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Abstract. For a complex manifold the Hochschild-Kostant-Rosenberg map does not
respect the cup product on cohomology, but one can modify it using the square root of
the Todd class in such a way that it does. This phenomenon is very similar to what
happens in Lie theory with the Duflo-Kirillov modification of the Poincaré-Birkhoff-Witt
isomorphism.

In these lecture notes (lectures were given by the first author at ETH-Zürich in fall
2007) we state and prove Duflo-Kirillov theorem and its complex geometric analogue. We
take this opportunity to introduce standard mathematical notions and tools from a very
down-to-earth viewpoint.
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Introduction

Since the fundamental results by Harish-Chandra and others one knows that the algebra
of invariant polynomials on the dual of a Lie algebra of a particular type (solvable [12],
simple [18] or nilpotent) is isomorphic to the center of the enveloping algebra. This fact
was generalized to an arbitrary finite-dimensional real Lie algebra by M. Duflo in 1977 [13].
His proof is based on the Kirillov’s orbits method that parametrizes infinitesimal characters
of unitary irreducible representations of the corresponding Lie group in terms of co-adjoint
orbits (see e.g. [21]). This isomorphism is called the Duflo isomorphism. It happens to
be a composition of the well-known Poincaré-Birkhoff-Witt isomorphism (which is only an
isomorphism on the level of vector spaces) with an automorphism of the space of invariant
polynomials whose definition involves the power series j(x) := sinh(x/2)/(x/2).

In 1997 Kontsevich [22] proposed another proof, as a consequence of his construction of
deformation quantization for general Poisson manifolds. Kontsevich’s approach has the ad-
vantage to work also for Lie super-algebras and to extend the Duflo isomorphism to a graded
algebra isomorphism on the whole cohomology.

The inverse power series j(x)−1 = (x/2)/sinh(x/2) also appears in Kontsevich’s claim
that the Hochschild cohomology of a complex manifold is isomorphic as an algebra to the
cohomology ring of the polyvector fields on this manifold. We can summarize the analogy
between the two situations into the following array:

Lie algebra Complex geometry

symmetric algebra (sheaf of) algebra of holomorphic polyvector fields

universal enveloping algebra (sheaf of) algebra of holomorphic polydifferential operators

taking invariants taking holomorphic sections

Chevalley-Eilenberg cohomology Dolbeault (or Čech) cohomology

This set of lecture notes provides a comprehensible proof of the Duflo isomorphism and
its complex geometric analogue in a unified framework, and gives in particular a satisfying
explanation for the reason why the series j(x) and its inverse appear. The proof is strongly
based on Kontsevich’s original idea, but actually differs from it (the two approaches are
related by a conjectural Koszul type duality recently pointed out in [30], this duality be-
ing itself a manifestation of Cattaneo-Felder constructions for the quantization of a Poisson
manifold with two coisotropic submanifolds [8]).

Notice that the mentioned series also appears in the wheeling theorem by Bar-Natan, Le
and Thurston [4] which shows that two spaces of graph homology are isomorphic as alge-
bras (see also [23] for a completely combinatorial proof of the wheeling theorem, based on
Alekseev and Meinrenken’s proof [1, 2] of the Duflo isomorphism for quadratic Lie algebras).
Furthermore this power series also shows up in various index theorems (e.g. Riemann-Roch
theorems).

Throughout these notes we assume that k is a field with char(k) = 0. Unless otherwise
specified, algebras, modules, etc... are over k.

Each section consists (more or less) of a single lecture.

Acknowledgements. The authors thank the participants of the lectures for their interest
and excitement. They are responsible for the very existence of these notes, as well as for
improvement of their quality. The first author is grateful to G. Felder who offered him
the opportunity to give this series of lectures. He also thanks M. Van den Bergh for his
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kind collaboration in [6] and many enlighting discussions about this fascinating subject. His
research is fully supported by the European Union thanks to a Marie Curie Intra-European
Fellowship (contract number MEIF-CT-2007-042212).
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1. Lie algebra cohomology and the Duflo isomorphism

Let g be a finite dimensional Lie algebra over k. In this section we state the Duflo theorem
and its cohomological extension. We take this opportunity to introduce standard notions of
(co)homological algebra and define the cohomology theory associated to Lie algebras, which
is called Chevalley-Eilenberg cohomology.

1.1. The original Duflo isomorphism.

The Poincaré-Birkhoff-Witt theorem.
Remember the Poincaré-Birkhoff-Witt (PBW) theorem: the symmetrization map

IPBW : S(g) −→ U(g)

xn 7−→ xn (x ∈ g, n ∈ N)

is an isomorphism of filtered vector spaces. Moreover it induces an isomorphism of graded
algebras S(g) → Gr

(
U(g)

)
.

This is well-defined since the xn (x ∈ g) generate S(g) as a vector space. On monomials
it gives

IPBW (x1 · · ·xn) =
1

n!

∑

σ∈Sn

xσ1 · · ·xσn .

Let us write ∗ for the associative product on S(g) defined as the pullback of the multiplication
on U(g) through IPBW . For any two homogeneous elements u, v ∈ S(g), u ∗ v = uv + l.o.t.
(where l.o.t. stands for lower order terms).
IPBW is obviously NOT an algebra isomorphism unless g is abelian (since S(g) is com-

mutative while U(g) is not).

Geometric meaning of the PBW theorem.
Denote by G the germ of k-analytic Lie group having g as a Lie algebra.
Then S(g) can be viewed as the algebra of distributions on g supported at the origin 0

with (commutative) product given by the convolution with respect to the (abelian) group
law + on g.

In the same way U(g) can be viewed as the algebra of distributions on G supported at
the origin e with product given by the convolution with respect to the group law on G.

One sees that IPBW is nothing but the transport of distributions through the exponential
map exp : g → G (recall that it is a local diffeomorphism). The exponential map is obviously
Ad-equivariant. In the next paragraph we will translate this equivariance in algebraic terms.

g-module structure on S(g) and U(g).
On the one hand there is a g-action on S(g) obtained from the adjoint action ad of g on

itself, extended to S(g) by derivations : for any x, y ∈ g and n ∈ N∗,

adx(y
n) = n[x, y]yn−1 .

On the other hand there is also an adjoint action of g on U(g): for any x ∈ g and u ∈ U(g),

adx(u) = xu − ux .

It is an easy exercise to verify that adx ◦ IPBW = IPBW ◦ adx for any x ∈ g.
Therefore IPBW restricts to an isomorphism (of vector spaces) from S(g)g to the center

Z(Ug) = U(g)g of Ug.
Now we have commutative algebras on both sides. Nevertheless, IPBW is not yet an

algebra isomorphism. Theorem 1.2 below is concerned with the failure of this map to respect
the product.
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Duflo element J .

We define an element J ∈ Ŝ(g∗) as follows:

J := det
(1 − e−ad

ad

)
.

It can be expressed as a formal combination of the ck := tr((ad)k).

Let us explain what this means. Recall that ad is the linear map g → End(g) defined by
adx(y) = [x, y] (x, y ∈ g). Therefore ad ∈ g∗ ⊗ End(g) and thus (ad)k ∈ T k(g∗) ⊗ End(g).
Consequently tr((ad)k) ∈ T k(g∗) and we regard it as an elements of Sk(g∗) through the
projection T (g∗) → S(g∗).

Claim 1.1. ck is g-invariant.

Here the g-module structure on S(g∗) is the coadjoint action on g∗ extended by derivations.

Proof. Let x, y ∈ g. Then

〈y · ck, x
n〉 = −〈ck,

n∑

i=1

xi[y, x]xn−i−1〉 = −
n∑

i=1

tr(adixad[y,x]adn−i−1
x )

= −
n∑

i=1

tr(adix[ady, adx]adn−i−1
x ) = −tr([ady, adnx ]) = 0

This proves the claim. �

The Duflo isomorphism.
Observe that an element ξ ∈ g∗ acts on S(g) as a derivation as follows: for any x ∈ g

ξ · xn = nξ(x)xn−1 .

By extension an element (ξ)k ∈ Sk(g∗) acts as follows:

(ξ)k · xn = n · · · (n− k + 1)ξ(x)kxn−k .

This way the algebra Ŝ(g∗) acts on S(g).1 Moreover, one sees without difficulty that Ŝ(g∗)g

acts on S(g)g. We have:

Theorem 1.2 (Duflo,[13]). IPBW ◦J1/2· defines an isomorphism of algebras S(g)g → U(g)g.

The proof we will give in these lectures is based on deformation theory and (co)homological
algebra, following the deep insight of M. Kontsevich [22] (see also [29]).

Remark 1.3. c1 is a derivation of S(g) therefore exp(c1) defines an algebra automorphism
of S(g). Therefore one can obviously replace J by the modified Duflo element

J̃ = det
(ead/2 − e−ad/2

ad

)
.

1.2. Cohomology.
Our aim is to show that Theorem 1.2 is the degree zero part of a more general statement.

For this we need a few definitions.

Definition 1.4. 1. A DG vector space is a Z-graded vector space C• = ⊕n∈ZC
n equipped

with a graded linear endomorphism d : C → C of degree one (i.e. d(Cn) ⊂ Cn+1) such that
d ◦ d = 0. d is called the differential.

2. A DG (associative) algebra is a DG vector space (A•, d) equipped with an associative
product which is graded (i.e. Ak ·Al ⊂ Ak+l) and such that d is a degree one superderivation:
for homogeneous elements a, b ∈ A d(a · b) = d(a) · b+ (−1)|a|a · d(b).

1This action can be regarded as the action of the algebra of differential operators with constant coefficients
on g∗ (of possibly infinite degree) onto functions on g∗.
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3. A Let (A•, d) be a DG algebra. A DG A-module is a DG vector space (M•, d) equipped
with an A-module structure which is graded (i.e. Ak ·M l ⊂Mm+l) and such that d satisfies
d(a ·m) = d(a) ·m+ (−1)|a|a · d(m) for homogeneous elements a ∈ A, m ∈M .

4. A morphism of DG vector spaces (resp. DG algebras, DG A-modules) is a degree
preserving linear map that intertwines the differentials (resp. and the products, the module
structures).

DG vector spaces are also called cochain complexes (or simply complexes) and differentials
are also known as coboundary operators. Recall that the cohomology of a cochain complex
(C•, d) is the graded vector space H•(C, d) defined by the quotient ker(d)/im(d):

Hn(C, d) :=
{c ∈ Cn|d(c) = 0}

{b = d(a)|a ∈ Cn−1}
=

{n-cocycles}

{n-coboundaries}
.

Any morphism of cochain complexes induces a degree preserving linear map on the level of
cohomology. The cohomology of a DG algebra is a graded algebra.

Example 1.5 (Differential-geometric induced DG algebraic structures). Let M be a dif-
ferentiable manifold. Then the graded algebra of differential forms Ω•(M) equipped with
the de Rham differential d = ddR is a DG algebra. Recall that for any ω ∈ Ωn(M) and
v0, . . . , vn ∈ X(M)

d(ω)(u0, · · · , un) :=

n∑

i=0

(−1)iui
(
ω(u0, . . . , ûi, . . . , un)

)

+
∑

0≤i<j≤n

(−1)i+jω([ui, uj], u0, . . . , ûi, . . . , ûj , . . . , un) .

In local coordinates (x1, . . . , xn), the de Rham differential reads d = dxi ∂
∂xi . The corre-

sponding cohomology is denoted by H•
dR(M).

For any C∞ map f : M → N one has a morphism of DG algebras given by the pullback of
forms f∗ : Ω•(N) → Ω•(M).
Let E → M be a vector bundle and recall that a connection ∇ on M with values in E is
given by the data of a linear map ∇ : Γ(M,E) → Ω(M,E) such that for any f ∈ C∞(M)
and s ∈ Γ(M,E) one has ∇(fs) = d(f)s + f∇(s). Observe that it extends in a unique
way to a degree one linear map ∇ : Ω•(M,E) → Ω•(M,E) such that for any ξ ∈ Ω•(M)
and s ∈ Ω•(M,E), ∇(ξs) = d(ξ)s+ (−1)|ξ|ξ∇(s). Therefore if the connection is flat (which
is basically equivalent to the requirement that ∇ ◦ ∇ = 0) then Ω•(M,E) becomes a DG
Ω(M)-module. Conversely, any differential ∇ that turns Ω(M,E) in a DG Ω(M)-module
defines a flat connection.

Definition 1.6. A quasi-isomorphism is a morphism that induces an isomorphism on the
level of cohomology.

Example 1.7 (Poincaré lemma). Let us regard R as a DG algebra concentrated in degree
zero and with d = 0. The inclusion i : (R, 0) →֒ (Ω•(Rn), d) is a quasi-isomorphism of DG
algebras. The proof of this claim is quite instructive as it makes use of a standard method
in homological algebra:

Proof. Let us construct a degree −1 graded linear map κ : Ω•(Rn) → Ω•−1(Rn) such that

(1.1) d ◦ κ+ κ ◦ d = id − i ◦ p ,

where p : Ω•(M) → k takes the degree zero part of a form and evaluates it at the ori-
gin: p(f(x, dx)) = f(0, 0) (here we write locally a form as a “function” of the “variables”
x1, . . . , xn, dx1, . . . ,dxn)2. Then it is obvious that any closed form lies in the image of i up

2This comment will receive a precise explanation in Section 4, where we consider superspaces.
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to an exact one. This is an exercise to check that κ defined by κ(1) = 0 and

κ| ker(p)(f(x, dx)) = xiι∂i

(∫ 1

0

f(tx, tdx)
dt

t

)

satisfies those conditions. �

Notice that we have proved at the same time that p : (Ω•(M), d) → (k, 0) is also a quasi-
isomorphism. Moreover, one can check that κ ◦ κ = 0. This allows us to decompose Ω•(M)
as ker(∆)⊕ im(d)⊕ im(κ), where ∆ is defined to be the l.h.s. of (1.1). ∆ is often called the
Laplacian and thus elements lying in its kernel are said harmonic3.

A historical remark.
Homological algebra is a powerful tool that was originally introduced in order to produce

topological invariants. E.g. the de Rham cohomology: two homeomorphic differentiable
manifolds have isomorphic de Rham cohomology.

The ideas involved in homological algebra probably goes back to the study of polyhedra:
if we call F the number of faces of a polyhedron, E its numbers of edges and V its number
of vertices, then F − E + V is a topological invariant. In particular if the polyhedron is
homeomorphic to a sphere it equals 2.

The name cohomology suggests that it comes with homology. Let us briefly say that
homology deals with chain complexes: they are like cochain complexes but the differential
has degree −1. It is called the boundary operator and its name has a direct topological
inspiration (e.g. the boundary of a face is a formal sum of edges).

1.3. Chevalley-Eilenberg cohomology.

The Chevalley-Eilenberg complex.
Let V be a g-module. The associated Chevalley-Eilenberg complex C•(g, V ) is defined as

follows: Cn(g, V ) = ∧n(g)∗ ⊗ V is the space of linear maps ∧n(g) → V and the differential
dC is defined on homogeneous elements by

dC(l)(x0, . . . , xn) :=
∑

0≤i<j≤n

(−1)i+j l([xi, xj ], x0, . . . , x̂i, . . . , x̂j , . . . , xn)

+
n∑

i=0

(−1)ixi · l(x0, . . . , x̂i, . . . , xn) .

We prove below that dC ◦ dC = 0.
The corresponding cohomology is denoted H•(g, V ).

Remark 1.8. Below we implicitely identify ∧(g) with antisymmetric elements in T (g).
Namely, we define the total antisymmetrization operator alt : T (g) → T (g):

alt(x1 ⊗ · · · ⊗ xn) :=
1

n!

∑

σ∈Sn

(−1)σxσ(1) ⊗ · · · ⊗ xσ(n) .

It is a projector, and it factorizes through an isomorphism ∧(g)−̃→ ker(alt − id), that we
also denote by alt. In particular this allows us to identify ∧(g∗) with ∧(g)∗.

3This terminology is chosen by analogy with the Hodge-de Rham decomposition of Ω•(M) when M is a
Riemannian manifold. Namely, let ∗ be the Hodge star operator and define κ := ±∗ d∗. Then ∆ is precisely
the usual Laplacian, and harmonic forms provide representatives of de Rham cohomology classes.
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Cup product.
If V = A is equipped with an associative g-invariant product, meaning that for any x ∈ g

and any a, b ∈ A

x · (ab) = (x · a)b+ a(x · b) ,

then C•(g, A) naturally becomes a graded algebra with product ∪ defined as follows: for any
ξ, η ∈ ∧(g∗) and a, b ∈ A

(ξ ⊗ a) ∪ (η ⊗ b) = ξ ∧ η ⊗ ab .

Another way to write the product is as follows: for l : ∧m(g)∗ → A, l′ : ∧n(g)∗ → A and
x1, . . . , xm+n ∈ g

(l ∪ l′)(x1, . . . , xm+n) =
1

(m+ n)!

∑

σ∈Sm+n

(−1)σl(xσ(1), . . . , xσ(m))l
′(xσ(m+1), . . . , xσ(m+n))

Remark 1.9. Observe that since l and l′ are already antisymmetric then it is sufficient to
take m!n!

(m+n)! times the sum over (m,n)-shuffles (i.e. σ ∈ Sm+n such that σ(1) < · · · < σ(m)

and σ(m + 1) < · · · < σ(m+ n).

Exercise 1.10. Check that ∪ is associative and satisfies

(1.2) dC(l ∪ l′) = dC(l) ∪ l′ + (−1)|l|l ∪ dC(l′) .

The Chevalley-Eilenberg complex is a complex.
In this paragraph we prove that dC ◦ dC = 0.
Let us first prove it in the case when V = k is the trivial module. Let ξ ∈ g∗ and

x, y, z ∈ g, then

dC ◦ dC(ξ)(x, y, z) = −dC(ξ)([x, y], z) + dC(ξ)([x, z], y) − dC(ξ)([y, z], x)

= ξ([[x, y], z] − [[x, z], y] + [[y, z], x]) = 0 .

Since ∧(g∗) is generated as an algebra (with product ∪ = ∧) by g∗ then it follows from (1.2)
that dC ◦ dC = 0.

Let us come back to the general case. Observe that C•(g, V ) = ∧•(g∗) ⊗ V is a graded
∧•(g∗)-module: for any ξ ∈ ∧•(g∗) and η ⊗ v ∈ ∧•(g∗) ⊗ V ,

ξ · (η ⊗ v) := (ξ ∧ η) ⊗ v .

Since C•(g, V ) is generated by V as a graded ∧•(g∗)-module, and thanks to the fact (the
verification is left as an exercise) that

dC
(
ξ · (η ⊗ v)

)
= dC(ξ) · (η ⊗ v) + (−1)|ξ|ξ · dC(η ⊗ v) ,

then it is sufficient to prove that dC ◦ dC(v) = 0 for any v ∈ V . We do this now: if x, y ∈ g

then

dC ◦ dC(v)(x, y) = −dC(v)([x, y]) + x · dC(v)(y) − y · dC(v)(x)

= −[x, y] · v + x · (y · v)) − y · (x · v) = 0 . �

Interpretation of H0(g, V ), H1(g, V ) and H2(g, V ).
We will now interpret the low degree components of Chevalley-Eilenberg cohomology.
• Obviously, the 0-th cohomology space H0(g, V ) is equal to the space V g of g-invariant

elements in V (i.e. those elements on which the action is zero).
• 1-cocycles are linear maps l : g → V such that l([x, y]) = x · l(y) − y · l(x)b for x, y ∈ g.

In other words 1-cocycles are g-derivations with values in V . 1-coboundaries are those
derivations lv (v ∈ V ) of the form lv(x) = x · v (x ∈ g), which are called inner derivations.
Thus H1(g, V ) is the quotient of the space of derivations by inner derivations.

• 2-cocycles are linear maps ω : ∧2g → V such that

ω([x, y], z)+ω([z, x], y)+ω([y, z], x)−x ·ω(y, z)+y ·ω(x, z)−z ·ω(y, z) = 0 (x, y, x ∈ g) .
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This last condition is equivalent to the requirement that the space g⊕ V equipped with the
bracket

[x+ u, y + v] = ([x, y] + x · v − y · u) + ω(x, y) (x, y ∈ g , v, w ∈ V )

is a Lie algebra. Such objects are called extensions of g by V . 2-coboundaries ω = dC(l)
correspond exactly to those extensions that are trivial (i.e. such that the resulting Lie algebra
structure on g ⊕ V is isomorphic to the one given by ω0 = 0; the isomorphism is given by
x+ v 7→ x+ l(x) + v).

1.4. The cohomological Duflo isomorphism.
From the PBW isomorphism IPBW : S(g) −̃→U(g) of g-modules one obtains an isomor-

phism of cochain complexes C•(g, S(g)) −̃→C•(g, U(g)). This is obviously not a DG algebra
morphism (even on the level of cohomology).

The following result is an extension of the Duflo Theorem 1.2. It has been rigourously
proved by M. Pevzner and C. Torossian in [27], after the deep insight of M. Kontsevich.

Theorem 1.11. IPBW ◦J1/2· induces an isomorphism of algebras on the level of cohomology

H•(g, S(g)) −̃→ H•(g, U(g)) .

Again, one can obviously replace J by J̃ .
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2. Hochschild cohomology and spectral sequences

In this section we define a cohomology theory for associative algebras, which is called
Hochschild cohomology, and explain the meaning of it. We also introduce the notion of a
spectral sequence and use it to prove that, for a Lie algebra g, the Hochschild cohomology
of U(g) is the same as the Chevalley-Eilenberg cohomology of g.

2.1. Hochschild cohomology.

The Hochschild complex.
Let A be an associative algebra and M an A-bimodule (i.e. a vector space equipped with

two commuting A-actions, one on the left and the other on the right).
The associated Hochschild complex C•(A,M) is defined as follows: Cn(A,M) is the space

of linear maps A⊗n →M and the differential dH is defined on homogeneous elements by the
formula

dH(f)(a0, . . . , am) = a0f(a1, . . . , am) +

m∑

i=1

(−1)if(a0, . . . , ai−1ai, . . . , am)

+(−1)m+1f(a0, . . . , am−1)am .

It is easy to prove that dH ◦ dH = 0.
The corresponding cohomology is denoted H•(A,M).

If M = B is an algebra such that for any a ∈ A and any b, b′ ∈ B a(bb′) = (ab)b′ and
(bb′)a = b(b′a) (e.g. B = A the algebra itself) then (C•(A,B), dH) becomes a DG algebra;
the product ∪ is defined on homogeneous elements by

f ∪ g(a1, . . . , am+n) = f(a1, . . . , am)g(am+1, . . . , am+n) .

If M = A then we write HH•(A) := H•(A,A).

Interpretation of H0(A,M) and H1(A,M).
We will now interpret the low degree components of Hochschild cohomology.
• Obviously, the 0-th cohomology space H0(A,M) is equal to the spaceMA of A-invariant

elements in M (i.e. those elements on which the left and right actions coincide). In the case
M = A is the algebra itself we then have H0(A,A) = Z(A).

• 1-cocycles are linear maps l : A → M such that l(ab) = al(b) + l(a)b for a, b ∈ A,
i.e. 1-cocycles are A-derivations with values in M . 1-coboundaries are those derivations lm
(m ∈ M) of the form lm(a) = ma − am (a ∈ A), which are called inner derivations. Thus
H1(A,M) is the quotient of the space of derivations by inner derivations.

