LECTURES ON DUFLO ISOMORPHISMS IN LIE ALGEBRAS AND
COMPLEX GEOMETRY

DAMIEN CALAQUE AND CARLO ROSSI

ABSTRACT. For a complex manifold the Hochschild-Kostant-Rosenberg map does not
respect the cup product on cohomology, but one can modify it using the square root of
the Todd class in such a way that it does. This phenomenon is very similar to what
happens in Lie theory with the Duflo-Kirillov modification of the Poincaré-Birkhoff-Witt
isomorphism.

In these lecture notes (lectures were given by the first author at ETH-Ziirich in fall
2007) we state and prove Duflo-Kirillov theorem and its complex geometric analogue. We
take this opportunity to introduce standard mathematical notions and tools from a very
down-to-earth viewpoint.
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INTRODUCTION

Since the fundamental results by Harish-Chandra and others one knows that the algebra
of invariant polynomials on the dual of a Lie algebra of a particular type (solvable [12],
simple [18] or nilpotent) is isomorphic to the center of the enveloping algebra. This fact
was generalized to an arbitrary finite-dimensional real Lie algebra by M. Duflo in 1977 [13].
His proof is based on the Kirillov’s orbits method that parametrizes infinitesimal characters
of unitary irreducible representations of the corresponding Lie group in terms of co-adjoint
orbits (see e.g. [21]). This isomorphism is called the Duflo isomorphism. It happens to
be a composition of the well-known Poincaré-Birkhoff-Witt isomorphism (which is only an
isomorphism on the level of vector spaces) with an automorphism of the space of invariant
polynomials whose definition involves the power series j(x) := sinh(x/2)/(z/2).

In 1997 Kontsevich [22] proposed another proof, as a consequence of his construction of
deformation quantization for general Poisson manifolds. Kontsevich’s approach has the ad-
vantage to work also for Lie super-algebras and to extend the Duflo isomorphism to a graded
algebra isomorphism on the whole cohomology.

The inverse power series j(z)~! = (z/2)/sinh(x/2) also appears in Kontsevich’s claim
that the Hochschild cohomology of a complex manifold is isomorphic as an algebra to the
cohomology ring of the polyvector fields on this manifold. We can summarize the analogy
between the two situations into the following array:

Lie algebra Complex geometry
symmetric algebra (sheaf of) algebra of holomorphic polyvector fields
universal enveloping algebra (sheaf of) algebra of holomorphic polydifferential operators
taking invariants taking holomorphic sections

Chevalley-Eilenberg cohomology Dolbeault (or Cech) cohomology

This set of lecture notes provides a comprehensible proof of the Duflo isomorphism and
its complex geometric analogue in a unified framework, and gives in particular a satisfying
explanation for the reason why the series j(x) and its inverse appear. The proof is strongly
based on Kontsevich’s original idea, but actually differs from it (the two approaches are
related by a conjectural Koszul type duality recently pointed out in [30], this duality be-
ing itself a manifestation of Cattaneo-Felder constructions for the quantization of a Poisson
manifold with two coisotropic submanifolds [8]).

Notice that the mentioned series also appears in the wheeling theorem by Bar-Natan, Le
and Thurston [4] which shows that two spaces of graph homology are isomorphic as alge-
bras (see also [23] for a completely combinatorial proof of the wheeling theorem, based on
Alekseev and Meinrenken’s proof [1, 2] of the Duflo isomorphism for quadratic Lie algebras).
Furthermore this power series also shows up in various index theorems (e.g. Riemann-Roch
theorems).

Throughout these notes we assume that & is a field with char(k) = 0. Unless otherwise
specified, algebras, modules, etc... are over k.

Each section consists (more or less) of a single lecture.

Acknowledgements. The authors thank the participants of the lectures for their interest
and excitement. They are responsible for the very existence of these notes, as well as for
improvement of their quality. The first author is grateful to G. Felder who offered him
the opportunity to give this series of lectures. He also thanks M. Van den Bergh for his
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kind collaboration in [6] and many enlighting discussions about this fascinating subject. His
research is fully supported by the European Union thanks to a Marie Curie Intra-European
Fellowship (contract number MEIF-CT-2007-042212).
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1. LIE ALGEBRA COHOMOLOGY AND THE DUFLO ISOMORPHISM

Let g be a finite dimensional Lie algebra over k. In this section we state the Duflo theorem
and its cohomological extension. We take this opportunity to introduce standard notions of
(co)homological algebra and define the cohomology theory associated to Lie algebras, which
is called Chevalley-Filenberg cohomology.

1.1. The original Duflo isomorphism.

The Poincaré-Birkhoff- Witt theorem.
Remember the Poincaré-Birkhoff-Witt (PBW) theorem: the symmetrization map

Ippw : S(g) — Ul(g)

n

" — 2" (x€g,neN)

is an isomorphism of filtered vector spaces. Moreover it induces an isomorphism of graded

algebras S(g) — Gr(U(g)).

This is well-defined since the ™ (z € g) generate S(g) as a vector space. On monomials
it gives
1
IPBW(xl ' In) = E Z Tgy """ Loy, -

’ ceS,

Let us write * for the associative product on S(g) defined as the pullback of the multiplication
on U(g) through Ipgw. For any two homogeneous elements u,v € S(g), u* v = uv + L.o.t.
(where [.0.t. stands for lower order terms).

Ippw is obviously NOT an algebra isomorphism unless g is abelian (since S(g) is com-
mutative while U(g) is not).

Geometric meaning of the PBW theorem.

Denote by G the germ of k-analytic Lie group having g as a Lie algebra.

Then S(g) can be viewed as the algebra of distributions on g supported at the origin 0
with (commutative) product given by the convolution with respect to the (abelian) group
law + on g.

In the same way U(g) can be viewed as the algebra of distributions on G supported at
the origin e with product given by the convolution with respect to the group law on G.

One sees that Ipgyw is nothing but the transport of distributions through the exponential
map exp : g — G (recall that it is a local diffeomorphism). The exponential map is obviously
Ad-equivariant. In the next paragraph we will translate this equivariance in algebraic terms.

g-module structure on S(g) and U(g).
On the one hand there is a g-action on S(g) obtained from the adjoint action ad of g on
itself, extended to S(g) by derivations : for any z,y € g and n € N*,

n—1

ad, (y") = nlz, yly
On the other hand there is also an adjoint action of g on U(g): for any = € g and u € U(g),
ad,(u) = zu — ux.

It is an easy exercise to verify that ad, o Ippw = Ippw o ad, for any = € g.

Therefore Ippy restricts to an isomorphism (of vector spaces) from S(g)? to the center
Z(Ug) = U(g)® of Ug.

Now we have commutative algebras on both sides. Nevertheless, Ippw is not yet an
algebra isomorphism. Theorem 1.2 below is concerned with the failure of this map to respect
the product.
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Duflo element J.
We define an element J € S(g*) as follows:

1— efad)
ad '
It can be expressed as a formal combination of the ¢ := tr((ad)*).

J::det(

Let us explain what this means. Recall that ad is the linear map g — End(g) defined by
ad,(y) = [z,9] (z,y € g). Therefore ad € g* ® End(g) and thus (ad)* € T*(g*) ® End(g).
Consequently tr((ad)¥) € T*(g*) and we regard it as an elements of S¥(g*) through the
projection T'(g*) — S(g*).

Claim 1.1. ¢ is g-invariant.
Here the g-module structure on S(g*) is the coadjoint action on g* extended by derivations.
Proof. Let x,y € g. Then
n n
(y-cra) = (e, a'ly,ala" ) = = wr(adjady mad; )
i=1

i=1

—> tr(ad}[ady, ad,Jad; " "") = —tr([ady, ad}]) = 0
1=1

This proves the claim. ([l
The Duflo isomorphism.

Observe that an element £ € g* acts on S(g) as a derivation as follows: for any = € g
€-a™ =né(x)x" .
By extension an element (£)* € S¥(g*) acts as follows:
OF a"=n---(n—k+ 1)&@)rz"k.

(
This way the algebra S(g*) acts on S(g).! Moreover, one sces without difficulty that S(g*)®
acts on S(g)?. We have:

Theorem 1.2 (Duflo,[13)). Ippw oJ?- defines an isomorphism of algebras S(g)® — U(g)9.

The proof we will give in these lectures is based on deformation theory and (co)homological
algebra, following the deep insight of M. Kontsevich [22] (see also [29]).

Remark 1.3. ¢ is a derivation of S(g) therefore exp(c;) defines an algebra automorphism
of S(g). Therefore one can obviously replace J by the modified Duflo element
ead/2 _ e—ad/2

T = det (———).
1.2. Cohomology.
Our aim is to show that Theorem 1.2 is the degree zero part of a more general statement.
For this we need a few definitions.

Definition 1.4. 1. A DG vector space is a Z-graded vector space C® = @,czC" equipped
with a graded linear endomorphism d : C — C of degree one (i.e. d(C™) C C™*1) such that
dod=0. d is called the differential.

2. A DG (associative) algebra is a DG vector space (A°®,d) equipped with an associative
product which is graded (i.e. A¥-A! C A*+!) and such that d is a degree one superderivation:
for homogeneous elements a,b € A d(a - b) = d(a) - b+ (—1)l%la - d(b).

LThis action can be regarded as the action of the algebra of differential operators with constant coefficients
on g* (of possibly infinite degree) onto functions on g*.
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3. A Let (A®,d) be a DG algebra. A DG A-module is a DG vector space (M*,d) equipped
with an A-module structure which is graded (i.e. A*- M! C M™*!) and such that d satisfies
d(a-m) = d(a) -m + (—1)l%la - d(m) for homogeneous elements a € A, m € M.

4. A morphism of DG vector spaces (resp. DG algebras, DG A-modules) is a degree
preserving linear map that intertwines the differentials (resp. and the products, the module
structures).

DG vector spaces are also called cochain complezes (or simply complezes) and differentials
are also known as coboundary operators. Recall that the cohomology of a cochain complex
(C*,d) is the graded vector space H*(C,d) defined by the quotient ker(d)/im(d):

.  {ceCmd(c)=0}  {n-cocycles}
H"(C,d) = {b=d(a)la € C"1}  {n-coboundaries} '

Any morphism of cochain complexes induces a degree preserving linear map on the level of
cohomology. The cohomology of a DG algebra is a graded algebra.

Example 1.5 (Differential-geometric induced DG algebraic structures). Let M be a dif-
ferentiable manifold. Then the graded algebra of differential forms (M) equipped with
the de Rham differential d = dgr is a DG algebra. Recall that for any w € Q"(M) and
Vos - -+, Un € X(M)

d(w)(ug, - yun) = Z(—l)iui(w(uo,...,@-,...,un))

i=0
+ Z (_1)i+jw([uiauj]au05-'-;ﬁ'\ia"'v@v"'aun)'
0<i<j<n
In local coordinates (z!,...,2"), the de Rham differential reads d = dz’5%;. The corre-

sponding cohomology is denoted by H3,(M).

For any C°° map f: M — N one has a morphism of DG algebras given by the pullback of
forms f*: Q*(N) — Q*(M).

Let E — M be a vector bundle and recall that a connection V on M with values in E is
given by the data of a linear map V : T'(M, E) — Q(M, E) such that for any f € C*(M)
and s € T'(M, E) one has V(fs) = d(f)s + fV(s). Observe that it extends in a unique
way to a degree one linear map V : Q*(M, E) — Q°*(M, E) such that for any £ € Q°(M)
and s € Q*(M, E), V(¢s) = d(€)s + (—1)K1¢V(s). Therefore if the connection is flat (which
is basically equivalent to the requirement that V oV = 0) then Q°*(M, E) becomes a DG
Q(M)-module. Conversely, any differential V that turns Q(M, E) in a DG Q(M)-module
defines a flat connection.

Definition 1.6. A quasi-isomorphism is a morphism that induces an isomorphism on the
level of cohomology.

Example 1.7 (Poincaré lemma). Let us regard R as a DG algebra concentrated in degree
zero and with d = 0. The inclusion i : (R,0) — (Q°(R"™),d) is a quasi-isomorphism of DG
algebras. The proof of this claim is quite instructive as it makes use of a standard method
in homological algebra:

Proof. Let us construct a degree —1 graded linear map  : Q°*(R") — Q*~1(R") such that
(1.1) dok+kod=id—iop,

where p : Q*(M) — k takes the degree zero part of a form and evaluates it at the ori-
gin: p(f(z,dz)) = f(0,0) (here we write locally a form as a “function” of the “variables”
a2 dat L ,dx”)z. Then it is obvious that any closed form lies in the image of ¢ up

2This comment will receive a precise explanation in Section 4, where we consider superspaces.
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to an exact one. This is an exercise to check that x defined by k(1) = 0 and

1
X dt
Kl ker(p) (f (2, dz)) = 2"19, ( / f(tz, td£)7)
0
satisfies those conditions. O

Notice that we have proved at the same time that p : (Q°(M),d) — (k,0) is also a quasi-
isomorphism. Moreover, one can check that x o kK = 0. This allows us to decompose Q°*(M)
as ker(A) @ im(d) @ im(x), where A is defined to be the L.h.s. of (1.1). A is often called the
Laplacian and thus elements lying in its kernel are said harmonic®.

A historical remark.

Homological algebra is a powerful tool that was originally introduced in order to produce
topological invariants. E.g. the de Rham cohomology: two homeomorphic differentiable
manifolds have isomorphic de Rham cohomology.

The ideas involved in homological algebra probably goes back to the study of polyhedra:
if we call F' the number of faces of a polyhedron, F its numbers of edges and V' its number
of vertices, then FF — E + V is a topological invariant. In particular if the polyhedron is
homeomorphic to a sphere it equals 2.

The name cohomology suggests that it comes with homology. Let us briefly say that
homology deals with chain complexes: they are like cochain complexes but the differential
has degree —1. It is called the boundary operator and its name has a direct topological
inspiration (e.g. the boundary of a face is a formal sum of edges).

1.3. Chevalley-Eilenberg cohomology.

The Chevalley-FEilenberg complez.

Let V be a g-module. The associated Chevalley-Eilenberg complex C*(g, V') is defined as
follows: C™(g,V) = A"(g)* ® V is the space of linear maps A"(g) — V and the differential
dc is defined on homogeneous elements by

do()(@o,. .. an) = 3 (“UU(wi, ;) 20, o, By -y )

0<i<j<n
+Z(—1)ixi Aoy Ty ey ) -

We prove below that dg o do = 0.
The corresponding cohomology is denoted H®(g, V).

Remark 1.8. Below we implicitely identify A(g) with antisymmetric elements in T'(g).
Namely, we define the total antisymmetrization operator alt : T'(g) — T'(g):

1
alt(:vl R xn) = E Z (—1)‘7550(1) R Zoen) -
‘oeG,

It is a projector, and it factorizes through an isomorphism A(g)—— ker(alt — id), that we
also denote by alt. In particular this allows us to identify A(g*) with A(g)*.

3This terminology is chosen by analogy with the Hodge-de Rham decomposition of Q®(M) when M is a
Riemannian manifold. Namely, let * be the Hodge star operator and define k := + *d*. Then A is precisely
the usual Laplacian, and harmonic forms provide representatives of de Rham cohomology classes.



8 DAMIEN CALAQUE AND CARLO ROSSI

Cup product.

If V = A is equipped with an associative g-invariant product, meaning that for any x € g
and any a,b € A

x - (ab) = (z - a)b+ a(x - b),
then C*(g, A) naturally becomes a graded algebra with product U defined as follows: for any
&neNn(gh) anda,be A
(E®a)U(neb)=EAn®ab.

Another way to write the product is as follows: for I : A™(g)* — A, I’ : A"(g)* — A and
T1y-+-yTm4n €9

1 o
(QUl)(@1, . Tmn) = I D (D)Uzo1ys - Tom) (To(mi1)s s To(mn))

(m +n 0€EGmin

Remark 1.9. Observe that since [ and I’ are already antisymmetric then it is sufficient to
take % times the sum over (m, n)-shuffles (i.e. 0 € &,,4, such that o(1) < --- < o(m)
and o(m+1) < - <o(m+n).

Exercise 1.10. Check that U is associative and satisfies
(1.2) de((Ul) =de() Ul + (=DM ude(l).

The Chevalley-FEilenberg complex is a complex.

In this paragraph we prove that dc o do = 0.

Let us first prove it in the case when V = k is the trivial module. Let £ € g* and
x,y, 2 € g, then

dc o dc(é)(m, Y, Z) = —dc(f)([x, y]v z) + dc(f)([l‘, Z]v y) - dc(g)([yv Z]v z)
= (. y], 2] = [[z, 2], 9] + [y, 2], 2]) = 0.
Since A(g*) is generated as an algebra (with product U = A) by g* then it follows from (1.2)
that do ode = 0.
Let us come back to the general case. Observe that C*(g,V) = A*(g*) ® V is a graded
A®*(g*)-module: for any £ € A®(g*) and n®@ v € A*(g*) @V,

§-mev):=(EAn .

