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Different versions of RG, their relations are not completely
understood.
This talk is restricted to perturbation theory and treats:

» Stiickelberg - Petermann RG R (Causal perturbation
theory) Non-uniqueness of S-matrix.
Change S — S of the renormalization presription can

be absorbed in a renormalization of the interaction
V — Z( V):
5(V)=5(Z(v)) VvV

R = {appearing Z} is a group - group of finite
renormalizations of S.
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» RG in the sense of Wilson: dependence of the theory
on a cutoff A.
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» RG in the sense of Wilson: dependence of the theory
on a cutoff A.

In terms of regularized Feynman propagator pp one
defines regularized S-matrix Sp.

Definition of the effective potential V) at scale A: Let
V original interaction. Then

SA(VA) = S(V) ie. Va:i=S7toS(V)
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S unknown — One computes Vj by solving flow equation

(Polchinski, Salmhofer, Kopper etc.):

d
Def VA = —W=F
et Va dn A A

where Fp is linear and explicitly known.

(VA ® Vi)
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S unknown — One computes Vj by solving flow equation Wilson
(Polchinski, Salmhofer, Kopper etc.): M. Diitsch

Introduction

d
Def Vp = MV/\ = FA(VA @ Vi)

where Fp is linear and explicitly known.
S(V) is obtained by intergrating flow equation and

computing
lim 5/\( V/\)
AN—oo
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Restrict talk to Minkowski space M and real scalar field .

field configuration space: C°°(M) ( “off-shell formalism™)

Definition of observables:
functionals F : C*°(M) — C,
F is infinitely differentiable, supp 5 F is compact
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Restrict talk to Minkowski space M and real scalar field .

field configuration space: C°°(M) ( “off-shell formalism™)

Definition of observables:
functionals F : C*°(M) — C,
Fis mfmutely differentiable, supp 5 F is compact

> Fo: go" £ is smooth (non-local functionals)

> F —n is a distribution (includes local functionals)

> (F D)j:loci (local functionals)
S5 (X1, ..., xn) = 0if x; # x; for some (i, )
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Restrict talk to Minkowski space M and real scalar field .

field configuration space: C°°(M) ( “off-shell formalism™)

Definition of observables:
functionals F : C*°(M) — C,
Fis mfmutely differentiable, supp 5 F is compact

> Fo: @n £ is smooth (non-local functionals)

> F —n is a distribution (includes local functionals)
> (F D)]:]OC: (local functionals)
S5 (X1, ..., xn) = 0if x; # x; for some (i, )

In F, Floc additional condition on WF( ) which is a
microlocal version of translation |nvar|ance.
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Example for a local observable:

F(e) = [ dxf(x) L(p(x),0¢(x), ...),
f €D, L €C*™ does not need to be a polynomial.
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Example for a local observable:
Fy) = [ dxf(x) L(e(x), 0p(x), -.),

f €D, L €C*™ does not need to be a polynomial.

All functionals F € F are localized:
supp F = supp g—g is compact.
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Example for a local observable:
Fy) = [ dxf(x) L(e(x), 0p(x), -.),

f €D, L €C*™ does not need to be a polynomial.

All functionals F € F are localized:
supp F = supp g—g is compact.

Commutative product: (F - G)(p) f F(p) - G(p).
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Connection
between the

EXampIe fOr a |0ca| Observable: renormalization

Fp) = [ dx f(x) L((x), 0p(x), ...), Sticwemer:
f € D, L € C* does not need to be a polynomial. Feteann and
M. Diitsch

All functionals F € F are localized:
supp F = supp g—g is compact.

Star-product
quantization

Commutative product: (F - G)(p) f F(p) - G(p).

Poisson algebra of free fields

Agr, Ap: retarded, advanced propagator of KG-operator

In terms of A = Agr — A (commutator function) one
defines Poisson bracket and obtains Poisson algebra of free
fields.