Interpretation of HH2(A) and HH3(A): deformation theory.
Now let M = A be the algebra itself.
• An infinitesimal deformation of A is an associative ǫ-linear product ∗ on A[ǫ]/ǫ2 such

that a ∗ b = ab mod ǫ. This last condition means that for any a, b ∈ A, a ∗ b = ab+ µ(a, b)ǫ,
with µ : A⊗A→ A. The associativity of ∗ is then equivalent to

aµ(b, c) + µ(a, bc) = µ(a, b)c+ µ(ab, c)

which is exactly the 2-cocycle condition. Conversely, any 2-cocycle allows us to define an
infinitesimal deformation of A

Two infinitesimal deformations ∗ and ∗′ are equivalent if there is an isomorphism of k[ǫ]/ǫ2-
algebras (A[ǫ]/ǫ2, ∗) → (A[ǫ]/ǫ2, ∗′) that is the identity mod ǫ. This last condition means
that there exists l : A→ A such that the isomorphism maps a to a+l(a)ǫ. Being a morphism
is then equivalent to

µ(a, b) + l(ab) = µ′(a, b) + al(b) + l(a)b

which is equivalent to µ− µ′ = dH(l)
Therefore HH2(A) is the set of infinitesimal deformations of A up to equivalences.
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• An order n (n > 0) deformation of A is an associative ǫ-linear product ∗ on A[ǫ]/ǫn+1

such that a ∗ b = ab mod ǫ. This last condition means that the product is given by

a ∗ b = ab+

n∑

i=1

ǫiµi(a, b) ,

with µi : A⊗ A→ A. Let us define µ :=
∑n

i=1 µiǫ
i ∈ C2(A,A[ǫ]). The associativity is then

equivalent to
dH(µ)(a, b, c) = µ(µ(a, b), c) − µ(a, µ(b, c)) mod ǫn+1

Proposition 2.1 (Gerstenhaber,[16]). If ∗ is an order n deformation then the linear map
νn+1 : A⊗3 → A defined by

νn+1(a, b, c) :=

n∑

i=1

(
µi(µn+1−i(a, b), c) − µi(a, µn+1−i(b, c))

)

is a 3-cocyle: dH(νn+1) = 0.

Proof. Let us define ν(a, b, c) := µ(µ(a, b), c) − µ(a, µ(b, c)) ∈ A[ǫ]. The associativity con-
dition then reads dH(µ) = ν mod ǫn+1 and νn+1 is precisely the coefficient of ǫn+1 in ν.
Therefore it remains to prove that dH(ν) = 0 mod ǫn+2.

We let as an exercise to prove that

dH(ν)(a, b, c, d) = µ(a, dH(µ)(b, c, d)) − dH(µ)(µ(a, b), c, d) + dH(µ)(a, µ(b, c), d)

−dH(µ)(a, b, µ(c, d)) + µ(dH(µ)(a, b, c), d)

Then it follows from the associativity condition that mod ǫn+2 the l.h.s. equals

ν(µ(a, b), c, d) − ν(a, µ(b, c), d) + ν(a, b, µ(c, d)) − µ(ν(a, b, c), d) + µ(a, ν(b, c, d)) .

Finally, a straightforward computation shows that this last expression is identically zero. �

Given an order n deformation one can ask if it is possible to extend it to an order n+ 1
deformation. This means that we ask for a linear map µn+1 : A⊗A→ A such that

n+1∑

i=0

µi(µn+1−i(a, b), c) =
n+1∑

i=0

µi(a, µn+1−i(b, c)) ,

which is equivalent to dH(µn+1) = νn+1.
In other words, the only obstruction for extending deformations lies in HH3(A).

This deformation-theoretical interpretation of Hochschild cohomology is due to M. Ger-
stenhaber [16].

2.2. Spectral sequences.
Spectral sequences are essential algebraic tools for working with cohomology. They were

invented by J. Leray [24, 25].

Definition.
A spectral sequence is a sequence (Er, dr)r≥0 of bigraded spaces

Er =
⊕

(p,q)∈Z2

Ep,qr

together with differentials

dr : Ep,qr −→ Ep+r,q−r+1
r , dr ◦ dr = 0

such that H(Er, dr) = Er+1 (as bigraded spaces).
One says that a spectral sequence converges (to E∞) or stabilizes if for any (p, q) there

exists r(p, q) such that for all r ≥ r(p, q), Ep,qr = Ep,qr(p,q). We then define Ep,q∞ := Ep,qr(p,q). It

happens when dp+r,q−r+1
r = dp,qr = 0 for r ≥ r(p, q).
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A convenient way to think about spectral sequences is to draw them :

Ep,q+1
∗ Ep+1,q+1

∗ Ep+1,q+2
∗

Ep,q∗

dp,q
1 //

dp,q
0

OO

dp,q
2 **UUUUUUUUUUUUUUUUUUUUU Ep+1,q

∗ Ep+2,q
∗

Ep,q−1
∗ Ep+1,q−1

∗ Ep+2,q−1
∗

The spectral sequence of a filtered complex.
A filtered complex is a decreasing sequence of complexes

C• = F 0C• ⊃ · · · ⊃ F pC• ⊃ F p+1C• ⊃ · · · ⊃
⋂

i∈N

F iC• = {0} .

Here we have assumed that the filtration is separated (∩pF pCn = {0} for any n ∈ Z).

Let us construct a spectral sequence associated to a filtered complex (F ∗C•, d). We first
define

Ep,q0 := Grp(Cp+q) =
F pCp+q

F p+1Cp+q

and d0 = d : Ep,q0 → Ep,q+1
0 . d0 is well-defined since d(F p+1Cp+q) ⊂ F p+1Cp+q+1.

We then define

Ep,q1 := Hp+q(Grp(Cp+q)) =
{a ∈ F pCp+q |d(a) ∈ F p+1Cp+q+1}

d(F pCp+q−1) + F p+1Cp+q

and d1 = d : Ep,q1 → Ep+1,q
1 .

More generally we define

Ep,qr :=
{a ∈ F pCp+q|d(a) ∈ F p+rCp+q+1}

d(F p−r+1Cp+q−1) + F p+1Cp+q

and dr = d : Ep,qr → Ep+r,q−r+1
r . Here the denominator is implicitely understood as

{denominator as written} ∩ {numerator}.

Exercise 2.2. Prove that H(Er, dr) = Er+1.

We now have the following:

Proposition 2.3. If the spectral sequence (Er)r associated to a filtered complex (F ∗C•, d)
converges then

Ep,q∞ = GrpHp+q(C•) .

Proof. Let (p, q) ∈ Z2. For r ≥ max
(
r(p, q), p+ 1

)
,

Ep,qr =
{a ∈ F pCp+q|d(a) = 0}

d(Cp+q−1) + F p+1Cp+q

=
F pHp+q(C•)

F p+1Hp+q(C•)
= GrpHp+q(C•) .
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This proves the proposition. �

Example 2.4 (Spectral sequences of a double complex). Assume we are given a double
complex (C•,•, d, d′), i.e. a Z2-graded vector space together with degree (1, 0) and (0, 1) linear
maps d′ and d′′ such that d′ ◦ d′ = 0, d′′ ◦ d′′ = 0 and d′ ◦ d′′ + d′′ ◦ d′ = 0. Then the total
complex (C•

tot, dtot) is defined as

Cntot :=
⊕

p+q=n

Cp,q , dtot := d′ + d′′ .

There are two filtrations, and thus two spectral sequences, naturally associated to (C•
tot, dtot):

F ′kCntot :=
⊕

p+q=n
q≥k

Cp,q and F ′′kCntot :=
⊕

p+q=n
p≥k

Cp,q .

Therefore the first terms of the corresponding spectral sequences are:

E′p,q
1 = Hq(C•,p, d′) with d1 = d′′

E′′p,q
1 = Hq(Cp,•, d′′) with d1 = d′ .

In the case the d′-cohomology is concentrated in only one degree q then the spectral sequence
stabilizes at E2 and the total cohomology is given by H•

tot = H•−q
(
Hq(C, d′), d′′

)
.

Spectral sequences of algebras.
A spectral sequence of algebras is a spectral sequence such that each Er is equipped with

a bigraded associative product that turns (Er, dr) into a DG algebra. Of course, we require
that H(Er, dr) = Er+1 as algebras.

As in the previous paragraph a filtered DG algebra (F ∗A•, d) gives rise to a spectral
sequence of algebras (Er)r such that

• Ep,q0 := Grp(Ap+q),
• Ep,q1 := Hp+q(Grp(Ap+q)),
• if it converges then Ep,q∞ = GrpHp+q(A•).

2.3. Application: Chevalley-Eilenberg vs Hochschild cohomolgy.
Let M be a U(g)-bimodule. Then M is equipped with a g-module structure given as

follows:

∀x ∈ g , ∀m ∈M , x ·m = xm−mx .

We want to prove the following

Theorem 2.5. 1. There is an isomorphism H•(g,M) ∼= H•(U(g),M).
2. If M = A is equipped with a U(g)-invariant associative product then the previous isomor-
phism becomes an isomorphism of (graded) algebras.

We define a filtration on the Hochschild complex C•(U(g),M): F pCn(U(g),M) is given
by linear maps U(g)⊗n →M that vanish on

⊕

i1+···+in<p

U(g)≤i1 ⊗ · · · ⊗ U(g)≤in .

Computing E0.
First of all it follows from the PBW theorem that

Ep,q0 = Grp
(
Cp+q(U(g),M)

)
=

⊕

i1+···+ip+q=p

Lin
(
Si1(g) ⊗ · · · ⊗ Sip+q(g),M

)
.

We then compute d0.
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Let P ∈ F pCp+q(U(g),M), j0 + · · · + jp+q = p and x0, . . . , xp+q ∈ g. We have

dH(P )(xj00 , . . . , x
jp+q

p+q ) = xj00 P (xj11 , . . . , x
jp+q

p+q ) +

p+q∑

k=1

(−1)kP (xj00 , . . . , x
jk−1

k−1 ∗ xjkk , . . . , x
jp+q

p+q )

+(−1)p+q+1P (xj00 , . . . , x
jp+q−1

p+q−1)x
jp+q

p+q

= ǫ(xj00 )P (xj11 , . . . , x
jp+q

p+q ) +

p+q∑

k=1

(−1)kP (xj00 , . . . , x
jk−1

k−1 x
jk
k , . . . , x

jp+q

p+q )

+(−1)p+q+1P (xj00 , . . . , x
jp+q−1

p+q−1)ǫ(x
jp+q

p+q ) ,

where ǫ : S(g) → k is the projection on degree 0 elements. Therefore d0 is the coboundary

operator for the Hochschild cohomology of Ŝ(g) with values in the bimodule M (where the
left and right action coincide and are given by ǫ).

Computing E1.

We first need to compute H(Ŝ(g),M) = H(Ŝ(g), k)⊗M . For this we will need a standard
lemma from homological algebra: one can define an inclusion of complexes (∧•(g)∗, 0) →֒

C•(Ŝ(g), k) as the transpose of the composed map

⊗nS(g) −→ ⊗ng −→ ∧ng .

We therefore need the following standard result of homological algebra:

Lemma 2.6. Let V be a vector space. Then the inclusion (∧•(V ∗), 0) →֒ C•(Ŝ(V ), k),

resp. the projection C•(Ŝ(V ), k) ։ (∧•(V ∗), 0), is a quasi-isomorphism of complexes that

induces a (graded) algebra isomorphism ∧•(V )∗ ∼= H•(Ŝ(V ), k) on the level of cohomology,
resp. a quasi-isomorphism of DG algebras.

Sketch of the proof. First observe that elements of T •(V ∗) are Hochschild cocycles in C•(Ŝ(V ), k).
We then let as an exercise to prove that Hochschild cocycles lying in the kernel of the surjec-

tive graded algebra morphism p : C•(Ŝ(V ), k) ։ T •(V ∗) are coboundaries. Consequently,

H•(Ŝ(V ), k) is given by the quotient of the tensor algebra T (V ∗) by the two-sided ideal
generated by the image of p ◦ dH . The only non-trivial elements in the image of p ◦ dH are

p ◦ dH(x1 ⊗ · · · ⊗ xixi+1 ⊗ · · · ⊗ xn) = x1 ⊗ · · · ⊗ (xi ⊗ xi+1 + xi+1 ⊗ xi) ⊗ · · · ⊗ xn .

Therefore H•(Ŝ(V ), k) ∼= T •(V ∗)/〈x⊗ y + y ⊗ x |x, y ∈ V 〉 = S•(V ∗). �

Using the previous lemma one has that

Ep,q1 =

{
Lin
(
∧p (g),M

)
if q = 0

{0} otherwise .

Therefore we have that the spectral sequence converges and E∞ = E2 = H(E1, d1). It thus
remains to prove that d1 = dC .

We know prove that d1 is the Chevalley-Eilenberg differential. It suffices to prove this on
degree 0 and 1 elements:

d1(m)(y) = dH(m)(y) = ym−my = dC(m)(y)

and

d1(l)(x, y) =
1

2

(
dH(l)(x, y) − dH(l)(y, x)

)
=

1

2

(
xl(y) − l(xy) + l(x)y − yl(x) + l(yx) − l(y)x

)

=
1

2

(
x · l(y) − y · l(x) − l([x, y])

)
=

1

2

(
dC(l)(x, y)

)
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This ends the proof of the first part of Theorem 2.5: H•(U(g),M) = E2 = H•(g,M).

The second part of the theorem follows from the fact that H•(U(g), A) is isomorphic to
its associated graded as an algebra. �
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3. Dolbeault cohomology and the Kontsevich isomorphism

The main goal of this section is to present an analogous statement, for complex manifolds,
of the Duflo theorem. It was proposed by M. Kontsevich in his seminal paper [22]. We first
begin with a crash course in complex geometry (mainly its algebraic aspect) and then define
the Atiyah and Todd classes, which play a rôle analogous to the adjoint action and Duflo
element, respectively. We continue with the definition of the Hochschild cohomology of a
complex manifold and state the result.

Throughout this Section k = C is the field of complex numbers.

3.1. Complex manifolds.
An almost complex manifold is a differentiable manifoldM together with an automorphism

J : TM → TM of its tangent bundle such that J2 = −id. In particular it is even dimensional.
Then the complexified tangent bundle TCM = TM⊗C decomposes as the direct sum T ′⊕T ′′

of two eigenbundles corresponding to the eigenvalues ±i of J .
A complex manifold is an almost complex manifold (M,J) that is integrable, i.e. such

that one of the following equivalent conditions is satisfied:

• T ′ is stable under the Lie bracket,
• T ′′ is stable under the Lie bracket.

Sections of T ′ (resp. T ′′) are called vector fields of type (1, 0) (resp. of type (0, 1)).

The graded space Ω•(M) = Γ(M,∧•T ∗
C
M) of complex-valued differential forms therefore

becomes a bigraded space. Namely

Ωp,q(M) = Γ(M,∧p(T ′)∗ ⊗ ∧q(T ′′)∗) .

For any ω ∈ Ωp,q(M) one has that

dω ∈ Γ(M, (∧p(T ′)∗ ⊗ ∧q(T ′′)∗) ∧ T ∗
CM) = Ωp+1,q(M) ⊕ Ωp,q+1(M) ,

therefore d = ∂ + ∂̄ with ∂ : Ω•,•(M) → Ω•+1,•(M) and ∂̄ : Ω•,•(M) → Ω•,•+1(M). The
integrability condition ensures that ∂̄ ◦ ∂̄ = 0 (it is actually equivalent). Therefore one can
define a DG algebra (Ω0,•(M), ∂̄), the Dolbeault algebra.
The corresponding cohomology is denoted H•

∂̄
(M).

Let E be a differentiable C-vector bundle (i.e. fibers are C-vector spaces). The space
Ω(M,E) of forms with values in E is bigraded as above. In general one can NOT turn
Ω0,•(M,E) into a DG vector space with differential ∂̄ extending the one on Ω0,•(M) in the
following way: for any ξ ∈ Ω0,•(M) and any s ∈ Γ(M,E)

∂̄(ξs) = (∂̄ξ)s+ (−1)|ξ|ξ∂̄(s) .

Such a differential is called a ∂̄-connection and it is uniquely determined by its restriction
on degree zero elements

∂̄ : Γ(M,E) −→ Ω0,1(M,E) .

A complex vector bundle E equipped with a ∂̄-connection is called a holomorphic vector
bundle. Therefore, given a holomorphic vector bundle E one has an associated Dolbeault
cohomology H•

∂̄
(M,E).

For a comprehensible introduction to complex manifolds we refer to the first chapters of
the standard monography [17].
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Interpretation of H0
∂̄
(M,E).

There is an alternative (but equivalent) definition of complex manifolds: a complex man-
ifold is a topological space locally homeomorphic to Cn and such that transition functions
are biholomorphic.

In this framework, in local holomorphic coordinates (z1, . . . , zn) one has ∂ = dzi ∂
∂zi ,

∂̄ = dz̄i ∂
∂z̄i , and J is simply given by complex conjugation. Therefore a holomorphic function,

i.e. a function that is holomorphic in any chart of holomorphic coordinates, is a C∞ function
f satisfying ∂̄(f) = 0.

Similarly, a holomorphic vector bundle is locally homeomorphic to Cn×V (V is the typical
fiber) with transition functions being End(V )-valued holomorphic functions. Again one can
locally write ∂̄ = dzi ∂

∂z̄i and holomorphic sections, i.e. sections that are holomorphic in small

enough charts, are C∞ sections s such that ∂̄(s) = 0.
In other words, the 0-th Dolbeault cohomology H0

∂̄
(M,E) of a holomorphic vector bundle

E is its space of holomorphic sections.

Interpretation of H1
∂̄

(
M,End(E)

)
.

Let E be a C∞ vector bundle.
Observe that given two ∂̄-connections ∂̄1 and ∂̄2, their difference ξ = ∂̄2 − ∂̄1 lies in

Ω0,1
(
M,End(E)

)
(since ∂̄i(fs) = ∂̄(f)s + f∂̄i(s)). Therefore the integrability condition

∂̄i ◦ ∂̄i = 0 implies that ∂̄1 ◦ ξ + ξ ◦ ∂̄1 + ξ ◦ ξ = 0. Therefore any infinitesimal deformation
∂̄ǫ of a holomorphic structure ∂̄ on E (i.e. a C[ǫ]/ǫ2-valued ∂̄-connection ∂̄ǫ = ∂̄ mod ǫ) can
be written as ∂̄ǫ = ∂̄ + ǫξ with ξ ∈ Ω0,1

(
M,End(E)

)
satisfying ∂̄ ◦ ξ + ξ ◦ ∂̄ = 0.

Such an infinitesimal deformation is trivial, meaning that it identifies with ∂̄ under an
automorphism of E (over C[ǫ]/ǫ2) that is the identity mod ǫ, if and only if there exists a
section s of End(E) such that ξ = ∂̄ ◦ s− s ◦ ∂̄.

Consequently the space of infinitesimal deformations of the holomorphic structure of E
up to the trivial ones is given by H1

∂̄

(
M,End(E)

)
.

Remark 3.1. Here we should emphazise the following obvious facts we implicitely use.
First of all, if E is a holomorphic vector bundle then so is E∗. Namely, for any s ∈ Γ(M,E)

and ζ ∈ Γ(M,E∗) one defines 〈∂̄(ζ), s〉 := ∂̄
(
〈ζ, s〉

)
− 〈ζ, ∂̄(s)〉.

Then, if E1 and E2 are holomorphic vector bundles then so is E1 ⊗ E2: for any si ∈
Γ(M,Ei) (i = 1, 2) ∂̄(s1 ⊗ s2) := ∂̄(s1) ⊗ s2 + s1 ⊗ ∂̄(s2).

Thus, if E is a holomorphic vector bundle then so is End(E) = E∗ ⊗ E: for any s ∈
Γ
(
End(E)

)
one has ∂̄(s) = ∂̄ ◦ s− s ◦ ∂̄.

3.2. Atiyah and Todd classes.
Let E →M be a holomorphic vector bundle. In this paragraph we introduce Atiyah and

Todd classes of E. Any connection ∇ on M with values in E, i.e. a linear operator

∇ : Γ(M,E) −→ Ω1(M,E)

satisfying the Leibniz rule ∇(fs) = (df)s + f(∇s), decomposes as ∇ = ∇′ + ∇′′, where ∇′

(resp. ∇′′) takes values in Ω1,0(M,E) (resp. Ω0,1(M,E)). Connections such that ∇′′ = ∂̄ are
said compatible with the complex structure.

A connection compatible with the complex structure always exists. Namely, it always
exists locally and one can then use a partition of unity to conclude. Let us choose such a
connection ∇ and consider its curvature R ∈ Ω2(M,End(E)): for any u, v ∈ X(M)

R(u, v) = ∇u∇v −∇v∇u −∇[u,v] .

In other words ∇ ◦∇ = R·.
One can see that in the case of a connection compatible with the complex structure the
curvature tensor does not have (0, 2)-component: R = R2,0 +R1,1.
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Remember that locally a connection can be written ∇ = d+Γ, with Γ ∈ Ω1(U,End(E|U )).

The compatibility with the complex structure imposes that Γ ∈ Ω1,0(U,End(E|U )). Then

one can check easily that R1,1 = ∂̄(Γ) (locally!). Therefore ∂̄(R1,1) = 0. We define the
Atiyah class of E as the Dolbeault class

atE := [R1,1] ∈ H1
∂̄

(
(T ′)∗ ⊗

(
End(E)

))
.

Lemma 3.2. atE is independent of the choice of a connection compatible with the complex
structure.

Proof. Let ∇ and ∇̃ be two such connections. We see that ∇− ∇̃ is a 1-form with values in
End(E): for any f ∈ C∞(M) and s ∈ Γ(M,E)

(∇− ∇̃)(fs) = (df)s+ f(∇s) − (df)s− f(∇̃s) = f(∇− ∇̃)(s) .

Therefore Γ − Γ̃ is a globally well-defined tensor and R1,1 − R̃1,1 = ∂̄(Γ − Γ̃) is a Dolbeault
coboundary. �

For any n > 0 one defines the n-th scalar Atiyah class an(E) as

an(E) := tr(atnE) ∈ Hn
∂̄

(
M,∧n(T ′)∗

)
.

Observe that tr
(
(R1,1)n

)
lies in Ω0,n(M,⊗n(T ′)∗), but we regard it as an element in Ω0,n(M,∧n(T ′)∗)

thanks to the natural projection ⊗(T ′)∗ → ∧(T ′)∗.
The Todd class of E is then

tdE := det
( atE

1 − e−atE

)
.

One sees without difficulties that it can be expanded formally in terms of an(E).

3.3. Hochschild cohomology of a complex manifold.

Hochschild cohomology of a differentiable manifold.
Let M be a differentiable manifold. We introduce the differential graded algebras T •

polyM
and D•

polyM of polyvector field and polydifferential operators on M .

First of all T •
polyM := Γ(M,∧•TM) with product ∧ and differential d = 0.

The algebra of differential operators is the subalgebra of End(C∞(M)) generated by
functions and vector fields. Then we define the DG algebra D•

polyM as the DG subalgebra

of
(
C•(C∞(M), C∞(M)),∪, dH

)
whose elements are cochains being differential operators in

each argument (i.e. if we fix all the other arguments then it is a differential operator in the
remaining one).

The following result, due to J. Vey [33] (see also [22]), computes the cohomology of
D•

polyM . It is an analogue for smooth functions of the original Hochschild-Kostant-Rosenberg

theorem [19] for regular affine algebras.

Theorem 3.3. The degree 0 graded map

IHKR : (T •
polyM, 0) −→ (D•

polyM,dH)

v1 ∧ · · · ∧ vn 7−→
(
f1 ⊗ · · · ⊗ fn 7→

1

n!

∑

σ∈Sn

(−1)σvσ(1)(f1) · · · vσ(n)(fn)
)

is a quasi-isomorphism of complexes that induces an isomorphism of (graded) algebras on
the level of cohomology.
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Proof. First of all it is easy to check that it is a morphism of complexes (i.e. images of IHKR
are cocycles).

Then one can see that everything is C∞(M)-linear: the products ∧ and ∪, the differential
dH and the map IHKR. Moreover, one can see that D•

poly is nothing but the Hochschild

complex of the algebra J∞
M of ∞-jets of functions on M with values in C∞(M).4

As an algebra J∞
M can be identified (non canonically) with global sections of the bundle of

algebras Ŝ(T ∗M), and ǫ with the projection on degree 0 elements. Therefore the statement
follows immediatly if one applies Lemma 2.6 fiberwise to V = T ∗

mM (m ∈M). �

Hochschild cohomology of a complex manifold.
Let us now go back to the case of a complex manifold M .

First of all for any vector bundle E over M we define T ′•
poly(M,E) := Γ(M,E ⊗ ∧•T ′).

Then we define ∂-differential operators as endomorphisms of C∞(M) generated by func-
tions and type (1, 0) vector fields, and for any vector bundle E we define E-valued ∂-
differential operators as linear maps C∞(M) → Γ(M,E) obtained by composing ∂-differential
operators with sections of E or T ′ ⊗ E (sections of T ′ ⊗ E are E-valued type (1, 0) vector
fields).