Since C*(g,V) is generated by V as a graded A®(g*)-module, and thanks to the fact (the
verification is left as an exercise) that

de(§- (@) =de(§) - (n@v) + (-1 - de(n®v),

then it is sufficient to prove that d¢ o de(v) = 0 for any v € V. We do this now: if z,y € g
then

dcodc(v)(z,y) = —de)([z,y]) +2 dc(v)(y) —y-dc(v)(z)
= —[xyl-vta-(y-v)—y-(x-v)=0. U

Interpretation of H°(g,V), H'(g,V) and H?*(g,V).

We will now interpret the low degree components of Chevalley-Eilenberg cohomology.

e Obviously, the 0-th cohomology space H%(g, V) is equal to the space V¢ of g-invariant
elements in V' (i.e. those elements on which the action is zero).

e 1-cocycles are linear maps [ : g — V such that I([z,y]) =z - l(y) —y - I(x)b for z,y € g.
In other words 1-cocycles are g-derivations with values in V. 1-coboundaries are those
derivations I, (v € V') of the form l,(xz) = x - v (x € g), which are called inner derivations.
Thus H'(g,V) is the quotient of the space of derivations by inner derivations.

e 2-cocycles are linear maps w : A%2g — V such that

w([x,y],z)—|—w([z,3:],y)—|—w([y,z],:c)—:c~w(y,z)—|—y-w(z,z) —z~w(y,z) =0 (x,y,z € g) .
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This last condition is equivalent to the requirement that the space g & V equipped with the
bracket

[z +uwy+o]=(zy]+r-v-y-u+w@y (yeg, vweV)
is a Lie algebra. Such objects are called extensions of g by V. 2-coboundaries w = d¢(1)
correspond exactly to those extensions that are trivial (i.e. such that the resulting Lie algebra

structure on g @ V is isomorphic to the one given by wy = 0; the isomorphism is given by
x4ve—z+1(x)+v).

1.4. The cohomological Duflo isomorphism.

From the PBW isomorphism Ippw : S(g) — U(g) of g-modules one obtains an isomor-
phism of cochain complexes C*(g, S(g)) — C*(g,U(g)). This is obviously not a DG algebra
morphism (even on the level of cohomology).

The following result is an extension of the Duflo Theorem 1.2. It has been rigourously
proved by M. Pevzner and C. Torossian in [27], after the deep insight of M. Kontsevich.

Theorem 1.11. Ippy oJ2. induces an isomorphism of algebras on the level of cohomology
H*(g,5(g)) — H*(g,U(g)) -

Again, one can obviously replace J by J.



10 DAMIEN CALAQUE AND CARLO ROSSI

2. HOCHSCHILD COHOMOLOGY AND SPECTRAL SEQUENCES

In this section we define a cohomology theory for associative algebras, which is called
Hochschild cohomology, and explain the meaning of it. We also introduce the notion of a
spectral sequence and use it to prove that, for a Lie algebra g, the Hochschild cohomology
of U(g) is the same as the Chevalley-Eilenberg cohomology of g.

2.1. Hochschild cohomology.

The Hochschild complex.

Let A be an associative algebra and M an A-bimodule (i.e. a vector space equipped with
two commuting A-actions, one on the left and the other on the right).

The associated Hochschild complex C*(A, M) is defined as follows: C™(A, M) is the space
of linear maps A®™ — M and the differential d is defined on homogeneous elements by the

formula
m

dH(f)(a07 ) am) = aOf(ah ) am) + Z(—l)lf(ao, ey A1y e ,am)
=1
+(=1D)™ " f(ag, ...\ Gm_1)am -

It is easy to prove that dg o dg = 0.
The corresponding cohomology is denoted H*(A, M).

If M = B is an algebra such that for any a € A and any b,' € B a(bb’) = (ab)b’ and
(bb')a = bV a) (e.g. B = A the algebra itself) then (C*(A, B),dn) becomes a DG algebra;
the product U is defined on homogeneous elements by

fuUglat,.. . amin) = flar, ..., am)g(@ms1, - QGmtn) -
If M = A then we write HH®*(A) := H*(A, A).

Interpretation of H°(A, M) and H*(A, M).

We will now interpret the low degree components of Hochschild cohomology.

e Obviously, the 0-th cohomology space H°(A, M) is equal to the space M of A-invariant
elements in M (i.e. those elements on which the left and right actions coincide). In the case
M = A is the algebra itself we then have H°(A, A) = Z(A).

e 1-cocycles are linear maps | : A — M such that I(ab) = al(b) + l(a)b for a,b € A,
i.e. 1-cocycles are A-derivations with values in M. 1-coboundaries are those derivations I,
(m € M) of the form l,,(a) = ma — am (a € A), which are called inner derivations. Thus
H(A, M) is the quotient of the space of derivations by inner derivations.

Interpretation of HH?(A) and HH3(A): deformation theory.

Now let M = A be the algebra itself.

o An infinitesimal deformation of A is an associative e-linear product * on Ale]/€? such
that a x b = ab mod e. This last condition means that for any a,b € A, axb = ab+ u(a,b)e,
with p: A® A — A. The associativity of % is then equivalent to

apu(b, ¢) + pla,be) = pla,b)e + plab,c)
which is exactly the 2-cocycle condition. Conversely, any 2-cocycle allows us to define an
infinitesimal deformation of A

Two infinitesimal deformations * and ' are equivalent if there is an isomorphism of k[e] /e2-
algebras (Ale]/e?, %) — (Ale]/e?,#") that is the identity mod e. This last condition means
that there exists [ : A — A such that the isomorphism maps a to a+I(a)e. Being a morphism
is then equivalent to

w(a,b) + 1(ab) = p'(a,b) + al(b) + 1(a)b

which is equivalent to u — ' = dg (1)

Therefore HH?(A) is the set of infinitesimal deformations of A up to equivalences.
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e An order n (n > 0) deformation of A is an associative e-linear product * on Ale]/e"+!
such that a * b = ab mod e. This last condition means that the product is given by

axb= ab—l—Zeiui(a,b),
i=1
with p1; : A® A — A. Let us define p:= ;" | uie’ € C*(A, Ale]). The associativity is then
equivalent to
dH (:u) (CL, bv C) = u(u(a, b)a C) - u(a, /L(ba C)) mod enJrl

Proposition 2.1 (Gerstenhaber,[16]). If * is an order n deformation then the linear map
Uny1: A®3 — A defined by

Vn-i-l a, b C Z (Nz Hrn+1—i a b) ) ﬂi(aaﬂn+1—i(bvc))>
i=1

is a 3-cocyle: dgy(vp41) = 0.
Proof. Let us define v(a,b,c) := u(p(a,b),c) — u(a, u(b,c)) € Ale]. The associativity con-
dition then reads dy(p) = v mod €**! and v, is precisely the coefficient of e"*1 in v.

Therefore it remains to prove that dg (v) = 0 mod €™ 2.
We let as an exercise to prove that

dy (V) (CL, bv Gy d) = N(aa dy (:u) (bv G, d)) —dg (:u) (:u(av b)a C, d) +du (,LL) (CL, :u(bv C)a d)
_dH (/1') (a7 b7 N(Ca d)) + /J'(dH (M) (a7 b7 C)v d)

Then it follows from the associativity condition that mod e"*2

the L.h.s. equals
v(p(a,b),c,d) — v(a, u(b, c),d) + v(a,b, u(c,d)) — p(v(a, b, c),d) + p(a, v(b, c,d)).
Finally, a straightforward computation shows that this last expression is identically zero. [

Given an order n deformation one can ask if it is possible to extend it to an order n + 1
deformation. This means that we ask for a linear map p,4+1 : A® A — A such that

n+1 n+1
Z,uz pn+1-i(a,b), Z,uz a, fin+1-i(b,c))
1=0

which is equivalent to dH(Hn+1) = VUpt1-
In other words, the only obstruction for extending deformations lies in HH?(A).

This deformation-theoretical interpretation of Hochschild cohomology is due to M. Ger-
stenhaber [16].

2.2. Spectral sequences.
Spectral sequences are essential algebraic tools for working with cohomology. They were
invented by J. Leray [24, 25].

Definition.
A spectral sequence is a sequence (E,,d,),>o of bigraded spaces

E.= P Er°
(p,q)€2?
together with differentials
d, : BP9 — pPra—rtl o g od, =0

such that H(E,,d,) = E,41 (as bigraded spaces).
One says that a spectral sequence converges (to Es) or stabilizes if for any (p,q) there
exists r(p, q) such that for all r > r(p, q), EP4 = EZ'? . We then define EP:? := EPY Tt

r(p.q)” r(p,q)
happens when d?™47"+1 = @P:4 = 0 for r > r(p, q).
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A convenient way to think about spectral sequences is to draw them :

.............. Ef,q-‘rl Ef+1’q+1 Ef+1’q+2

]
P a p+1,q p+2,q9
................ . E* E*
dg’q
.............. Ef,qfl Eerlyqfl Ef+27q71

The spectral sequence of a filtered complex.
A filtered complex is a decreasing sequence of complexes

C*=F'C*>--- D FPC* S FPHIC* 5. 5 [ F'C* = {0}
ieN
Here we have assumed that the filtration is separated (N, FPC™ = {0} for any n € Z).
Let us construct a spectral sequence associated to a filtered complex (F*C*®,d). We first
define

FrCprta
Byt = Gr?(OPH) = e

and do = d : EP? — EP9T! . dy is well-defined since d(FP+1OP+a) ¢ Frrigptatt,
We then define
B {a € chp+q|d(a) c Fp+lcp+q+l}

D4 . [pt+q P((P+q
By = HPT(GrP (CFT9)) d(FpCp+a—1) 4 Fr+iCr+a

and dy =d: EV? — Ef“’q.
More generally we define

_ {a € FPCPta|d(a) € FrivCpratly

P -
L d(Fp—r+t1Cprte=1) 4 Fr+1Cprta
and d, = d : EP? — EPtTa="+1 Here the denominator is implicitely understood as

{denominator as written} N {numerator}.
Exercise 2.2. Prove that H(E,,d,) = Ey41.
We now have the following:

Proposition 2.3. If the spectral sequence (E,), associated to a filtered complex (F*C*®,d)
converges then
EP% = GrPHPTI(C®).
Proof. Let (p,q) € Z*. For r > maxz(r(p,q),p + 1),
{a € FPC?P*4|d(a) = 0}
d(Cp+q—1) + Fp+1Cpr+q
FPHP(C?)

— — + ]
= W—GYPHP q(C )

P.q
Er
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This proves the proposition. (|

Example 2.4 (Spectral sequences of a double complex). Assume we are given a double
complex (C**,d,d'), i.e. a Z2-graded vector space together with degree (1, 0) and (0, 1) linear
maps d’ and d’ such that d’ od’ =0,d" od” =0 and d' od” +d” od = 0. Then the total

complex (Cf;, diot) is defined as
Clot == @ o, diot :==d +d".
ptg=n
There are two filtrations, and thus two spectral sequences, naturally associated to (Cp,,, diot):

Frop = @ crt and  FCL = P o

p+g=n p+g=n
q>k p>k

Therefore the first terms of the corresponding spectral sequences are:
EV=H1C*?,d) with dy =d"
E"Y = Hi(CP*,d") with dy =d .

In the case the d’-cohomology is concentrated in only one degree ¢ then the spectral sequence
stabilizes at E3 and the total cohomology is given by Hp, = H*~9(H(C,d'),d").

Spectral sequences of algebras.
A spectral sequence of algebras is a spectral sequence such that each E,. is equipped with
a bigraded associative product that turns (E,.,d,.) into a DG algebra. Of course, we require
that H(E,,d,.) = E,1+1 as algebras.
As in the previous paragraph a filtered DG algebra (F*A®,d) gives rise to a spectral
sequence of algebras (E, ), such that
o BT .= GrP(APTY),
o EV1:= HPI(GrP(APTY)),
e if it converges then E27 = Gr? HPTI(A®).

2.3. Application: Chevalley-Eilenberg vs Hochschild cohomolgy.
Let M be a U(g)-bimodule. Then M is equipped with a g-module structure given as
follows:
Veeg, Vme M, z-m=xzm—mzx.

We want to prove the following

Theorem 2.5. 1. There is an isomorphism H*(g, M) = H*(U(g), M).
2. If M = A is equipped with o U(g)-invariant associative product then the previous isomor-
phism becomes an isomorphism of (graded) algebras.

We define a filtration on the Hochschild complex C*(U(g), M): FPC™(U(g), M) is given
by linear maps U(g)®" — M that vanish on

P U< ©--0U@<,-
i1t tin <p

Computing Ey.
First of all it follows from the PBW theorem that

EPY = Gr? (CPHI(U(g), M)) = @ Lin(Si1 (9) ® -+~ ® S+a(g), M) :

i1+ tippq=p

We then compute dj.
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Let P € FPCPY9(U(g), M), jo+ -+ + Jp+q = p and o, ..., Tprq € g. We have

. . . . p+q . . . .
dg(P) (@, ...,a)pts) = i’ P(al', ... o000 + Z(—l)kP(:véo, A A i)
k=1
_|_(_1);D+q+1p($g)o, L ’I;qu:i )I;qu
. . . p+q . . . .
= e(@)P(a,... ,,’E;qu) + Z(—l)kP(xjoo, . ,x?f:fxfj, e ,x;‘f;)
k=1
+(=1)Pratip(gl .. ,xéﬁqq:i)e(:v;ﬁqq) ,

where € : S(g) — k is the projection on degree 0 elements. Therefore dy is the coboundary
operator for the Hochschild cohomology of S(g) with values in the bimodule M (where the
left and right action coincide and are given by ¢).

Computing E.
We first need to compute H(S(g), M) = H(S(g), k) ® M. For this we will need a standard
lemma from homological algebra: one can define an inclusion of complexes (A®(g)*,0) —

~

C*(S(g), k) as the transpose of the composed map
®"S(g) — ®@"g — A"g.

We therefore need the following standard result of homological algebra:

~

Lemma 2.6. Let V be a vector space. Then the inclusion (A*(V*),0) — C*(S(V),k),

resp. the projection C'(§(V),k) — (A*(V*),0), is a quasi-isomorphism of complexes that

induces a (graded) algebra isomorphism A*(V)* = H*(S(V),k) on the level of cohomology,
resp. a quasi-isomorphism of DG algebras.

~

Sketch of the proof. First observe that elements of T'*(V*) are Hochschild cocycles in C*(S(V), k).
We then let as an exercise to prove that Hochschild cocycles lying in the kernel of the surjec-

~

tive graded algebra morphism p : C*(S(V), k) — T*(V*) are coboundaries. Consequently,

~

H*(S(V),k) is given by the quotient of the tensor algebra T'(V*) by the two-sided ideal
generated by the image of p o diy. The only non-trivial elements in the image of p o dy are

pod(z1® - TiTip1 @ QTp) =1 Q-+ @ (T QTip1 + Tit1 QX)) Q-+ @ Ty .
Therefore H*(S(V),k) 2 T*(V*)/(z @y +y@z|z,y € V) = S*(V*). 0
Using the previous lemma one has that
pra _ JLn(A? (9).M) ifg=0
! {0} otherwise .

Therefore we have that the spectral sequence converges and Eo, = Eo = H(Eq,d;). It thus
remains to prove that dy = d¢.

We know prove that d; is the Chevalley-Eilenberg differential. It suffices to prove this on
degree 0 and 1 elements:

di(m)(y) = du(m)(y) = ym —my = dc(m)(y)

and

di(1)(z,y)

N =

(da()(z,y) —da()(y,v)) = 5 (2l(y) — lzy) + 1(z)y — yl(z) + L(yz) — 1(y)z)

Ay) —y 1) ~ 1) = 3 (de)(a,)

N~ N~
—_—
8
~
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This ends the proof of the first part of Theorem 2.5: H*(U(g), M) = E2 = H*(g, M).

The second part of the theorem follows from the fact that H*(U(g), A) is isomorphic to
its associated graded as an algebra. [J
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3. DOLBEAULT COHOMOLOGY AND THE KONTSEVICH ISOMORPHISM

The main goal of this section is to present an analogous statement, for complex manifolds,
of the Duflo theorem. It was proposed by M. Kontsevich in his seminal paper [22]. We first
begin with a crash course in complex geometry (mainly its algebraic aspect) and then define
the Atiyah and Todd classes, which play a role analogous to the adjoint action and Duflo
element, respectively. We continue with the definition of the Hochschild cohomology of a
complex manifold and state the result.

Throughout this Section k = C is the field of complex numbers.

3.1. Complex manifolds.

An almost complex manifold is a differentiable manifold M together with an automorphism
J : TM — TM of its tangent bundle such that J? = —id. In particular it is even dimensional.
Then the complexified tangent bundle Tc M = T'M @ C decomposes as the direct sum T &T"
of two eigenbundles corresponding to the eigenvalues +i of J.