[ oy 9 age )96
tF.6) = /d d dip(x) Ab=y) de(y)



Definition of x, (product with propagator p):

Let p € 8'(M) with suitable properties which depend on
whether the functionals F and G are non-local (F, G € Fp)

ornot (F,G € F)
" 5"F
Fx, G:= /d dyre——————
P ; n! e do(x1)...0¢0(xn)
"G
p(xt = y1)-P(Xn = ¥n) =~ -
ba =)ol PEARE TS

Connection
between the
renormalization
groups of
Stiickelberg-
Petermann and
Wilson

M. Diitsch

Star-product
quantization



Connection
between the
renormalization

groups of
Definition of x, (product with propagator p): potlickelberg-
Let p € 8'(M) with suitable properties which depend on MW[')I_S_inh

whether the functionals F and G are non-local (F, G € Fp)
ornot (F,G € F)

Star-product
quantization

h" "F
Fx,G:= /dx dypen——————
i nzz;) n! L do(x1)...0¢0(xn)
"G

p(x1 — y1)---p(xn — Yn)m .

The appearing product of distributions exists for F, G € Fy
due to the wave front set property of the observables.
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Definition of x, (product with propagator p): potlickelberg-
Wilson

Let p € 8'(M) with suitable properties which depend on
whether the functionals F and G are non-local (F, G € Fp)
ornot (F,G € F)
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" 5"F
Fx,G:= /dx dyre——————
i nzz;) n! L do(x1)...0¢0(xn)
"G
p(xt = y1)-P(Xn = ¥n) =~ -
ba=)-ol PR AR

The appearing product of distributions exists for F, G € Fy
due to the wave front set property of the observables.
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*-product quantization
p = H = Hadamard function, satisfies

H(z) — H(—z) = iA(z) .

F xy G exists VF, G € F (since 3(H(z))")
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*-product quantization

p = H = Hadamard function, satisfies M. Diitech

H(z) — H(—z) = iA(z) . o
tar-product
quantization

F xy G exists VF, G € F (since 3(H(z))")

F xy G is a x-product, i.e. it is h-dependent deformation of
F-G,

lim FxyG=F-G,
h—0

with 1
ATOE(F*H G — G*H F) :{F, G} .
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o(x) xH p(y) if x0>y°
o(y) *H p(x) if  y° > x°

= o(x) *Hg p(y)

where Hp(z) := ©(2°)H(z) + ©(—2°)H(~z)(= HF(—2)).

T(p(x)p(y)) == {

Star-product
quantization



Connection

Time ordered product between the
. . renormalization
The time ordered product corresponding to x-product %y Sg,'OI:PIZOf
. tickelberg-
must Satlsfy Petermann and
Wilson

X) * i XO 0 M. Diitsch
TPt = {Zgy; *: ig; ii y0 iio

= o(x) *Hg p(y)

Star-product
quantization

where Hp(z) := ©(2°)H(z) + ©(—2°)H(~z)(= HF(—2)).

Definition for non-local F, ..., F, € Fy:
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propagator Hf)



Connection

Time ordered product between the
renormalization
i 1 - groups of
The time ordered product corresponding to x-product *y oot
must Satisfy Petermann and
Wilson

M. Diitsch

X ) * if  x9 0
Tl = {Zgy; *: ig; if 0 iie
= ¢(x) *H, ©(y)

Star-product
quantization

where Hp(z) := ©(2°)H(z) + ©(—2°)H(~z)(= HF(—2)).
Definition for non-local F, ..., F, € Fy:

T(FA®..Q Fy) = F1*H, ... *H; Fn  (product with
propagator Hf)

*Hp is symmetric = %y, is not a x-product



Connection

Time ordered product between the
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i 1 - groups of
The time ordered product corresponding to x-product *y oot
must Satisfy Petermann and
Wilson

M. Diitsch

X ) * if  x9 0
Tl = {Zgy; *: ig; if 0 iie
= ¢(x) *H, ©(y)

Star-product
quantization

where Hp(z) := ©(2°)H(z) + ©(—2°)H(~z)(= HF(—2)).
Definition for non-local F, ..., F, € Fy:

T(FA®..Q Fy) = F1*H, ... *H; Fn  (product with
propagator Hf)

*Hp is symmetric = %y, is not a x-product

Fi *Hp ... x4, Fp exists only for non-local Fy, ..., F, € Fo,
since A(He(z))" .
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Time ordered product of local functionals

Assumption: All observables € F,., F are polynomial in .