The complex D′•
poly(M,E) of E-valued ∂-polydifferential operators is defined as the sub-

complex of
(
C•(C∞(M),Γ(M,E)), dH

)
consisting of cochains that are ∂-differential opera-

tors in each argument.
We have the following obvious analogue of Theorem 3.3:

Theorem 3.4. The degree 0 graded map

IHKR :
(
T ′•

poly(M,E), 0
)

−→
(
D′•

poly(M,E), dH
)

(v1 ∧ · · · ∧ vn) ⊗ s 7−→
(
f1 ⊗ · · · ⊗ fn 7→

1

n!

∑

σ∈Sn

(−1)σvσ(1)(f1) · · · vσ(n)(fn)s
)

is a quasi-isomorphism of complexes. �

Now observe that ∧•T ′ is a holomorphic bundle of graded algebras with product being ∧.
Namely, T ′ has an obvious holomorphic structure: for any v ∈ Γ(M,T ′) and any f ∈ C∞(M)

∂̄(v)(f) := ∂̄(v(f)) − v(∂̄(f)) ;

and it extends uniquely to a holomorphic structure on ∧•T ′ that is a derivation with respect
to the product ∧: for any v, w ∈ Γ(M,T ′•

poly)

∂̄(v ∧ w) = ∂̄(v) ∧w + (−1)|v|v ∧ ∂̄(w) .

Therefore ∂̄ turns Ω0,•(M,∧•T ′) = T ′•
poly(M,∧•(T ′′)∗) into a DG algebra.

One also has an action of ∂̄ on ∂-differential operators defined in the same way: for any
f ∈ C∞(M)

∂̄(P )(f) = ∂̄(P (f)) − P (∂̄(f)) .

It can be extended uniquely to a degree one derivation of the graded algebraD′•
poly(M,∧•(T ′′)∗),

with product given by

P ∪Q(f1, . . . , fm+n) = (−1)m|Q|P (f1, . . . , fm) ∧Q(fm+1, . . . , fm+n) ,

where | · | refers to the exterior degree.

4Recall that J∞

M
:= HomC∞(M)(D

1
polyM, C∞(M)) with product given by

j1 · j2(P ) := (j1 ⊗ j2)(∆(P )) (j1, j2 ∈ J∞

M , P ∈ D1
polyM) ,

where ∆(P ) ∈ D2
polyM is defined by ∆(P )(f, g) := P (fg). The module structure on C∞(M) is given by the

projection ǫ : J∞

M
→ C∞(M) obtained as the transpose of C∞(M) →֒ D1

polyM .
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3.4. The Kontsevich isomorphism.

Theorem 3.5. The map IHKR ◦ td
1/2
T ′ · induces an isomorphism of (graded) algebras

H∂̄(∧T
′
poly)−̃→H

(
D′

poly

(
∧ (T ′′)∗

)
, dH + ∂̄

)

on the level of cohomology.

This result has been stated by M. Kontsevich in [22] (see also [7]) and proved in a more
general context in [6].

Remark 3.6. Since a1(T
′) is a derivation of H∂̄(∧T

′
poly) then ea1(T

′) is an algebra auto-

morphism of H∂̄(∧T
′
poly). Therefore, as for the usual Duflo isomorphism (see Remark 1.3),

one can replace the Todd class of T ′ by its modified Todd class

t̃dT ′ := det
( atT ′

eatT ′/2 − e−atT ′/2

)
.
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4. Superspaces and Hochschild cohomology

In this section we provide a short introduction to supermathematics and deduce from it
a definition of the Hochschild cohomology for DG associative algebras. Moreover we prove
that the Hochschild cohomology of the Chevalley algebra (∧•(g)∗, dC) of a finite dimensional
Lie algebra g is isomorphic to the Hochschild cohomology of its universal envelopping algebra
U(g).

4.1. Supermathematics.

Definition 4.1. A super vector space (simply, a superspace) is a Z/2Z-graded vector space
V = V0 + V1.

In addition to the usual well-known operations on G-graded vector spaces (direct sum
⊕, tensor product ⊗, spaces of linear maps Hom(−,−), and duality (−)∗) one has a parity
reversion operation Π: (ΠV )0 = V1 and (ΠV )1 = V0.

In the sequel V is always a finite dimensional super vector space.

Supertrace and Berezinian.
For any endomorphism X of V (also refered as a supermatrix on V ) one can define its

supertrace str as follows: if we writeX =

(
x00 x10

x01 x11

)
, meaning thatX = x00+x10+x01+x11

with xij ∈ Hom(Vi, Vj), then

str(X) := tr(x00) − tr(x11) .

On invertible endomorphisms we also have the Berezinian Ber (or superdeterminant) which
is uniquely determined by the two defining properties:

Ber(AB) = Ber(A)Ber(B) and Ber(eX) = estr(X) .

Symmetric and exterior algebras of a super vector space.
The (graded) symmetric algebra S(V ) of V is the quotient of the free algebra T (V )

generated by V by the two-sided ideal generated by

v ⊗ w − (−1)|v||w|w ⊗ v .

It has two different (Z-)gradings:

• the first one (by the symmetric degree) is obtained by assigning degree 1 to elements
of V . Its degree n homogeneous part, denoted by Sn(V ), is the quotient of the space
V ⊗n by the action of the symmetric group Sn by super-permutations:

(i , i+1) · (v1 ⊗ · · · ⊗ vn) := (−1)|vi||vi+1|v1 ⊗ · · · vi ⊗ vi+1 · · · ⊗ vn .

• the second one (the internal grading) is obtained by assigning degree i ∈ {0, 1} to
elements of Vi. Its degree n homogeneous part is denoted by S(V )n, and we write
|x| for the internal degree of an element x ∈ S(V ).

Example 4.2. (a) If V = V0 is purely even then S(V ) = S(V0) is the ususal symmetric
algebra of V0, S

n(V ) = Sn(V0) and S(V ) is concentrated in degree 0 for the internal grading.
(b) If V = V1 is purely odd then S(V ) = ∧(V1) is the exterior algebra of V1. Moreover,
∧n(V ) = ∧n(V1) = ∧(V )n.

The (graded) exterior algebra ∧(V ) of V is the quotient of the free algebra T (V ) generated
by V by the two-sided ideal generated by

v ⊗ w + (−1)|v||w|w ⊗ v .

It has two different (Z-)gradings:
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• the first one (by the exterior degree) is obtained by assigning degree 1 to elements
of V . Its degree n homogeneous part is, denoted ∧n(V ), is the quotient of the space
of V ⊗n by the action of the symmetric group Sn by signed super-permutations:

(i , i+1) · (v1 ⊗ · · · ⊗ vn) := −(−1)|vi||vi+1|v1 ⊗ · · · vi ⊗ vi+1 · · · ⊗ vn .

• the second one (the internal grading) is obtained by assigning degree i ∈ {0, 1} to
elements of V1−i. Its degree n homogeneous part is denoted by ∧(V )n, and we write
|x| for the internal degree of an element x ∈ ∧(V ). In other words,

|v1 ∧ · · · ∧ vn| = n−
n∑

i=1

|vi| .

Example 4.3. (a) If V = V0 is purely even then ∧(V ) = ∧(V0) is the ususal exterior algebra
of V0 and ∧n(V ) = ∧n(V0) = ∧(V )n.
(b) If V = V1 is purely odd then ∧(V ) = S(V1) is the symmetric algebra of V1. Moreover,
∧n(V ) = Sn(V1) and ∧(V ) is concentrated in degree 0 for the internal grading.

Observe that one has an isomorphism of bigraded vector spaces

S(ΠV ) −̃→ ∧(V )

v1 · · · vn 7−→ (−1)
Pn

j=1(j−1)|vj |v1 ∧ · · · ∧ vn .(4.1)

Remark that it remains true without the sign on the right. The motivation for this quite
mysterious sign modification we make here is explained in the next paragraph.

Graded (super-)commutative algebras.

Definition 4.4. A graded algebra A• is super-commutative if for any homogeneous elements
a, b one has a · b = (−1)|a||b|b · a.

Example 4.5. (a) the symmetric algebra S(V ) of a super vector space is super-commutative
with respect to its internal grading.
(b) the graded algebra Ω•(M) of differentiable forms on a smooth manifold M is super-
commutative.

The exterior algebra of a super vector space, with product ∧ and the internal grading, is
NOT a super-commutative algebra in general: for vi ∈ Vi (i = 0, 1) one has

v0 ∧ v1 = −v1 ∧ v0 .

One way to correct this drawback is to define a new product • on ∧(V ) as follows: let
v ∈ ∧k(V ) and w ∈ ∧l(V ) then

v • w := (−1)k(|w|+l)v ∧ w .

In this situation one can check (this is an exercise) that the map (4.1) defines a graded
algebra isomorphism (

S(ΠV ), ·
)
−→

(
∧ (V ), •

)
.

Graded Lie super-algebras.

Definition 4.6. A graded Lie super-algebra is a Z-graded vector space g• equipped with
a degree zero graded linear map [, ] : g ⊗ g → g that is super-skew-symmetric, which means
that

[x, y] = −(−1)|x||y|[y, x] ,

and satisfies the super-Jacobi identity

[x, [y, z]] = [[x, y], z] + (−1)|x||y|[y, [x, z]] .
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Examples 4.7. (a) Let A• be a graded associative algebra. Then A equipped with the
super-commutator

[a, b] = ab− (−1)|a||b|ba

is a graded Lie super-algebra.
(b) Let A• be a graded associative algebra and consider the space Der(A) of super deriva-

tions of A: a degree k graded linear map d : A→ A is a super derivation if

d(ab) = d(a)b+ (−1)k|a|ad(b) .

Der(A) is stable under the super-commutator inside the graded associative algebra End(A)
of (degree non-preserving) linear maps A→ A (with product the composition).

The previous example motivates the following definition:

Definition 4.8. Let g• be a graded Lie super-algebra.
1. A g-module is a graded vector space V with a degree zero graded linear map g⊗V → V

such that

x · (y · v) − (−1)|x||y|y · (x · v) = [x, y] · v .

In other words it is a morphism g → End(V ) of graded Lie super-algebras.
2. If V = A is a graded associative algebra, then one says that g acts on A by derivations if
this morphism takes values in Der(A). In this case A is called a g-module algebra.

4.1.1. A remark on “graded” and “super”.
Throughout the text (and otherwise specified) graded always means Z-graded and “super”

stands for Z/2Z-graded. All our graded objects are obviously “super”. Nevertheless “graded”
and “super” do not play the same role; namely, in all definitions structures (e.g. a product)
are graded and properties (e.g. the commutativity) are “super” (it has some importance only
in the case there is an action of the symmetric group).

For example, a graded Lie super algebra is NOT a graded Lie algebra in the usual sens:
End(V ) with the usual commutator is a graded Lie agebra while it is a Lie super-algebra
with the super-commutator.

4.2. Hochschild cohomology strikes back.

Hochschild cohomology of a graded algebra.
Let A• be a graded associative algebra. Its Hochschild complex C•(A,A) is defined as the

sum of spaces of (not necessarily graded) linear maps A⊗n → A. Let us denote by | · | the
degree of those linear maps; the grading on C•(A,A) is given by the total degree, denoted
|| · ||. For any f : A⊗m → A, ||f || = |f | +m. The differential dH is given by

dH(f)(a0, . . . , am) = (−1)|f ||a0|a0f(a1, . . . , am) +

m∑

i=1

(−1)if(a0, . . . , ai−1ai, . . . , am)

+(−1)m+1f(a0, . . . , am−1)am .(4.2)

Again it is easy to prove that dH ◦ dH = 0.
As in paragraph 2.1

(
C•(A,A), dH

)
is a DG algebra with product ∪ defined by

f ∪ g(a1, . . . , am+n) := (−1)|g|(|a1|+···+|am|)f(a1, . . . , am)g(am+1, . . . , am+n) .

Hochschild cohomology of a DG algebra.
Let A• be a graded associative algebra. We now prove that C•(A,A) is naturally a

Der(A)-module.
For any d ∈ Der(A) and any f ∈ C•(A,A) one defines

d(f)(a1, . . . , am) := d
(
f(a1, . . . , am)

)
−(−1)|d|(||f ||−1)

m∑

i=1

(−1)(i−1)(m−1)f(a1, . . . , dai, . . . , am) .
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In other words, d is defined as the unique degree |d| derivation for the cup product that is
given by the super-commutator on linear maps A→ A.

Moreover, one can easily check that d ◦ dH + dH ◦ d = 0.

Therefore if (A•, d) is a DG algebra then its Hochschild complex is C•(A,A) together
with dH + d as a differential. It is again a DG algebra, and we denote its cohomology by
HH•(A, d).

Remark 4.9 (Deformation theoretic interpretation). In the spirit of the discussion in
paragraph 2.1 one can prove that HH2(A, d) is the set of equivalence classes of infinitesimal
deformations of A as an A∞-algebra (an algebraic structure introduced by J. Stasheff in [31])
and that the obstruction to extending such deformations order by order lies in HH3(A, d).

More generally, if (M•, dM ) is a DG bimodule over (A•, dA) then the Hochschild complex
C•(A,M) of A with values in M consists of linear maps A⊗n → M (n ≥ 0) and the
differential is dH + d, with dH given by (4.2) and

d(f)(a1, . . . , am) := dM
(
f(a1, . . . , am)

)
−(−1)|d|(||f ||−1)

m∑

i=1

(−1)(i−1)(m−1)f(a1, . . . , dAai, . . . , am) .

Hohschild cohomology of the Chevalley algebra.
One has the following important result:

Theorem 4.10. Let g be a finite dimensional Lie algebra. Then there is an isomorphism of
graded algebras HH•(∧g∗, dC) −̃→HH•(Ug).

Let us emphazise that this result is related to some general considerations about Koszul
duality for quadratic algebras (see e.g. [28]).

Proof. Thanks to Theorem 2.5 it is sufficient to prove that HH•(∧g∗, dC) −̃→H•(g, Ug).
Let us define a linear map

(4.3) C(∧g∗,∧g∗) = ∧g∗ ⊗ T (∧g) −→ ∧g∗ ⊗ U(g) = C(g, Ug) ,

given by the projection p : T (∧g) ։ T (g) ։ U(g). It is an exercise to verify that it defines
a morphism of DG algebras

(
C(∧g∗,∧g∗), dH + dC

)
−→

(
C(g, Ug), dC) .

It remains to prove that it is a quasi-ismorphism. We use a spectral sequence argument.

Lemma 4.11. We equip k (with the zeroe differential) with the (∧g∗, dC)-DG-bimodule
structure given by the projection ǫ : ∧g∗ → k (left and right actions coincide). Then
H•
(
(∧g∗, dC), k

)
∼= U(g).

Proof of the lemma. We consider the following filtration onC•
(
(∧g∗, dC), k

)
: F pCn

(
(∧g∗, dC), k

)

is given by linear forms on
⊕

k≥0
i1+···+ik=k−n

∧i1 (g∗) ⊗ · · · ⊗ ∧ik(g∗)

that vanish on the components for which n− k < p. Then we have

Ep,q0 = Lin
( ⊕

i1+···+iq=−p

∧i1 (g∗) ⊗ · · · ⊗ ∧iq (g∗), k
)

with d0 = dH .

Applying a “super” version of Lemma 2.6 to V = Π(g∗) one obtains that

Ep,q1 = E−q,q
1 = ∧q

(
Π(g∗)∗

)
= Sq(g) ,
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and that the spectral sequence stabilizes at E1. Consequently Gr
(
H•
(
(∧g∗, dC), k

))
∼=

S(g) = Gr
(
U(g)

)
and the isomorphism is given by the following composed map

T
(
∧ (g)

)
−→ T (g) −→ S(g) .

This ends the proof of the lemma. �

Lemma 4.12. The map (4.3) is a quasi-isomorphism: HH•(∧g∗, dC) ∼= H•(g, Ug).

Proof of the lemma. Let us consider the descending filtration on the Hochschild complex
that is induced from the following descending filtration on ∧g∗:

Fn(∧g∗) :=
⊕

k≥n

∧kg∗ .

Then the zeroth term of the associated spectral sequence (of algebras) is

E•,•
0 = ∧•g∗ ⊗ C•

(
(∧g∗, dC), k) with d0 = id ⊗ (dH + dC) .

Then using Lemma 4.11 one obtains that E•,•
1 = E•,0

1 = ∧•g∗⊗Ug with d1 = dC . Therefore
the spectral sequence stabilizes at E2 and the result follows. �

This ends the proof of the Theorem. �
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5. The Duflo-Kontsevich isomorphism for Q-spaces

In this section we prove a general Duflo type result for Q-spaces, i.e. superspaces equipped
with a square zero degree one vector field. This result implies in particular the cohomological
version of the Duflo theorem 1.11, and will be used in the sequel to prove the Kontsevich
theorem 3.5. This approach makes more transparent the analogy between the adjoint action
and the Atiyah class.

5.1. Statement of the result.
Let V be a superspace.

Hochschild-Kostant-Rosenberg for superspaces.
We introduce

• OV := S(V ∗), the graded super-commutative algebra of functions on V ;
• XV := Der(OV ) = S(V ∗) ⊗ V , the graded Lie super-algebra of vector fields on V ;
• TpolyV := S(V ∗⊕ΠV ) ∼= ∧OV XV , the XV -module algebra of polyvector fields on V .

We now describe the gradings we will consider.
The grading on OV is the internal one: elements in V ∗

i have degree i.
The grading on XV is the restriction of the natural grading on End(OV ): elements in V ∗

i

have degree i and elements in Vi have degree −i.
There are three different gradings on TpolyV :

(i) the one given by the number of arguments: degree k elements lie in ∧kOV
XV . In

other words elements in V ∗ have degree 0 and elements in V have degree 1;
(ii) the one induced by XV : elements in V ∗

i have degree i and elements in Vi have degree
−i. It is denoted by | · |;

(iii) the total (or internal) degree: it is the sum of the previous ones. Elements in V ∗
i

have degree i and elements in Vi have degree 1 − i. It is denoted by || · ||.

Unless otherwise precised, we always consider the total grading on TpolyV in the sequel.

We also have

• the XV -module algebra DV of differential operators on V , which is the subalgebra
of End(OV ) generated by OV and XV ;

• the XV -module algebra DpolyV of polydifferential operators on V , which consists of
multilinear maps OV ⊗· · ·⊗OV → OV being differential operators in each argument.

The grading on DV is the restriction of the natural grading on End(OV ). As for Tpoly

there are three different gradings on Dpoly: the one given by the number of arguments, the
one induced by DV (denoted | · |), and the one given by their sum (denoted || · ||). Dpoly is
then a subcomblex of the Hochschild complex of the algebra OV introduced in the previous
Section, since it is obviously preserved by the differential dH .

An appropriate super-version of Lemma 2.6 gives the following result:

Proposition 5.1. The natural inclusion IHKR : (TpolyV, 0) →֒ (DpolyV, dH) is a quasi-
isomorphism of complexes, that induces an isomorphism of algebras in cohomology.

Cohomological vector fields.

Definition 5.2. A cohomological vector field on V is a degree one vector field Q ∈ XV that
is integrable: [Q,Q] = 2Q ◦Q = 0. A superspace equipped with a cohomological vector field
is called a Q-space.

Let Q be a cohomological vector field on V . Then (TpolyV,Q·) and (DpolyV, dH + Q·)
are DG algebras. By a spectral sequence argument one can show that IHKR still defines a
quasi-isomorphism of complexes between them. Nevertheless it does no longer respect the
product on the level of cohomology. Similarly to theorems 1.11 and 3.5, Theorem 5.3 below
remedy to this situation.



LECTURES ON DUFLO ISOMORPHISMS 27

Let us remind the reader that the graded algebra of differential forms on V is Ω(V ) :=
S(V ∗ ⊕ ΠV ∗) and that it is equipped with the following structures:

• for any element x ∈ V ∗ we write dx for the corresponding element in ΠV ∗, and then
we define a differential on Ω(V ), the de Rham differential, given on generators by
d(x) = dx and d(dx) = 0;

• there is an action ι of differential forms on polyvector fields by contraction, where
x ∈ V ∗ acts by left multiplication and dx acts by derivation in the following way:
for any y ∈ V ∗ and v ∈ ΠV one has

ιdx(y) = 0 and ιdx(v) = 〈x, v〉 .

We then define the (super)matrix valued one-form Ξ ∈ Ω1(V )⊗End(V [1]) with coefficients
explicitly given by

Ξji := d
(∂Qj
∂xi

)
=

∂2Qj

∂xk∂xi
dxk ,

where x1, . . . , xn is a basis of coordinates on V . Observe that it does not depend on the
choice of coordinates, and set

j(Ξ) := Ber
(1 − e−Ξ

Ξ

)
∈ Ω(V ) .

Theorem 5.3. IHKR ◦ ιj(Ξ)1/2 : (TpolyV,Q·) −→ (DpolyV, dH + Q·) defines a quasi-

isomorphism of complexes that induces an algebra isomorphism on cohomology.

As for Theorems 1.2, 1.11 and 3.5 one can replace j(Ξ) by

j̃(Ξ) := Ber
(eΞ/2 − e−Ξ/2

Ξ

)
.

5.2. Application: proof of the Duflo Theorem.
In this paragraph we discuss an important application of Theorem 5.3, namely the “clas-

sical” Theorem of Duflo (see Theorem 1.2 and 1.11): before entering into the details of the
proof, we need to establish a correspondence between the algebraic tools of Duflo’s Theorem
and the differential-geometric objects of 5.3.

We consider a finite dimensional Lie algebra g, to which we associate the superspace
V = Πg. In this setting, we have the following identification:

OV
∼= ∧•g∗,

i.e. the superalgebra of polynomial functions on V is identified with the graded vector space
defining the Chevalley–Eilenberg graded algebra for g with values in the trivial g-module;
we observe that the natural grading of the Chevalley-Eilenberg complex of g corresponds to
the aforementioned grading of OV . The Chevalley-Eilenberg differential dC identifies, under
the above isomorphism, with a vector field Q of degree 1 on V ; Q is cohomological, since dC
squares to 0.

In order to make things more understandable, we make some explicit computations w.r.t.
supercoordinates on V . For this purpose, a basis {ei} of g determines a system of (purely
odd) coordinates {xi} on V : the previous identification can be expressed in terms of these
coordinates as

xi1 · · ·xip 7→ εi1 ∧ · · · ∧ εip , 1 ≤ i1 < · · · < ip ≤ n,

{εi} being the dual basis of {ei}. Hence, w.r.t. these odd coordinates, Q can be written as

Q = −
1

2
cijkx

jxk
∂

∂xi
,

where cijk are the structure constants of g w.r.t. the basis {ei}. It is clear that Q has degree
1 and total degree 2.
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Lemma 5.4. The DG algebra (TpolyV,Q·) identifies naturally with the Chevalley-Eilenberg
DG algebra (C•(g, S(g)), dC) associated to the g-module algebra S(g).

Proof. By the very definition of V , we have an isomorphism of graded algebras

S(V ∗ ⊕ ΠV ) ∼= ∧•(g∗) ⊗ S(g).

More explicitly, in terms of the aforementioned supercoordinates, the previous isomorphism
is given by

xi1 · · ·xip∂xj1 ∧ · · · ∧ ∂xjq 7→ εi1 ∧ · · · ∧ εip ⊗ ej1 · · · ejq ,

where the indices (i1, . . . , ip) form a strictly increasing sequence.
It remains to prove that the action of Q on TpolyV coincides, under the previous isomor-

phism, with the Chevalley-Eilenberg differential dC on ∧•(g∗) ⊗ S(g). It suffices to prove
the claim on generators, i.e. on the coordinates functions {xi} and on the derivations {∂xi}:
the action of Q on both of them is given by

Q · xi = Q(xi) = −
1

2
cijkx

jxk,

Q · ∂xi = [Q, ∂xi] = −ckijx
j∂xk .

Under the above identification between TpolyV and ∧•(g∗)⊗S(g), it is clear that Q identifies
with dC , thus the claim follows. �

Similar arguments and computations imply the following

Lemma 5.5. There is a natural isomorphism from the DG algebra (DpolyV, dH +Q·) to the
DG algebra (C•(∧g∗,∧g∗), dH + dC).