A complex manifold is an almost complex manifold (M, J) that is integrable, i.e. such
that one of the following equivalent conditions is satisfied:

e T' is stable under the Lie bracket,
o T" is stable under the Lie bracket.

Sections of T” (resp. T") are called vector fields of type (1,0) (resp. of type (0,1)).

The graded space Q°*(M) = I'(M, A\*TEM) of complex-valued differential forms therefore
becomes a bigraded space. Namely

QP UM =T (M, NP(T")* @ AN(T")).
For any w € QP7(M) one has that
dw € (M, (NP(T")* @ ANY(T")) NTEM) = QPTHI(M) @ QP1TH (M)

therefore d = 9 + 0 with 9 : Q**(M) — Q*+tL*(M) and 9 : Q**(M) — Q**T1(M). The
integrability condition ensures that 9 o @ = 0 (it is actually equivalent). Therefore one can
define a DG algebra (Q%*(M), d), the Dolbeault algebra.

The corresponding cohomology is denoted H3(M).

Let E be a differentiable C-vector bundle (i.e. fibers are C-vector spaces). The space
Q(M, E) of forms with values in F is bigraded as above. In general one can NOT turn
Q0*(M, E) into a DG vector space with differential 9 extending the one on Q%*(M) in the
following way: for any & € Q%*(M) and any s € I'(M, E)

9(&s) = (0€)s + (—1)€l¢d(s) .

Such a differential is called a 0-connection and it is uniquely determined by its restriction
on degree zero elements

0:T(M,E) — Q"' (M,E).
A complex vector bundle E equipped with a d-connection is called a holomorphic vector

bundle. Therefore, given a holomorphic vector bundle F one has an associated Dolbeault
cohomology H3(M, E).

For a comprehensible introduction to complex manifolds we refer to the first chapters of
the standard monography [17].
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Interpretation of HY(M, E).

There is an alternative (but equivalent) definition of complex manifolds: a complex man-
ifold is a topological space locally homeomorphic to C™ and such that transition functions
are biholomorphic.

In this framework, in local holomorphic coordinates (z!,...,z") one has 0 = dzi%,
0= dfi%, and J is simply given by complex conjugation. Therefore a holomorphic function,
i.e. a function that is holomorphic in any chart of holomorphic coordinates, is a C*° function
f satisfying 9(f) = 0.

Similarly, a holomorphic vector bundle is locally homeomorphic to C* x V' (V is the typical
fiber) with transition functions being End(V')-valued holomorphic functions. Again one can
locally write 0 = dz* 8‘; and holomorphic sections, i.e. sections that are holomorphic in small
enough charts, are C°° sections s such that d(s) = 0.

In other words, the 0-th Dolbeault cohomology Hg(M , E) of a holomorphic vector bundle
E is its space of holomorphic sections.

Interpretation of H} (M,End(E)).

Let E be a C'* vector bundle.

Observe that given two H-connections 9y and 52, their difference ¢ = Oy — Oy lies in
Q%1 (M,End(E)) (since 0;(fs) = O(f)s + f0;(s)). Therefore the integrability condition
0; 0 9; = 0 implies that 0; 0 € + €00 + € 0o & = 0. Therefore any infinitesimal deformation
O, of a holomorphic structure d on E (i.e. a Cle]/e?-valued d-connection d. = d mod ¢) can
be written as 9. = 0 + €£ with & € Q0! (M, End(E)) satisfying do & + €00 =0.

Such an infinitesimal deformation is trivial, meaning that it identifies with 0 under an
automorphism of E (over Cle]/e?) that is the identity mod ¢, if and only if there exists a
section s of End(E) such that ¢ = 9o s —s00.

Consequently the space of infinitesimal deformations of the holomorphic structure of £
up to the trivial ones is given by H(M,End(E)).

Remark 3.1. Here we should emphazise the following obvious facts we implicitely use.

First of all, if E is a holomorphic vector bundle then so is E*. Namely, for any s € I'(M, E)
and ¢ € I'(M, E*) one defines (9(¢),s) := 0({((, s)) — (¢, d(s)).

Then, if £; and Es are holomorphic vector bundles then so is F1 ® Fo: for any s; €
F(M, Ez) (Z = 1, 2) 5(81 ® 82) = 5(51) X S2 + 81X 5(52)

Thus, if E is a holomorphic vector bundle then so is End(E) = E* ® E: for any s €
I'(End(E)) one has d(s) = 0o s —s00.

3.2. Atiyah and Todd classes.
Let E— M be a holomorphic vector bundle. In this paragraph we introduce Atiyah and
Todd classes of E. Any connection V on M with values in F, i.e. a linear operator

V :T(M,E) — Q'(M, E)

satisfying the Leibniz rule V(fs) = (df)s + f(Vs), decomposes as V = V' + V", where V'
(resp. V") takes values in Q1°(M, E) (resp. Q%!(M, E)). Connections such that V" = 9 are
said compatible with the complex structure.

A connection compatible with the complex structure always exists. Namely, it always
exists locally and one can then use a partition of unity to conclude. Let us choose such a
connection V and consider its curvature R € Q?(M, End(FE)): for any u,v € X(M)

R(U,U) = VUVU — VUVU - v[u,v] .

In other words VoV = R-.
One can see that in the case of a connection compatible with the complex structure the
curvature tensor does not have (0, 2)-component: R = R*? + R
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Remember that locally a connection can be written V = d+T', with T’ € Q' (U, End(Ey/)).
The compatibility with the complex structure imposes that I' € Q0(U, End(E)y)). Then
one can check easily that RY'! = 9(T') (locally!). Therefore 9(RY'!) = 0. We define the
Atiyah class of E as the Dolbeault class

atp = [R11] € H;((T’)* ® (End(E))) :

Lemma 3.2. atg is independent of the choice of a connection compatible with the complex
structure.

Proof. Let V and V be two such connections. We see that V — V is a 1-form with values in
End(E): for any f € C*°(M) and s € T'(M, E)

(V= V)(fs) = ([@f)s+ f(Vs) = (Af)s = [(Vs) = f(V = V)(s).

Therefore T' — T is a globally well-defined tensor and R — R = §(I' — T') is a Dolbeault
coboundary. O

For any n > 0 one defines the n-th scalar Atiyah class a,(E) as
an(E) = tr(atly) € Hy (M, \"(T")*) .

Observe that tr((R"*)") lies in Q"(M, ®™(T")*), but we regard it as an element in Q%" (M, A™(T7)*)
thanks to the natural projection &(T")* — A(T")*.
The Todd class of E is then

tdp = det( ate )

1— e*atE

One sees without difficulties that it can be expanded formally in terms of a,(E).
3.3. Hochschild cohomology of a complex manifold.

Hochschild cohomology of a differentiable manifold.
Let M be a differentiable manifold. We introduce the differential graded algebras T, M

poly
and D}, M of polyvector field and polydifferential operators on M.

First of all T3, M = I'(M, \*T M) with product A and differential d = 0.

The algebra of differential operators is the subalgebra of End(C*(M)) generated by
functions and vector fields. Then we define the DG algebra DJ | M as the DG subalgebra
of (C*(C*>(M),C>(M)),U,ds) whose elements are cochains being differential operators in
each argument (i.e. if we fix all the other arguments then it is a differential operator in the

remaining one).

The following result, due to J. Vey [33] (see also [22]), computes the cohomology of
D31y M. 1t is an analogue for smooth functions of the original Hochschild-Kostant-Rosenberg
theorem [19] for regular affine algebras.

Theorem 3.3. The degree 0 graded map
Inkr @ (ToyM,0) — (DyoyM,dy)

VA AUy (f1®"'®fn'—’% Z(_I)UUU(I)(fl)'"va(n)(fn))

’ ce6,

is a quasi-isomorphism of complexes that induces an isomorphism of (graded) algebras on
the level of cohomology.
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Proof. First of all it is easy to check that it is a morphism of complexes (i.e. images of Iyxr
are cocycles).

Then one can see that everything is C*° (M )-linear: the products A and U, the differential
dp and the map Igxr. Moreover, one can see that Dpoly is nothing but the Hochschild
complex of the algebra J5¥ of oo-jets of functions on M with values in C>(M).*

As an algebra J3? can be identified (non canonically) with global sections of the bundle of
algebras S (T*M), and € with the projection on degree 0 elements. Therefore the statement
follows immediatly if one applies Lemma 2.6 fiberwise to V =T, M (m € M). O

Hochschild cohomology of a complex manifold.
Let us now go back to the case of a complex manifold M.

First of all for any vector bundle E over M we define T7¢, (M, E) :=T(M,E @ A*T").

poly

Then we define 9-differential operators as endomorphisms of C*° (M) generated by func-
tions and type (1,0) vector fields, and for any vector bundle E we define E-valued O-
differential operators as linear maps C*°(M) — I'(M, E) obtained by composing 0-differential
operators with sections of E or T/ ® E (sections of T’ ® E are E-valued type (1,0) vector
fields).

The complex Dy, (M, E) of E-valued 0-polydifferential operators is defined as the sub-
complex of (C*(C*°(M),I'(M, E)),dy) consisting of cochains that are d-differential opera-
tors in each argument.

We have the following obvious analogue of Theorem 3.3:

Theorem 3.4. The degree 0 graded map
Tukr - ( polv(M E), ) - ( polv(M E), dH)

(A Avp)®s — (f1®"'®fn 'Z (1) (f1) - a(n)(fn)5>

’ cEG,
s a quasi-isomorphism of complezes. O

Now observe that A®*T” is a holomorphic bundle of graded algebras with product being A.
Namely, T” has an obvious holomorphic structure: for any v € I'(M,T’) and any f € C°(M)

A(v)(f) = 0(v(f)) = v(d(f));
and it extends uniquely to a holomorphic structure on A®*T” that is a derivation with respect
to the product A: for any v,w € I'(M,T}%) )

d(wAw) =dw) Aw+ (=1)"lv A d(w).
Therefore 0 turns Q0*(M, A*T") = T'®, (M, A*(T")*) into a DG algebra.

poly
One also has an action of @ on O-differential operators defined in the same way: for any
feC>(M) B B B
a(P)(f) = 0(P(f)) — P(O(f)).
It can be extended uniquely to a degree one derivation of the graded algebra D’®
with product given by

PUQ(f1, .- s fmsn) = (C1)™CIP(f1, 0 fin) AQ(Frmtts - s frnn) s

where | - | refers to the exterior degree.

(M, A*(T")),

poly

4Recall that J32 = Homgeo (a) (D2 M, C(M)) with product given by

poly
g1-52(P) = (j1 ®32)(A(P))  (j1,42 € J3, P € Dy M),
where A(P) € DgolyM is defined by A(P)(f,g) := P(fg). The module structure on C* (M) is given by the

projection € : J§? — C°° (M) obtained as the transpose of C*°(M) — Dll)olyM.
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3.4. The Kontsevich isomorphism.
Theorem 3.5. The map Igkg o tle/,Q- induces an isomorphism of (graded) algebras

Ha(NTory)—H Doty (A (1)), dit + )

poly
on the level of cohomology.

This result has been stated by M. Kontsevich in [22] (see also [7]) and proved in a more
general context in [6].

Remark 3.6. Since a1(7") is a derivation of Hy(AT}),) then e®(T") is an algebra auto-
morphism of Hg(AT},,). Therefore, as for the usual Duflo isomorphism (see Remark 1.3),
one can replace the Todd class of T by its modified Todd class

~ t
tdy = det( ar )

eatT/ /2 _ e—atT//2
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4. SUPERSPACES AND HOCHSCHILD COHOMOLOGY

In this section we provide a short introduction to supermathematics and deduce from it
a definition of the Hochschild cohomology for DG associative algebras. Moreover we prove
that the Hochschild cohomology of the Chevalley algebra (A®(g)*, d¢) of a finite dimensional
Lie algebra g is isomorphic to the Hochschild cohomology of its universal envelopping algebra

Ul(g)-

4.1. Supermathematics.

Definition 4.1. A super vector space (simply, a superspace) is a Z/27Z-graded vector space
V=W+W.

In addition to the usual well-known operations on G-graded vector spaces (direct sum
@, tensor product ®, spaces of linear maps Hom(—, —), and duality (—)*) one has a parity
reversion operation II: (IIV)y = V4 and (IIV); = V4.

In the sequel V' is always a finite dimensional super vector space.

Supertrace and Berezinian.
For any endomorphism X of V (also refered as a supermatriz on V) one can define its

Zoo 10

, meaning that X = xgo+2x10+x01+211
To1 T11

supertrace str as follows: if we write X = <
with 2;; € Hom(V;, V;), then

str(X) := tr(xoo) — tr(x11) .
On invertible endomorphisms we also have the Berezinian Ber (or superdeterminant) which
is uniquely determined by the two defining properties:

Ber(AB) = Ber(A)Ber(B)  and  Ber(e¥) = 37X

Symmetric and exterior algebras of a super vector space.
The (graded) symmetric algebra S(V) of V is the quotient of the free algebra T'(V)
generated by V by the two-sided ideal generated by

v@w— (=) g,
It has two different (Z-)gradings:

e the first one (by the symmetric degree) is obtained by assigning degree 1 to elements
of V. Tts degree n homogeneous part, denoted by S™(V), is the quotient of the space
V& by the action of the symmetric group &,, by super-permutations:

(i, H_l) . (Ul ® "'®Un) — (_1)|WHW+1|U1 QU @Vig1 - DUy

e the second one (the internal grading) is obtained by assigning degree i € {0,1} to
elements of V;. Its degree n homogeneous part is denoted by S(V)", and we write
|| for the internal degree of an element x € S(V).

Example 4.2. (a) If V = 1} is purely even then S(V) = S(Vp) is the ususal symmetric
algebra of Vp, S™(V) = S™(V,) and S(V) is concentrated in degree 0 for the internal grading.
(b) If V.= V1 is purely odd then S(V) = A(V1) is the exterior algebra of V3. Moreover,
A (V) = A"(Vy) = A(V)™

The (graded) exterior algebra A(V') of V' is the quotient of the free algebra T'(V') generated
by V' by the two-sided ideal generated by
v@w+ (-1 v,
It has two different (Z-)gradings:
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e the first one (by the exterior degree) is obtained by assigning degree 1 to elements
of V. Tts degree n homogeneous part is, denoted A™(V), is the quotient of the space
of V@™ by the action of the symmetric group &,, by signed super-permutations:

(i,i41) - (1 @ Quy) := —(=)VlVirly @ vy @iy -+ @ vy

e the second one (the internal grading) is obtained by assigning degree i € {0,1} to
elements of V1_;. Its degree n homogeneous part is denoted by A(V)", and we write
|| for the internal degree of an element = € A(V'). In other words,

n
|v1/\---/\vn|:n—2|vi|.
i=1

Example 4.3. (a) If V = 1} is purely even then A(V) = A(V}) is the ususal exterior algebra
of Vo and A*(V) = A"(Vp) = A(V)™.

(b) If V.= V; is purely odd then A(V) = S(V1) is the symmetric algebra of V4. Moreover,
A™M(V) = S™(V1) and A(V) is concentrated in degree 0 for the internal grading.

Observe that one has an isomorphism of bigraded vector spaces
S@v) = A(V)
(4.1) vy — (=1) 2= 0Dl AL Ay,
Remark that it remains true without the sign on the right. The motivation for this quite

mysterious sign modification we make here is explained in the next paragraph.

Graded (super-)commutative algebras.

Definition 4.4. A graded algebra A® is super-commutative if for any homogeneous elements
a,bone has a-b = (—1)lellp. g,

Example 4.5. (a) the symmetric algebra S(V') of a super vector space is super-commutative
with respect to its internal grading.

(b) the graded algebra Q°*(M) of differentiable forms on a smooth manifold M is super-
commutative.

The exterior algebra of a super vector space, with product A and the internal grading, is
NOT a super-commutative algebra in general: for v; € V; (i =0, 1) one has

vo ANV = —v1 ANvg .
One way to correct this drawback is to define a new product e on A(V) as follows: let
v e AF(V) and w € AY(V) then
vew:= (—1)FIwHhy A,
In this situation one can check (this is an exercise) that the map (4.1) defines a graded

algebra isomorphism
(SIV),) — (A (V),e).

Graded Lie super-algebras.

Definition 4.6. A graded Lie super-algebra is a Z-graded vector space g® equipped with
a degree zero graded linear map [,]: g ® g — g that is super-skew-symmetric, which means
that

[Ji,y] = _(_1)|Illy|[y7 :E] )
and satisfies the super-Jacobi identity

[, [y, 2]] = [z, 9], 2] + (= 1)1y, [z, 2]).
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Examples 4.7. (a) Let A® be a graded associative algebra. Then A equipped with the
super-commutator

[a,b] = ab — (—1)1*!1®lpg
is a graded Lie super-algebra.

(b) Let A® be a graded associative algebra and consider the space Der(A) of super deriva-
tions of A: a degree k graded linear map d: A — A is a super derivation if

d(ab) = d(a)b+ (—=1)*ad(b) .