T,: F2" 5 F

loc

Tn(Fl ®...Q Fn) =" F *He - *Hg F,;/

can be defined by renormalization as follows:
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Time ordered product of local functionals

Assumption: All observables € F,., F are polynomial in .

T,,:.7-—1®”—>.7:

ocC

T,,(Fl ®...Q Fn) =" F *He - *Hg F,;/

can be defined by renormalization as follows:

T,'s are linear and totally symmetric maps defined in terms
of S-matrix (= generating functional)

S Foc — F

T.(VEm) — 5)(0)(vEm) = dd;HS()\V)],\ZO .
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Defining axioms for S-matrix (causal perturbation
theory)

Causality S(A+ B) = S(A) x4y S(B) if supp A is later
than supp B.
Starting element S(0) =1, SM(0) = id
Field Independence §S/dp =0
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Defining axioms for S-matrix (causal perturbation
theory)

Causality S(A+ B) = S(A) x4y S(B) if supp A is later
than supp B.
Starting element S(0) =1, SM(0) = id
Field Independence §S/dp =0
(Poincaré invariance)
(Unitarity) S(=V) %y S(V) =1 (complex conjugation)
(Scaling) S scales almost homogeneously under
(x, m) = (px, p~tm). (Violation only by
powers of log p.)
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Defining axioms for S-matrix (causal perturbation
theory)

Causality S(A+ B) = S(A) x4y S(B) if supp A is later
than supp B.
Starting element S(0) =1, SM(0) = id
Field Independence §S/dp =0
(Poincaré invariance)
(Unitarity) S(=V) %y S(V) =1 (complex conjugation)
(Scaling) S scales almost homogeneously under
(x, m) = (px, p~tm). (Violation only by
powers of log p.)

Theorem (Existence): S exists, but is non-unique.
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Defining axioms for S-matrix (causal perturbation
theory)

Causality S(A+ B) = S(A) x4y S(B) if supp A is later
than supp B.
Starting element S(0) =1, SM(0) = id
Field Independence §S/dp =0
(Poincaré invariance)
(Unitarity) S(—V)xy S(V) =1 (complex conjugation)

(Scaling) S scales almost homogeneously under
(x, m) = (px, p~tm). (Violation only by
powers of log p.)

Theorem (Existence): S exists, but is non-unique.

Proof: construction of the time ordered products T, by
induction on n (Epstein-Glaser).
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Definition: Stiickelberg - Petermann RG R is the group of V. Dittech

analytic bijections Z : Fioc — Floc With
Starting element
Z(0)=0, ZW(O)=id, Z=id+ O(h)
Locality Z is local: PetermanniRG
Z(A+B+(C)=Z(A+B)-Z(B)+Z(B+C)
if supp ANsupp C =0
Field Independence 6Z/dp =0
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Definition: Stiickelberg - Petermann RG R is the group of V. Dittech

analytic bijections Z : Fioc — Floc With

Starting element
Z(0)=0, ZW(O)=id, Z=id+ O(h)

Locality Z is local: PetermanniRG

Z(A+B+C)=Z(A+B)-Z(B)+Z(B+C)
if supp ANsupp C =0

Field Independence 6Z/dp =0

(Poincaré invariance)

(Unitarity)

(almost homogeneous Scaling)



Change of renormalization prescription

Main Theorem (Uniqueness): (i) Given two

renormalization prescriptions S and S there exists a unique
ZeRwithS=50Z.
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Main Theorem (Uniqueness): (i) Given two

renormalization prescriptions S and S there exists a unique
ZeRwithS=S02Z

(ii) Conversely, given an S-matrix S and an arbitrary Z € R,  pickebere,
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Main Theorem (Uniqueness): (i) Given two
renormalization prescriptions S and S there exists a unique
Z e R with S =502,

(ii) Conversely, given an S-matrix S and an arbitrary Z € R,

then 5 : défS o Z is a new S-matrix.