Coupling these results with Lemma 4.12, we obtain the following commutative diagram
of quasi-isomorphisms of complexes, all inducing algebra isomorphisms on the level of coho-
mology:

(TpolyV,Q·)
IHKR // (DpolyV, dH +Q·) (C•(∧g∗,∧g∗), dH + dC)

��
(C•(g, S(g)), dC)

IP BW // (C•(g, Ug), dC) .

Using the previously computed explicit expression for the cohomological vector field Q on
V , one can easily prove the following

Lemma 5.6. Under the obvious identification V [1] ∼= g, the supermatrix valued 1-form Ξ,
restricted to g, which we implicitly identify with the space of vector fields on V with constant
coefficients, satisfies

Ξ = ad.

Proof. Namely, since

Q = −
1

2
cijkx

jxk∂xi ,

we have

Ξij = d(∂xjQi) = −cijkdx
k = cikjdx

k,

and the claim follows by a direct computation, when e.g. evaluating Ξ on ek = ∂xk . �

Hence, Theorem 5.3, together with Lemma 5.4, 5.5 and 5.6 implies Theorem 1.11. QED.

5.3. Strategy of the proof.
The proof of Theorem 5.3 occupies the next three sections. In this paragraph we explain

the strategy we are going to adopt in Sections 6, 7, 8 and 9.
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The homotopy argument.
Our approach relies on a homotopy argument (in the context of deformation quantization,

this argument is sketch by Kontsevich in [22] and detailed by Manchon and Torossian in [26]).
Namely, we construct a quasi-isomorphism of complexes5

UQ : (TpolyV,Q·) −→ (DpolyV, dH +Q·)

and a degree −1 map

HQ : TpolyV ⊗ TpolyV −→ DpolyV

satisfying the homotopy equation

(5.1)
UQ(α) ∪ UQ(β) − UQ(α ∧ β) =

= (dH +Q·)HQ(α, β) + HQ(Q · α, β) + (−1)||α||HQ(α,Q · β)

for any polyvector fields α, β ∈ TpolyV .

We sketch below the construction of UQ and HQ.

Formulae for UQ and HQ, and the scheme of the proof.
For any polyvector fields α, β ∈ TpolyV and functions f1, . . . , fm we set

(5.2) UQ(α)(f1, . . . , fm) :=
∑

n≥0

~n

n!

∑

Γ∈Gn+1,m

WΓBΓ(α,Q, . . . , Q︸ ︷︷ ︸
n times

)(f1, . . . , fm)

and

(5.3) HQ(α, β)(f1, . . . , fm) :=
∑

n≥0

~n

n!

∑

Γ∈Gn+2,m

W̃ΓBΓ(α, β,Q, . . . , Q︸ ︷︷ ︸
n times

)(f1, . . . , fm) .

The sets Gn,m are described by suitable directed graphs with two types of vertices, the

“weights” WΓ and W̃Γ are scalar associated to such graphs, and BΓ are polydifferential
operators associated to those graphs.

We define in the next paragraph the sets Gn,m and the associated polydifferential operators

BΓ. The weights WΓ and W̃Γ are introduced in Section 6 and 8, respectively. In Section
7 (resp. 8) we prove that U(α ∧ β) and U(α) ∪ U(β) (resp. the r.h.s. of (5.1)) are given by
a formula similar to (5.3) with new weights W0

Γ and W1
Γ (resp. −W2

Γ), so that, in fine, the
homotopy property (5.1) reduces to

W0
Γ = W1

Γ + W2
Γ .

Polydifferential operators associated to a graph.
Let us consider, for given positive integers n and m, the set Gn,m of directed graphs

described as follows:

(1) there are n vertices of the “first type”, labeled by 1, . . . , n;
(2) there are m vertices of the “second type”, labeled by 1, . . . ,m;
(3) the vertices of the second type have no outgoing edge;
(4) there are no loop (a loop is an edge having the same source and target) and no double

edge (a double edge is a pair of edges with common source and common target);

Let us define τ = idV0 − idV1 ∈ V ∗ ⊗ V , and let it acts as a derivation on S(ΠV ) ⊗ S(V ∗)
simply by contraction. In other words, using coordinates (xi)i on V and dual odd coordinates
(θi)i on ΠV ∗ one has

τ =
∑

i

(−1)|x
i|∂θi ⊗ ∂xi .

This action naturally extends to S(V ∗⊕ΠV )⊗S(V ∗⊕ΠV ) (the action on additional variables
is zero). For any finite set I and any pair (i, j) of distinct elements in I we denote by τij the

5It is the first structure map of Kontsevich’s tangent L∞-quasi-isomorphism [22].
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endomorphism of S(V ∗ ⊕ ΠV )⊗I given by τ which acts by the identity on the k-th factor
for any k 6= i, j.

Let us then chose a graph Γ ∈ Gn,m, polyvector fields γ1, . . . , γn ∈ TpolyV = S(V ∗ ⊕ΠV ),
and functions f1, . . . , fm ∈ OV ⊂ S(V ∗ ⊕ ΠV ). We define

(5.4) BΓ(γ1, . . . , γn)(f1, . . . , fm) := ǫ
(
µ
( ∏

(i,j)∈E(Γ)

τij(γ1 ⊗ · · · ⊗ γn ⊗ f1 ⊗ · · · ⊗ fm)
))
,

where E(Γ) denotes the set of edges of the graph Γ, µ : S(V ∗ ⊕ ΠV )⊗(n+m) → S(V ∗ ⊕ ΠV )
is the product, and ǫ : S(V ∗⊕ΠV ) ։ S(V ∗) = OV is the projection onto 0-polyvetcor fields
(defined by θi 7→ 0).

Remark 5.7. (a) If the number of outgoing edges of a first type vertex i differs from |γi|
then the r.h.s. of(5.4) is obviously zero.

(b) We could have allowed edges outgoing from a second type vertex, but in this case the
r.h.s. of (5.4) is obviously zero.

(c) There is an ambiguity in the order of the product of endomorphisms τij . Since each
τij has degree one then there is a sign ambiguity in the r.h.s. of (5.4). Fortunately the

same ambiguity appears in the definition of the weights WΓ and W̃Γ, insuring us that the
expression (5.2) and (5.3) for UQ and HQ are well-defined.

Example 5.8. Consider three polyvector fields γ1 = γijk1 θiθjθk, γ2 = γlp2 θlθp and γ3 =
γqr3 θqθr, and functions f1, f2 ∈ OV . If Γ ∈ G3,2 is given by the Figure 1 then

BΓ(γ1, γ2, γ3)(f1, f2) = ± γijk1 (∂i∂qγ
lp
2 )(∂jγ

qr
3 )(∂lf1)(∂r∂p∂kf2)

Figure 1 - a graph in G3,2
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6. Configuration spaces and integral weights

The main goal of this section is to define the weights WΓ appearing in the defining formula
(5.2) for UQ. These weights are defined as integrals over suitable configuration spaces of
points in the upper half-plane. We therefore introduce these configuration spaces, and also
their compactifications à la Fulton-MacPherson, which insure us that the integral weights
truly exists. Furthermore, the algebraic identities illustrated in Sections 7 and 8 follow from
factorization properties of these integrals, which in turn rely on Stokes’ Theorem: thus, we
discuss the boundary of the compactified configuration spaces.

6.1. The configuration spaces C+
n,m.

We denote by H the complex upper half-plane, i.e. the set of all complex numbers, whose
imaginary part is strictly bigger than 0; further, R denotes here the real line in the complex
plane.

Definition 6.1. For any two positive integers n, m, we denote by Conf+n,m the configuration
space of n points in H and m points in R, i.e. the set of n+m-tuples

(z1, . . . , zn, q1, . . . , qm) ∈ Hn × R
m,

satisfying zi 6= zj if i 6= j and q1 < · · · < qm.

It is clear that Conf+n,m is a real manifold of dimension 2n+m.

We consider further the semidirect productG2 := R
+

⋉R, where R
+ acts on R by rescaling:

it is a Lie group of real dimension 2. The group G2 acts on Conf+n,m by translations and
homotheties simultaneously on all components, by the explicit formula

((a, b), (z1, . . . , zn, q1, . . . , qm)) 7−→ (az1 + b, . . . , azn + b, aq1 + b, . . . , aqm + b),

for any pair (a, b) in G2. It is easy to verify that G2 preserves Conf+n,m; easy computations

also show that G2 acts freely on Conf+n,m precisely when 2n+m ≥ 2. In this case, we may

take the quotient space Conf+n,m/G2, which will be denoted by C+
n,m: in fact, we will refer

to it, rather than to Conf+n,m, as to the configuration space of n points in H and m points
in R. It is also a real manifold of dimension 2n+m− 2.

Remark 6.2. We will not be too much concerned about orientations of configuration spaces;
anyway, it is still useful to point out that C+

n,m is an orientable manifold. In fact, Conf+n,m
is an orientable manifold, as it possesses a natural volume form,

Ω := dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn ∧ dq1 ∧ · · ·dqm,

using real coordinates z = x + iy for a point in H. The volume form Ω descends to a
volume form on C+

n,m: this is a priori not so clear. In fact, the idea is to use the action

of G2 on Conf+n,m to choose certain preferred representatives for elements of C+
n,m, which

involve spaces of the form Conf+n1,m1
, for different choices of n1 and m1. The orientability

of Conf+n1,m1
implies the orientability of C+

n,m; we refer to [3] for a careful explanation of

choices of representatives for C+
n,m and respective orientation forms.

We also need to introduce another kind of configuration space.

Definition 6.3. For a positive integer n, we denote by Confn the configuration space of n
points in the complex plane, i.e. the set of all n-tuples of points in C, such that zi 6= zj if
i 6= j.

It is a complex manifold of complex dimension n, or also a real manifold of dimension 2n.
We consider the semidirect product G3 = R+ ⋉ C, which is a real Lie group of dimension

3; it acts on Confn by the following rule:

((a, b), (z1, . . . , zn)) 7−→ (az1 + b, . . . , azn + b).
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The action of G3 on Confn is free, precisely when n ≥ 2: in this case, we define the (open)
configuration space Cn of n points in the complex plane as the quotient space Confn/G3,
and it can be proved that Cn is a real manifold of dimension 2n − 3. Following the same
patterns in Remark 6.2, one can show that Cn is an orientable manifold.

6.2. Compactification of Cn and C+
n,m à la Fulton–MacPherson.

In order to clarify forthcoming computations in Section 8, we need certain integrals over
the configuration spaces C+

n,m and Cn: these integrals are a priori not well-defined, and we
have to show that they truly exist. Later, we make use of Stokes’ Theorem on these integrals
to deduce the relevant algebraic properties of UQ: therefore we will need the boundary con-
tributions to the aforementioned integrals. Kontsevich [22] introduced for this purpose nice

compactifications C
+

n,m of C+
n,m which solve, on the one hand, the problem of the existence of

such integrals (their integrand extend smoothly to C
+

n,m, and so they can be understood as
integrals of smooth forms over compact manifolds); on the other hand, the boundary strati-

fications of C
+

n,m and Cn and their combinatorics yield the desired aforementioned algebraic
properties.

Definition and examples.

The main idea behind the construction of C
+

n,m and Cn is that one wants to keep track
not only of the fact that certain points in H, resp. in R, collapse together, or that certain
points of H and R collapse together to R, but one wants also to record, intuitively, the
corresponding rate of convergence. Such compactifications were first thoroughly discussed
by Fulton–MacPherson [15] in the algebro-geometric context: Kontsevich [22] adapted the
methods of [15] for the configuration spaces of the type C+

n,m and Cn.

We introduce first the compactification Cn of Cn, which will play an important rôle also

in the discussion of the boundary stratification of C
+

n,m. We consider the map from Confn
to the product of n(n− 1) copies of the circle S1, and the product of n(n− 1)(n− 2) copies
of the 2-dimensional real projective space RP

2, which is defined explicitly via

(z1, . . . , zn)
ιn7−→
∏

i6=j

arg(zj − zi)

2π
×

∏

i6=j, j 6=k
i6=k

[|zi − zj| : |zi − zk| : |zj − zk|] .

ιn descends in an obvious way to Cn, and defines an embedding of the latter into a compact
manifold. Hence the following definition makes sense.

Definition 6.4. The compactified configuration space Cn of n points in the complex plane
is defined as the closure of the image of Cn w.r.t. ιn in (S1)n(n−1) × (RP

2)n(n−1)(n−2).

Next, we consider the open configuration space C+
n,m. First of all, there is a natural

imbedding of Conf+n,m into Conf2n+m, which is obviously equivariant w.r.t. the action of G2,

(z1, . . . , zn, q1, . . . , qm)
ι+n,m
7−→ (z1, . . . , zn, z1, . . . , zn, q1, . . . , qm) .

Moreover, ι+n,m descends to an embedding C+
n,m → C2n+m.6 We may thus compose ι+n,m

with ι2n+m in order to get a well-defined imbedding of C+
n,m into (S1)(2n+m)(2n+m−1) ×

(RP
2)(2n+m)(2n+m−1)(2n+m−2), which justifies the following definition.

Definition 6.5. The compactified configuration space C
+

n,m of n points in H and m ordered

points in R is defined as the closure of the image w.r.t. to the imbedding ι2n+m ◦ ι+n,m of

C+
n,m into (S1)(2n+m)(2n+m−1) × (RP

2)(2n+m)(2n+m−1)(2n+m−2).

6To see this, first remember that G3 = G2⋉R, and then observe that any orbit of R (acting by simultaneous

imaginary translations) intersects ι+n,m

`

Conf+n,m

´

in at most one point.
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We notice that there is an obvious action of Sn, the permutation group of n elements, on
Cn, resp. C+

n,m, by permuting the points in the complex plane, resp. the n points in H: the

action of Sn extends to an action on Cn and C
+

n,m. Thus, we may consider more general

configuration spaces CA and C+
A,B, where now A (resp. B) denotes a finite (resp. ordered)

subset of N; they also admit compactifications CA and C
+

A,B, which are defined similarly as
in Definition 6.4 and 6.5.

Another important property of the compactified configuration spaces CA and C
+

A,B has to
do with projections. Namely, for any non-empty subset A1 ⊂ A (resp. pair A1 ⊂ A, B1 ⊂ B
such thatA1⊔B1 6= ∅) there is a natural projection π(A,A1) (resp. π(A,A1),(B,B1)) fromCA onto
CA1 (resp. from CA,B onto CA1,B1) given by forgetting the points labelled by indices which
are not in A1 (resp. not in A1 ⊔ B1). The projection π(A,A1) (resp. π(A,A1),(B,B1)) extends

to a well-defined projection between CA and CA1 (resp. CA,B and CA1,B1). Moreover, both
projections preserve the boundary stratifications of all compactified configuration spaces
involved.

Finally, we observe that the compactified configuration spaces Cn and C
+

n,m inherit both

orientation forms from Cn and C+
n,m respectively; the boundary stratifications of both spaces,

together with their inherited orientation forms, induce in a natural way orientation forms on
all boundary strata. We neglect here the orientation choices of the boundary strata of Cn
and C

+

n,m, referring to [3] for all important details.

Examples 6.6. (i) The configuration space C+
0,m can be identified with the open (m− 2)-

simplex, consisting of m− 2-tuples (q1, . . . , qm−2) in Rm−2, such that

0 < q1 < · · · < qm−2 < 1.

This is possible by means of the free action of the group G2 on Conf+0,m, m ≥ 2, namely
by fixing the first coordinate to 0 by translations and rescale the last one to 1. However,

the compactified space C
+

0,m, for m > 3, does not correspond to the closed simplex △m−2:
the strata of codimension 1 of △m−2 correspond to the collapse of only two consecutive

coordinates, while the strata of codimension 1 of C
+

0,m comprise the collapse of a larger

number of points. C
+

0,m actually is the (m− 2)-th Stasheff polytope [31].

(ii) The configuration space C+
1,1 can be identified with an open interval: more precisely,

by means of the action of G2 on Conf+1,1, we can fix the point q1 in R to 0 and the modulus

of the point z1 in H to be 1. Hence, C+
1,1

∼= S1 ∩H ∼=]0, 1[. The corresponding compactified

configuration space C
+

1,1 is simply the closed interval [0, 1]: in terms of collapsing points, the
two boundary strata correspond to the situation where the point z1 in H tends to the point
q1 in R (from the left and right).

(iii) The configuration space C2 can be identified with S1: by means of the action of the
group G3 on Conf2, e.g. the first point can be fixed to 0 and its distance to the second point
fixed to 1. Thus, C2 = C2

∼= S1.
(iv) The configuration space C+

2,0 can be identified with Hr{i}: by means of the action of
G2, we can fix e.g. the first point p1 in H to i. The corresponding compactified configuration

space C
+

2,0 is often referred to as Kontsevich’s eye: in fact, its graphical depiction resembles

to an eye. More precisely, the boundary stratification of C
+

2,0 consists of three boundary
faces of codimension 1 and two boundary faces of codimension 2. In terms of configuration

spaces, the boundary faces of codimension 1 are identified with C2
∼= S1 and C

+

1,1
∼= [0, 1],

while the boundary faces of codimension 2 are both identified with C
+

0,2
∼= {0}: the face C2,

resp. C
+

1,1, corresponds to the collapse of both point z1 and z2 in H to a single point in H,
resp. to the situation where one of the points z1 and z2 tends to a point in R, while both faces
of codimension 2 correspond to the situation where both p1 and p2 tend to distinct points
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in R. Pictorially, the boundary stratum C2 corresponds to the pupil of Kontsevich’s eye;

the boundary strata C
+

1,1 correspond to Kontsevich’s eyelids, and, finally, the codimension 2
strata to the two intersection points of the two eyelids.

For the sake of simplicity, from now on, points in H, resp. R, are said to be of the first,
resp. second type.

Description of a few boundary components.
Now, for the main computations of Section 8, we need mostly only boundary strata of

codimension 1 and, in Subsection 7.3, particular boundary strata of codimension 2 of C
+

n,m:
we list here the relevant boundary strata of codimension 1 and of codimension 2, which are
needed. For the boundary strata of codimension 1, we are concerned with two situations:

i) For a subset A ⊂ {1, . . . , n}, the points zi of the first type, i ∈ A, collapse together
to a single point of the first type; more precisely, we have the factorization of the
boundary stratum

∂AC
+

n,m
∼= CA × C

+

n−|A|+1,m;

here, 2 ≤ |A| denotes the cardinality of the subset A. Intuitively, CA describes the

configurations of distinct points of the first type in C
+

n,m which collapse to a single
point of the first type.

ii) For a subset A ⊂ {1, . . . , n} and an ordered subset B ⊂ {1, . . . ,m} of consecutive
integers, the points of the first type zi, i ∈ A, and the points of the second type
qi in R collapse to a single point of the second type; more precisely, we have the
factorization

∂A,BC
+

n,m
∼= C

+

A,B × C
+

n−|A|,m−|B|+1.

Intuitively, C
+

A,B describes the configurations of points of the first type and of the

second type in C
+

n,m, which collapse together to a single point of the second type.

As for the codimension 2 boundary strata, which will be of importance to us, we have the
following situation: there exist disjoint subsets A1, A2 of {1, . . . , n}, and disjoint ordered
subsets B1, B2 of {1, . . . ,m} of consecutive integers, such that the corresponding boundary
stratum of codimension 2 admits the factorization

C
+

A1,B1
× C

+

A2,B2
× C

+

n−|A1|−|A2|,m−|B1|−|B2|+2.

Intuitively, C
+

A1,B1
and C

+

A2,B2
parametrize disjoint configurations of points of the first and

of the second type, which collapse together to two distinct points of the first type. We will
write later on such a boundary stratum a bit differently, namely, after reordering of the

points after collapse, the third factor in the previous factorization can be written as C
+

A3,B3
,

for a subset A3 of {1, . . . , n} of cardinality n − |A1| − |A2|, for an ordered subset B3 of
{1, . . . ,m} of cardinality m− |B1| − |B2| + 2.

6.3. Directed graphs and integrals over configuration spaces.

The standard angle function.
We introduce now the standard angle function7. For this purpose we consider a pair of

distinguished points (z, w) in H ⊔ R and we denote by ϕ(z, w) the normalized hyperbolic
angle in H ⊔ R between z and w; more explicitly,

ϕ(z, w) =
1

2π
arg

(
w − z

w − z

)
.

7As observed by Kontsevich [22] one could in principle choose more general angle functions, starting from
the abstract properties of the standard angle function.
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Observe that the assignement C+
2,0 ∋ (z, w) 7−→ ϕ(z, w) ∈ S1 obviously extends to a smooth

map from C
+

2,0 to S1, which enjoys the following properties (these properties play an impor-
tant rôle in the computations of Sections 7 and 8):

i) the restriction of ϕ to the boundary stratum C2
∼= S1 equals the standard angle

coordinate on S1 added by π
2 ;

ii) the restriction of ϕ to the boundary stratum C
+

1,1, corresponding to the upper eyelid
of Kontsevich’s eye, vanishes.

We will refer to ϕ as to the angle function.

Integral weights associated to graphs.
We consider, for given positive integers n and m, directed graphs Γ with m+ n vertices

labelled by the set E(Γ) = {1, . . . , n, 1, . . . ,m}. Here, “directed” means that each edge of Γ
carries an orientation. Additionally, the graphs we consider are required to have no loop (a
loop is an edge beginning and ending at the same vertex).

To any edges e = (i, j) ∈ E(Γ) of such a directed graph Γ, we associate the smooth map

ϕe : C+
n,m −→ S1 ; (z1, . . . , zn, z1, . . . , zm) 7−→ ϕ(zi, zj) ,

which obviously extends to a smooth map from C
+

n,m to S1.

To any directed graph Γ without loop and with E(Γ) = {1, . . . , n, 1, . . . ,m} as set of
vertices, we then associate a differential form

(6.1) ωΓ :=
∧

e∈E(Γ)

dϕe

on the (compactified) configuration space C
+

n,m.

Remark 6.7. We observe that, a priori, it is necessary to choose an ordering of the edges
of Γ since ωΓ is a product of 1-forms: two different orderings of the edges of Γ simply differ
by a sign. This sign ambiguity precisely coincide (and thus cancel) with the one appearing
in the definition of BΓ, as it is pointed out in Remark 5.7.

We recall from Subsection 6.1 and 6.2 that C
+

n,m is orientable, and that the orientation

of C+
n,m specifies an orientation for any boundary stratum thereof.

Definition 6.8. The weight WΓ of the directed graph Γ is

(6.2) WΓ :=

∫

C
+
n,m

ωΓ.

Observe that the weight (6.2) truly exists since it is an integral of a smooth differential
form over a compact manifold.

Vanishing lemmatas.
It follows immediately from the definition of WΓ that it is non-zero only if

• the cardinality of E(Γ) equals 2n+m− 2 (i.e. ωΓ is a top degree form),
• Γ has no double edge (i.e. two edges with the same source and same target),
• second type vertices do not have outgoing edges.

In particular, WΓ is non-zero only if Γ ∈ Gn,m.
For later purposes, we need a few non-trivial vanishing Lemmata concerning the weights,

which we use later on in Sections 7, 8 and 9.

Lemma 6.9. If Γ in Gn,m has a bivalent vertex v of the first type with exactly one incoming
and exactly one outgoing edge (see Figure 2), then its weight WΓ vanishes.
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Figure 2

We observe that the target of the outgoing edge may be of the first or of the second type,
while the source of the incoming edge must be of the first type.

Sketch of proof. We consider exemplarily the case, where both vertices v1 and v2 are of the

first type; the corresponding points in C
+

n,m are denoted by z1 and z2 respectively.
Using Fubini’s Theorem, we isolate in the weight WΓ the factor

(6.3)

∫

Hr{z1,z2}

dϕe1 ∧ dϕe2 .