Der(A) is stable under the super-commutator inside the graded associative algebra End(A)
of (degree non-preserving) linear maps A — A (with product the composition).

The previous example motivates the following definition:

Definition 4.8. Let g°® be a graded Lie super-algebra.
1. A g-module is a graded vector space V with a degree zero graded linear map gV — V
such that
z-(y-v) = (=)W (z-0) = [2,9] - 0.
In other words it is a morphism g — End(V') of graded Lie super-algebras.
2. If V = A is a graded associative algebra, then one says that g acts on A by derivations if
this morphism takes values in Der(A). In this case A is called a g-module algebra.

4.1.1. A remark on “graded” and “super”.

Throughout the text (and otherwise specified) graded always means Z-graded and “super”
stands for Z/2Z-graded. All our graded objects are obviously “super”. Nevertheless “graded”
and “super” do not play the same role; namely, in all definitions structures (e.g. a product)
are graded and properties (e.g. the commutativity) are “super” (it has some importance only
in the case there is an action of the symmetric group).

For example, a graded Lie super algebra is NOT a graded Lie algebra in the usual sens:
End(V) with the usual commutator is a graded Lie agebra while it is a Lie super-algebra
with the super-commutator.

4.2. Hochschild cohomology strikes back.

Hochschild cohomology of a graded algebra.

Let A® be a graded associative algebra. Its Hochschild complex C*(A, A) is defined as the
sum of spaces of (not necessarily graded) linear maps A®" — A. Let us denote by | - | the
degree of those linear maps; the grading on C*(A, A) is given by the total degree, denoted
|-|. For any f: A®™ — A |f| = |f|+ m. The differential dg is given by

di(f)(ag, ..., am) = (D) %lag fay,. .. am) + Z(—l)if(ao, ey Q1 ey G)
i=1

(4.2) +(=1)" f(ag, ..., Gm_1)am -
Again it is easy to prove that dg o dy = 0.
As in paragraph 2.1 (C‘ (4, A), dH) is a DG algebra with product U defined by

fuUglat,...,amin) = (—1)|g|(|a1|+"'+‘am|)f(a1, ey )91y - ey Q) -

Hochschild cohomology of a DG algebra.

Let A® be a graded associative algebra. We now prove that C*(A, A) is naturally a
Der(A)-module.

For any d € Der(A) and any f € C*(A, A) one defines

d(f)(a1,...,am) :=d(f(a1,... ,am))—(—l)ld‘(”f”_l) i(—l)(i_l)(m_l)f(al, coydagy Q) .
i=1
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In other words, d is defined as the unique degree |d| derivation for the cup product that is
given by the super-commutator on linear maps A — A.
Moreover, one can easily check that dodg + dyg od = 0.

Therefore if (A®,d) is a DG algebra then its Hochschild complex is C*(A, A) together
with dg + d as a differential. It is again a DG algebra, and we denote its cohomology by
HH*(A,d).

Remark 4.9 (Deformation theoretic interpretation). In the spirit of the discussion in
paragraph 2.1 one can prove that HH?(A, d) is the set of equivalence classes of infinitesimal
deformations of A as an A-algebra (an algebraic structure introduced by J. Stasheff in [31])
and that the obstruction to extending such deformations order by order lies in HH?3(A,d).

More generally, if (M®,dys) is a DG bimodule over (A®,d4) then the Hochschild complex
C*(A,M) of A with values in M consists of linear maps A®" — M (n > 0) and the
differential is dg + d, with dp given by (4.2) and

d(f)(aty...,am) :=dpy (f(al, . ,am))—(—l)ld‘(”f”_l) i(—l)(i_l)(m_l)f(al, coydaG, . am) .
i=1

Hohschild cohomology of the Chevalley algebra.
One has the following important result:

Theorem 4.10. Let g be a finite dimensional Lie algebra. Then there is an isomorphism of
graded algebras HH®(Ag*,dc) — HH®*(Ug).

Let us emphazise that this result is related to some general considerations about Koszul
duality for quadratic algebras (see e.g. [28]).

Proof. Thanks to Theorem 2.5 it is sufficient to prove that HH®(Ag*,dc) — H*(g,Ug).
Let us define a linear map

(4.3) C(Ag",Ng") = Ng" @T(Ng) — Ng"®@U(g) =C(g,Ug),

given by the projection p : T(Ag) = T'(g) — U(g). It is an exercise to verify that it defines
a morphism of DG algebras

(C(rg*, Ag™),du +dc) — (Clg,Ug),do) -
It remains to prove that it is a quasi-ismorphism. We use a spectral sequence argument.

Lemma 4.11. We equip k (with the zeroe differential) with the (Ag*,dc)-DG-bimodule
structure given by the projection € : Ng* — k (left and right actions coincide). Then

H.((/\g*a dC)a k) = U(g)
Proof of the lemma. We consider the following filtration on C'* ((/\g*, de), k): FrCc™ ((/\g*, de), k)

is given by linear forms on

B A e @AFgY)
k>0
i14-Fig=k—n
that vanish on the components for which n — k < p. Then we have
Ept=Tin( @@ AN @-@AE) k) with o= du.
i1+ +ig=—p

Applying a “super” version of Lemma 2.6 to V = TI(g*) one obtains that
BpT = B = 9 (11(g')) = $°(0),
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and that the spectral sequence stabilizes at E;. Consequently Gr (H '((/\g*,dc),k)) =
S(g) = Gr(U (g)) and the isomorphism is given by the following composed map

T(A(g)) — T(g) — S(9)-
This ends the proof of the lemma. O

Lemma 4.12. The map (4.3) is a quasi-isomorphism: HH®*(Ag*,dc) = H*(g,Ug).

Proof of the lemma. Let us consider the descending filtration on the Hochschild complex
that is induced from the following descending filtration on Ag*:

F*(Ag¥) = @ N
k>n
Then the zeroth term of the associated spectral sequence (of algebras) is
Ey* =Ag*®C*((Ag",dc), k) with  do=id® (dg +dc).
Then using Lemma 4.11 one obtains that E{'® = E}* = A®g* @ Ug with d; = d¢o. Therefore

the spectral sequence stabilizes at F5 and the result follows. O

This ends the proof of the Theorem. O
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5. THE DUFLO-KONTSEVICH ISOMORPHISM FOR (J-SPACES

In this section we prove a general Duflo type result for Q-spaces, i.e. superspaces equipped
with a square zero degree one vector field. This result implies in particular the cohomological
version of the Duflo theorem 1.11, and will be used in the sequel to prove the Kontsevich
theorem 3.5. This approach makes more transparent the analogy between the adjoint action
and the Atiyah class.

5.1. Statement of the result.
Let V be a superspace.

Hochschild-Kostant-Rosenberg for superspaces.
We introduce

o Oy := 5(V*), the graded super-commutative algebra of functions on V;
o Xy :=Der(Oy) = S(V*) ® V, the graded Lie super-algebra of vector fields on V;
o ThoyV :=S(V*@IIV) = Ao, Xv, the Xy -module algebra of polyvector fields on V.
We now describe the gradings we will consider.
The grading on Oy is the internal one: elements in V;* have degree 1.
The grading on Xy is the restriction of the natural grading on End(Oy ): elements in V;*
have degree i and elements in V; have degree —i.
There are three different gradings on Tj,01, V':

(i) the one given by the number of arguments: degree k elements lie in /\’éva. In
other words elements in V* have degree 0 and elements in V' have degree 1;
(ii) the one induced by Xy : elements in V;* have degree i and elements in V; have degree
—i. It is denoted by |- [;
(iii) the total (or internal) degree: it is the sum of the previous ones. Elements in V;*
have degree i and elements in V; have degree 1 — i. It is denoted by | - |

Unless otherwise precised, we always consider the total grading on T},01, V' in the sequel.

We also have

e the Xy-module algebra Dy of differential operators on V', which is the subalgebra
of End(Oy) generated by Oy and Xy;

e the Xy-module algebra Dy, V' of polydifferential operators on V', which consists of
multilinear maps Oy ®- - -® Oy — Oy being differential operators in each argument.

The grading on Dy is the restriction of the natural grading on End(Oy). As for Tyl
there are three different gradings on Dpoly: the one given by the number of arguments, the
one induced by Dy (denoted |- |), and the one given by their sum (denoted | - |). Dpoly is
then a subcomblex of the Hochschild complex of the algebra Oy introduced in the previous
Section, since it is obviously preserved by the differential d.

An appropriate super-version of Lemma 2.6 gives the following result:

Proposition 5.1. The natural inclusion Igxr : (TporyV,0) — (DpoiyV,du) is a quasi-
isomorphism of complexes, that induces an isomorphism of algebras in cohomology.

Cohomological vector fields.

Definition 5.2. A cohomological vector field on V is a degree one vector field @ € Xy that
is integrable: [Q, Q] = 2Q o Q = 0. A superspace equipped with a cohomological vector field
is called a Q-space.

Let @ be a cohomological vector field on V. Then (Tpo,V, Q) and (DpeyV,du + @)
are DG algebras. By a spectral sequence argument one can show that Iy g g still defines a
quasi-isomorphism of complexes between them. Nevertheless it does no longer respect the
product on the level of cohomology. Similarly to theorems 1.11 and 3.5, Theorem 5.3 below
remedy to this situation.
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Let us remind the reader that the graded algebra of differential forms on V is Q(V) :=
S(V* @IIV*) and that it is equipped with the following structures:
e for any element z € V* we write dx for the corresponding element in IIV*, and then
we define a differential on Q(V'), the de Rham differential, given on generators by
d(z) = dz and d(dz) = 0;
e there is an action ¢ of differential forms on polyvector fields by contraction, where
x € V* acts by left multiplication and dz acts by derivation in the following way:
for any y € V* and v € IIV one has

taz(y) =0 and tdz (V) = (z,v) .

We then define the (super)matrix valued one-form = € Q' (V)®End(V[1]) with coefficients
explicitly given by

0Q7 0%Q’
Q. ) = @ _da® |
Oxt Oxkdxt
where z!,..., 2" is a basis of coordinates on V. Observe that it does not depend on the
choice of coordinates, and set

== d(

K3

J(B) = Ber(l%) e V).

i

Theorem 5.3. Igggr o Lz (TooyV, Q) — (DpolyV,du + Q-) defines a quasi-
isomorphism of complexes that induces an algebra isomorphism on cohomology.

As for Theorems 1.2, 1.11 and 3.5 one can replace j(Z) by

J(E) = Ber(w) .

—
—

5.2. Application: proof of the Duflo Theorem.

In this paragraph we discuss an important application of Theorem 5.3, namely the “clas-
sical” Theorem of Duflo (see Theorem 1.2 and 1.11): before entering into the details of the
proof, we need to establish a correspondence between the algebraic tools of Duflo’s Theorem
and the differential-geometric objects of 5.3.

We consider a finite dimensional Lie algebra g, to which we associate the superspace
V =TIlg. In this setting, we have the following identification:

OV = /\.g*a
i.e. the superalgebra of polynomial functions on V is identified with the graded vector space
defining the Chevalley-Eilenberg graded algebra for g with values in the trivial g-module;
we observe that the natural grading of the Chevalley-Eilenberg complex of g corresponds to
the aforementioned grading of Oy . The Chevalley-Eilenberg differential d¢ identifies, under
the above isomorphism, with a vector field @ of degree 1 on V; @ is cohomological, since d¢
squares to 0.

In order to make things more understandable, we make some explicit computations w.r.t.
supercoordinates on V. For this purpose, a basis {e;} of g determines a system of (purely
odd) coordinates {z'} on V: the previous identification can be expressed in terms of these
coordinates as

gt s e AL AEe 1<) < e <y <,
{e'} being the dual basis of {e;}. Hence, w.r.t. these odd coordinates, Q can be written as
1.
Q= —503-,6:6]:6’“%,
where cék are the structure constants of g w.r.t. the basis {e;}. It is clear that Q has degree
1 and total degree 2.
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Lemma 5.4. The DG algebra (TpoyV, Q-) identifies naturally with the Chevalley-FEilenberg
DG algebra (C*(g,5(g)),dc) associated to the g-module algebra S(g).

Proof. By the very definition of V', we have an isomorphism of graded algebras
S(V*aIIV) = A%(g") @ S(g).
More explicitly, in terms of the aforementioned supercoordinates, the previous isomorphism
is given by
R L o W A A Dyig — gl /\.../\gip@ejl...ejq7

where the indices (i1,...,14,) form a strictly increasing sequence.

It remains to prove that the action of ) on T},o1,V coincides, under the previous isomor-
phism, with the Chevalley-Eilenberg differential dc on A®(g*) ® S(g). It suffices to prove

the claim on generators, i.e. on the coordinates functions {2’} and on the derivations {3, }:
the action of @) on both of them is given by

_ _ 1.
Q-2 =Q(z) = _Ec;kxﬂxk,
Q 0y =[Q,0p1] = —cf;a7 0,0
Under the above identification between To1, V and A®(g*) ® S(g), it is clear that @) identifies
with d¢, thus the claim follows. O

Similar arguments and computations imply the following

Lemma 5.5. There is a natural isomorphism from the DG algebra (DporyV,dy + Q) to the
DG algebra (C*(Ag*, Ag*),dny + dc).

Coupling these results with Lemma 4.12, we obtain the following commutative diagram
of quasi-isomorphisms of complexes, all inducing algebra isomorphisms on the level of coho-
mology:

(TpotyV, Q) ——52 (Do Vi dy + Q) == (C*(Ag*, Ag*), dy + dc)
(C*(g, S(a)),dc) foow (C*(g,Usg),dc) .

Using the previously computed explicit expression for the cohomological vector field @ on
V', one can easily prove the following

Lemma 5.6. Under the obvious identification V1] 2 g, the supermatriz valued 1-form Z,
restricted to g, which we implicitly identify with the space of vector fields on V' with constant
coefficients, satisfies

(1]

= ad.
Proof. Namely, since
1. .
Q= —gc;kszzrk[)zi,
we have
2 =d(0,Q") = — ;kdxk = czjdxk,
and the claim follows by a direct computation, when e.g. evaluating = on ex = . (I

Hence, Theorem 5.3, together with Lemma 5.4, 5.5 and 5.6 implies Theorem 1.11. QED.

5.3. Strategy of the proof.
The proof of Theorem 5.3 occupies the next three sections. In this paragraph we explain
the strategy we are going to adopt in Sections 6, 7, 8 and 9.
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The homotopy argument.

Our approach relies on a homotopy argument (in the context of deformation quantization,
this argument is sketch by Kontsevich in [22] and detailed by Manchon and Torossian in [26]).
Namely, we construct a quasi-isomorphism of complexes®

Z/{Q : (Tpolyvv Q) — (Dpolyvv du +Q)
and a degree —1 map
HQ : TpolyV & TpolyV — DpolyV
satisfying the homotopy equation
Ug(a) UUQ(B) —Ug(a A B) =
= (dg + Q) Hq(a, B) + Ho(Q - o, 8) + (=111 Hg(, @ - §)
for any polyvector fields a, 8 € Tpo1, V.

(5.1)

We sketch below the construction of Ug and Hg.

Formulae for Ug and Hg, and the scheme of the proof.
For any polyvector fields o, 3 € Tpoly V' and functions fq,..., f,, we set

(5.2) Ug(a)(fro s fm) = % > WeBr(a, Q... Q)(f1, - fm)

n>0  T€Gni1,m n times

and

(63)  Halo A fo) = 30 S WeBr(a,8,Q. - Qf o fu)

n>0  I'EGny2,m n times

The sets G, ,, are described by suitable directed graphs with two types of vertices, the
“weights” Wr and WF are scalar associated to such graphs, and Br are polydifferential
operators associated to those graphs.

We define in the next paragraph the sets Gy, ,,, and the associated polydifferential operators
Br. The weights Wr and WF are introduced in Section 6 and 8, respectively. In Section
7 (resp. 8) we prove that U(a A 3) and U(a) UU(B) (resp. the r.h.s. of (5.1)) are given by
a formula similar to (5.3) with new weights W2 and W} (resp. —W3), so that, in fine, the
homotopy property (5.1) reduces to

WP = WE+ W2,

Polydifferential operators associated to a graph.
Let us consider, for given positive integers n and m, the set G, ,, of directed graphs

described as follows:

(1) there are n vertices of the “first type”, labeled by 1,...,n;

(2) there are m vertices of the “second type”, labeled by 1,...,m;

(3) the vertices of the second type have no outgoing edge;

(4) there are no loop (a loop is an edge having the same source and target) and no double

edge (a double edge is a pair of edges with common source and common target);

Let us define 7 = idy, — idy, € V* ® V, and let it acts as a derivation on S(IIV) @ S(V*)
simply by contraction. In other words, using coordinates (x%); on V and dual odd coordinates
(0;); on IIV* one has

T= Z(—l)'x“a@i ® Oyi
This action naturally extends to S(V*@IIV)®S(V*®IIV) (the action on additional variables
is zero). For any finite set I and any pair (i, j) of distinct elements in I we denote by 7;; the

51t is the first structure map of Kontsevich’s tangent Loo-quasi-isomorphism [22].
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endomorphism of S(V* @ IIV)®! given by 7 which acts by the identity on the k-th factor
for any k # 1, 5.