Stiickelberg -
Petermann RG

Sketch of Proof: (ii) direct verification



Connection
between the
renormalization
groups of
Stiickelberg-
Petermann and
Wilson

Change of renormalization prescription M. Diitsch

Main Theorem (Uniqueness): (i) Given two
renormalization prescriptions S and S there exists a unique
Z e R with S =502,

(ii) Conversely, given an S-matrix S and an arbitrary Z € R,

then 5 : défS o Z is a new S-matrix.

Stiickelberg -
Petermann RG

Sketch of Proof: (ii) direct verification

(i) inductive construction of Z(" = Z(M(0) neN :



example S(V) = S(Z(V)) to 3rd order in V
§(3)(V®3) — 5(3)(V®3)+C5(2)(V®Z(2)(V®2))+Z(3)(V®3)

(where S(" = 5(")(0), ¢ = combinatorical factor)
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Connection

example 5(V) = S(Z(V)) to 3rd order in V renormalzation
groups of

5O (v®3) = SO (VE3) 1 c SOV Z®(v®2)) 4 Z203)(v@3) S

Wilson

(where S(" = S(M(0), ¢ = combinatorical factor) M. Ditseh

SOWVE3) 1+ ¢SOV © ZO(VF2)) = (S 0 2)B(VE3)

Stiickelberg -
Petermann RG

where

2
ZZ k) V®k k' cER
k=1



example S(V) = S(Z(V)) to 3rd order in V

5@(v®3) = sCI(v@3) 1 s (ve 2™ (vE2)) 4+ 2B)(v®3)

(where S(" = 5(")(0), ¢ = combinatorical factor)
SO(VE3) 4 ¢ SOV @ ZG)(V®2)) = (S0 2,)3) (V@)

where

2
Zz AvERY ke R
k=1

Part (ii) = S o Z; is admissible S-matrix which coincides
with S in orders k < 2. Setting

Z(3) ( V®3)

70) .= 8G) _ (50 2)0) | Zy(V) := Z(V) + 3

it follows Z3 e R . O

Connection
between the
renormalization
groups of
Stiickelberg-
Petermann and
Wilson

M. Diitsch

Stiickelberg -
Petermann RG



Outline

Regularized time-ordered product



Connection
between the
renormalization
groups of
Stiickelberg-
Petermann and

Wilson
M. Diitsch
Regularized Feynman propagator
Propagator of time-ord. product is He(z)(= He(—2)).
As a cutoff we approximate Hg by a family of symmetric
testfunctions (or sufficiently regular distributions) (pa)aso:
. i A Regularized
lim pp = HF in appropriate topology time-ordered
A— 00 product

and for A = 0 it is required that py = 0.



Regularized time-ordered product
Def: regularized time-ordered product

TA(FE") := F Hpy oo kpy F

is well-defined VF € F since pa is smooth
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Regularized time-ordered product
Def: regularized time-ordered product

TA(F®") := F %p, ...

*pp F

is well-defined VF € F since pa is smooth

Def: regularized S-matrix (corresponding generating

functional)

Sn i F—FiSa(F)=>)_

n

1

nl

TA(F®™)

F

= e*

PA
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Proposition:

Sa is invertible (in contrast to S).
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Proposition: between the
renormalization

- . . . groups of
Sa is invertible (in contrast to S). Stiickelberg-
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Proof: write x,, alternatively as M. Diitsch

F*p,\G:7'/\(7'/\71,’-_-7'/\71G)7

where
TAF = exp(ihlp)F
Regularized
. time-ordered
W|th product

52
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Connection

Proposition: between the
renormalization
- . . . groups of
Sa is invertible (in contrast to S). Stiickelberg-
Petermann and
Wilson
Proof: write x,, alternatively as M. Diitsch