The rest of the proof consists in showing that (6.3) vanishes.
We observe that (6.3) is a function depending on (z1, z2). We first show that it is a

constant function. Namely, (6.3) is the integral along the fiber of the integrand form w.r.t.

the natural projection C
+

3,0

π
։ C

+

2,0 ; (z1, z2, z3) 7→ (z1, z2): independence of z1 and z2 follows
by means of the generalized Stokes’ Theorem

d(π∗(dϕe1 ∧ dϕe2 )) = ±π∗
(
d
(
dϕ(v1,v) ∧ dϕ(v,v2)

))
± π∂∗(dϕe1 ∧ dϕe2) ,

where the second term on the right hand-side corresponds to the boundary contributions
coming from fiber integration. Since the integrand is obviously closed, it remains to show
the vanishing of the boundary contributions. It is clear that there are four boundary strata
of codimension 1 of the fibers of π, namely, when i) the point z (corresponding to the vertex
v) approaches z1 or z2, ii) when z approaches R, and iii) when z tends to infinity (which
must be viewed as a half-circle, whose radius tends to infinity). The properties of the angle
function imply that the contributions coming from ii) and iii) vanish, and that the two
contributions coming from i) cancel together.

Hence, we may choose e.g. z1 = i and z2 = 2i: for this particular choice, the involution
z 7→ −z of Hr{i, 2i} reverses the orientation of the fibers, but preserves the integrand form,
whence the claim follows. �

Lemma 6.10. For a positive integer n ≥ 3, the integral over Cn of the product of 2n − 3
forms of the type d(arg(zi − zj)), i 6= j, vanishes.

Proof. The proof relies on an analytic argument, which involves a tricky computation with
complex logarithms; for a complete proof we refer to [22] and [20] (see also [9, appendix]). �
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7. The map UQ and its properties

In this section we stress out and prove remarkable properties of the map UQ defined by
the formula (5.2). Namely, we first prove that UQ is a quasi-isomorphism of complexes, and
we then give, for any polyvecor fields α, β, explicit formulae for UQ(α∧β) and UQ(α)∪UQ(β)
in terms of new weights associated to graphs.

The proof follows closely the treatment of Manchon and Torossian [26], and strongly uses
the remarkably rich cominatorics of the boundary of the compactified configuration spaces
introduced in the previous section.

7.1. The quasi-isomorphism property.
This Subsection is devoted to the proof of the following result.

Proposition 7.1. The map UQ : TpolyV −→ DpolyV defined by equation (5.2) is a quasi-
isomorphism of complexes, in the sens that for any polyvector field α

(7.1) UQ(Q · α) = (dH +Q·) (UQ(α)) ,

and UQ induces an isomorphism of graded vector spaces on cohomology.

Sketch of the proof. We first sketch the proof of equation (7.1). The fact that it induces an
isomorphism in cohomology then follows from a straightforward spectral sequence argument.

Let Γ ∈ Gn+1,m+1 be a graph with 2n +m edges, the first type vertex 1 having exactly
m outgoing edges, and all other first type vertices having a single outgoing edge. We then
apply the Stokes’ Theorem

∫

∂C
+
n+1,m+1

ωΓ =

∫

C+
n+1,m+1

dωΓ = 0 .

and discuss the meaning of the following resulting identity: for any poly-vector field α with
m arguments, and any functions f1, . . . , fm+1,

∑

C

±
∑

Γ∈Gn+1,m+1

(∫

C

ωΓ

)
BΓ(α,Q, . . . , Q︸ ︷︷ ︸

n times

)(f1, . . . , fm+1) = 0 .

Here C runs over all codimension 1 boundary components of C
+

n+1,m+1, and the sign de-

pends on the induced orientation from C
+

n+1,m+1. We now discuss the possible non trivial
contributions of each bouldary component C. Using Fubini’s Theorem we find (up to signs
coming from orientation choices) the following factorization property:

(7.2)

∫

C

ωΓ =

∫

Cint

ωΓint

∫

Cout

ωΓout ,

where Γint (resp. Γout) is the subgraph of Γ whose edges are those with both source and target
lying in the subset of collapsing points (resp. is the quotient graph of Γ by its subgraph Γint).

Let us begin with the boundary components of the form C = ∂AC
+

n+1,m+1 (with |A| ≥ 2).
It follows from the vanishing Lemma 6.10 that there is no contribution if |A| ≥ 3. If |A| = 2
then Γint consists of a single edge and the first factor in the factorization on the r.h.s. of
(7.2) equals 1. There are two possbilities:

• either 1 /∈ A and thus, taking the sum of the contributions of all graphs Γ leading to
the same pair (Γint,Γout), one obtains something proportional to

WΓoutBΓout(α,Q, . . . , Q ◦Q︸ ︷︷ ︸
=0

, . . . , Q)(f1, . . . , fm+1) = 0 .
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• or 1 ∈ A and thus, again taking the sum of the contributions of all graphs Γ leading
to the same pair (Γint,Γout), and adding up the terms coming from the same graphs
Γ after reversing the unique arrow of Γint, one obtains

(7.3) WΓoutBΓout(Q · α,Q, . . . , Q︸ ︷︷ ︸
n−1 times

)(f1, . . . , fm+1) .

We then continue with the boundary components of the form C = ∂A,BC
+

n+1,m+1. Again
there are two possibilities:

• either 1 /∈ A and thus 2|A| + |B| − 2 = |A|, i.e. |A| + |B| = 2. Hencefore the graph
Γint can belong to one of the following three types:

, , .

Summing the contributions of all graphs leading to the same pair (Γint,Γout), one
obtains

(7.4) WΓoutBΓout(α,Q, . . . , Q︸ ︷︷ ︸
n times

)(f1, . . . , fifi+1, . . . , fm+1)

for the first type of graphs, and

(7.5) WΓoutBΓout(α,Q, . . . , Q︸ ︷︷ ︸
n−1 times

)(f1, . . . , Q · fi, . . . , fm+1)

for the second one. The third type of graph does not contribute since its weight is
zero thanks to the vanishing Lemma 6.9.

• or 1 ∈ A and thus 2(n+ 1− |A|) +m− |B| = n+ 1− |A|, i.e. |A|+ |B| = n+ 1 +m.
Hencefore Γout must be one the following two graphs:

, .

The corresponding contributions (after summing over graphs leading to the same
decomposition) respectively are

(7.6) WΓint


f1BΓint(α,Q, . . . , Q︸ ︷︷ ︸

n times

)(f2, . . . , fm+1) ±BΓint(α,Q, . . . , Q︸ ︷︷ ︸
n times

)(f1, . . . , fm)fm+1




for the first one and

(7.7) WΓintQ ·


BΓint(α,Q, . . . , Q︸ ︷︷ ︸

n−1 times

)(f1, . . . , fm+1)




for the second one.

We now summarize all non trivial contributions: (7.4) gives the l.h.s. of equation (7.1),
(7.6) together with (7.4) gives dHUQ(α), and (7.7) together with (7.5) gives Q · UQ(α).
Therefore equation (7.1) is satisfied and it remains to prove that UQ induces an isomorphism
on the level of cohomology. To do so we consider the mapping cône C•

Q of UQ together with
the decreasing filtration on it coming from the grading on TpolyV and DpolyV induced by
the degree we have denoted by | · | in Section 5. The zero-th term of the corresponding
spectral sequence is given by the mapping cône of the Hochschild-Kostant-Rosenberg map
IHKR : (TpolyV, 0) −→ (DpolyV, dH), and thus E1 = {0} (as IHKR is a quasi-isomorphism).
This ends the proof of the Proposition. �
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7.2. The cup product on polyvector fields.
In this Subsection, we consider the cup product between any two polyvector fields α and

β: we want to express the result of applying (5.2) on the cup product α ∧ β in terms of

integral weights over a suitable submanifold Z0 ⊂ C
+

n+2,m, that we define now.

We recall from Subsection 6.2 that the compactified configuration space C
+

2,0 can be

pictured as Kontsevich’s eye. We choose a point x ∈ C2 ⊂ C
+

n+2,m. Furthermore, for any

two positive integers n and m we consider the projection F := π{1,2},∅ from C
+

n+2,m onto

C
+

2,0, using the same notations as in Subsection 6.2. Then we denote by Z0 the submanifold

of C
+

n+2,m given by the preimage w.r.t. F of the point x; accordingly, to a graph Γ ∈ Gn+2,m

we associate a new weight W0
Γ given by

W0
Γ :=

∫

Z0

ωΓ ,

using the same notations as in paragraph 6.3.

Proposition 7.2. For any two polyvector fields α and β on V , the following identity holds
true:

(7.8) UQ(α ∧ β) =
∑

n≥0

1

n!

∑

Γ∈Gn+2,m

W0
ΓBΓ(α, β,Q, . . . , Q︸ ︷︷ ︸

n times

).

Notice in particular that the r.h.s. of (7.8) does not depend on the choice of x ∈ C2.

Proof. We split the proof into many substeps.

Lemma 7.3. If, in a graph Γ ∈ Gn+2,m, the two vertices of the first type labelled by 1 and
2 (corresponding to where the polyvector fields α and β have been put) are linked by at least
one edge, then W0

Γ vanishes.

Proof. The main argument of the proof is that Z0 intersects non-trivially only those bound-

ary strata of codimension 1, where a certain number of points of the first type in C
+

n+2,m

collapse to a point of the first type. Recalling the arguments at the end of Subsection 6.2,

such boundary strata are of the form ∂AC
+

n+2,m
∼= CA × C

+

n−|A|+3,m, A being a subset of

{1, . . . , n + 2} of cardinality |A| ≥ 2. Moreover, since x lies in C2, such boundary strata
correspond to subsets A, which contain both vertices labelled by 1 and 2.

Using Fubini’s Theorem, we find (up to signs coming from orientation choices) the follow-
ing factorization of W0

Γ: ∫
ωΓ

Z0∩∂AC
+
n+2,m

=

∫
ωΓint

Z0∩CA

∫
ωΓout

C
+
n−|A|+3,m

.

Here we keep the same notation as in the previous Subsection for Γint and Γout. We also

observe that, since x ∈ C2, then Z0 ∩ (CA×C
+

n−|A|+3,m) is a product C′×C
+

n−|A|+3,m, with

C′ ⊂ CA. By abuse of notation, and for the sake of simplicity, we have wrote Z0 ∩ CA for
the submanifold C′ in CA. We use this notation many times below.

If there is at least one edge connecting 1 and 2, which correspond in Z0 to the fixed point x

in C2 ⊂ C
+

2,0, then, in the form ωΓint , there is at least one 1-form of the type d(arg(z2−z1)) or
d(arg(z2−z1)) (using the notations from Subsection 6.1), which vanish, since the arguments
remains constant in Z0 ∩ CA. Hence, the claim follows. �

Lemma 7.4. If the graph Γ ∈ Gn+2,m contains no edge connecting the vertices of the first
type 1 and 2, then

W0
Γ = WeΓ ,

where Γ̃ is the graph in Gn+1,m obtained from Γ by collapsing the vertices 1 and 2.
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Proof. We recall from Lemma 7.3 that Z0 intersects non-trivially only boundary strata of

the form CA × C
+

n−|A|+3,m, where A is a subset of {1, . . . , n + 2} and containing 1 and 2.
Using again Fubini’s Theorem, we obtain

(7.9) W0
Γ =

∫
ωΓ

Z0∩∂AC
+
n+2,m

=

∫

Z0∩CA

ωΓint

∫

C
+
n−|A|+3,m

ωΓout .

The points corresponding to the vertices 1 and 2 of the first type are fixed by assumption.
By dimensional reasons, the only (possibly) non-trivial contributions to the first factor

in the factorization on the right hand-side of (7.9) occur only if the degree of the integrand
ωΓint equals 2|A|−4. The corresponding integral vanishes by the the arguments in the proof
of Kontsevich’s Lemma 6.10, for which we refer to [22]: suffice it to mention that, in the
proof in [22], Kontsevich reduces the case of the integral over Cn of a product of 2n − 3
forms to the case of the integral over a manifold of the form Z0 ∩ Cn (i.e. he fixes two
vertices) and then he extracts from the integrand the 1-form, corresponding to the edge
joining the two fixed points (i.e. there is no edge between the two fixed vertices). Then,
he shows that the latter integral vanishes by complicated analytical arguments (tricks with
logarithms and distributions): anyway, the very same arguments imply that the first factor
in the factorization (7.9) vanishes.

Hence, we are left with the case |A| = 2, i.e. A = {1, 2}: therefore, we obtain, again using
Fubini’s Theorem,

W0
Γ =

∫
ωΓ

Z0∩∂{1,2}C
+
n+2,m

=

∫

Z0∩C2

ωΓint

∫

C
+
n+1,m

ωΓout .

It is clear that Γout is exactly the graph Γ̃ ∈ Gn+1,m in the claim of the Lemma. On the
other hand, by properties of the angle function, when restricted to the boundary stratum
C2, we have ∫

Z0∩C2

ωΓint = 1 ,

observing that Γint consists of two vertices of the first type, with no edge connecting them.
Thus, we have proved the claim. �

We consider now, for a graph Γ̃ in Gn+1,m and with α, β and Q as before, the polydif-
ferential operator BeΓ(α ∧ β,Q, . . . , Q), where there are n cohomological vector fields Q. By
the very construction of BΓ and by the definition of ∧, we have

BeΓ(α ∧ β,Q, . . . , Q) =
∑

Gn+2,m∋Γ7→eΓ

BΓ(α, β,Q, . . . , Q),

where the sum is over all possible graphs Γ in Gn+2,m, which are obtained from Γ̃ by sepa-
rating the vertices 1 and 2 of the first type without inserting any edge between them; it is
clear that contraction of the vertices 1 and 2 of a graph Γ as before gives the initial graph

Γ̃. This collapsing process is symbolized by the writing Γ 7→ Γ̃.
We finally compute

∑

eΓ∈Gn+1,n

WeΓBeΓ(α ∧ β,Q, . . . , Q) =
∑

eΓ∈Gn+1,m

∑

Gn+2,m∋Γ7→eΓ

WeΓBΓ(α, β,Q, . . . , Q)

=
∑

eΓ∈Gn+1,m

∑

Gn+2,m∋Γ7→eΓ

W0
ΓBΓ(α, β,Q, . . . , Q)

=
∑

Γ∈Gn+2,m

W0
ΓBΓ(α, β,Q, . . . , Q) .
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The second equality follows from Lemma 7.4, and the third equality is a consequence of
Lemma 7.3. This ends the proof of the Proposition. �

7.3. The cup product on polydifferential operators.
Applying UQ on polydifferential operators α and β, we may then take their cup product in

the Hochschild complex of polydifferential operators. We want to show that, in analogy with
Proposition 7.2, this product can be expressed in terms of integral weights over a suitable

submanifold Z1 of C
+

n+2,m, that we define now.

Let y be the unique point sitting in the copy of C+
0,2 inside ∂C

+

2,0 in which the vertex 1
stays on the left of the vertex 2. Then for any two positive integers n and m, using the same

notations as in the previous Subsection, we define Z1 := F−1(y) ⊂ C
+

n+2,m and

W1
Γ :=

∫

Z1

ωΓ .

Proposition 7.5. Under the same assumptions of Proposition 7.2, the following identity
holds true:

(7.10) UQ(α) ∪ UQ(β) =
∑

n≥0

1

n!

∑

Γ∈Gn+2,m

W1
ΓBΓ(α, β,Q, . . . , Q︸ ︷︷ ︸

n times

) .

Proof. First of all, in the definition of UQ, we may consider only those graphs Γ in Gn+1,m,
which do not contain a bivalent vertex as in the assumptions of Lemma 6.9. Since Q is
a vector field, putting it on a vertex of the first type means that from the chosen vertex
there is only one outgoing edge: the previous observation forces the first type vertices of
Γ that are not 1 to have more than one incoming edge. Hence, the only first type vertex
in a contributing graph Γ that can be linked to a second type vertex is 1. We denote by

G̃n+1,m ⊂ Gn+1,m the subset of graphs having this property.
By the very definition of the cup product in Hochschild cohomology, we obtain

(7.11)

UQ(α) ∪ UQ(β) =
∑

k,l≥0

1

k!l!

∑

Γ1∈ eGk+1,m1
Γ2∈ eGl+1,m2

WΓ1WΓ2BΓ1(α,Q, . . . , Q︸ ︷︷ ︸
k times

)BΓ2(α,Q, . . . , Q︸ ︷︷ ︸
l times

)

=
∑

k,l≥0

1

k!l!

∑

Γ1∈ eGk+1,m1
Γ2∈ eGl+1,m2

WΓ1⊔Γ2BΓ1⊔Γ2(α, β,Q, . . . , Q︸ ︷︷ ︸
k+l times

) ,

where, for any graphs Γ1 ∈ G̃k+1,m1 and Γ2 ∈ G̃l+1,m2 , we have denoted by Γ1 ⊔ Γ2 their
disjoint union: it is again a graph in Gk+l+2,m1+m2 . The vertices of Γ1 ⊔Γ2 are re-numbered
starting from the numberings of the vertices of Γ1 and Γ2 to guarantee the last equality in
the previous chain of identities: namely, denoting by an index i = 1, 2 the graph to which
belongs a given vertex labelled by i, the new numbering of the vertices of Γ1 ⊔ Γ2 is

{11, 12, 21, 31, . . . , (k + 1)1, 22, 32, . . . , (l + 1)2} .

Lemma 7.6. If Γ = Γ1 ⊔ Γ2 ∈ Gn,m, with Γ1 ∈ G̃k+1,m1 and Γ2 ∈ G̃l+1,m2 , then

W1
Γ = WΓ1WΓ2 .

For any other graph Γ in Gn+2,m, WΓ = 0.

Proof. It follows from its very definition that Z1 intersects non-trivially only those bound-

ary strata ∂TC
+

n+2,m of C
+

n+2,m of codimension 2 which possess the following factorization,
according to Subsection 6.2:

C
+

A1,B1
× C

+

A2,B2
× C

+

A3,B3
,
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where the vertex 1 and the vertex 2 lie in C
+

A1,B1
and C

+

A2,B2
respectively; finally, the positive

integers ni := |Ai| and mi := |Bi| obviously satisfy

n1 + n2 + n3 = n+ 2 and m1 +m2 + (m3 − 2) = m.

For a graph Γ ∈ Gn+2,m, we denote by Γ1
int, resp. Γ2

int, resp. Γout, the subgraph of Γ, whose
vertices are labelled by A1 ⊔B1, resp. A2 ⊔B2, resp. by contracting the subgraphs Γ1

int and
Γ2

int to two distinct vertices of the second type.
Using Fubini’s Theorem once again, we get

(7.12)

∫

Z1∩∂TC
+
n+2,m

ωΓ =

∫

C
+
A1,B1

ωΓ1
int

∫

C
+
A2,B2

ωΓ2
int

∫

C
+
A3,B3

ωΓout .

By the properties of the angle function, there cannot be vertices of Γ1
int or Γ2

int, from which
departs an external edge, i.e. an edge whose target lies in set of vertices of Γout: otherwise,
there would be an edge in Γout, whose source is of the second type. Hence, since the
polyvector fields α and β are respectively associated to vertices in A1⊔B1 and A2⊔B2, then
only copies of Q can be associated to the vertices of Γout. Therefore the vertices of Γout have
all exactly one outgoing edge, and consequently Γout can be only the trivial graph with no
vertex of the first type and exactly two vertices of the second type. In other words, Γ is the
disjoint union Γ1

int ⊔ Γ2
int. Summarizing all these arguments, we get

WΓ =

∫

Z1∩∂TC
+
n+2,m

ωΓ =

∫

C
+
A1,B1

ωΓ1
int

∫

C
+
A2,B2

ωΓ2
int

= WΓ1
int
WΓ2

int
.

For any other graph Γ, it follows from the previous arguments that WΓ = 0. �

Combining Lemma 7.6 with (7.11), we finally obtain

UQ(α) ∪ UQ(β) =
∑

k,l≥0

1

k! l!

∑

Γ1∈Gk+1,m1
Γ2∈Gl+1,m2

WΓ1⊔Γ2BΓ1⊔Γ2(α, β,Q, . . . , Q︸ ︷︷ ︸
k+l times

)

=
∑

n≥0

1

n!

∑

Γ∈Gn+2,m

W1
ΓBΓ(α, β,Q, . . . , Q︸ ︷︷ ︸

n times

) .

The combinatorial factor 1
n! appears, instead of 1

k!l! , as a consequence of the fact that the
sum is over graphs which split into a disjoint union of two subgraphs, and we have to take
care of the possible equivalent graphs splitting into the same disjoint union. �

Remark 7.7. We could have chosen y to be the unique point sitting in the other copy of

C+
0,2 inside ∂C

+

2,0, i.e. the one in which the vertex 2 is on the left of the vertex 1. In this case

Proposition 7.5 remains true if one replaces the l.h.s. of (7.10) by ±UQ(β) ∪UQ(α). Since ∪
is known to be commutative on the level of cohomology, then the choice of the copy of C+

0,2

is not really important.
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8. The map HQ and the homotopy argument

In this Section we define the weights W̃Γ appearing in the defining formula (5.3) for HQ

and prove that, together with UQ, it satisfies the homotopy equation (5.1). We continue
to follow closely the treatment of Manchon and Torossian [26]. To evaluate certain integral

weights, we again need the explicit description of boundary strata of codimension 1 of C
+

n,m,
for whose discussion we refer to the end of paragraph 6.2.

8.1. The complete homotopy argument.
We have proved in Subsection 7.2 and Subsection 7.3, that the expressions UQ(α∧β) and

UQ(α) ∪ UQ(β) can be rewritten by means of the integral weights over Z0 = F−1(x) and

Z1 = F−1(y), where we recall that F := π{1,2},∅ : C
+

n+2,m ։ C
+

2,0, and x ∈ C2 ⊂ ∂C
+

2,0 and

y ∈ C+
0,2 ⊂ ∂C

+

2,0 are arbitrary.

It is thus natural to consider a continuous path γ : [0; 1] → C
+

2,0 such that x := γ(0) ∈ C2,

y := γ(1) ∈ C+
0,2, and γ(t) ∈ C+

2,0 for any t ∈]0, 1[. We therefore define

Z := F−1
(
γ(]0, 1[)

)
⊂ C

+

n+2,m .

Its closure Z is the preimage of γ([0, 1]) under the projection F . Then the boundary of Z
splits into the disjoint union

(8.1) ∂Z = Z0 ⊔ Z1 ⊔ (Z ∩ ∂C
+

n+2,m) .

The third boundary component will be denoted by Y .

dn 10

Figure 3 - the path γ in Kontsevich’s eye

Since, by assumption, γ(]0, 1[) lies in the interior C+
2,0 ⊂ C

+

2,0, then it follows that Y

intersects only the following five types of boundary strata of codimension 1 of C
+

n+2,m:

i) there is a subset A1 of {1, . . . , n+ 2}, containing 1, but not 2, such that the points
of the first type labelled by A1 collapse together to a single point of the first type;

ii) there is a subset A2 of {1, . . . , n+ 2}, containing 2, but not 1, such that the points
of the first type labelled by A2 collapse together to a single point of the first type;

iii) there is a subset A of {1, . . . , n+2}, containing neither 1 nor 2, such that the points
of the first type labelled by A collapse together to a single point of the first type;

iv) there is a subset A of {1, . . . , n + 2}, containing neither 1 nor 2, and an ordered
subset B of {1, . . . ,m} of consecutive integers, such that the points labelled by A
(of the first type) and by B (of the second type) collapse together to a single point
of the second type;

v) there is a subset A of {1, . . . , n+2}, containing both 1 and 2, and an ordered subset
B of {1, . . . ,m} of consecutive integers, such that the points labelled by A (of the
first type) and by B (of the second type) collapse together to a single point of the
second type.

Remark 8.1. We observe that there is no intersection with a boundary stratum for which
there is a subset A of {1, . . . , n+ 2} such that the points labelled by A collapse together to
a single point of the first type. This is because such a boundary stratum (by the arguments
of Proposition 7.2) intersects non-trivially Z0, and Y , Z0 and Z1 are pairwise disjoint.
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For a graph Γ ∈ Gn+2,m we define new weights

W2
Γ =

∫

Y

ωΓ, and W̃Γ =

∫

Z

ωΓ,

with the same notations as in Definition 6.8 of Subsection 6.3. Stokes’ Theorem implies
∫

∂Z

ωΓ =

∫

Z

dωΓ = 0.