Let us then chose a graph I" € G, ,,,, polyvector fields v1, ..., 7 € TpolyV = S(V* @ IIV),
and functions fi,..., fm € Oy C S(V* @IIV). We define

(5.4) Bp(ﬂyl,...,'yn)(fl,...,fm)::e(u( I1 Tij(%®...®%®fl®...®fm)))7

(4,5)€€(T)

where £(T') denotes the set of edges of the graph T, yu : S(V* @ TIV)®(+m) — S(V* ¢ TIV)
is the product, and € : S(V*@TIV) — S(V*) = Oy is the projection onto 0-polyvetcor fields
(defined by 6; — 0).

Remark 5.7. (a) If the number of outgoing edges of a first type vertex i differs from ||
then the r.h.s. of(5.4) is obviously zero.

(b) We could have allowed edges outgoing from a second type vertex, but in this case the
r.h.s. of (5.4) is obviously zero.

(c) There is an ambiguity in the order of the product of endomorphisms 7;;. Since each
Ti; has degree one then there is a sign ambiguity in the r.h.s. of (5.4). Fortunately the

same ambiguity appears in the definition of the weights Wr and Wr, insuring us that the

expression (5.2) and (5.3) for Uy and Hg are well-defined.
Example 5.8. Consider three polyvector fields v, = ﬂjk@-@j@k, Yo = 7%176‘1917 and 3 =
v479,0,., and functions f1, fo € Oy. If ' € G3 5 is given by the Figure 1 then

Br(y1,72:713) (1, f2) = £ 1" (00478 ) (0573") (00f1) (9 0O f2)

Figure 1 - a graph in G3»
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6. CONFIGURATION SPACES AND INTEGRAL WEIGHTS

The main goal of this section is to define the weights Wr appearing in the defining formula
(5.2) for Ug. These weights are defined as integrals over suitable configuration spaces of
points in the upper half-plane. We therefore introduce these configuration spaces, and also
their compactifications a la Fulton-MacPherson, which insure us that the integral weights
truly exists. Furthermore, the algebraic identities illustrated in Sections 7 and 8 follow from
factorization properties of these integrals, which in turn rely on Stokes’ Theorem: thus, we
discuss the boundary of the compactified configuration spaces.

6.1. The configuration spaces C:; me

We denote by ‘H the complex upper half-plane, i.e. the set of all complex numbers, whose
imaginary part is strictly bigger than 0; further, R denotes here the real line in the complex
plane.

Definition 6.1. For any two positive integers n, m, we denote by Conf:;m the configuration
space of n points in H and m points in R, i.e. the set of n + m-tuples

(217---727“(]17---7%71) EHnXRmu
satisfying z; # z; if i # jand ¢1 < -+ < gm.

It is clear that Confj;m is a real manifold of dimension 2n + m.

We consider further the semidirect product G5 := RT xR, where RT acts on R by rescaling:
it is a Lie group of real dimension 2. The group Ga acts on Confj;m by translations and
homotheties simultaneously on all components, by the explicit formula

((a7b)’(Zl""7zn’q17"'7qm))’—>(azl+b""7azn+b7aq1+b7""aqm+b)7
+ .

n,m?

for any pair (a,b) in Ga. It is easy to verify that Gy preserves Conf easy computations
also show that G acts freely on Conf:;m precisely when 2n + m > 2. In this case, we may
take the quotient space Confj{)m /G2, which will be denoted by C,t m. in fact, we will refer

to it, rather than to Conf) | as to the configuration space of n points in H and m points

n,m?

in R. Tt is also a real manifold of dimension 2n + m — 2.

Remark 6.2. We will not be too much concerned about orientations of configuration spaces;
anyway, it is still useful to point out that C;7  is an orientable manifold. In fact, Conf:;m

n,m

is an orientable manifold, as it possesses a natural volume form,
Q:=dxy ANdyy A --- Ndxy ANdyp Ndgr A - - dgpm,

using real coordinates z = x + iy for a point in H. The volume form 2 descends to a
volume form on C’,;L) m: this is a priori not so clear. In fact, the idea is to use the action
which

for different choices of my and mq. The orientability

of Gy on Conf::_’m to choose certain preferred representatives for elements of C,f,
+

mny,my?

of Conf} ,, implies the orientability of C;, ; we refer to [3] for a careful explanation of

involve spaces of the form Conf

choices of representatives for C;f' = and respective orientation forms.
We also need to introduce another kind of configuration space.

Definition 6.3. For a positive integer n, we denote by Conf,, the configuration space of n
points in the complex plane, i.e. the set of all n-tuples of points in C, such that z; # z; if
i 7.

It is a complex manifold of complex dimension n, or also a real manifold of dimension 2n.

We consider the semidirect product G5 = R x C, which is a real Lie group of dimension
3; it acts on Conf,, by the following rule:

((a,b),(z1,...,20)) — (az1 +b,...,az, +b).
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The action of G35 on Conf,, is free, precisely when n > 2: in this case, we define the (open)
configuration space C,, of n points in the complex plane as the quotient space Conf, /Gs,
and it can be proved that C, is a real manifold of dimension 2n — 3. Following the same
patterns in Remark 6.2, one can show that C,, is an orientable manifold.

6.2. Compactification of C,, and C;,, a la Fulton-MacPherson.

In order to clarify forthcoming computations in Section 8, we need certain integrals over
the configuration spaces C’,J{) m and Cp: these integrals are a priori not well-defined, and we
have to show that they truly exist. Later, we make use of Stokes’ Theorem on these integrals
to deduce the relevant algebraic properties of Ug: therefore we will need the boundary con-
tributions to the aforementioned integrals. Kontsevich [22] introduced for this purpose nice
compactifications U:;m of C;f,,, which solve, on the one hand, the problem of the existence of

such integrals (their integrand extend smoothly to 6:1,”, and so they can be understood as

integrals of smooth forms over compact manifolds); on the other hand, the boundary strati-

fications of Uz)m and C,, and their combinatorics yield the desired aforementioned algebraic
properties.

Definition and examples.
The main idea behind the construction of O, and C,, is that one wants to keep track

n,m
not only of the fact that certain points in H, resp. in R, collapse together, or that certain
points of H and R collapse together to R, but one wants also to record, intuitively, the
corresponding rate of convergence. Such compactifications were first thoroughly discussed
by Fulton—-MacPherson [15] in the algebro-geometric context: Kontsevich [22] adapted the
methods of [15] for the configuration spaces of the type C:; m and Ch,.

We introduce first the compactification C,, of C,,, which will play an important role also
in the discussion of the boundary stratification of 6:1,”. We consider the map from Conf,,
to the product of n(n — 1) copies of the circle S*, and the product of n(n — 1)(n — 2) copies
of the 2-dimensional real projective space RPP?, which is defined explicitly via

N arg(zj — z;

(zl,...,zn)@H% X H lzi — 2] |2 — 2kl t 125 — 2] -
i#j i#, I

tn, descends in an obvious way to C),, and defines an embedding of the latter into a compact

manifold. Hence the following definition makes sense.

Definition 6.4. The compactified configuration space C,, of n points in the complex plane
is defined as the closure of the image of C,, w.r.t. ¢,, in (S1)*("=1) x (RP?)*(n—1(n=2),

Next, we consider the open configuration space C:; m- First of all, there is a natural
imbedding of Conf;r)m into Confay, 4, which is obviously equivariant w.r.t. the action of G,

bn,m

(Zlu'"7Z7l7q17"'7Q7n)’—> (217'"7Zn72_17"'7%7q17"'7Qm)'

Moreover, ¢, descends to an embedding C;7,, — Can+m.® We may thus compose v},

with t9,4m in order to get a well-defined imbedding of C;t, into (S1)Zntm)@ntm=1)

n,m

(RP?)@ntm)@ntm—1)(2n+m=2) "which justifies the following definition.

Definition 6.5. The compactified configuration space U:;m of n points in H and m ordered
points in R is defined as the closure of the image w.r.t. to the imbedding t2y+m © L;m of
C+  into (Sl)(2n+m)(2n+mfl) X (RPQ)(2n+m)(2n+m71)(2n+m72).

n,m

670 see this, first remember that G3 = G2 XR, and then observe that any orbit of R (acting by simultaneous

imaginary translations) intersects L;‘;m (Confzym) in at most one point.
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We notice that there is an obvious action of &,,, the permutation group of n elements, on
C,, resp. Ct . by permuting the points in the complex plane, resp. the n points in H: the

n,m?
action of &,, extends to an action on C,, and GZM. Thus, we may consider more general
configuration spaces C4 and C g, where now A (resp. B) denotes a finite (resp. ordered)

subset of N; they also admit compactifications C' 4 and 62 5, which are defined similarly as
in Definition 6.4 and 6.5.

Another important property of the compactified configuration spaces C' 4 and 62 g has to
do with projections. Namely, for any non-empty subset A; C A (resp. pair A1 C A, By C B
such that A;UB; # () there is a natural projection 74, 4, (resp. 7(a,4,),(B,B,)) from C4 onto
Ca, (resp. from C4 g onto Ca, p,) given by forgetting the points labelled by indices which
are not in Ay (resp. not in A; U By). The projection m(4 4,) (resp. m(4,4,),(B,B,)) extends
to a well-defined projection between C 4 and 6,41 (resp. 6,473 and 6,41731). Moreover, both
projections preserve the boundary stratifications of all compactified configuration spaces
involved.

Finally, we observe that the compactified configuration spaces C,, and UIM inherit both
orientation forms from C,, and C,t m respectively; the boundary stratifications of both spaces,
together with their inherited orientation forms, induce in a natural way orientation forms on
all bo%rndary strata. We neglect here the orientation choices of the boundary strata of C,
and C

n,m?

referring to [3] for all important details.

Examples 6.6. (i) The configuration space Cyj,,, can be identified with the open (m — 2)-
simplex, consisting of m — 2-tuples (qi, ..., gm—2) in R™~2, such that

0<qgi < - <gm-2<1

This is possible by means of the free action of the group G2 on Conf&m, m > 2, namely

by fixing the first coordinate to 0 by translations and rescale the last one to 1. However,

the compactified space 6:; m> for m > 3, does not correspond to the closed simplex A,,_s:

the strata of codimension 1 of A,,_o correspond to the collapse of only two consecutive
+

0,m

number of points. Uam actually is the (m — 2)-th Stasheff polytope [31].

coordinates, while the strata of codimension 1 of C, comprise the collapse of a larger

(ii) The configuration space Cff , can be identified with an open interval: more precisely,
by means of the action of G5 on Conffl, we can fix the point ¢; in R to 0 and the modulus
of the point z; in H to be 1. Hence, Cffl =~ S NH 20, 1[. The corresponding compactified

configuration space 6{1 is simply the closed interval [0, 1]: in terms of collapsing points, the
two boundary strata correspond to the situation where the point z; in H tends to the point
g1 in R (from the left and right).

(iii) The configuration space C can be identified with S1: by means of the action of the
group GG3 on Confs, e.g. the first point can be fixed to 0 and its distance to the second point
fixed to 1. Thus, Cs = Cy = S1.

(iv) The configuration space C5, can be identified with H ~ {i}: by means of the action of
G2, we can fix e.g. the first point p; in H to i. The corresponding compactified configuration

space 6;0 is often referred to as Kontsevich’s eye: in fact, its graphical depiction resembles
to an eye. More precisely, the boundary stratification of 6;0 consists of three boundary
faces of codimension 1 and two boundary faces of codimension 2. In terms of configuration
spaces, the boundary faces of codimension 1 are identified with C; = S* and 6{1 =~ [0,1],

while the boundary faces of codimension 2 are both identified with 68: , = {0}: the face Cq,

resp. 6{1, corresponds to the collapse of both point z; and z2 in H to a single point in H,
resp. to the situation where one of the points z; and z; tends to a point in R, while both faces
of codimension 2 correspond to the situation where both p; and ps tend to distinct points
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in R. Pictorially, the boundary stratum Cy corresponds to the pupil of Kontsevich’s eye;

the boundary strata 611 correspond to Kontsevich’s eyelids, and, finally, the codimension 2
strata to the two intersection points of the two eyelids.

For the sake of simplicity, from now on, points in H, resp. R, are said to be of the first,
resp. second type.

Description of a few boundary components.

Now, for the main computations of Section 8, we need mostly only boundary strata of
codimension 1 and, in Subsection 7.3, particular boundary strata of codimension 2 of 6:1,”:
we list here the relevant boundary strata of codimension 1 and of codimension 2, which are
needed. For the boundary strata of codimension 1, we are concerned with two situations:

1) For a subset A C {1,...,n}, the points z; of the first type, i € A, collapse together
to a single point of the first type; more precisely, we have the factorization of the

boundary stratum

-+ = -+
8AC’n,m =Ca X Onf\A\Jrl,m;

here, 2 < |A| denotes the cardinality of the subset A. Intuitively, C'4 describes the

configurations of distinct points of the first type in U:;
point of the first type.

i1) For a subset A C {1,...,n} and an ordered subset B C {1,...,m} of consecutive
integers, the points of the first type z;, i € A, and the points of the second type
¢; in R collapse to a single point of the second type; more precisely, we have the
factorization

m Which collapse to a single

—+ —+ —+
aAqBC’n,vn = CA,B X Cn—|A|,m—\B|+l'

Intuitively, 62 p describes the configurations of points of the first type and of the
+

n,m>

second type in C which collapse together to a single point of the second type.

As for the codimension 2 boundary strata, which will be of importance to us, we have the
following situation: there exist disjoint subsets A;, As of {1,...,n}, and disjoint ordered
subsets By, Bs of {1,...,m} of consecutive integers, such that the corresponding boundary
stratum of codimension 2 admits the factorization

—+ —+ —+
C 41,8 X Cay,By X Crnmj Ay |~ | Asl,m—| By |~ | Bs | +2-

Intuitively, 6;1) B, and UI% B, parametrize disjoint configurations of points of the first and
of the second type, which collapse together to two distinct points of the first type. We will
write later on such a boundary stratum a bit differently, namely, after reordering of the
points after collapse, the third factor in the previous factorization can be written as 6;3) By
for a subset Az of {1,...,n} of cardinality n — |A;| — |A2|, for an ordered subset Bs of
{1,...,m} of cardinality m — |By| — | B2| + 2.

6.3. Directed graphs and integrals over configuration spaces.

The standard angle function.

We introduce now the standard angle function”. For this purpose we consider a pair of
distinguished points (z,w) in H UR and we denote by ¢(z,w) the normalized hyperbolic
angle in H LU R between z and w; more explicitly,

(zw)—iar -z
Pz 27 & w—2)"

7As observed by Kontsevich [22] one could in principle choose more general angle functions, starting from
the abstract properties of the standard angle function.
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Observe that the assignement C5 3 (z,w) — ¢(z, w) € S* obviously extends to a smooth
map from 6; o to S, which enjoys the following properties (these properties play an impor-
tant réle in the computations of Sections 7 and 8):

i) the restriction of ¢ to the boundary stratum Cy = S' equals the standard angle
coordinate on S' added by 7

1) the restriction of ¢ to the boundary stratum 6{1, corresponding to the upper eyelid
of Kontsevich’s eye, vanishes.

We will refer to ¢ as to the angle function.

Integral weights associated to graphs.

We consider, for given positive integers n and m, directed graphs I' with m + n vertices
labelled by the set £(T) = {1,...,n,1,...,m}. Here, “directed” means that each edge of I’
carries an orientation. Additionally, the graphs we consider are required to have no loop (a
loop is an edge beginning and ending at the same vertex).

To any edges e = (i,5) € E(I") of such a directed graph I', we associate the smooth map

Pe : C’r—:m —>Sl7 (217"'7ZR7ZT7"'72W) — @(Zluz])a

which obviously extends to a smooth map from UIM to S.
To any directed graph T' without loop and with £(T') = {1,...,n,1,...,m} as set of
vertices, we then associate a differential form

(6.1) wr = /\ depe

ecg(I)
on the (compactified) configuration space U:;m.

Remark 6.7. We observe that, a priori, it is necessary to choose an ordering of the edges
of I since wr is a product of 1-forms: two different orderings of the edges of I" simply differ
by a sign. This sign ambiguity precisely coincide (and thus cancel) with the one appearing
in the definition of Br, as it is pointed out in Remark 5.7.

We recall from Subsection 6.1 and 6.2 that C. . is orientable, and that the orientation

n,m

of C’,J{) m Specifies an orientation for any boundary stratum thereof.