F*p,\G:7'/\(7'/\71,’-_-7'/\71G)7

where

TAF = exp(ihlp)F _

R_’egularlzed
with el
3/ :
dxdy pa(x = y) 5o 5500y
dp(x)op(y)

With that

SA :T/\OeXpOTA_l
and hence

3 SKIZT/\ologor/\_l. ]



Example: Euklidean theory with mass m > 0

(following Salmhofer). Let K(x) be a smooth approximation
of (1 — x). We set (in momentum space)

2
e KOG

A

pa(k) = (2’7‘(‘)2 (k2 n m2) k2 = kg + EZ)
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Example: Euklidean theory with mass m > 0

(following Salmhofer). Let K(x) be a smooth approximation
of (1 — x). We set (in momentum space)

2
e KOG

A

p/\(k) = (277')2 (k2 + m2)

k2 = k2 + k?)

Obviously (pointwise)

o 1 .
im (k) = Gz sy - AmPA =0

N—oo
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Example: Euklidean theory with mass m > 0

(following Salmhofer). Let K(x) be a smooth approximation
of (1 — x). We set (in momentum space)

1 k2 -
Pa(k) = K() (K=k+Kk
p/\( ) (277')2 (k2—|—m2) (/\2) ( 0 + )
Obviously (pointwise)
lim pa(K) = L lim B = 0
A PR = o (k2 m2) 0 AP T

PA Ay = Pro — PA (0 <A < Ag < 00)
contribution only for A2 < k? < A3 (UV- and IR-cutoff).
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Example: e-regularized relativistic theory with m > 0
(following Keller, Kopper and Schophaus). Let ¢ > 0 and

j =N (knek+(e+i)m?)
pa(k) =
P @) (kinek + (e + ym?)

where
knek := k3 (e — i)+ k? (e 4+ i),

hence  Re(knck + (e +i)m?) >0 Vk .
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Example: e-regularized relativistic theory with m > 0
(following Keller, Kopper and Schophaus). Let ¢ > 0 and

j =N (knek+(e+i)m?)

(2m)2 (knek + (e + i)m?)

Pa(k) :=

where
knek := k3 (e — i)+ k? (e 4+ i),

hence  Re(knck + (e +i)m?) >0 Vk .

Obviously (pointwise)
1

lim lim pa(k) = /I\imo pA=0.

€]0 A—oo (271')2 (m2 — k2 — IO) ’
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Construction of S (renormalization) by adding
counterterms and removing cutoff

Sp diverges for A — oo,
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renormalization
groups of
Stiickelberg-
Petermann and

Wilson
Construction of S (renormalization) by adding M. Diitsch
counterterms and removing cutoff
Sp diverges for A — oo,
but for a renormalizable model there exists VA a Zp € R
with
. Regularized
||m S/\ (6] Z/\ == S . time-ordered
A—o0 product

Zp adds the local counter terms which are needed that limit
exists.
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Definition of effective potential in terms of (unknown) S Petermann e
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Define V) (“effective potential at scale A") by
(Exact theory with interaction V')=(cutoff theory with Vj)

S(V)=SA(Wa), ie. Vai=SytoS(V)

In general Vj is not an element of Fic.

Flow of effective
potential



Connection
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renormalization
groups of
Stiickelberg-

Definition of effective potential in terms of (unknown) S Petermann and
Know that S exists (e.g. from Epstein - Glaser). Vst

Define V) (“effective potential at scale A") by
(Exact theory with interaction V')=(cutoff theory with Vj)

5(\/) = 5/\(\//\) , le. Vp:= 5/:1 o S(V)
In general Vj is not an element of Fic.

Flow of effective

For A = 0 we have Sp(V) = e, hence potential
VO = IOgOS(V) )

but lima_o, VA does not exist in general.