Using the orientation choices for Z, for which we refer to [26], together with (8.1), the
previous identity implies the relation

W0
Γ = W1

Γ + W2
Γ .

Using Proposition 7.2, Proposition 7.5 and the above identity involving Stokes’ Theorem,
we obtain that the l.h.s. of the homotopy equation (5.1) equals

−
∑

n≥0

1

n!

∑

Γ∈Gn+2,m

W2
ΓBΓ(α, β,Q, . . . , Q︸ ︷︷ ︸

n times

).

Hence, to prove that HQ, given by (5.3), satisfies (5.1) together with UQ, it remains to show
that for fixed n and m, the following identity holds true:

(8.2)

∑

Γ∈Gn+2,m

W2
ΓBΓ(α, β,Q, . . . , Q︸ ︷︷ ︸

n times

) = −
∑

Γ∈Gn+2,m

W̃ΓdH(BΓ(α, β,Q, . . . , Q︸ ︷︷ ︸
n times

))

− n


 ∑

Γ∈Gn+1,m

W̃ΓQ · (BΓ(α, β,Q, . . . , Q︸ ︷︷ ︸
n−1 times

)) +
∑

Γ∈Gn+1,m

W̃Γ(BΓ(Q · α, β,Q, . . . , Q︸ ︷︷ ︸
n−1 times

))

+(−1)||α||
∑

Γ∈Gn+1,m

W̃Γ(BΓ(α,Q · β,Q, . . . , Q︸ ︷︷ ︸
n−1 times

))


 .

In the forthcoming Subsection 8.2 we sketch the proof of Identity (8.2). For a more detailed
treating of signs appearing in the forthcoming arguments, we refer to [26].

Summarizing, the sum of (8.3) and (8.4) from paragraph 8.2.1, and of (8.6) from para-
graph 8.2.2, we get the term in (8.2) involving the Hochschild differential of (5.2). The sum
of (8.5) from paragraph 8.2.1 and of (8.7) from paragraph 8.2.2 yields the term with the
action of the cohomological vector field Q on DpolyV . In paragraph 8.2.3 one obtains the
vanishing of terms which contain the action of Q on itself. Finally, (8.8) and (8.9) from
paragraph 8.2.4 yield the remaining terms in (8.2). Thus, we have proved (5.1).

8.2. Contribution to W2
Γ of boundary components in Y .

The discussion is analogous to the one sketched in the proof of Proposition 7.1.

8.2.1. Boundary strata of type v).
We consider a boundary stratum C of Y of type v): there exists a subset A of {1, . . . , n+2}

and an ordered subset B of {1, . . . ,m} of consecutive integers, such that

C = Z ∩ (C
+

A,B × C
+

n−|A|+2,m−|B|+1)..

Accordingly, by means of Fubini’s Theorem, the integral weight of a graph Γ ∈ Gn+2,m,
restricted to C, can be rewritten as

WΓ|C =

∫

∂CZ

ωΓ =

∫

Z∩C
+
A,B

ωΓint

∫
ωΓout

C
+
n−|A|+2,m−|B|+1

.
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Here we have used the same improper notation as in the proof of Lemma 7.3, and, as usual,
Γint (resp. Γout) denotes the subgraph of Γ whose vertices are labelled by A ⊔ B (resp. the
subgraph obtained by contracting Γint to a single point of the second type).

The polyvector fields α and β have been put on the vertices labelled by 1 and 2, which
belong to A: hence, only copies of the cohomological vector field Q can be put on the first
type vertices of Γout. In other words, first type vertices of Γout have a single outgoing edge.
Then, for the same combinatorial reason as in the proof of Proposition 7.1 Γout is

either i) or ii) .

In both cases, the integral weight corresponding to Γout is normalized, up to some signs
coming from orientation choices (which we will again neglect, as before).

The directed subgraph Γint belongs obviously to Gn+2,m−1, resp. Gn+1,m, since in case
i), |A| = n + 2 and |B| = m − 1, whereas, in case ii), |A| = n + 1 and |B| = m. Case i),
furthermore, includes two subcases, namely, since |B| = m − 1, and since B consists only
of consecutive integers, it follows immediately that B = {1, . . . ,m− 1} or B = {2, . . . ,m}.
From the point of view of polydifferential operators, the graph Γout corresponds, in both
subcases of i), to the multiplication operator, whereas, in case ii), it corresponds to the
action of the cohomological vector field Q, placed on the vertex of the first type, on a
function on V , placed on the vertex of the second type.

All these arguments yield the following expressions for the contributions to the left hand-
side of (8.2) coming from boundary strata of type v):

∑

Γ∈Gn+2,m−1

±W̃Γf1(BΓ(α, β,Q, . . . , Q︸ ︷︷ ︸
n times

)(f2, . . . , fm)),(8.3)

∑

Γ∈Gn+2,m−1

±W̃Γ(BΓ(α, β,Q, . . . , Q︸ ︷︷ ︸
n times

)(f2, . . . , fm))fm,(8.4)

∑

Γ∈Gn+1,m

±W̃ΓQ · (BΓ(α, β,Q, . . . , Q︸ ︷︷ ︸
n−1 times

)(f1, . . . , fm)).(8.5)

8.2.2. Boundary strata of type iv).
We consider now a boundary stratum C of Y of the fourth type: in this case, there exists

a subset A of {1, . . . , n + 2}, containing neither the vertex labelled by 1 nor by 2, and an
ordered subset B of {1, . . . ,m}, such that

C = Z ∩ (C
+

A,B × C
+

n−|A|+2,m−|B|+1) .

One more, Fubini’s Theorem implies the factorization

WΓ|C =

∫

C

ωΓ =

∫
ωΓint

C
+
A,B

∫
ωΓout

Z∩C
+
n−|A|+2,m−|B|+1

.

The vertices labelled by 1 and 2, to which we have put the polyvector vector fields α and β,
are vertices of the graph Γout: hence, every first type vertex of Γint has exactly one outgoing
edge. Again, as in the proof of Proposition 7.1 and thanks to the vanishing Lemma 6.9, Γint

can be only of the following two types:

i) and ii) .
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In case i), resp. ii), Γout is a graph in Gn+2,m−1, resp. in Gn+1,m; in case i), A = ∅ and

B = {i, i+ 1} (since points of the second type are ordered), for i = 1, . . . ,m, while, in case
ii), A = {i} and B = {j}, for i = 1, . . . , n+ 2 and j = 1, . . . ,m.

Up to signs arising from orientation choices, which we have neglected so far, both integrals
corresponding to i) and ii) are normalized. The graph Γint corresponds, in terms of the
polydifferential operators BΓ, to the product of two functions on V , which have been put to
the vertices labelled by i and i+ 1, in case i); on the other hand, in case ii), the graph Γint

corresponds to the situation, where the cohomological vector fields Q acts, as a derivation,
on a function on V , which has been put on the vertex j.

Using all previous arguments, we obtain the following two expressions for the contributions
to the left hand-side of (8.2) coming from boundary strata of type iv):

m−1∑

i=1

∑

Γ∈Gn+2,m−1

±W̃ΓBΓ(α, β,Q, . . . , Q︸ ︷︷ ︸
n times

)(f1, . . . , fifi+1, . . . , fm),(8.6)

m∑

i=1

∑

Γ∈Gn+1,m

±W̃ΓBΓ(α, β,Q, . . . , Q︸ ︷︷ ︸
n−1 times

)(f1, . . . , Q · fi, . . . , fm),(8.7)

for any collection {f1, . . . , fm} of m functions on V .

8.2.3. Boundary strata of type iii).
We examine a boundary stratum C of Y of the third type, thus, there is a subset A of

{1, . . . , n+ 2, containing neither the vertex labelled by 1 nor by 2, such that

C = Z ∩ (CA × C
+

n−|A|+3,m) .

The contribution coming from C to the integral weight is, again by means of Fubini’s The-
orem,

WΓ|C =

∫

C

ωΓ =

∫

CA

ωΓint

∫
ωΓout

Z∩C
+
n−|A|+3,m

.

Since the polyvector fields α and β have been put on the vertices labelled by 1 and 2, which
do not belong to A, it follows that only copies of Q have been put on the vertices of Γint.
We focus in particular on the integral contributions coming from Γint: by Lemma 6.10,
if |A| ≥ 3, such contributions vanish, whence we are left with only one possible directed
subgraph Γint, namely Γint consists of exactly two vertices of the first type joined by exactly
one edge. The corresponding weight is normalized, by the properties of the angle function.
The graph Γout is easily verified to be in Gn+1,m; the polydifferential operator corresponding
to Γint represents the adjoint action of Q on itself, by its very construction. Since Q is, by
assumption, a cohomological vector field, it follows that such a contribution vanishes by the
property [Q,Q] = 1

2Q ◦ Q = 0. It thus follows that boundary strata of type iii) do not
contribute to the left hand-side of (8.2).

8.2.4. Boundary strata of type i) and ii).
We consider a boundary stratum C of Y of type i). By its very definition, for such a

stratum C there exists a subset A1 of {1, . . . , n+2}, containing the vertex labelled by 1, but
not the vertex labelled by 2, such that

C = Z ∩ (CA1 × C
+

n−|A|+3,m) .

By means of Fubini’s Theorem, we obtain the following factorization for the integral weight
WΓ, when restricted to C,

WΓ|C =

∫

C

ωΓ =

∫

CA1

ωΓint

∫
ωΓout

Z∩C
+
n−|A|+3,m

.
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We focus our attention on the integral contribution coming from Γint: as in Subsubsec-
tion 8.2.3, by means of Lemma 6.10, the only possible subgraph Γint yielding a non-trivial
integral contribution is the graph consisting of two vertices of the first type joined by exactly
one edge, in which case the contribution is normalized (up to some signs, coming from ori-
entation choices, which we neglect, as we have done before). By assumption, one of the two
vertices is labelled by 1 and the other one is labelled by an i = 1, . . . , n+ 2, i 6= 2: there are
hence two possible graphs, namely, i) when the edge has, as target, the vertex labelled by 1,
and ii) when the edge has, as source, the vertex labelled by 1. Since the remaining vertex
is not labelled by 2, in terms of polydifferential operators, we have two situations: a copy of
Q acts, as a differential operator of order 1, on the components of the polyvector field α, in
case i), or one of the derivations of the polyvector field α acts, as a differential operator of
order 1, on the components of Q, in case ii). Finally, the graph Γout belongs obviously to
Gn+1,m.

By the previous arguments, and by the very definition of the Lie XV -module structure
on polyvector fields, the contributions to the left hand-side of (8.2) coming from boundary
strata of type i) can be written as

(8.8)
∑

Γ∈Gn+1,m

±W̃ΓBΓ(Q · α, β,Q, . . . , Q︸ ︷︷ ︸
n−1 times

) .

As for boundary strata of Y of type ii), we may repeat almost verbatim the previous ar-
guments, the only difference in the final result being that the rôle played by the polyvector
field α will be now played by β, hence the contributions to the left hand-side of (8.2) coming
from boundary strata of type ii) are exactly

(8.9)
∑

Γ∈Gn+1,m

±W̃ΓBΓ(α,Q · β,Q, . . . , Q︸ ︷︷ ︸
n−1 times

) .

8.3. Twisting by a supercommutative DG algebra.
We consider finally a supercommutative DG algebra (m, dm): typically, instead of consid-

ering TpolyV and DpolyV , for a superspace V as before, we consider their twists w.r.t. m:

Tm
polyV := TpolyV ⊗ m and Dm

polyV := DpolyV ⊗ m .

Since m is supercommutative, the Lie bracket on XV determines a graded Lie algebra struc-
ture on Xm

V := XV ⊗ m:

[v ⊗ µ,w ⊗ ν] = (−1)|w||µ|[v, w] ⊗ µν .

Hence, for any choice of a supercommutative DG algebra (m, dm), there are two graded Lie
Xm
V -modules Tm

polyV and Dm
polyV . Moreover the differential dm extends naturally to a differ-

ential on Tm
polyV and Dm

polyV . It is easy to verify that the differential dm (super)commutes
with the Hochschild differential dH on Dm

polyV .

We now consider an m-valued vector field Q ∈ Xm
V of degree 1 which additionally satisfies

the so-called Maurer-Cartan equation

dmQ+
1

2
[Q,Q] = dmQ+Q ◦Q = 0 .

We observe that, if m = k (with k placed in degree 0) then Q is simply a cohomological
vector field on V as in Definition 5.2. The Maurer-Cartan equation implies that dm +Q· is a
linear operator of (total) degree 1 on Tm

polyV , which additionally squares to 0; moreover, the
product ∧ on TpolyV extends naturally to a supercommutative graded associative product
∧ on Tm

polyV , and dm +Q· is obviously a degree one derivation of this product. Therefore,
(
Tm

polyV,∧, dm +Q·
)

is a DG algebra.
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One obtains in exactly the same way a DG algebra
(
Dm

polyV,∪, dH + dm +Q·
)
.

Theorem 5.3 can be generalized to these DG algebras as follows.

Theorem 8.2. For any degree one solution Q ∈ Xm
V of the Maurer-Cartan equation, the

m-linear map UQ given by (5.2) defines a morphism of complexes

(
Tm

polyV,∧, dm +Q·
) UQ
−→

(
Dm

polyV,∪, dH + dm +Q·
)
,

which induces an isomorphism of (graded) algebras on the corresponding cohomologies.

Proof. The proof follows along the same lines as the proof of Theorem 5.3, which can be
repeated almost verbatim. The differences arises when discussing

• the morphism property (7.1) for UQ,
• the homotopy property (5.1) for UQ and HQ.

In both cases one must replace (dH +Q·) where it appears in the equation by (dH+dm +Q·).
For the homotopy property (5.1), the core of the proof lies in the discussion of the bound-

ary strata for the configuration spaces appearing in (8.2): the relevant boundary strata in
the present proof are those of Subsubsection 8.2.3. We can repeat the same arguments in
the discussion of the corresponding integral weights: using the very same notations as in
Subsubsection 8.2.3, the polydifferential operator corresponding to Γint is one half times the
adjoint action of Q on itself, which, in this case, does not square to 0, but equals (up to
sign) dmQ by the Maurer-Cartan equation. Using the graded Leibniz rule for dm, we get
all homotopy terms which contain dm. The discussion of the remaining boundary strata
remains unaltered.

The very same argument also works for the morphism property (7.1). Nevertheless, we
see in the next Section that (7.1) can be obtained as a consequence of the explicit form of
UQ, avoiding the discussion on possible contributions of the boundary components in the
proof of Proposition 7.1. �
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9. The explicit form of UQ

In this Section we compute explicitly the quasi-isomorphism UQ (5.2), following closely
[6, Section 8]. Namely, we first argue about the possible shapes of the graphs Γ involved in
the construction of UQ: by the way, this was already done, although not as precisely as in
the present Section, in the proof of Proposition 7.5.

9.1. Graphs contributing to UQ.
We now recall that, in (5.2), we need a polyvector field α on the superspace V and a

cohomological vector field Q. We consider a graph Γ ∈ Gn+1,m, appearing in (5.2): on one
of its vertices of the first type, we put α, while, on the remaining n vertices of the first type
we put copies of Q. Since Q is a vector field, in particular, from any edge, where Q has
been put, departs exactly one edge. Additionally, Lemma 6.9 from Subsection 6.3 implies
that Γ cannot contain bivalent vertices of the first type with exactly one ingoing and exactly
one outgoing edge: therefore, a given vertex of the first type, where Q has been put, has
only one outgoing edge and at least two ingoing edges. In fact, this result implies that any
such vertex has exactly two ingoing edges: one coming from another vertex of the first type,
where Q has been put, and the other one coming from the vertex of the first type, where α
has been put.

Summarizing this argument, a general graph Γ ∈ Gn+1,m, contributing (possibly) non-
trivially to (5.2), is a wheeled tree, i.e. there is a chosen vertex c of the first type, and a
partition of {1, . . . , n} into k disjoint subsets, such that from c departs m edges, joining c to
the m vertices of the second type of Γ, and such that to c are attached, by means of outgoing
directed edges, k wheels, the i-th wheel having exactly li vertices (of the first type).

Figure 4 - A wheeled tree

For a wheeled tree Γ in Gn+1,m, associated to k wheels, whose length is li, i = 1, . . . , k,

and
∑k

i=1 li = n, we denote by Σli , i = 1, . . . , k, resp. Am, the i-th wheel with li vertices,
resp. the graph with exactly one vertex of the first type and m vertices of the second type,
and m edges, whose directions and targets are obvious.

Figure 5 - The wheel Σli (left) and the graph Am (right)

Lemma 9.1. For any positive integer m ≥ 1, the identity holds true

WAm =
1

m!
.
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Sketch of the proof. The configuration space corresponding to the graph Am is C+
1,m: by

means of the action of G2, we may e.g. put the only point of first type to i, while the
remaining points of second type remain ordered, and are free to move on the real axis R.

Thus, C
+

1,m corresponds to the open infinite m-simplex, consisting of m-tuples of points
(q1, . . . , qm) satisfying

−∞ < q1 < · · · < qm <∞.

On the other hand, the angle function, computed at (i, q), q in R, is easily verified to be
equal to

ϕ(i, q)

2π
=

1

2π
arg

(
q − i

q + i

)
= −

1

π
arctan

(
1

q

)
,

up to some constant angle. Hence, the explicit expression for WAm is

WAm = πm
∫

−∞<q1<···<qm<∞

2dq1
1 + q21

∧ · · · ∧
2dqm

1 + q2m
.

Rewriting the previous expression as a multiple integral over the open infinite m-simplex,
we may perform coordinate transformations on the integrand, which map the open infinite
simplex to the open standardm-simplex: such coordinate transformations map the integrand
function to 1, thus we are left with the volume of the open standard m-simplex, which is
well-known to be 1

m! , whence the claim. �

Lemma 9.2. If l is an odd integer, then WΣl
vanishes.

Sketch of the proof. All vertices of the wheel Σl are of the first type: the corresponding
configuration space is C+

l,0. The action of G2 permits to fix, as in the proof of Lemma 9.1,

the central vertex of the wheel to i: hence, C+
l,0 corresponds to the configuration space of

l − 1 points of the first type, which do not coincide with i. Then, the involution z 7→ −z
extends to an involution of C+

l,0, which changes the sign of the integrand and preserves the

orientation of C+
l,0, since l− 1 is even. �

9.2. UQ as a contraction.
By Lemma 9.2 we are concerned only with wheeled trees whose wheels have an even

number of vertices. In order to compute explicitly the weight of such a wheeled tree Γ in
Gn+1,m, we use the action of G2 on C+

n+1,m to put the central vertex of Γ in i, similarly to

what was done in Lemma 9.2. Denoting by C the compactification of C+
n+1,m, where one

point of the first type has been put in i, the weight of Γ can be rewritten as

WΓ =

∫

C

(
n∧

i=1

dϕgi

)
∧




n∧

j=1

dϕei


 ∧

(
m∧

k=1

dϕfi

)
,

where the big wedge products are ordered according to the indices, i.e.

n∧

i=1

dϕgi = dϕg1 ∧ · · · ∧ dϕgn

and so on. Further, the notations are as follows: gi, resp. ej , resp. fk, denotes the only
edge outgoing from the i-th vertex of the first type (where the vertex labelled by i does not
coincide with the central vertex c), resp. the edge connecting the central vertex c to the j-th
vertex of the first type, resp. the edge connecting the central vertex c to the k-th vertex of
the second type.

At this point, we may use the fact that there is an action of the permutation group

Sn ⊂ Sn+1 on C
+

n+1,m, where Sn contains all permutations which keep the point of the
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first type corresponding to the central vertex c of Γ fixed. We choose a permutation σ in
such a way that the weight of Γ takes the form

WΓ =

∫

C

(
n∧

i=1

dϕgσ(i)

)
∧




n∧

j=1

dϕeσ(i)


 ∧

(
m∧

k=1

dϕpi

)
.

The permutation σ is chosen so that for each wheel Σl of Γ the i-th vertex of Σl has the only
outgoing edge gσ(i) and the two incoming edges gσ(i−1) (modulo the length of the wheel) and
eσ(i). After reordering of the differential forms, the weight of Γ can be finally rewritten as

(9.1)

WΓ = (−1)

P
1≤p<q≤k

lplq
∫

C




l1∧

i1=1

dϕgσ(i1)
∧

l1∧

j1=1

dϕgσ(j1)


 ∧ · · ·

· · · ∧




lk∧

ik=lk−1+1

dϕgσ(ik)
∧

lk∧

jk=lk−1+1

dϕgσ(jk)


 ∧

(
m∧

k=1

dϕpi

)
,

where, again, the ordering of the 1-forms in the big wedge products are w.r.t. the natural
ordering of the indices. In (9.1), li, i = 1, . . . , k, denotes the length of the i-th wheel. The
sign in front of the integral comes from the reordering of the wheels. The integrand in (9.1) is
the product of the integrands corresponding to the wheels of Γ and to Am: Fubini’s Theorem
(together with Lemma 9.1) implies then the following factorization of the weight of Γ,

(9.2) WΓ = (−1)

P
1≤p<q≤k

lplq WΣl1
· · ·WΣlk

m!
.

Using the same notations for the edges of a wheeled tree Γ as in (9.1), the polydifferential
operator corresponding to Γ takes the explicit form

BΓ(α,Q, . . . , Q︸ ︷︷ ︸
n times

)(f1, . . . , fm) =

= αp1,...,pn,q1,...,qm

(
∂pσ(1)

∂rσ(l1)
Qrσ(1)∂pσ(2)

∂rσ(1)
Qrσ(2) · · ·∂pσ(l1)

∂rσ(l1−1)
Qrσ(l1)

)
· · ·

· · · (∂q1(f1) · · · ∂qm(fm)) ,

where the product is over all wheels of Γ, and σ is the same permutation as before, needed to
reorganize the orderings of the wheels. In order to simplify notations in the previous formula,
we introduce the supermatrix-valued 1-form Ξ ∈ Ω1(V )⊗End(V [1]), which is explicitly given
by the formula

(9.3) Ξji = d(∂iQ
j) = ∂k∂iQjdx

k ,

using (global) supercoordinates {xi} on V .

Then using (9.3) and the supertrace of endomorphisms of a finite-dimensional supervector
space we have the following identity:

BΓ(α,Q, . . . , Q︸ ︷︷ ︸
n times

)(f1, . . . , fm) =
〈
α; str(Ξl1) ∧ · · · ∧ str(Ξlk) ∧ df1 ∧ · · · ∧ dfm

〉
,

where 〈−;−〉 denotes the pairing between differential forms and polyvector fields on V . The
product between supermatrix-valued differential forms is the wedge product on the form
part and multiplication of supermatrices for the supermatrix-part: then, str(Ξl) is an l-form
on V . Using the contraction ι of polyvector fields w.r.t. differential forms and recalling that
contraction is adjoint to wedge multiplication w.r.t. the pairing 〈−;−〉, the expression on
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the right hand-side of the previous identity is (neglecting, as before, any sign contribution)

〈
α , str(Ξl1) ∧ · · · ∧ str(Ξlk) ∧ df1 ∧ · · · ∧ dfm

〉

=
〈
ιstr(Ξl1 )∧···∧str(Ξlk )α; , df1 ∧ · · · ∧ dfm

〉
(9.4)

= m!
(
IHKR

(
ιstr(Ξl1 )∧···∧str(Ξlk )α

))
(f1, . . . , fm) .

Hence, for a wheeled tree Γ in Gn+1,m as before, using (9.2) for the weight WΓ and (9.4)
for the polydifferential operator BΓ, we get the following simpler expression

(9.5) WΓBΓ(α,Q, . . . , Q︸ ︷︷ ︸
n times

) = IHKR ((Xlk · · ·Xl1)α) ,

where we have set

Xli := WΣli
ιstr(Ξli ) .

In order to compute an explicit expression for (5.2), we have to sum over all wheeled trees Γ
in Gn+1,m. More precisely, we need to take into account the number of graphs isomorphic to
Γ, for any wheeled tree Γ in Gn+1,m, since we do not want to count too many wheeled trees.