Definition 6.8. The weight Wr of the directed graph I is

(62) WF = wr.
5+

n,m

Observe that the weight (6.2) truly exists since it is an integral of a smooth differential
form over a compact manifold.

Vanishing lemmatas.
It follows immediately from the definition of Wr that it is non-zero only if

e the cardinality of £(T") equals 2n +m — 2 (i.e. wr is a top degree form),
e I' has no double edge (i.e. two edges with the same source and same target),
e second type vertices do not have outgoing edges.

In particular, Wr is non-zero only if I' € Gy, 1.
For later purposes, we need a few non-trivial vanishing Lemmata concerning the weights,
which we use later on in Sections 7, 8 and 9.

Lemma 6.9. IfI' in G, ., has a bivalent vertex v of the first type with exactly one incoming
and ezxactly one outgoing edge (see Figure 2), then its weight Wr vanishes.
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Figure 2

We observe that the target of the outgoing edge may be of the first or of the second type,
while the source of the incoming edge must be of the first type.

Sketch of proof. We consider exemplarily the case, where both vertices v; and vy are of the
first type; the corresponding points in U::)m are denoted by z; and zy respectively.
Using Fubini’s Theorem, we isolate in the weight Wr the factor

(6.3) / dpe, A dge, -
H~{z1,22}

The rest of the proof consists in showing that (6.3) vanishes.

We observe that (6.3) is a function depending on (z1,22). We first show that it is a
constant function. Namely, (6.3) is the integral along the fiber of the integrand form w.r.t.
the natural projection 6;0 5 6;0 i (21, 22, 23) — (21, 22): independence of z; and 29 follows
by means of the generalized Stokes” Theorem

d(Tr* (d</781 A d‘/)82)) = 7, (d(dw(vhv) A d‘/)(v,vg))) + Tox (d@el A d‘/)82) )

where the second term on the right hand-side corresponds to the boundary contributions
coming from fiber integration. Since the integrand is obviously closed, it remains to show
the vanishing of the boundary contributions. It is clear that there are four boundary strata
of codimension 1 of the fibers of 7, namely, when 4) the point z (corresponding to the vertex
v) approaches z; or zs, i) when z approaches R, and 4ii) when z tends to infinity (which
must be viewed as a half-circle, whose radius tends to infinity). The properties of the angle
function imply that the contributions coming from ¢i) and ¢i¢) vanish, and that the two
contributions coming from ) cancel together.

Hence, we may choose e.g. z;1 = i and z3 = 2i: for this particular choice, the involution
z +— —Z of H~ {i, 2i} reverses the orientation of the fibers, but preserves the integrand form,
whence the claim follows. O

Lemma 6.10. For a positive integer n > 3, the integral over C,, of the product of 2n — 3
forms of the type d(arg(z; — z;)), @ # j, vanishes.

Proof. The proof relies on an analytic argument, which involves a tricky computation with
complex logarithms; for a complete proof we refer to [22] and [20] (see also [9, appendix]). O
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7. THE MAP Uy AND ITS PROPERTIES

In this section we stress out and prove remarkable properties of the map Ug defined by
the formula (5.2). Namely, we first prove that Ug is a quasi-isomorphism of complexes, and
we then give, for any polyvecor fields «, 3, explicit formulae for Ug(a A B) and Ug (o) Ulg(B)
in terms of new weights associated to graphs.

The proof follows closely the treatment of Manchon and Torossian [26], and strongly uses
the remarkably rich cominatorics of the boundary of the compactified configuration spaces
introduced in the previous section.

7.1. The quasi-isomorphism property.
This Subsection is devoted to the proof of the following result.

Proposition 7.1. The map Ug : TpolyV — DpolyV defined by equation (5.2) is a quasi-
isomorphism of complexes, in the sens that for any polyvector field o

(7.1) Ug(Q - a) = (du + Q) Ug(a)) ,
and Ug induces an isomorphism of graded vector spaces on cohomology.

Sketch of the proof. We first sketch the proof of equation (7.1). The fact that it induces an
isomorphism in cohomology then follows from a straightforward spectral sequence argument.

Let I € Gy 41,m+1 be a graph with 2n + m edges, the first type vertex 1 having exactly
m outgoing edges, and all other first type vertices having a single outgoing edge. We then

apply the Stokes’” Theorem
/ wr = / dwp =0.
oc cr

n+1,m+1
and discuss the meaning of the following resulting identity: for any poly-vector field o with
m arguments, and any functions f1,..., fi+1,

> % (/er)Br(a7Q7.-.7Q)(f17.-.7fm+1)=0'

I'eGnii,ms1

n+1l,m-+1

n times

Here C' runs over all codimension 1 boundary components of 6: +1,m+1, and the sign de-

pends on the induced orientation from UZ +1,m+1- We now discuss the possible non trivial
contributions of each bouldary component C. Using Fubini’s Theorem we find (up to signs
coming from orientation choices) the following factorization property:

(7.2) / wr _/ wpmt/ wFout’

mt
where I'ipt (resp. Iout) is the subgraph of I' whose edges are those with both source and target
lying in the subset of collapsing points (resp. is the quotient graph of I" by its subgraph I'iy).

Let us begin with the boundary components of the form C = 6A€:+1)m+1 (with |A4] > 2).
It follows from the vanishing Lemma 6.10 that there is no contribution if |A| > 3. If |A| = 2
then Iy, consists of a single edge and the first factor in the factorization on the r.h.s. of
(7.2) equals 1. There are two possbilities:

e cither 1 ¢ A and thus, taking the sum of the contributions of all graphs I" leading to
the same pair (T'int, Lout), One obtains something proportional to

WFolltBFOut(a7Q7'"7QOQ7'"7Q)(f17"'7fm+1) =0.

=0
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e or 1 € A and thus, again taking the sum of the contributions of all graphs I' leading
to the same pair (Diyt, Lout), and adding up the terms coming from the same graphs
I" after reversing the unique arrow of I'i,;, one obtains

(7'3) WFoucBFouc(Q'an?"'?Q)(flv"wfm-i-l)'
—_——

n—1 times

We then continue with the boundary components of the form C = 04, 36: +1,m+1- Again
there are two possibilities:
e cither 1 ¢ A and thus 2|A| + |B| — 2 = |A|, i.e. |A| + |B| = 2. Hencefore the graph
I'int can belong to one of the following three types:

1~

i ir1

Summing the contributions of all graphs leading to the same pair (T'int, Lout), one
obtains

(74) Wl—‘oucBl—‘out (Oé, Q7 .. '7Q)(f17 .. '7fifi+17 o '7fm+1)
———

n times

for the first type of graphs, and
(75) WFOutBl—‘out(aa Q7 ey Q)(f17 ) Q : fi7 LR fm-l—l)
——

n—1 times
for the second one. The third type of graph does not contribute since its weight is
zero thanks to the vanishing Lemma 6.9.
eorle Aandthus2(n+1—|A]))+m—|Bl=n+1—]A], ie |A|+|B|=n+1+m.
Hencefore 'y, must be one the following two graphs:

.

T 2 1
)

The corresponding contributions (after summing over graphs leading to the same
decomposition) respectively are

(76) Wf‘im leFim(anw"7Q)(f27"'7fm+1)iBFim(aaQw"?Q)(fla"wfm)fm-i—l
—— ——

n times n times

for the first one and

(7'7) WFian' BFint(a7Q7"'7Q)(fl7'"7fm+1)
——

n—1 times
for the second one.

We now summarize all non trivial contributions: (7.4) gives the Lh.s. of equation (7.1),
(7.6) together with (7.4) gives dullg(ca), and (7.7) together with (7.5) gives @ - Ug(e).
Therefore equation (7.1) is satisfied and it remains to prove that Uy induces an isomorphism
on the level of cohomology. To do so we consider the mapping cone Cé of Ug together with
the decreasing filtration on it coming from the grading on T},o1,V and Dpo, V' induced by
the degree we have denoted by | - | in Section 5. The zero-th term of the corresponding
spectral sequence is given by the mapping cone of the Hochschild-Kostant-Rosenberg map
Inkr : (TpoyV,0) — (DpolyV, dr), and thus E; = {0} (as Iykr is a quasi-isomorphism).
This ends the proof of the Proposition. (I
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7.2. The cup product on polyvector fields.
In this Subsection, we consider the cup product between any two polyvector fields a and
B: we want to express the result of applying (5.2) on the cup product a A 8 in terms of

integral weights over a suitable submanifold Z, C @f +2.m that we define now.

We recall from Subsection 6.2 that the compactified configuration space 6; o can be
pictured as Kontsevich’s eye. We choose a point x € Cy C @f +2,m- Furthermore, for any
two positive integers n and m we consider the projection F' := 7 519 from 6:+27m onto
6; 0, using the same notations as in Subsection 6.2. Then we denote by Zy the submanifold

of 6:+2,m given by the preimage w.r.t. F' of the point x; accordingly, to a graph I" € G, 12,
we associate a new weight W2 given by

0 ._
WF —/ wr,
Zy

using the same notations as in paragraph 6.3.

Proposition 7.2. For any two polyvector fields o and 3 on V', the following identity holds
true:

(7.8) uQ(omﬂ):Z% > WPBr(a.5,Q,...,Q).

n>0 " IeGnia,m n times

Notice in particular that the r.h.s. of (7.8) does not depend on the choice of z € Cs.
Proof. We split the proof into many substeps.

Lemma 7.3. If, in a graph I' € G, 12.m, the two vertices of the first type labelled by 1 and
2 (corresponding to where the polyvector fields o and (3 have been put) are linked by at least
one edge, then WY vanishes.

Proof. The main argument of the proof is that Z; intersects non-trivially only those bound-
ary strata of codimension 1, where a certain number of points of the first type in UZ tom
collapse to a point of the first type. Recalling the arguments at the end of Subsection 6.2,
such boundary strata are of the form 8,46:;2)7” > 04 x 6:—\A\+3,m’ A being a subset of
{1,...,n + 2} of cardinality |A| > 2. Moreover, since x lies in Cs, such boundary strata
correspond to subsets A, which contain both vertices labelled by 1 and 2.

Using Fubini’s Theorem, we find (up to signs coming from orientation choices) the follow-

ing factorization of W:
[ = fon [

20M0aT s, 20NCa T)_|414am
Here we keep the same notation as in the previous Subsection for I'jy; and T'oy;. We also
observe that, since € Ca, then Zy N (C 4 x 6:—\A\+3,m) is a product C” x 6:_‘A‘+3)m, with
C’" C C 4. By abuse of notation, and for the sake of simplicity, we have wrote Zo N C 4 for

the submanifold C’ in C' 4. We use this notation many times below.

If there is at least one edge connecting 1 and 2, which correspond in Zj to the fixed point x
inCy C 6;0, then, in the form wr,,,, there is at least one 1-form of the type d(arg(z2—z1)) or
d(arg(z2 —z1)) (using the notations from Subsection 6.1), which vanish, since the arguments
remains constant in Zy N C4. Hence, the claim follows. O

Lemma 7.4. If the graph I' € Gy y2,m contains no edge connecting the vertices of the first
type 1 and 2, then
WE = Wk,

where T is the graph in Gpi1,m obtained from I' by collapsing the vertices 1 and 2.
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Proof. We recall from Lemma 7.3 that Z, intersects non-trivially only boundary strata of

the form C'4 x U:,‘A‘Hﬁm, where A is a subset of {1,...,n + 2} and containing 1 and 2.
Using again Fubini’s Theorem, we obtain

(79) Wg - /wF = / Wit / Wrout -

—+ — +
ZOmaAC71+2,m ZoﬂCA Cnf\AH»S,m

The points corresponding to the vertices 1 and 2 of the first type are fixed by assumption.

By dimensional reasons, the only (possibly) non-trivial contributions to the first factor
in the factorization on the right hand-side of (7.9) occur only if the degree of the integrand
wr,,, equals 2|A] — 4. The corresponding integral vanishes by the the arguments in the proof
of Kontsevich’s Lemma 6.10, for which we refer to [22]: suffice it to mention that, in the
proof in [22], Kontsevich reduces the case of the integral over C,, of a product of 2n — 3
forms to the case of the integral over a manifold of the form Z, N C,, (i.e. he fixes two
vertices) and then he extracts from the integrand the 1-form, corresponding to the edge
joining the two fixed points (i.e. there is no edge between the two fixed vertices). Then,
he shows that the latter integral vanishes by complicated analytical arguments (tricks with
logarithms and distributions): anyway, the very same arguments imply that the first factor
in the factorization (7.9) vanishes.

Hence, we are left with the case |A| = 2, i.e. A ={1,2}: therefore, we obtain, again using

Fubini’s Theorem
)
WP = =
r = wr = Wrine Wy *

Zoﬂa{lﬂ}éhz,m ZoNC> 6:;+1,7n

It is clear that I'yyt is exactly the graph T e Gn+1,m in the claim of the Lemma. On the
other hand, by properties of the angle function, when restricted to the boundary stratum

Cy, we have
/ wFit)t = 1 )

Zoﬂ62
observing that I'j,; consists of two vertices of the first type, with no edge connecting them.
Thus, we have proved the claim. (Il

We consider now, for a graph T in Gn+1.m and with o, 8 and @) as before, the polydif-
ferential operator Br(a A 3,Q,...,Q), where there are n cohomological vector fields Q. By
the very construction of Br and by the definition of A, we have

Br(@AB,Q,...,Q)= > Br(e,Q,...,Q),
gn+2,m9]~—"_’f
where the sum is over all possible graphs I' in G, 2., which are obtained from r by sepa-
rating the vertices 1 and 2 of the first type without inserting any edge between them; it is
clear that contraction of the vertices 1 and 2 of a graph I' as before gives the initial graph
[. This collapsing process is symbolized by the writing " — L.
We finally compute

> WeBr(anB.Q,....Q) = > > WiBr(e,8,Q,...,Q)

T€Gnii,n T€Gni1,m Gnio,m30—T

= Z Z WgBF(aaﬁan"'vQ)

fegn+l,m Qn+2,m3F>—>f

= Y WMB(.6.Q....Q).

reGni2,m
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The second equality follows from Lemma 7.4, and the third equality is a consequence of
Lemma 7.3. This ends the proof of the Proposition. O

7.3. The cup product on polydifferential operators.

Applying Uq on polydifferential operators a and 3, we may then take their cup product in
the Hochschild complex of polydifferential operators. We want to show that, in analogy with
Proposition 7.2, this product can be expressed in terms of integral weights over a suitable

submanifold Z; of 6: +2,m, that we define now.

Let y be the unique point sitting in the copy of Caf 5 inside 86; o in which the vertex 1
stays on the left of the vertex 2. Then for any two positive integers n and m, using the same

notations as in the previous Subsection, we define Z; := F~1(y) C €:+2,m and

Wi ;:/ wr .
Z

Proposition 7.5. Under the same assumptions of Proposition 7.2, the following identity
holds true:

(7.10) Uolo) Ula(9) = " S WEBra, 5@, Q).

n>0  TEGni2,m n times

Proof. First of all, in the definition of Uy, we may consider only those graphs I' in Gy, 41,m,
which do not contain a bivalent vertex as in the assumptions of Lemma 6.9. Since @ is
a vector field, putting it on a vertex of the first type means that from the chosen vertex
there is only one outgoing edge: the previous observation forces the first type vertices of
T" that are not 1 to have more than one incoming edge. Hence, the only first type vertex
in a contributing graph I' that can be linked to a second type vertex is 1. We denote by
Gn+1,m C Gnt1,m the subset of graphs having this property.
By the very definition of the cup product in Hochschild cohomology, we obtain

1
Ug(a) UUo(B) = D == > WrWrBr,(a,Q,...,Q)Br,(a,Q,...,Q)
E,1>0 kil T1€8541,m, Y Y
F2€§l+1,m2

1
= a7 Wl 2B1 2\ 0,6, ;
Z il Z rur, Brour, (o, 6, Q Q)

k>0 P1E€Gk1,my
T2€9141,mq

k times ! times

(7.11)

k-1 times

where, for any graphs I'; € g~k+17m1 and I'y € g~l+11m2, we have denoted by I'y U s their
disjoint union: it is again a graph in Gi4i42,m;+m,. Lhe vertices of I'y U’y are re-numbered
starting from the numberings of the vertices of I'; and I's to guarantee the last equality in
the previous chain of identities: namely, denoting by an index ¢ = 1,2 the graph to which
belongs a given vertex labelled by ¢, the new numbering of the vertices of I'y LIT's is

{11,12,21,31,...,(k+1)1,22,32,..., (I + 1)2} .
Lemma 7.6. IfT =Ty LT3 € Gpm, with Ty € Gry1.m, and Ty € Gii1.my, then
WL = Wr, Wr, .
For any other graph I in G, 49 m, Wr = 0.