Theorem (Flow equation)

d 1d

Va=—— -9 _
A VA 2d)\|)\_A(

V/\ *PA V/\)

dpa(x —y) O0Va

Connection
between the
renormalization
groups of
Stiickelberg-
Petermann and
Wilson

M. Diitsch

OV

:—Z/dxdy

dA

5p(x) P S (y)

Flow of effective
potential



Connection
between the
Theorem (FlOW equat|on) renormalization
groups of
Stiickelberg-
Petermann and
Wilson

d 1d M. Diitsch
— VA= — ——|h=a( V) V
A VA 2d)\lx_/\( A *py V)
h dp/\(x—y) 5V/\ 5V/\
" [ ad
2 / VTN Sp() P Sely)

Sketch of Proof

Flow of effective
potential

d d Vp
V _ V,
d/\SA( A) = )\|,\_/\5,\( A) + n

dV, d -
di/\/\ - _ﬁ‘/\:/\SA(VA) *on SA(VA) '

*pn SA(V)

Using S\(F) = epr it results the assertion.
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Construction of S by solving flow equation Wilson

Flow equation can be integrated in perturbation theory M. Diltsch

(expansion in V: Vj = V + O(V?))
n—1

n 1d K n—k
V( = Z 2d)\|>‘ /\(V/s )*PA V/& )) .

d
dA

Flow of effective
potential



Connection
between the
renormalization
groups of
Stiickelberg-

Petermann and
Construction of S by solving flow equation Wilson
Flow equation can be integrated in perturbation theory M. Ditseh

(expansion in V: Vj = V + O(V?))

LRyO i ANV GV RN
dA 2d\ A TPTA '

VA diverges in general for A — oco. But

Flow of effective

||m 5/\( V/\) potential
N—o0

exists and gives the wanted S(V/).
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Usual procedure (Euklidean, following Salmhofer) = s

between the
renormalization
groups of
Stiickelberg-
. . Pet d
Def. of effective action Gpx, “Wison

M. Diitsch

eCnng (V) .— /dﬂp/\,/\o(@ e AV(otY)

where pA A, := pp, — PA and V' = unrenormalized
interaction.

Degrees of freedom in the region A? < p? < /\% are
integrated out.

Comparism with
usual flow equation
formalism



Usual procedure (Euklidean, following Salmhofer)

Def. of effective action Gy a,

eG/\,/\()(w) = /dMPI\,/\O (¢) e—/\V(¢+¢) ,

where pA A, := pp, — PA and V' = unrenormalized
interaction.

Degrees of freedom in the region A? < p? < /\% are
integrated out.

Flow equation

Computing 8% of this functional integral one derives the

flow equation. Perturbation theory: flow eq. expresses

26\

an > (= term of order r in coupling constant \)

in terms of G/(\klzo , k < r (inductively known).

Connection
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groups of
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usual flow equation
formalism



Solving the flow equation

NG
(N _ qn) !N
G/\J\o - G/\o,/\o _//\ dN N °
a6\

( 8’X}A° inductively known by flow equation).
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Solving the flow equation

G(’)

( /(\2/\0

. Mo 6G(f),\
Ao — G/(\o?/\o _//\ dN’ =

oN

an~ inductively known by flow equation).
Freedom in choosing boundary value Gpj a,:

For G/\OJ\O =V
UV-divergences)!

limpy— o0 Ga A, does not exist (usual

Connection
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Solving the flow equation

A (r)
GAA, = Ghop — / * an 2N
»/\O 0,730 A 8/\/
(r)
( 8’X;A° inductively known by flow equation).
Freedom in choosing boundary value Gpj a,:
For Gagny = V 1 limpy—oo Gap, does not exist (usual
UV-divergences)! Therefore,

Gpg. A, = V + No-dependent local counterterms

such that this limit exists.