Since the central vertex of wheeled tree Γ is fixed, permutations of the n vertices of the
first type of Γ induce isomorphic wheeled trees to Γ. On the other hand, denoting by τi the
number of wheels of length i of Γ, it is clear that any permutation of the τi wheels produces
a wheeled tree isomorphic to Γ. Further, we have also to keep into account the number of
cyclic permutations of the vertices of each wheel: with the same notations as above, for the
wheel of length i, the number of such permutations, taking into accout that Γ contains τi
wheels of length i, is exactly iτi. Hence, the number of isomorphic wheeled trees with a
partition of wheels of the form

{1, . . . , 1︸ ︷︷ ︸
τ1-times

, 2, . . . , 2︸ ︷︷ ︸
τ2-times

, . . . , n, . . . , n︸ ︷︷ ︸
τn-times

}

is given by

n!∏n
i=1 τi!

∏n
i=1 i

τi
.

We only observe that, if a wheeled tree Γ belongs to Gn+1,m, the maximal size of a wheel of
Γ is n, by obvious reasons.

Summarizing all these facts, we find the following explicit expression for (5.2):

(9.6)

UQ(α) =
∑

n≥0

1∏n
i=1 τi!

∏n
i=1 i

τi
IHKR

(
Xτ1

1 · · ·Xτn
n (α)

)
=

= IHKR

(
eX1+

X2
2 +···+ Xn

n +···(α)
)
,

using the previous notations. Further, we may define, for a cohomological vector field Q on
V , a (formal) contraction operator on Tpoly via

(9.7) Θ =
∑

n>0

1

n
Xn =

∑

n>0

1

n
WΣn ιtr(Ξn),

where Ξ is as in (9.3). Thus, using (9.7), we can rewrite finally (9.6) in the considerably
simpler form

(9.8) UQ(α) = IHKR
(
eΘ(α)

)
.
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9.3. The weight of an even wheel.
We observe that the differential form (9.7) acts on the polyvector field α by means of

contraction. At the end, using results of Cattaneo–Felder–Willwacher [34] and Van den
Bergh [32], we can put (5.2) in the form of (9.8), into relationship with the Todd class of V .

Theorem 9.3. The following identity holds true, for any choice of a vector field Q on V :

(9.9) eΘ = Ber

√
e

Ξ
2 − e−

Ξ
2

Ξ
,

with Ξ is the supermatrix-valued 1-form introduced in (9.3); Ber denotes the Berezinian of
the supervector space V , i.e. the superdeterminant of endomorphisms of the superspace V .

Remark 9.4. The supermatrix-valued differential form e
Ξ
2 −e−

Ξ
2

Ξ is to be understood as
obtained from the power series expansion of the function

B(t) =
e

t
2 − e−

t
2

t
,

putting Ξ instead of t. Actually, the previous result may be restated as the following identity
for formal power series ∑

n>0

Wn

n
tn =

1

2
log
(
B(t)

)
,

where Wn is the weight of the standard wheel of length n.

This ends the proof of Theorem 5.3.

Yet another way of computing wieghts of even wheels.
Actually, Theorem 9.3 can be obtained as a consequence of the standard Duflo Theorem

(i.e Theorem 1.2 of the present text). More precisely, Let us consider the case when V = Πg

and Q is the cohomological vector field on OV = ∧(g∗) is given by the Chevalley-Eilenberg
differential, g being a finite dimensional Lie algebras.

On one hand, following what we have done in Subsection 5.2, one obtains that UQ induces
an isomorphism of algebras S(g)g−̃→U(g)g explicitly given by IPBW ◦ (eΘ·), with

Θ =
∑

n>0

1

2n
WΣ2ntr(ad2n) .

On the other hand IPBW ◦ (j̃1/2·) also induces an algebra isomorphism S(g)g−̃→U(g)g

(this is precisely the original Duflo Theorem).

We now proceed by induction. Assume that we have proved that 1
2kWΣ2k

coincide with

the coefficient b2k of t2k in the series 1
2 log (B(t)) introduced in Remark 9.4 for any k < n.8

Observe that since IPBW ◦(eΘ·) and IPBW ◦(j̃1/2·) are both algebra ismorphisms from S(g)g

to U(g)g, then the action of the series j̃1/2e−Θ defines an algebra automorphism of S(g)g.
In particular, the first non-vanshing term, which is, thanks to the induction assumption,

(
b2n −

1

2n
WΣ2n

)
tr(ad2n) ,

acts as a derivation on the algebra S(g)g.

As it is not true that tr(ad2n) acts as a derivation on S(g)g for any Lie algebra g (one can
actually check this on slN (C) for N big enough), then one has

b2n =
1

2n
WΣ2n .

8Coefficients of odd powers of t in B(t) obviously vanish.
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10. Fedosov resolutions

In this Section we follow [5] in which resolutions of the DG Lie algebras
(
Ω0,•(M,T ′

poly), ∂̄
)

and
(
Ω0,•(M,D′

poly), dH + ∂̄
)

are constructed when M is a complex manifold. The differen-
tials in these resolutions will be obtained locally through the action of a cohomological vector
field so that we will be able to use the Duflo isomorphism for Q-spaces to prove Theorem
3.5.

10.1. Bundles of formal fiberwise geometric objects.
In this paragraph we introduce some infinite dimensional bundles that will be of some

relevance in the sequel. These bundles (defined in [5]) are straightforward adaptation, in a
holomorphic context, of the ones introduced by Dolgushev [11] in his approach to the glob-
alization of Kontsevich’s formality theorem. He himself was directly inspired from Fedosov’s
construction [14] of ∗-products on symplectic manifolds.

All these bundles being made from T ′, they all are holomorphic bundles. Here are their
definitions:

• we first consider O := Ŝ
(
(T ′)∗

)
, the formally completed symmetric algebra bundle of

(T ′)∗. Sections of O are called formal fiberwise functions on T ′, and can be written
locally in the following form:

f =
∑

k≥0

fi1,...,ik(z, z̄)yi1 · · · yik ,

where yi = dzi are even coordinates (formal coordinates in the fibers);
• then consider the Lie algebra bundle T := Der(O) of formal fiberwise vector fields

on T ′. One has that T = O⊗T ′, and sections can be written locally in the following
form:

v =
∑

k≥0

vji1,...,ik(z, z̄)yi1 · · · yik
∂

∂yj
;

• one also has the graded algebra bundle T •
poly := ∧•

OT of formal fiberwise polyvector

fields on T ′. One has T •
poly = O ⊗

(
∧• (T ′)

)
, and sections can be written locally in

the following form:

v =
∑

k≥0

vj1,...,jli1,...,ik
(z, z̄)yi1 · · · yik

∂

∂yj1
∧ · · · ∧

∂

∂yjl
;

• dualizing w.r.t. O, one obtains the DG algebra bundle A• = O⊗
(
∧• (T ′)∗

)
of formal

fiberwise differentiable forms on T ′. Sections have the following local form:

ω =
∑

k≥0

ωi1,...,ik;j1,...,jl(z, z̄)y
i1 · · · yikdyj1 ∧ · · · ∧ dyjl .

One has a fiberwise de Rham differential df := dyi ∂
∂yi ;

• the bundle D of formal fiberwise differential operators consists of the subalgebra
bundle of End(O) that is generated by O and T . As a bundle it is O⊗

(
S(T ′)

)
and

thus its sections locally looks like as follows:

P =
∑

k≥0

P j1,...,jli1,...,ik
(z, z̄)yi1 · · · yik

∂j1+···+jl

∂yj1 · · ·∂yjl
;

• we finally consider the graded algebra bundle Dpoly := ⊗•
OD = O ⊗

(⊗
S(T ′)

)
of

formal fiberwise polydifferential operators. One has to be careful about the following:
while the product in D is given by the composition of operators the (graded) product
in Dpoly is given by the concatenation of poy-differential operators. We let as an
exercise the explicit writting of the local expression of sections of Dpoly.

Observe that the Lie algebra bundle T acts on all these (possibly graded) bundles:
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• it acts on O by derivations (this is the definition of T ),
• it acts on itself by the adjoint action,
• as usual the action on O and T can be extended by derivations to an action on T •

poly,

• T also acts on A• by the (fiberwise) Lie derivative,
• it also acts on D by taking the commutator,
• as usual the action on O and D can be extended by derivations to an action on D•

poly.

Remark 10.1. Observe that, given a connection ∇ = ∇′ + ∂̄ compatible with the complex
structure on T ′, then one can identify D′ with S(T ′). Moreover, this identification com-
mutes with the action of ∂̄ on both sides (i.e. it is a morphism of holomorphic bundles).
Nevertheless, such an identification does NOT respect the product on both sides (since it is
commutative only on one side).

10.2. Resolutions of algebras.
In this paragraph B (resp. B) will denote any of the O-modules O, T , Tpoly, A, D or

Dpoly (resp. the bundles C,9 T ′, T ′
poly, ∧(T ′)∗, D′ or D′

poly).

Let us consider the one-form valued fiberwise vector field θ := dzi ∂
∂yi , which is nothing

but the identity tensor id ∈ (T ′)∗ ⊗ T ′, and write δ := θ· for the degree one derivation of
Ω•,q(M,B), q ≥ 0, given by the action of θ on it. It is an obvious fact that δ ◦ δ = 0, i.e. δ
is a differential.

Proposition 10.2. 1. Hp
(
Ω•,q(M,B), δ

)
= {0} for p > 0.

2. H0
(
Ω•,q(M,B), δ

)
= Ω0,q(M,B) ∩ (ker δ).

3. In case B is an algebra bundle the previous equality is an equality of algebras.

Proof. This is the Poincaré lemma (see example 1.7) ! Namely, we define a degree −1 graded
Ω0,q(M)-linear endomorphism κ of Ω•,q(M,B) as follows: κ(1) = 0 and

κ| ker(p)(f(y, dz)) = yiι ∂

∂zi

( ∫ 1

t=0

f(ty, tdz)
dt

t

)
,

where p : Ω•,q(M,B) → Ω0,q(M,B)∩(ker δ) is the projection on (0, q)-forms that are constant
in the fibers; i.e. p(f(y, dz) = f(0, 0). As for the proof of the Poincaré lemma κ is a homotopy
operator: it satisfies

(10.1) δ ◦ κ+ κ ◦ δ = id − i ◦ p ,

where i : Ω0,q(M,B) ∩ (ker δ) → Ω•,q(M,B) is the natural inclusion of B-valued (0, q)-forms
that are constant in the fibers into Ω•,q(M,B).

Finally, in the case B is an algebra bundle i and p are algebra morphisms. �

Observe that one also has κ ◦ κ = 0. This fact will be very useful below. Observe
also that δ commutes with ∂̄, which means that we have injective quasi-isomorphisms i :(
Ω0,•(M,B) ∩ ker δ, ∂̄

)
→֒
(
Ω•(M,B), ∂̄ − δ

)
.

One has obvious isomorphisms B ∩ (ker δ) ∼= B of holomorphic bundles.10 Nevertheless if
B is T , resp. D, and B is T ′, resp. D′, then it does not respect the Lie bracket, resp. the
product.

We will remedy to this problem in the remainder of this section. More generally we
will perturb ∂̄ − δ and i to a new differential D on Ω•(M,B) and a new injective quasi-
isomorphism λ :

(
Ω0,•(M,B), ∂̄

)
→֒
(
Ω•(M,B), D

)
that intertwines the T ′- and T -actions

and respects all algebraic structures.

9Here C is considered as a bundle, the trivial line bundle on M , whose sections are functions on M .
10In the case when B is D, resp. Dpoly, and B is D′, resp. D′

poly, one needs to use the identification of

Remark 10.1.
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10.3. Fedosov differential.
We keep the notations of the previous paragraph and assume that ∇ = ∇′ + ∂̄ is a

connection compatible with the complex structure on T ′.
Thanks to the pairing between T ′ and (T ′)∗, ∇ defines a connection compatible with the

complex structure on (T ′)∗: for any v ∈ Γ(M,T ′) and ξ ∈ Γ(M, (T ′)∗) one has

〈∇(ξ), v〉 = d〈ξ, v〉 − 〈ξ,∇(u)〉 .

We then extend it by derivations to a connection compatible with the complex structure on

O = Ŝ
(
(T ′)∗

)
; it it thus locally given by the following formula:

(10.2) ∇ = ∂ + ∂̄ − dziΓkij(z, z̄)y
j ∂

∂yk
.

Formula (10.2) finally extends to a connection compatible with the complex structure on any
of the bundles B, thanks to the T -module structure on them. Therefore ∇ defines a degree
one derivation of the graded algebra Ω•(M,B).

Lemma 10.3. One can always assume that ∇ has zero torsion. In this case ∇δ + δ∇ = 0.

Before proving the lemma we remind to the reader that the torsion of a connection
compatible with the complex structure on T ′ is the tensor T ∈ Ω2,0(M,T ′) defined by
T (u, v) := ∇′

uv −∇′
vu− [u, v]. Locally one has T kij = Γkij − Γkji.

Proof. Locally the zero torsion condition can be written as follows: Γkij −Γkji = 0. Therefore

one sees that a connection compatible with the complex structure on T ′ having zero torsion
always exists. Namely, given a covering (Uα)α of M by trivializing opens one defines ∇α by
taking (Γα)kij = 0. Let then (fα)α be a partition of unity and defines ∇ :=

∑
α fα∇α.

Now we assume ∇ has zero torsion and compute: since d = ∂ + ∂̄ obviously commutes
with δ one has

∇ ◦ δ + δ ◦ ∇ =
[
dziΓkijy

j ∂

∂yk
, dzl

∂

∂yl
]
· = −dzi ∧ dzjΓkij

∂

∂yk
· = 0

This ends the proof of the lemma. �

From now we assume that ∇ has zero torsion.
Let R = R2,0 +R1,1 ∈ Ω2(M,End

(
(T ′)∗

)
be the curvature tensor of ∇. Then ∇ ◦∇ acts

on Ω•(M,B) as −R· = −Rlky
k ∂
∂yl ·; in other words

−
(1

2
dzi ∧ dzj(R2,0)ij

l

k + dz̄i ∧ dzj(R1,1)ij
l

k

)
yk

∂

∂yl
· .

Theorem 10.4. There exists an element A ∈ Ω1(M, T≥2) as in such that κA = 0 and the
corresponding derivation D := ∇− δ +A· has square zero: D ◦D = 0.

Before proving the theorem let us observe that there is a filtration on the bundle O that
is given by the polynomial (i.e. symmetric) degree in the fibers (i.e. in y’s). It induces a
filtration on B (including T ). This is the filtration we consider in the statement and proof
of the theorem.

Proof. Since κ raises the degree in the filtration there is a unique solution A ∈ Ω1(M,B) to
the following equation:

(10.3) A = κ(−R+ ∇A+
1

2
[A,A])

First observe that κ◦κ = 0 implies that κ(A) = 0. Now let us show that A satisfies equation

(10.4) −R+ ∇A− δA+
1

2
[A,A] = 0 ,
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which obviously implies that D ◦D = 0. Using (10.1) together with κ(A) = 0 = p(A) one
finds that

(10.5) κδA = κ(−R+ ∇A+
1

2
[A,A])

Define C := −R + ∇A − δA + 1
2 [A,A]. One can rewrite Bianchi identities for ∇ in the

following way: δR = 0 = ∇R. Thanks to these equalities and (10.1) on has

∇C − δC = (∇− δ)
(1
2
[A,A]

)
− [R,A] = [∇A− δA−R,A] = [C,A] ,

where the last equality follows from the (super-)Jacobi identity. Finally, due to (10.5) one
has κC = 0 and thus C = κ(∇C + [A,C]). Since the operator κ raises the degree in the
filtration this latter equation has a unique solution, that is zero. Thus A satisfies (10.4) and
the theorem is proved. �

D is refered to as the Fedosov differential.

10.4. Fedosov resolutions.
We keep the notations of the previous paragraphs.

Theorem 10.5. There exists quasi-isomorphisms ℓ :
(
Ω0,∗(M,B), ∂̄

)
→ (Ω∗(M,B), D

)
with

the following properties:

(1) ℓ is Ω0,∗(M)-linear;
(2) if B 6= T then ℓ is a graded associative algebra morphism;
(3) if B = Dpoly then ℓ commutes with Hochschild differentials and thus becomes a quasi-

isomorphism
(
Ω0,∗(M,B), ∂̄ + dH

)
→ (Ω∗(M,B), D + dH

)
;

(4) ℓ is compatible with the contraction of polyvector fields by forms.

Proof. We first prove that H•
(
Ω∗(M,B), D

)
= H•

(
Ω0,∗(M,B) ∩ (ker δ), ∂̄

)
.

Observe that D = D′+D′′, with D′ : Ω∗,∗(M,B) → Ω∗+1,∗(M,B) and D′′ : Ω∗,∗(M,B) →
Ω∗,∗+1(M,B), and let us compute the cohomology with respect to D′. We consider the
spectral sequence associated to the filtration given by the degree in the fibers, for which D′

decreases the degree by one. We have d−1 = −δ. Therefore thanks to Proposition 10.2

E•,•
0 = E0,0

0 = Ω0,∗(M,B) ∩ (ker δ) ,

and thus H•
(
Ω∗(M,B), D′

)
= H0

(
Ω∗(M,B), D′

)
= Ω0,∗(M,B) ∩ (kerD′).

Now since the D′-cohomology is concentrated in degree zero then the D-cohomology,
which is the cohomology of the double complex

(
Ω•,•(M,B), D′, D′′

)
, is

H•
(
Ω∗(M,B), D

)
= H•

(
H0
(
Ω∗(M,B), D′

)
, D′′

)
= H•

(
Ω0,∗(M,B) ∩ (kerD′), D′′

)
.

We then construct an isomorphism of complexes

λ :
(
Ω0,•(M,B) ∩ (ker δ), ∂̄

)
−→

(
Ω0,•(M,B) ∩ (kerD′), D′′

)
.

For any u ∈ Ω0,•(M,B) such that δ(u) = 0 we define

λ(u) := u+ κ
(
(D′ + δ)

(
λ(u)

))
.

This is well-defined (by iteration) since κ raises the filtration degree and D′ + δ respects it.
Thanks to κ(u) = 0, p(λ(u)) = u, κ ◦ κ = 0 and equation (10.1), one has

κ
(
D′
(
λ(u)

))
= κ

(
(D′ + δ)

(
λ(u)

))
− κ
(
δ
(
λ(u)

))
=
(
λ(u) − u

)
−
(
λ(u) − u

)
= 0 .

Setting Y := D′
(
λ(u)

)
one obtains κ(Y ) = 0 and δ(Y ) = (D′ + δ)(Y ). Therefore using

(10.1) again we see that

Y = κ
(
(D′ + δ)(Y )

)
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which admits 0 as a unique solution (since κ raises the filtration degree). Consequently,
D′
(
λ(u)

)
= 0. λ is an isomorphism of graded vector spaces with λ−1 = p. Moreover p (and

so λ) is obviously a morphism of complexes since D′′ is given by ∂̄ plus something that raises
the filtration degree.

Finally, composing λ with the isomorphism B ∩ (ker δ) ∼= B, we obtain the desired quasi-
isomorphism ℓ, which is obviously Ω0,∗(M)-linear.

Since B ∩ (ker δ) ∼= B is an algebra bundle isomorphism when B is either O, Tpoly, A or
Dpoly then the second property is satisfied in these cases. Moreover, the fourth property is
also obviously satisfied.

We now consider the situation when B = D.

Lemma 10.6. Let f, g ∈ C∞(M) and u, v ∈ Γ(M,T ′). Then ℓ(fg) = ℓ(f)ℓ(g), ℓ(fv) =
ℓ(f)ℓ(v), ℓ(v · f) = ℓ(v) · ℓ(f) and ℓ([u, v]) = [ℓ(u), ℓ(v)].

Proof of the lemma. There are only two non trivial equalities to check: ℓ(v · f) = ℓ(v) · ℓ(f)
and ℓ([u, v]) = [ℓ(u), ℓ(v)]. First observe that

ℓ(f) = f+yi
∂f

∂zi
+O(|y|2) and ℓ(u) = ℓ

(
ui

∂

∂zi
)

= ui
∂

∂yi
+yi

(∂uk
∂zi

+ujΓkij
) ∂

∂yk
+O(|y|2) .

Then compute:

ℓ(u) · ℓ(f) = ui
∂f

∂zi
+O(|y|) = u · f +O(|y|) = ℓ(u · f)

and

[ℓ(u), ℓ(v)] = ui
(∂vk
∂zi

+ vjΓkij
) ∂

∂yk
− vi

(∂uk
∂zi

+ ujΓkij
) ∂

∂yk
+O(|y|)

=
(
ui
∂vk

∂zi
− vi

∂uk

∂zi
) ∂

∂yk
+O(|y|)

= [u, v]k
∂

∂yk
+O(|y|) = ℓ([u, v])

The lemma is proved. �

The algebra of ∂̄-differential operators is generated by C∞(M) and Γ(M,T ′), and the
defining relations are f ∗ g = fg, f ∗ u = fu, u ∗ f − f ∗ u = u · f and u ∗ v − v ∗ u = [u, v].
Therefore the lemma proves that ℓ is an algebra morphism.

Moreover, it implies that for any ∂̄-diffferential operator P and any function f one has

ℓ(P (f)) = ℓ(P )
(
ℓ(f)

)
.

This last identity can be used to prove that ℓ commutes with Hochschild differentials when
B = Dpoly (this is the third property). This ends the proof of the theorem. �

10.5. Proof of Theorem 3.5.
Observe that D is locally given on any holomorphic coordinate chart U by the following

formula:

D = ∂ + ∂̄ +QU · ,

where QU ∈ Ω1(U, T ). The square zero property of D tells us that QU satisfies the Maurer-
Cartan equation

(∂ + ∂̄)(QU ) +
1

2
[QU , QU ] = 0 .

One can therefore apply Theorem 5.3 and thus obtain a quasi-isomorphism

UQU :
(
Ω
(
U, Tpoly

)
, ∂ + ∂̄

)
−→

(
Ω
(
U,Dpoly

)
, ∂ + ∂̄ + dH

)
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that induces an algebra isomorphism in cohomology. Let us remind to the reader that UQU

is given by the fiberwise HKR map Tpoly → Dpoly composed with

det
( ΞU
eΞU/2 − e−ΞU/2

)
∈
⊕

k

Ωk(U,Ak)
(
remember that (ΞU )ji := d(

∂QjU
∂yi

)
)

acting on Ω(U, Tpoly). On an intersection U ∩ V the difference QU − QV is a linear vector
field, and thus ΞU − ΞV = 0. In particular UQU and UQV coincide on U ∩ V ; one therefore
has a globally well-defined quasi-isomorphism

UQ :
(
Ω
(
M, Tpoly

)
, ∂ + ∂̄

)
−→

(
Ω
(
M,Dpoly

)
, ∂ + ∂̄ + dH

)
.

Proposition 10.7. UQ induces an algebra isomorphism in cohomology.

Proof. On each holomorphic coordinate chart U there is a homotopy HQU . On an intersec-
tion U ∩ V one has

HQU (α, β) =
∑

n≥0

1

n!

∑

Γ∈Gn+2,m

W̃ΓBΓ(α, β,QU , . . . , QU )

=
∑

n≥0

1

n!

∑

Γ∈Gn+2,m

W̃ΓBΓ(α, β,QV , . . . , QV ) = HQV (α, β) ,

where the second equality follow from the fact that W̃ΓBΓ vanishes if at least one argument
is a linear vector field (thansk to Lemma 6.9). We therefore have a globally well-defined
homotopy HQ. �

Remember that thanks to Theorem 10.5 ℓ defines a quasi-isomorphism
(
Ω0,∗

(
M,∧(T ′)∗ ⊗ End(T ′)

)
, ∂̄
)

−→
(
Ω
(
M,A⊗ End(T )

)
, D
)
,

and one can check that it commutes with det. Therefore, to end the proof of Theorem 3.5,
it remains to prove that the class of Ξ is the Atiyah class:

Proposition 10.8. [Ξ] = atT ′ .

Proof. A direct computation using the recursion relation (10.3) shows that

A =
(1

2
dzi(R2,0)ij

l

k + dz̄i(R1,1)ij
l

k

)
yjyk

∂

∂yl
+O(|y|3) .

