0→∞

eG0,Λ0 .
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Comparison with our formalism

◮

VΛ := S−1
Λ ◦ S(V ) corresponds to lim

Λ0→∞
GΛ,Λ0 .

In particular for Λ = 0 we have

eV0 = S(V ) ≃ lim
Λ0→∞

eG0,Λ0 .

→ S−1
Λ ◦ S corresponds to “integrating out the degrees

of freedom above scale Λ”.
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◮

VΛ := S−1
Λ ◦ S(V ) corresponds to lim

Λ0→∞
GΛ,Λ0 .

In particular for Λ = 0 we have

eV0 = S(V ) ≃ lim
Λ0→∞

eG0,Λ0 .

→ S−1
Λ ◦ S corresponds to “integrating out the degrees

of freedom above scale Λ”.

Existence of limΛ0→∞ GΛ,Λ0 involves renormalization
(addition of suitable counterterms). Also definition of
VΛ presupposes renormalization, since VΛ is defined in
terms of the exact (=renormalized) S-matrix.
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◮

Def. VΛ ⇒ VΛ = S−1
Λ ◦ SΛ0 (VΛ0)

i.e. S−1
Λ ◦ SΛ0 is “flow of eff. potential from Λ0 to Λ”.
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◮

Def. VΛ ⇒ VΛ = S−1
Λ ◦ SΛ0 (VΛ0)

i.e. S−1
Λ ◦ SΛ0 is “flow of eff. potential from Λ0 to Λ”.

From limΛ→∞ SΛ ◦ ZΛ = S = limΛ0→∞ SΛ0 ◦ ZΛ0

we (heuristically) obtain

S−1
Λ ◦ SΛ0 ≈ ZΛ ◦ Z−1

Λ0
∈ R (for Λ, Λ0 → ∞)

(R = Stückelberg-Petermann RG)
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Stückelberg - Petermann group R

a finite renormalization S → Ŝ can equivalently be expressed
by a transformation Z ∈ R of the interaction (by means of
Ŝ(V ) = S(Z (V ))) .
→ R is group of finite renormalizations of S .
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Stückelberg - Petermann group R

a finite renormalization S → Ŝ can equivalently be expressed
by a transformation Z ∈ R of the interaction (by means of
Ŝ(V ) = S(Z (V ))) .
→ R is group of finite renormalizations of S .

RG in the sense of Wilson
Effective potential can be defined and flow equation can
simply be proved in the framework of causal perturbation
theory.
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Stückelberg - Petermann group R

a finite renormalization S → Ŝ can equivalently be expressed
by a transformation Z ∈ R of the interaction (by means of
Ŝ(V ) = S(Z (V ))) .
→ R is group of finite renormalizations of S .

RG in the sense of Wilson
Effective potential can be defined and flow equation can
simply be proved in the framework of causal perturbation
theory.

Flow of effective potential from Λ0 to Λ is the map

S−1
Λ ◦ SΛ0 ≈ ZΛ ◦ Z−1

Λ0
∈ R

heuristically for Λ, Λ0 → ∞, i.e. Wilsons flow can be
approximated by a subfamily of the Stückelberg - Petermann
group.
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