Connection
between the
renormalization
groups of
Stiickelberg-
Petermann and
Wilson

M. Diitsch

Comparism with
usual flow equation
formalism



Connection
between the
. . renormalization
Solving the flow equation groups of
Stiickelberg-
Petermann and

Ao 8G(r) Wilson
(r) — (r) "N M. Diitsch
GA = G\ — /A dN —

(r)
( BIX;AO inductively known by flow equation).
Freedom in choosing boundary value Gpj a,:
For Gagny = V 1 limpy—oo Gap, does not exist (usual

UV-divergences)! Therefore,

Gpg. A, = V + No-dependent local counterterms

Comparism with
usual flow equation

such that this limit exists. v

The theory is 'perturbatively renormalizable’ if this is
possible by a finite number of counterterms.



In case of ¢}

G = A*(L+ D k) + D (a\) 6 + b (99)?) .

r>2

r>2
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M. Diitsch
Vp = 5,(1 o S(V) corresponds to /\“m GaAg -

0—00
In particular for A = 0 we have

e =S(V)~ lim e%n

No—o0
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_1 . M. Diitsch
VA :=5,"05(V) corresponds to Allm GaAg -

0—00
In particular for A = 0 we have

e =S(V)~ lim e%n

No—o0

— S/(l o S corresponds to “integrating out the degrees
of freedom above scale A".
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Connection

Comparison with our formalism between the

renormalization
groups of
Stiickelberg-
Petermann and

> Wilson

M. Diitsch

Vp = 5,(1 o S(V) corresponds to Alim GaAg -
0— 00

In particular for A = 0 we have

e =S(V)~ lim e%n

No— 00

— SKI o S corresponds to “integrating out the degrees

of freedom above scale A".

Comparism with
usual flow equation
. . . . . fi li
Existence of limp,—.oo Ga A, involves renormalization e
(addition of suitable counterterms). Also definition of
VA presupposes renormalization, since Vjp is defined in

terms of the exact (=renormalized) S-matrix.



Def. VA4 = V= 5/:1 o 5/\o (V/\o)

i.e. 5/(1 o Sp, is “flow of eff. potential from Ag to A”.
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Def. VA4 = V= 5/:1 o S/\o (V/\o)

i.e. S/(l o Sp, is “flow of eff. potential from Ag to A”.

From Iim/\_wo 5/\ o Z/\ =S= |im/\0_>OO 5/\0 @) Z/\o
we (heuristically) obtain

leoSAOQZAoZA_OIGR (for A, Ag — o)

(R = Stiickelberg-Petermann RG)

Connection
between the
renormalization
groups of
Stiickelberg-
Petermann and
Wilson

M. Diitsch

Comparism with
usual flow equation
formalism
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a finite renormalization S — S can equivalently be expressed Pﬁ%}%ﬁ
by a transformation Z € R of the interaction (by means of Wilson
S(v) =s(z(v))) . M. Dt

— R is group of finite renormalizations of §.

Conclusions



Stuckelberg - Petermann group R

a finite renormalization S — S can equivalently be expressed
by a transformation Z € R of the interaction (by means of
S(v) =s(z(v))) .

— R is group of finite renormalizations of §.

RG in the sense of Wilson

Effective potential can be defined and flow equation can
simply be proved in the framework of causal perturbation
theory.
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Connection
. between the
Stuckelberg - Petermann group R renormalization

groups of

a finite renormalization S — S can equivalently be expressed Stiickelberg”
by a transformation Z € R of the interaction (by means of Wilson
5(v) = S(Z(V)) - e

— R is group of finite renormalizations of §.

RG in the sense of Wilson

Effective potential can be defined and flow equation can
simply be proved in the framework of causal perturbation
theory.

Flow of effective potential from Ag to A is the map

1 - -1
5/\ OS/\ONZ/\OZAO ER
Conclusions

heuristically for A, Ag — o0, i.e. Wilsons flow can be
approximated by a subfamily of the Stiickelberg - Petermann

group.



	Introduction
	 Star-product quantization
	Stückelberg - Petermann RG
	Regularized time-ordered product
	Flow of effective potential
	Comparism with usual flow equation formalism
	Conclusions