Proof. 1t follows from its very definition that Z; intersects non-trivially only those bound-

ary strata (?TU: +2.m Of UZ 42.m Of codimension 2 which possess the following factorization,
according to Subsection 6.2:

S — —
CAl;Bl X OAQ;BZ X OA37BS )
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where the vertex 1 and the vertex 2 lie in UZ ..B, and 6X2, B, respectively; finally, the positive
integers n; := |A;| and m, := |B;| obviously satisfy

ny+ng+nyg=n-+2 and my +ma + (M3 —2) =m.

For a graph I' € G, 42 m, we denote by I'} , resp. I'Z,,,

vertices are labelled by A; U By, resp. As Ll Bs, resp. by contracting the subgraphs I'
I'Z | to two distinct vertices of the second type.
Using Fubini’s Theorem once again, we get

(7.12) / wr = /WFH / wpz | / WPy -
+

=+ =+ =+ =
Z1N01C 4o m Cay B, Ca, B,y Cas.By

resp. ['out, the subgraph of I, whose

1
it and

By the properties of the angle function, there cannot be vertices of T'L, or I'Z | from which

departs an external edge, i.e. an edge whose target lies in set of vertices of I'oyt: otherwise,
there would be an edge in I'yy, whose source is of the second type. Hence, since the
polyvector fields o and 3 are respectively associated to vertices in A; LI By and As Ll Bs, then
only copies of () can be associated to the vertices of I'oy;. Therefore the vertices of 'yt have
all exactly one outgoing edge, and consequently 'yt can be only the trivial graph with no
vertex of the first type and exactly two vertices of the second type. In other words, I is the

disjoint union '}, UTZ . Summarizing all these arguments, we get

Wr = / — wr = /7+ wrilnt /—+ wriznt = Wrilnt Wpiznt'
ZlﬁaTCnHYm CAlvBl C

Ag,Bg
For any other graph I, it follows from the previous arguments that Wr = 0. (|
Combining Lemma 7.6 with (7.11), we finally obtain
1
Ug(a) Ullp(B) = > AR > Wrun,Brur, (0, 8,Q,...,Q)
k,0>0 it F1€9%k4+1,m;

k+1 times
T2€9141,mq +

1
:ZE Z WIJ;BF(Q757Q7"'7Q)'
n>0  TE€Gni2,m n times
The combinatorial factor % appears, instead of ﬁ, as a consequence of the fact that the
sum is over graphs which split into a disjoint union of two subgraphs, and we have to take

care of the possible equivalent graphs splitting into the same disjoint union. ([

Remark 7.7. We could have chosen y to be the unique point sitting in the other copy of
CJQ inside 86;0, i.e. the one in which the vertex 2 is on the left of the vertex 1. In this case
Proposition 7.5 remains true if one replaces the Lh.s. of (7.10) by £Ug(8) UUg(a). Since U
is known to be commutative on the level of cohomology, then the choice of the copy of C;,
is not really important. 7
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8. THE MAP Hg AND THE HOMOTOPY ARGUMENT

In this Section we define the weights WF appearing in the defining formula (5.3) for Hg
and prove that, together with Ug, it satisfies the homotopy equation (5.1). We continue
to follow closely the treatment of Manchon and Torossian [26]. To evaluate certain integral

weights, we again need the explicit description of boundary strata of codimension 1 of 6:;7”,
for whose discussion we refer to the end of paragraph 6.2.

8.1. The complete homotopy argument.
We have proved in Subsection 7.2 and Subsection 7.3, that the expressions Ug(a A 3) and
Ug(a) UUg(B) can be rewritten by means of the integral weights over Zy = F~!(z) and

Z; = F~!(y), where we recall that F := 70y : @f%m — 6;0, and x € Cy C 86;0 and
yeCy, C 86; o are arbitrary.

It is thus natural to consider a continuous path v : [0;1] — 6;0 such that  := v(0) € Cs,
y:=7(1) € Cf 5, and 7(t) € C for any t €]0, 1[. We therefore define

Z:=F ' (7(0,1))) C Cpypm-

Its closure Z is the preimage of ([0, 1]) under the projection F. Then the boundary of Z
splits into the disjoint union

(8.1) 0Z = ZgU Z U(ZN T, 5.0)-
The third boundary component will be denoted by Y.

. !

Figure 3 - the path 7 in Kontsevich’s eye
Since, by assumption, (]0,1[) lies in the interior C5, C 6;0, then it follows that Y
intersects only the following five types of boundary strata of codimension 1 of 6: t2.m’

i) there is a subset A; of {1,...,n + 2}, containing 1, but not 2, such that the points
of the first type labelled by A; collapse together to a single point of the first type;

1) there is a subset Ay of {1,...,n 4 2}, containing 2, but not 1, such that the points
of the first type labelled by As collapse together to a single point of the first type;

iii) there is a subset A of {1,...,n+ 2}, containing neither 1 nor 2, such that the points
of the first type labelled by A collapse together to a single point of the first type;

iv) there is a subset A of {1,...,n 4 2}, containing neither 1 nor 2, and an ordered
subset B of {1,...,m} of consecutive integers, such that the points labelled by A
(of the first type) and by B (of the second type) collapse together to a single point
of the second type;

v) there is a subset A of {1,...,n+ 2}, containing both 1 and 2, and an ordered subset
B of {1,...,m} of consecutive integers, such that the points labelled by A (of the
first type) and by B (of the second type) collapse together to a single point of the
second type.

Remark 8.1. We observe that there is no intersection with a boundary stratum for which
there is a subset A of {1,...,n 4 2} such that the points labelled by A collapse together to
a single point of the first type. This is because such a boundary stratum (by the arguments
of Proposition 7.2) intersects non-trivially Zy, and Y, Zy and Z; are pairwise disjoint.
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For a graph I'' € G, 42, we define new weights

ngz/wp, and Wp:/wr,
Y Z

with the same notations as in Definition 6.8 of Subsection 6.3. Stokes’ Theorem implies

/ u)p:/du)p:().
0Z Z

Using the orientation choices for Z, for which we refer to [26], together with (8.1), the
previous identity implies the relation

WP =Wr +WE.

Using Proposition 7.2, Proposition 7.5 and the above identity involving Stokes’ Theorem,
we obtain that the Lh.s. of the homotopy equation (5.1) equals

—Z% S WEBr(a.5,Q....,Q).

n>0  TE€Gnt2,m n times

Hence, to prove that Hg, given by (5.3), satisfies (5.1) together with U, it remains to show
that for fixed n and m, the following identity holds true:

Z W%BF(O&,ﬁ,Q,-.-,Q):_ Z WFdH(BF(a’/B)Q7"'7Q))
Fegn+2,m n times Fegn+2,7n n times

2 " 2 MQ@Br@fQ. Q)+ 3 W(Br(@Qa5Q.. Q)

Fng+1,m Fegn+l,m

n—1 times n—1 times

+=D1 ST W (Br(a,Q - 8.Q, .., Q)

reGn+1,m n—1 times

In the forthcoming Subsection 8.2 we sketch the proof of Identity (8.2). For a more detailed
treating of signs appearing in the forthcoming arguments, we refer to [26].

Summarizing, the sum of (8.3) and (8.4) from paragraph 8.2.1, and of (8.6) from para-
graph 8.2.2, we get the term in (8.2) involving the Hochschild differential of (5.2). The sum
of (8.5) from paragraph 8.2.1 and of (8.7) from paragraph 8.2.2 yields the term with the
action of the cohomological vector field  on Doy V. In paragraph 8.2.3 one obtains the
vanishing of terms which contain the action of @ on itself. Finally, (8.8) and (8.9) from
paragraph 8.2.4 yield the remaining terms in (8.2). Thus, we have proved (5.1).

8.2. Contribution to W3 of boundary components in Y.
The discussion is analogous to the one sketched in the proof of Proposition 7.1.

8.2.1. Boundary strata of type v).
We consider a boundary stratum C of Y of type v): there exists a subset A of {1,...,n+2}
and an ordered subset B of {1,...,m} of consecutive integers, such that

At
C=Zn(CapxCrjal42,m—|Bl+1)-

Accordingly, by means of Fubini’s Theorem, the integral weight of a graph I' € G, 12,
restricted to C, can be rewritten as

WF|C :/ _LA}F = / Wit /LA}FOut
ocZ

<+ +
ZNCH p CrAl+2,m—|B|+1
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Here we have used the same improper notation as in the proof of Lemma 7.3, and, as usual,
Dint (resp. Tout) denotes the subgraph of T' whose vertices are labelled by A U B (resp. the
subgraph obtained by contracting I'i,¢ to a single point of the second type).

The polyvector fields o and 3 have been put on the vertices labelled by 1 and 2, which
belong to A: hence, only copies of the cohomological vector field @ can be put on the first
type vertices of I'oy. In other words, first type vertices of I'oyy have a single outgoing edge.
Then, for the same combinatorial reason as in the proof of Proposition 7.1 Iyt is

i L

either i) ToF or ii) E
In both cases, the integral weight corresponding to I'gy; is normalized, up to some signs
coming from orientation choices (which we will again neglect, as before).

The directed subgraph I'i,¢ belongs obviously to Gp42 m—1, resp. Gny1,m, since in case
i), |A] = n+ 2 and |B| = m — 1, whereas, in case ii), |A| = n+ 1 and |B| = m. Case i),
furthermore, includes two subcases, namely, since |B| = m — 1, and since B consists only
of consecutive integers, it follows immediately that B = {1,...,m — 1} or B = {2,...,m}.
From the point of view of polydifferential operators, the graph 'y, corresponds, in both
subcases of 7), to the multiplication operator, whereas, in case ii), it corresponds to the
action of the cohomological vector field @, placed on the vertex of the first type, on a
function on V, placed on the vertex of the second type.

All these arguments yield the following expressions for the contributions to the left hand-
side of (8.2) coming from boundary strata of type v):

(83) Z iWFfl(BF(avﬁva"'7Q)(f27'-'7f’m))a
P€Gni2,m-1 n times

(84) Z iWF(BF(aaﬁaQw”?Q)(f?u'"7fm))fm7
P€Gni2,m-1 n times

(85) Z iWFQ'(Br(auﬁ7Q7"'7Q)(f17'"7fm))'
reGnyi,m

n—1 times

8.2.2. Boundary strata of type iv).

We consider now a boundary stratum C of Y of the fourth type: in this case, there exists
a subset A of {1,...,n + 2}, containing neither the vertex labelled by 1 nor by 2, and an
ordered subset B of {1,...,m}, such that

At
C=Zn(CupxChia42,m—|Bl+1)

One more, Fubini’s Theorem implies the factorization

WF‘C = / wr = /wpit)t /wrout
C

=+ =+
Cap 2NCh_jAl42,m—|Bl+1

The vertices labelled by 1 and 2, to which we have put the polyvector vector fields « and 3,
are vertices of the graph I'oyt: hence, every first type vertex of I';t has exactly one outgoing
edge. Again, as in the proof of Proposition 7.1 and thanks to the vanishing Lemma 6.9, Ty
can be only of the following two types:

i L

i) Tom and i) i
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In case 1), resp. ii), Lout 1S a graph in Gpy2.m—1, resp. in Gny1.m; in case i), A = ) and
= {z i+ 1} (since points of the second type are ordered), for i=1,...,m, while, in case
z) ={i} and B={j}, fori=1,...,n+2and j =1,.

Up to signs arising from orlentatlon chomes, which we have neglected so far, both integrals
corresponding to 7) and #i) are normalized. The graph Ty corresponds, in terms of the
polydifferential operators Br, to the product of two functions on V', which have been put to
the vertices labelled by i and i + 1, in case 7); on the other hand, in case ii), the graph 'y
corresponds to the situation, where the cohomological vector fields @ acts, as a derivation,
on a function on V, which has been put on the vertex j.

Using all previous arguments, we obtain the following two expressions for the contributions
to the left hand-side of (8.2) coming from boundary strata of type iv):

m—1

(8.6) EWrBr(on 3,Q, .. Q) (f1s oy fifidts s fm)s
;Feg§m1 o m 1 b

(8.7) Z > inBpaB,Q,...,Q)(fl,...,Q-fi,...,fm),

i=1T€Gni1,m n— 1 times

for any collection { f1,..., fm} of m functions on V.

8.2.3. Boundary strata of type iii).
We examine a boundary stratum C of Y of the third type, thus, there is a subset A of
{1,...,n + 2, containing neither the vertex labelled by 1 nor by 2, such that

C=2n(Cax 5:_\A\+3,m)-

The contribution coming from C' to the integral weight is, again by means of Fubini’s The-

orem,
WFIC /(UF - /wrlnt /wrollt

chn |A|4+3,m

Since the polyvector fields a and 8 have been put on the vertices labelled by 1 and 2, which
do not belong to A, it follows that only copies of @ have been put on the vertices of I'iy.
We focus in particular on the integral contributions coming from I'j,t: by Lemma 6.10,
if |[A] > 3, such contributions vanish, whence we are left with only one possible directed
subgraph I'j,¢, namely T’y consists of exactly two vertices of the first type joined by exactly
one edge. The corresponding weight is normalized, by the properties of the angle function.
The graph I'oys is easily verified to be in G,,11,m; the polydifferential operator corresponding
to I'int represents the adjoint action of @) on itself, by its very construction. Since @ is, by
assumption, a cohomological vector field, it follows that such a contribution vanishes by the
property [Q,Q] = %Q o @ = 0. It thus follows that boundary strata of type iii) do not
contribute to the left hand-side of (8.2).

8.2.4. Boundary strata of type i) and ii).

We consider a boundary stratum C of Y of type i). By its very definition, for such a
stratum C there exists a subset A; of {1,...,n+ 2}, containing the vertex labelled by 1, but
not the vertex labelled by 2, such that

C=Z0(Ca % Cp_ assm)-

By means of Fubini’s Theorem, we obtain the following factorization for the integral weight
Wr, when restricted to C,

WF'C :/C(,up: /u}pim /u)pout

—+
Cay ZNC, _al+3,m
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We focus our attention on the integral contribution coming from I'j,¢: as in Subsubsec-
tion 8.2.3, by means of Lemma 6.10, the only possible subgraph I'iy¢ yielding a non-trivial
integral contribution is the graph consisting of two vertices of the first type joined by exactly
one edge, in which case the contribution is normalized (up to some signs, coming from ori-
entation choices, which we neglect, as we have done before). By assumption, one of the two
vertices is labelled by 1 and the other one is labelled by an i = 1,...,n+ 2, i # 2: there are
hence two possible graphs, namely, i) when the edge has, as target, the vertex labelled by 1,
and i7) when the edge has, as source, the vertex labelled by 1. Since the remaining vertex
is not labelled by 2, in terms of polydifferential operators, we have two situations: a copy of
Q acts, as a differential operator of order 1, on the components of the polyvector field «, in
case i), or one of the derivations of the polyvector field « acts, as a differential operator of
order 1, on the components of @, in case ii). Finally, the graph Iy, belongs obviously to
gnJrl,m-

By the previous arguments, and by the very definition of the Lie Xy-module structure
on polyvector fields, the contributions to the left hand-side of (8.2) coming from boundary
strata of type i) can be written as

(88) Z in—‘BF(Q'avﬁaQ?"wQ)'
——

Fe€gnt1m n—1 times

As for boundary strata of Y of type ii), we may repeat almost verbatim the previous ar-
guments, the only difference in the final result being that the role played by the polyvector
field « will be now played by 3, hence the contributions to the left hand-side of (8.2) coming
from boundary strata of type i) are exactly

(89) Z iWFBF(an'ﬂan"'vQ)'
r'eGnii,m

n—1 times

8.3. Twisting by a supercommutative DG algebra.
We consider finally a supercommutative DG algebra (m,dy,): typically, instead of consid-
ering TporyV and Dyl V, for a superspace V' as before, we consider their twists w.r.t. m:

V= TporyV @m and ey V = DporyV @m.

poly poly
Since m is supercommutative, the Lie bracket on Xy determines a graded Lie algebra struc-
ture on X = Xy @ m:

v @ w e v] = (=) o, 0] @ o

Hence, for any choice of a supercommutative DG algebra (m,dy,), there are two graded Lie

y-modules T8, V' and D V. Moreover the differential dm extends naturally to a differ-
ential on T,V and DJ, V. It is easy to verify that the differential dw (super)commutes
with the Hochschild differential dg on D™, V.

poly
We now consider an m-valued vector field @ € Xy} of degree 1 which additionally satisfies
the so-called Maurer-Cartan equation

1n@+ 510.Q) = dn@ + Qo Q = 0.

We observe that, if m = & (with k placed in degree 0) then @ is simply a cohomological
vector field on V' as in Definition 5.2. The Maurer-Cartan equation implies that dy, + Q- is a
linear operator of (total) degree 1 on T}‘)‘:)IYV, which additionally squares to 0; moreover, the
product A on Tpo1yV extends naturally to a supercommutative graded associative product
Aon TRV, and dm + Q- is obviously a degree one derivation of this product. Therefore,

( Il;:)]yva /\a dm + Q)

is a DG algebra.
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One obtains in exactly the same way a DG algebra
( goly‘/: U7 dH + dm + Q) .
Theorem 5.3 can be generalized to these DG algebras as follows.