Therefore applying the morphism p (that sends dzi and yi onto zero) to the matrix element

Ξlk := d
(∂Ql
∂yk

)
= d

(∂Al
∂yk

)

one gets

p(Ξlk) = dyjdz̄i
(
(R1,1)ij

l

k + (R1,1)ik
l

j

)
.

The proposition is proved. �
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Appendix A. Deformation-theoretical intepretation of the Hochschild

cohomology of a complex manifold

In this appendix, we discuss, from the point of view of Čech cohomology, an interpretation
of the second Hochschild cohomology group of X in the framework of deformation theory.
This is in a certain sense analogous to the deformation-theoretical interpretation of the
Hochschild cohomology of an associative algebra A given by Gerstenhaber and sketched in
paragraph 2.1.

For a complex manifold X , we denote by D′
poly the holomorphic differential graded algebra

bundle of polydifferential operators on X of type (0, 1), i.e. the local holomorphic sections of
D′

poly are holomorphic differential operators on X ; the differential of D′
poly is the Hochschild

differential, denoted by dH .

Definition A.1. The Hochschild cohomology of the complex manifold X is the total coho-
mology of the double complex

(
Ω(0,•)(X,D′

poly), ∂ ± dH

)
.

A.1. Čech cohomology: a (very) brief introduction.
We consider a general sheaf E of abelian groups over a topological space X . Additionally,

we consider an open covering U of X .

Definition A.2. The Čech complex of E w.r.t. U, denoted by Č•(U, E), is defined as

Čp(U, E) =
∏

i0,...,ip

E(Ui0 ∩ · · · ∩ Uip) ,

where the product is over all p + 1-tuples of indices for elements of U, such that all indices
are distinct. The Čech differential δ̌ is given explicitly by the formula

(δ̌α)i0,...,ip+1 :=

p+1∑

j=0

(−1)jαi0,...,bij ,...,ip+1
,

where, to keep notations simple, we have omitted to write down the restriction maps. The
corresponding cohomology groups Ȟ•(U, E) form the Čech cohomology of E w.r.t. the open
covering U.

Thus, a Čech cochain α of degree p consists of a family of local sections of E over all
non-trivial intersections of distinct open sets in U. It is possible to show that, in fact, the
Čech complex, as introduced in Definition A.2, is quasi-isomorphic to the Čech complex with
the same differential, but whose cochains satisfy an antisymmetry relation w.r.t. the indices,
i.e. for which we have

ασ(i0),...,σ(ip) = (−1)σαi0,...,ip , σ ∈ Sp+1 .

Further, we see that Čech cohomology depends on the choice of an open covering of X . In
order to define the Čech cohomology Ȟ(X, E) of X with values in E , we need the notion
of refinement of coverings: without going into the details, an open covering V is finer than
U, if for any open subset Vj in V, there is an open subset Uf(j) in U, which contains Vj .

The notion of refinement of coverings yields in turn a structure of direct system on Čech
cohomology w.r.t. open coverings, thus allowing to define the Čech cohomology Ȟ•(X, E) of
X with values in E as the direct limit

Ȟ•(X, E) = lim
→
U

Ȟ•(U, E) ,

w.r.t. the direct limit structure sketched above.
For completeness, we cite the (adapted version of the) famous Leray’s Theorem on sheaf

cohomology.
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Theorem A.3 (Leray). If U is an acyclic open covering of X, i.e.

Ȟp(Ui0 ∩ · · · ∩ Uiq , E) = 0, p ≥ 1 ,

and for any non-trivial multiple intersection Ui0 ∩ · · · ∩ Uiq of open sets in U, then

Ȟ•(U, E) ∼= Ȟ•(X, E) .

Remark A.4. We may also speak, a bit improperly, of Ȟ•(X, E) as of the sheaf cohomology
of X with values in E . More precisely, the sheaf cohomology of X with values in a sheaf E of
abelian groups is defined by means of the right derived functor of the global section functor,
which, to a sheaf E of abelian groups, associates the set of its global sections. Then, the
more general version of Theorem A.3 gives an identification between the sheaf cohomology
of X with values in a sheaf E of abelian groups and the Čech cohomology of X w.r.t. an
acyclic open covering of X with values in E .

A.2. The link between Čech and Dolbeault cohomology: Dolbeault Theorem.
We assume now X to be a complex manifold, and we assume E → X to be a holomorphic

vector bundle over X . We want to build a relationship between Dolbeault cohomology of X
with values in E and sheaf cohomology of X with values in the sheaf E of local holomorphic
sections of E. For a complex manifold X , we denote by OX the structure sheaf of X , i.e.
the sheaf, whose local sections are local holomorphic functions on X : the corresponding
holomorphic bundle is the trivial line bundle over X .

First of all, we need a complex version of Poincaré’s Lemma, which we state without
proof, referring e.g. to the 0-th chapter of [17].

Lemma A.5. If U is an open polydisk in Cn, then

H•
∂
(U) = H0

∂
(U) = O(U) .

In other words, the Dolbeault complex of a polydisk in Cn is acyclic.
Using Lemma A.5, we get Dolbeault’s Theorem, whose proof we only sketch, referring,

once again, to the 0-th chapter of [17].

Theorem A.6 (Dolbeault). Using the same notations as at the beginning of the Subsection,
we have the isomorphism

H•
∂
(X,E) ∼= Ȟ•(X, E) .

Proof. We consider a sufficiently nice open covering U of X , i.e. an open covering of X by
holomorphic charts of X (e.g. by polydisk charts) and simultaneously by local holomorphic
trivializations of E. Since X is paracompact, the open covering U is also locally finite.

The Čech–Dolbeault double complex of X w.r.t. U with values in E is defined as

(Č•(U,Ω
(0,•)
E ), δ̌ ± ∂) ,

where Ω
(0,•)
E denotes the sheaf of smooth forms of type (0, •) on X with values in E. To the

Čech–Dolbeault double complex we can associate two natural spectral sequences, according
to the two gradations. The “first” degree is the Čech degree, while the “second” degree is
the one coming from the Dolbeault complex.

i) The first spectral sequence is associated to the filtration w.r.t. the second degree.

The 0-the term of the spectral sequence is therefore the Čech complex of Ω
(0,•)
E w.r.t.

U, hence the first term E1 is the Čech cohomology of Ω
(0,•)
E w.r.t. U, which is localized

in degree 0, since Ω
(0,•)
E is a sheaf of smooth forms and X admits a smooth partition

of unity:

E1 = Ȟ•(U,Ω
(0,•)
E ) = Ȟ0(U,Ω

(0,•)
E ) = Ω(0,•)(X,E) .
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The corresponding differential d1 coincides therefore with the Dolbeault differential
∂, and the spectral sequence abuts at the second term E2, which equals then

E2 = H•
∂
(X,E) .

ii) The second spectral sequence is associated to the filtration w.r.t. the first degree.
The corresponding 0-th term is the Dolbeault complex on multiple non-trivial inter-
sections of open subsets of U, hence the first term is, by means of Lemma A.5,

E1 = Č•(U, H•
∂
) = Č•(U, E) .

Lemma A.5 can be applied to this situation, since the open sets of U locally trivialize
the holomorphic bundle E. The corresponding differential d1 corresponds to the Čech
differential δ̌. Hence, the spectral sequence abuts also at the second term E2, which
then equals the Čech cohomology of X w.r.t. U with values in E . If, additionally, the
open covering U is acyclic in the sense of Theorem A.3, then the latter cohomology
coincides with the sheaf cohomology of E .

The claim follows then by general arguments on spectral sequences. �

We observe that we can consider the more general situation of a differential graded holo-
morphic vector bundle (E•, dE) over X : Theorem A.6 can be further generalized as

(A.1) H•
∂
(X,E) ∼= H

•(X, E) ,

where H•
∂
(X,E) denotes the total cohomology of the Dolbeault double complex

(Ω(0,•)(X,E•), ∂ ± dE)

and, denoting by E the complex (w.r.t. the differential dE) of sheaves of local holomorphic
sections of E, H

•(X, E) denotes the hypercohomology of X with values in E . The latter
cohomology is defined, in this framework, as the total cohomology of the Čech complex
associated to E . Considering the generalization (A.1) of Dolbeault Theorem A.6 to the
differential graded holomorphic vector bundle (D′

poly, dH) of Definition A.1, whose local
holomorphic sections are, by definition, local holomorphic differential operators on X , we
may use the so-called Čech–Hochschild double complex

(Č(U,Dpoly), δ̌ ± dH) ,

for a sufficiently nice open covering U of X , in order to compute the Hochschild cohomology
of X . Here, Dpoly denotes the sheaf of holomorphic differential operators on X .

A.3. Twisted presheaves of algebras.
In order to give now a meaningful interpretation, in the framework of deformations of

structures, of the second Hochschild cohomology group of a complex manifold X , we need a
new sheaf-theoretical object. Let X be a general topological space.

Definition A.7. A twisted presheaf F of algebras over X (or, alternatively, an algebroid
stack over X) consists of the following data:

i) an algebra F(U), for any open subset U of X ;
ii) a restriction homomorphism ρU,V from F(U) to F(V );
iii) an invertible element aU,V,W of F(W )×, for any three open subsets W ⊂ V ⊂ U of

X , satisfying the relations

ρV,W ◦ ρU,V = Ad(aU,V,W ) ◦ ρU,W , W ⊂ V ⊂ U ,(A.2)

ρU,Z(aU,V,W )aU,W,Z = aV,W,ZaU,W,Z , Z ⊂W ⊂ V ⊂ U ,(A.3)

where Ad denotes the adjoint action of invertible elements of an algebra on itself by
conjugation.
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Identity (A.3) is a coherence requirement for the restriction morphism ρU,V , in the fol-
lowing sense: for any four open subsets Z ⊂W ⊂ V ⊂ U of X , we have

ρW,Z ◦ ρV,W ◦ ρU,V = ρW,Z ◦ Ad(aU,V,W ) ◦ ρU,W

= Ad(ρW,Z(aU,V,W )) ◦ ρW,Z ◦ ρU,W

= Ad(ρW,Z(aU,V,W )) ◦ Ad(aU,W,Z) ◦ ρU,Z .

On the other hand, we also have

ρW,Z ◦ ρV,W ◦ ρU,V = Ad(aV,W,Z) ◦ ρV,Z ◦ ρU,V

= Ad(aV,W,Z) ◦ Ad(aU,W,Z) ◦ ρU,Z .

A usual (pre)sheaf is a twisted presheaf of algebras, where we set aU,V,W = 1, for any three
open subsets W ⊂ V ⊂ U . Further, if we assume the twisting elements aU,V,W to be central
in the corresponding algebras, then the twisted presheaf of algebras F is a usual presheaf of
algebras, endowed with central invertible elements aU,V,W satisfying the coherence relation
(A.3).

Given two twisted presheaves of algebras A and B over the same topological space X , a
morphism ϕ from A to B consists of

i) an algebra morphism ϕU from A(U) to B(U), for any open subset U of X ;
ii) an invertible element cU,V of B(V )×, for any pair of open subsets V ⊂ U of X ,

satisfying the relations

ϕV ◦ ρAU,V = Ad(cU,V ) ◦ ρBU,V ◦ ϕU , V ⊂ U ,(A.4)

ϕW (aU,V,W )cU,W = cV,Wρ
B
V,W (cU,V )bU,V,W , W ⊂ V ⊂ U ,(A.5)

where ρAU,V , resp. ρBU,V , denotes the restriction morphism of the twisted sheaf of
algebras A, resp. B; aU,V,W and bU,V,W are the corresponding twisting elements.

An isomorphism from A to B is a morphism from A to B, which admits a left- and right-
inverse. Let F be a complex twisted presheaf over the topological space X .

Definition A.8. An order n deformation of F is a twisted presheaf A of k[ǫ]/ǫn+1-algebras
over X, such that A/ǫA ∼= F as twisted presheaves of k-algebras.

In analogy with Gerstenhaber’s interpretation of the second Hochschild cohomology group
of an associative algebra A, we want to characterize the second Hochschild cohomology of
the complex manifold X in view of Definition A.8. Namely, we want to elucidate the fact
that the second Hochschild cohomology group of X parametrizes infinitesimal (i.e. order
1) deformations of the sheaf OX of holomorphic functions on X as a twisted presheaf of
algebras, up to equivalence (an equivalence being, as usual, an isomorphism that reduces to
the identity mod ǫ).

For this purpose, we consider a general 2-cocycle in the Čech–Hochschild double complex
of X w.r.t. a sufficiently nice open covering U of X in the sense specified above. Such a
2-cocycle consists of three components P (i,j), where i and j are non negative integers such
that i+ j = 2, and P (i,j) ∈ Čj(U,Di

poly).

Thus, P (2,0) is a Čech 0-cochain with values in the sheaf D2
poly of holomorphic bidiffer-

ential operators on X , P (1,1) is a Čech 1-cocycle with values in the sheaf D1
poly = Dpoly of

holomorphic differential operators on X , and finally P (0,2) is a Čech 2-cocycle with values
in the sheaf OX . The cochain condition (δ̌ ± dH)P = 0 for the 2-cocycle P is equivalent
to the following set of identities (taking into account the Koszul sign convention for the
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Čech–Hochschild double complex):

dHP
(2,0) = 0 ,(A.6)

dHP
(1,1) + δ̌P (2,0) = 0 ,(A.7)

dHP
(0,2) − δ̌P (1,1) = 0 ,(A.8)

δ̌P (0,2) = 0 .(A.9)

The component P (2,0) consists of a family of holomorphic bidifferential operators on X for
any open subset Uα in U: Identity (A.6) can be written more explicitly as

fP (2,0)
α (g, h) + P (2,0)

α (f, gh) = P (2,0)
α (fg, h) + P (2,0)

α (f, g)h,

for any triple of holomorphic functions f , g, h on Uα. We may thus consider the sheaf Aα

to be the restriction of the sheaf OX [ǫ]/ǫ2 to Uα, with deformed product given by

(f, g) = (f0 + ǫf1, g0 + ǫg1) 7→ f ⋆α g = f0g0 + ǫ
(
f0g1 + f1g0 + P (2,0)

α (f0, g0)
)

:

Identity (A.6) is easily verified to be equivalent to the fact that ⋆α is an associative product
modulo ǫ2; it is also obvious that the product ⋆α reduces to the usual product modulo ǫ.
We notice that, for a deformed product ⋆α, for a choice of an open subset Uα, we still want
the unit 1 (the constant holomorphic function 1) to be a unit also w.r.t. ⋆α: this is easily

achieved by adding the condition that the holomorphic bidifferential operator P
(2,0)
α vanishes,

whenever one of its arguments is a constant:

(f0 + ǫf1) ⋆α 1 = 1 ⋆α (f0 + ǫf1) = f0 + ǫf1 ⇐⇒ P (2,0)
α (f0, 1) = P (2,0)

α (1, f0) = 0.

Further, the component P (1,1) consists of a family of holomorphic differential operators

P
(1,1)
αβ on each (non-trivial) double intersection Uα ∩ Uβ; additionally, Identity (A.7) can be

rewritten as

P
(2,0)
β (f, g) + fP

(1,1)
αβ (g) + gP

(1,1)
αβ (f) = P (2,0)

α (f, g) + P
(1,1)
αβ (fg),

for any pair of holomorphic functions f , g on Uα ∩ Uβ . This means that the holomorphic

differential operator P
(1,1)
αβ defines an isomorphism

(Aα|Uα∩Uβ
, ⋆α)

ϕαβ // (Aβ |Uα∩Uβ
, ⋆β) ,

where ϕαβ is explicitly given by the formula

f = f0 + ǫf1 7→ f0 + ǫ
(
f1 + P

(1,1)
αβ (f0)

)
.

We want additionally the isomorphism ϕαβ to preserve the unit of Aα and Aβ , which turns

out to be equivalent to the fact that the holomorphic differential operator P
(1,1)
αβ vanishes on

constant functions:

ϕαβ(1) = 1 ⇔ P
(1,1)
αβ (1) = 0.

The third component P (0,2) is a family of holomorphic functions on each non-trivial triple
intersection Uα∩Uβ∩Uγ : since OX is a sheaf of commutative algebras, we have dHP

(0,2) = 0.

Hence, Identity (A.8) reduces to the simpler Čech cocycle condition

P
(1,1)
αβ (f) + P

(1,1)
βγ (f) = P (1,1)

αγ (f),

for any holomorphic function on Uα ∩ Uβ ∩ Uγ . This identity is obviously equivalent to the
commutativity of the following diagram of sheaves (modulo ǫ and again by the commutativity
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of OX):

(A.10) (Aα|Uα∩Uβ∩Uγ , ⋆α)
ϕαγ //

ϕαβ ))SSSSSSSSSSSSSS

(Aγ |Uα∩Uβ∩Uγ , ⋆γ)

(Aβ |Uα∩Uβ∩Uγ , ⋆β)

ϕβγ

55kkkkkkkkkkkkkk

.

In spite of the observation made after Definition A.2, we may assume skew-symmetry w.r.t.
the indices of all Čech cochains involved, whence

P (1,1)
αα = 0,

which in turn implies ϕαα = id.
Summing up what was done until here, we get, for each open subset Uα, by means of

P
(2,0)
α , a sheaf (Aα, ⋆α), which is obviously an infinitesimal deformation of the (trivial)

twisted presheaf OX |Uα ; further, on each non-trivial intersection Uα ∩Uβ, P
(1,1)
αβ determines

an isomorphism between the sheaves (Aα|Uα∩Uβ
, ⋆α) and (Aβ |Uα∩Uβ

, ⋆β), which, by (A.10),
satisfies the cocycle condition. Hence, the sheaves (Aα, ⋆α) define descent data, which can be
glued together to give a sheaf A = A(P ), which is, by its very construction, an infinitesimal
deformation of OX .

It remains to consider Identity (A.9), which can be written explicitly as

P
(0,2)
βγδ + P

(0,2)
αβδ = P

(0,2)
αγδ + P

(0,2)
αβγ

as a relation between functions on any non-trivial 4-fold intersection Uα ∩ Uβ ∩ Uγ ∩ Uδ.
We observe first that, if f is a holomorphic function on some open subset of X , which is
contained in a non-trivial triple intersection Uα ∩ Uβ ∩ Uγ , then, setting

aαβγ = 1 + ǫP
(0,2)
αβγ ,

we get an obviously invertible element of the algebras Aα, Aβ and Aγ restricted on the
triple intersection Uα ∩ Uβ ∩ Uγ , which is central in each of the three algebras w.r.t. the
corresponding products:

(A.11) (f0 + ǫf1) ⋆α aαβγ = aαβγ ⋆α (f0 + ǫf1),

and similar identities hold true, when ⋆α is replaced by ⋆β or ⋆γ : this follows from the

aforementioned fact that the holomorphic bidifferential operator P
(2,0)
α vanishes if one of

its arguments is a constant. Furthermore, the central element aαβγ is preserved by the
isomorphisms ϕαβ , ϕβγ and ϕαγ , again as a consequence of the fact that the differential

operators P
(1,1)
αβ , P

(1,1)
βγ and P

(1,1)
αγ vanish, if their argument is a constant. Finally, the Čech

cocycle relation can be reformulated as

(A.12) aβγδ ⋆α aαβδ = aαγδ ⋆α aαβγ ;

we can also exchange the product ⋆α by any other product ⋆β, ⋆γ or ⋆δ, again the reason
being that bidifferential operators vanish if one of their arguments is constant. Assuming

furthermore that P
(0,2)
αβγ is skew-symmetric w.r.t. the indices, we have the additional relation

aαβγ = 1,

whenever two of the three indices are equal. Hence, the invertible elements aαβγ define
a twist in the sense of Definition A.7 on A: the triangle relation (A.2) for the restriction
morphisms on A is trivially satisfied in spite of (A.11), while the coherence relation (A.3)
holds true in spite of (A.12).

Thus, a 2-cocycle P in Čech–Hochschild cohomology, which represents an element of the
second Hochschild cohomology group of X , gives rise to an infinitesimal deformation A of
OX in the sense of Definition A.8. It remains to prove that two cohomologous 2-cocycles
P , Q in Čech–Hochschild cohomology give rise to isomorphic infinitesimal deformations AP ,
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AQ of OX . We assume therefore P and Q to be two cohomologous Čech–Hochschild, i.e.

there is a Čech–Hochschild 1-cochain R, such that

P −Q = (dH ± δ̌)R,

which can be rewritten extensively as

P (2,0) −Q(2,0) = dHR
(1,0),(A.13)

P (1,1) −Q(1,1) = dHR
(0,1) − δ̌R(1,0),(A.14)

P (0,2) −Q(0,2) = δ̌R(0,1).(A.15)

The component R(1,0) consists of a family of holomorphic differential operators R
(1,0)
α on

each element Uα of the chosen open covering. We define an isomorphism ψα via

(Aα(P ), ⋆Pα )
ψα // (Aα(Q), ⋆Qα ) ,

where the isomorphism ψα is explicitly defined as

ψα(f) = ψα(f0 + ǫf1) = f0 + ǫ(f1 +R(1,0)(f0)).

Identity (A.13) can be rewritten explicitly as

P (2,0)
α (f, g) +R(1,0)(fg) = Q(2,0)

α (f, g) + fR(1,0)(g) + gR(1,0)(f),

for any two holomorphic functions on Uα: the previous identity can be reformulated

ψα((f0 + ǫf1) ⋆
P
α (g0 + ǫg1)) = ψα(f0 + ǫf1) ⋆

Q
α ψα(g0 + ǫg1),

i.e. the isomorphism ψα is an algebra isomorphism, interchanging the deformed products ⋆Pα
and ⋆Qα .

Further, Identity (A.14) can be rewritten in a simpler form, since the Hochschild differ-
ential of R(0,1) vanishes, due to the fact that OX is a sheaf of commutative algebras, whence
we get the simple relation

P
(1,1)
αβ +R

(1,0)
β = Q

(1,1)
αβ +R(1,0)

α

for holomorphic differential operators on any non-trivial double intersection Uα ∩ Uβ . It is
easy to check that the previous identity implies the commutativity of the following diagram:

(Aα(P )|Uα∩Uβ
, ⋆Pα )

ϕP
αβ //

ψα

��

(Aβ(P )|Uα∩Uβ
, ⋆Pβ )

ψβ

��
(Aα(Q)|Uα∩Uβ

, ⋆Qα )
ϕQ

αβ // (Aβ(Q)|Uα∩Uβ
, ⋆Qβ ) .

All these arguments imply that the local isomorphisms ψα can be glued together to define
an isomorphism ψ between the sheaves A(P ) and A(Q), associated to the cocycles P and Q
respectively by the above procedure.

Finally, we consider the holomorphic functions R
(0,1)
αβ on any non-trivial double intersection

Uα ∩ Uβ . If we set

cαβ = 1 + ǫR
(0,1)
αβ ,

we get elements of Aα(Q)(Uα ∩ Uβ) and of Aα(Q)(Uα ∩ Uβ). It is obvious that cαβ is an

invertible element; since any holomorphic bidifferential operator Q
(2,0)
α vanishes, when one

of its arguments is a constant, it follows that

cαβ ⋆
Q
α (f0 + ǫf1) = (f0 + ǫf1) ⋆

Q
α cαβ ,
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and the same identity holds true replacing ⋆Qα by ⋆Qβ . It is also easy to prove that the

isomorphism ψα (as well as ψβ and ψγ) preserves the central invertible element aPαβγ , i.e.

ψα(aαβγ) = aαβγ ,

as a consequence of the fact that ψα preserves units w.r.t. the corresponding deformed
products. The explicit form of Identity (A.15) is

P
(0,2)
αβγ +R(0,1)

αγ = Q
(0,2)
αβγ +R

(0,1)
αβ + R

(0,1)
βγ ,

which, using the centrality of aPαβγ , a
Q
αβγ w.r.t. the deformed product ⋆Qα (as well as ⋆Qβ and

⋆Qγ ), implies the relation

ψα(aPαβγ) ⋆
Q
α cαγ = cβγ ⋆

Q
α cαβ ⋆

Q
α a

Q
αβγ ,

and similarly when making corresponding changes of the deformed products involved, or of
the isomorphisms ψα. Hence, the elements cαβ define a twist c for the morphism ψ, which
satisfies (A.4) because of the centrality of cαβ w.r.t. the deformed products, and (A.5) by
the previous identity.
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