Theorem 8.2. For any degree one solution @@ € X3} of the Maurer-Cartan equation, the
m-linear map Ug given by (5.2) defines a morphism of complezes
U
( ;:)Iy‘/? Avdm + Q) —Q) ( ;)nolyvu U, dH + dm + Q) ’
which induces an isomorphism of (graded) algebras on the corresponding cohomologies.

Proof. The proof follows along the same lines as the proof of Theorem 5.3, which can be
repeated almost verbatim. The differences arises when discussing

e the morphism property (7.1) for U,
o the homotopy property (5.1) for Uy and Hg.
In both cases one must replace (di + Q-) where it appears in the equation by (dg +dm+@-).

For the homotopy property (5.1), the core of the proof lies in the discussion of the bound-
ary strata for the configuration spaces appearing in (8.2): the relevant boundary strata in
the present proof are those of Subsubsection 8.2.3. We can repeat the same arguments in
the discussion of the corresponding integral weights: using the very same notations as in
Subsubsection 8.2.3, the polydifferential operator corresponding to I';y¢ is one half times the
adjoint action of @ on itself, which, in this case, does not square to 0, but equals (up to
sign) dm@ by the Maurer-Cartan equation. Using the graded Leibniz rule for d, we get
all homotopy terms which contain dy. The discussion of the remaining boundary strata
remains unaltered.

The very same argument also works for the morphism property (7.1). Nevertheless, we
see in the next Section that (7.1) can be obtained as a consequence of the explicit form of
Ug, avoiding the discussion on possible contributions of the boundary components in the
proof of Proposition 7.1. O
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9. THE EXPLICIT FORM OF Ug

In this Section we compute explicitly the quasi-isomorphism Ug (5.2), following closely
[6, Section 8]. Namely, we first argue about the possible shapes of the graphs I" involved in
the construction of Ug: by the way, this was already done, although not as precisely as in
the present Section, in the proof of Proposition 7.5.

9.1. Graphs contributing to Ug.

We now recall that, in (5.2), we need a polyvector field « on the superspace V and a
cohomological vector field Q. We consider a graph I' € G, 41 m, appearing in (5.2): on one
of its vertices of the first type, we put «, while, on the remaining n vertices of the first type
we put copies of Q. Since @ is a vector field, in particular, from any edge, where ) has
been put, departs exactly one edge. Additionally, Lemma 6.9 from Subsection 6.3 implies
that I' cannot contain bivalent vertices of the first type with exactly one ingoing and exactly
one outgoing edge: therefore, a given vertex of the first type, where @@ has been put, has
only one outgoing edge and at least two ingoing edges. In fact, this result implies that any
such vertex has exactly two ingoing edges: one coming from another vertex of the first type,
where () has been put, and the other one coming from the vertex of the first type, where «
has been put.

Summarizing this argument, a general graph I' € G, 41.m, contributing (possibly) non-
trivially to (5.2), is a wheeled tree, i.e. there is a chosen vertex ¢ of the first type, and a
partition of {1,...,n} into k disjoint subsets, such that from ¢ departs m edges, joining ¢ to
the m vertices of the second type of I', and such that to ¢ are attached, by means of outgoing
directed edges, k wheels, the i-th wheel having exactly I; vertices (of the first type).

12 m
Figure 4 - A wheeled tree

For a wheeled tree I' in G, 11, associated to k& wheels, whose length is I;, 1 = 1,...,k,

and Zle l; = n, we denote by ¥;,, i = 1,...,k, resp. A, the i-th wheel with [; vertices,

resp. the graph with exactly one vertex of the first type and m vertices of the second type,

and m edges, whose directions and targets are obvious.

T3 ™
Figure 5 - The wheel ¥;, (left) and the graph A,, (right)

Lemma 9.1. For any positive integer m > 1, the identity holds true

1
Wa, =

m m'
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Sketch of the proof. The configuration space corresponding to the graph A,, is Cff m. by
means of the action of G2, we may e.g. put the only point of first type to i, while the
remaining points of second type remain ordered, and are free to move on the real axis R.

Thus, Uim corresponds to the open infinite m-simplex, consisting of m-tuples of points
(q1,--.,qm) satisfying
—00 < qp < < @y < 0.

On the other hand, the angle function, computed at (i,q), ¢ in R, is easily verified to be

equal to
. 1 9 1 1
©(i,q) = —arg 4 1 = ——arctan| — |,
27 2 q+1 & q

up to some constant angle. Hence, the explicit expression for Wa,, is

2d 2d
Wa,, =7 / Q12/\---/\ q";.

1+4q3 14 ¢q2,
—00<q1 < <Ggm <00

Rewriting the previous expression as a multiple integral over the open infinite m-simplex,
we may perform coordinate transformations on the integrand, which map the open infinite
simplex to the open standard m-simplex: such coordinate transformations map the integrand
function to 1, thus we are left with the volume of the open standard m-simplex, which is
well-known to be %, whence the claim. O

Lemma 9.2. Ifl is an odd integer, then Wy, vanishes.

Sketch of the proof. All vertices of the wheel ¥; are of the first type: the corresponding
configuration space is ClJ,FO' The action of G2 permits to fix, as in the proof of Lemma 9.1,
the central vertex of the wheel to i: hence, Oz+o corresponds to the configuration space of
I — 1 points of the first type, which do not coincide with i. Then, the involution z — —%
extends to an involution of C’fo, which changes the sign of the integrand and preserves the

orientation of C’ﬁo, since [ — 1 is even. O

9.2. Uy as a contraction.

By Lemma 9.2 we are concerned only with wheeled trees whose wheels have an even
number of vertices. In order to compute explicitly the weight of such a wheeled tree I' in
Gn+1,m, we use the action of G5 on C:_FLm to put the central vertex of I' in i, similarly to
what was done in Lemma 9.2. Denoting by C the compactification of C;" +1,m» Where one
point of the first type has been put in i, the weight of I' can be rewritten as

Wr = L </\ d‘P!]i) A /\ d@ei A (/\ d‘Pfi) )
¢ \i=1 j=1 k=1

where the big wedge products are ordered according to the indices, i.e.
n
/\ dpg, = dpg, A--- Adpg,
i=1

and so on. Further, the notations are as follows: g;, resp. e;, resp. fi, denotes the only
edge outgoing from the i-th vertex of the first type (where the vertex labelled by i does not
coincide with the central vertex c), resp. the edge connecting the central vertex ¢ to the j-th
vertex of the first type, resp. the edge connecting the central vertex c to the k-th vertex of
the second type.

At this point, we may use the fact that there is an action of the permutation group

S, C 6,41 On U: +1,m» wWhere &,, contains all permutations which keep the point of the
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first type corresponding to the central vertex ¢ of I' fixed. We choose a permutation ¢ in
such a way that the weight of I" takes the form

Wr = L (/\ d%m-)) A /\ d‘%’em) A </\ d%’pi) .
C \i=1 j=1 k=1

The permutation o is chosen so that for each wheel ¥; of I the i-th vertex of ¥; has the only
outgoing edge g,(; and the two incoming edges g,(;—1) (modulo the length of the wheel) and
eq(i)- After reordering of the differential forms, the weight of I' can be finally rewritten as

> lplg b b
Wr = (—1)1sp<ask /_ /\ d¢ga<z‘1> A /\ d‘Pgm-l) N
=1 =1
(9.1)
lie Ui m
N /\ deg, ;) N /\ deg, ;o | A </\ dgapl) ,
ip=lp_1+1 Je=lp—1+1 k=1

where, again, the ordering of the 1-forms in the big wedge products are w.r.t. the natural
ordering of the indices. In (9.1), l;, ¢ = 1,...,k, denotes the length of the i-th wheel. The
sign in front of the integral comes from the reordering of the wheels. The integrand in (9.1) is
the product of the integrands corresponding to the wheels of I and to A,,: Fubini’s Theorem
(together with Lemma 9.1) implies then the following factorization of the weight of T',
Y LlaWs, - Wy,

— (—1)t<p<a< . —
(9.2) Wr = (—1)tsp<ask - .
Using the same notations for the edges of a wheeled tree ' as in (9.1), the polydifferential
operator corresponding to I' takes the explicit form

Br(e, Q- Q)(f1,-- -, fm) =
——

n times

(8q1(f1)3qm(fm)) ’

where the product is over all wheels of I', and ¢ is the same permutation as before, needed to
reorganize the orderings of the wheels. In order to simplify notations in the previous formula,
we introduce the supermatrix-valued 1-form = € Q' (V)®@End(V[1]), which is explicitly given
by the formula

(9.3) = = d(0,Q) = 0,0:Q;da*,
using (global) supercoordinates {z'} on V.

Then using (9.3) and the supertrace of endomorphisms of a finite-dimensional supervector
space we have the following identity:

Br(o,Q,....,Q)(f1,---y fm) = <o¢;str(Ell)/\~~/\str(Elk) Adfy /\-~/\dfm> ,
———

n times

where (—; —) denotes the pairing between differential forms and polyvector fields on V. The
product between supermatrix-valued differential forms is the wedge product on the form
part and multiplication of supermatrices for the supermatrix-part: then, str(Z') is an I-form
on V. Using the contraction ¢ of polyvector fields w.r.t. differential forms and recalling that
contraction is adjoint to wedge multiplication w.r.t. the pairing (—;—), the expression on
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the right hand-side of the previous identity is (neglecting, as before, any sign contribution)
{a, str(E) A AstrE)Adfi A Adfm)
(9.4) = <Lstr(Ell)/\m/\str(Elk)a; s dfi A A dfm>
= m! (IHKR( bstr(Z1 ) A Astr(E )) (frsees fm)-

Hence, for a wheeled tree I' in G,, 11, as before, using (9.2) for the weight Wr and (9.4)
for the polydifferential operator Br, we get the following simpler expression

(9.5) WrBr(a,Q,...,Q) = Inkr (X, - Xi,)) ,
N —

n times
where we have set
Xh = WELI» Lstr(Eli) .

In order to compute an explicit expression for (5.2), we have to sum over all wheeled trees I’
in Gp41,m. More precisely, we need to take into account the number of graphs isomorphic to
I, for any wheeled tree I' in G, 11,1, since we do not want to count too many wheeled trees.

Since the central vertex of wheeled tree I' is fixed, permutations of the n vertices of the
first type of I' induce isomorphic wheeled trees to I'. On the other hand, denoting by 7; the
number of wheels of length ¢ of ', it is clear that any permutation of the 7; wheels produces
a wheeled tree isomorphic to I'. Further, we have also to keep into account the number of
cyclic permutations of the vertices of each wheel: with the same notations as above, for the
wheel of length i, the number of such permutations, taking into accout that I' contains 7;
wheels of length ¢, is exactly ¢"*. Hence, the number of isomorphic wheeled trees with a
partition of wheels of the form

{1,...,1,2,...,2,...,n,...,n}
—— —— ——
Ti1-times To-times Tp-times
is given by
n!

[Tie, m! Ty i
We only observe that, if a wheeled tree I' belongs to G,,41,m, the maximal size of a wheel of

T" is n, by obvious reasons.
Summarizing all these facts, we find the following explicit expression for (5.2):

IHKR(X Lo X (@) =
(9.6) r;) [T mH I
=Igkr (€X1+%+m+x_gz+m(0‘)) ;

using the previous notations. Further, we may define, for a cohomological vector field @) on
V, a (formal) contraction operator on Tpoly via

1 1
(9.7) O=> —X,=Y ~Ws tu@En,
n>0 n n>0 n

where E is as in (9.3). Thus, using (9.7), we can rewrite finally (9.6) in the considerably
simpler form

(98) Z/IQ(a) = IHKR (69((1)) .
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9.3. The weight of an even wheel.

We observe that the differential form (9.7) acts on the polyvector field o by means of
contraction. At the end, using results of Cattaneo—Felder—Willwacher [34] and Van den
Bergh [32], we can put (5.2) in the form of (9.8), into relationship with the Todd class of V.

Theorem 9.3. The following identity holds true, for any choice of a vector field Q on V':

with Z is the supermatriz-valued 1-form introduced in (9.3); Ber denotes the Berezinian of
the supervector space V , i.e. the superdeterminant of endomorphisms of the superspace V.

vl
il

—e

e

Remark 9.4. The supermatrix-valued differential form is to be understood as

obtained from the power series expansion of the function
t t
ez —e 2
B(t)= —
(="""",
putting = instead of . Actually, the previous result may be restated as the following identity
for formal power series
W, 1
—t"==1
> ot =5loe(BW®).
n>0
where W, is the weight of the standard wheel of length n.

This ends the proof of Theorem 5.3.

Yet another way of computing wieghts of even wheels.

Actually, Theorem 9.3 can be obtained as a consequence of the standard Duflo Theorem
(i.e Theorem 1.2 of the present text). More precisely, Let us consider the case when V' = Ilg
and @ is the cohomological vector field on Oy = A(g*) is given by the Chevalley-Eilenberg
differential, g being a finite dimensional Lie algebras.

On one hand, following what we have done in Subsection 5.2, one obtains that g induces
an isomorphism of algebras S(g)?——U(g)? explicitly given by Ipgw o (€©-), with

1 n
0=>" %Wg%tr(adQ ).
n>0
On the other hand Ippw o (71/2-) also induces an algebra isomorphism S(g)9——U(g)®
(this is precisely the original Duflo Theorem).

We now proceed by induction. Assume that we have proved that in% coincide with
the coefficient by of t2* in the series 3 log (B(t)) introduced in Remark 9.4 for any k < n.®
Observe that since Ippy o (e2-) and Ipgy o (j1/2-) are both algebra ismorphisms from S(g)®
to U(g)?, then the action of the series j1/2¢=© defines an algebra automorphism of S(g)®.

In particular, the first non-vanshing term, which is, thanks to the induction assumption,
1
(bon — %Wg%)tr(ad%) ,

acts as a derivation on the algebra S(g)®.
As it is not true that tr(ad®") acts as a derivation on S(g)¢ for any Lie algebra g (one can
actually check this on sl (C) for N big enough), then one has

1

b2n - %WZQH .

8Coefficients of odd powers of ¢ in B(t) obviously vanish.
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10. FEDOSOV RESOLUTIONS

In this Section we follow [5] in which resolutions of the DG Lie algebras (2% (M, 1Y o1y)s d)
and (Q°*(M, Dy ), dm + 9) are constructed when M is a complex manifold. The differen-
tials in these resolutions will be obtained locally through the action of a cohomological vector
field so that we will be able to use the Duflo isomorphism for @)-spaces to prove Theorem

3.5.

10.1. Bundles of formal fiberwise geometric objects.

In this paragraph we introduce some infinite dimensional bundles that will be of some
relevance in the sequel. These bundles (defined in [5]) are straightforward adaptation, in a
holomorphic context, of the ones introduced by Dolgushev [11] in his approach to the glob-
alization of Kontsevich’s formality theorem. He himself was directly inspired from Fedosov’s
construction [14] of #-products on symplectic manifolds.

All these bundles being made from T”, they all are holomorphic bundles. Here are their
definitions:

e we first consider © := § ((T’ )*), the formally completed symmetric algebra bundle of
(T")*. Sections of O are called formal fiberwise functions on T, and can be written
locally in the following form:

where y* = dz* are even coordinates (formal coordinates in the fibers);
e then consider the Lie algebra bundle 7 := Der(O) of formal fiberwise vector fields
on T’. One has that 7 = O® T, and sections can be written locally in the following

form: 5
v=2 v (At g

k>0
e one also has the graded algebra bundle 7.3, = ALT of formal fiberwise polyvector
fields on T". One has T°

poly =0 ® (A®(T")), and sections can be written locally in
the following form:

z T 9 /\.../\i-
7777 y Oy Oy’

e dualizing w.r.t. (9, one obtains the DG algebra bundle A* = O® (A® (T")*) of formal
fiberwise differentiable forms on T'. Sections have the following local form:

W= Wi (2 D)y Ay A Ay
k>0

One has a fiberwise de Rham differential d/ := dy’ a?ﬁ;
e the bundle D of formal fiberwise differential operators consists of the subalgebra
bundle of End(O) that is generated by O and 7. As a bundle it is O ® (S(1”)) and

thus its sections locally looks like as follows:

aJ1+ i1

J1-- 7]1 .
p= P """ y 8y]1...8y]l !

e we finally consider the graded algebra bundle Dpoly 1= 5D = O @ (®Q S(T")) of
formal fiberwise polydifferential operators. One has to be careful about the following:
while the product in D is given by the composition of operators the (graded) product
in Dpoly is given by the concatenation of poy-differential operators. We let as an
exercise the explicit writting of the local expression of sections of Dp1y.

Observe that the Lie algebra bundle 7 acts on all these (possibly graded) bundles:
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it acts on O by derivations (this is the definition of 7T),
it acts on itself by the adjoint action,

as usual the action on O and 7 can be extended by derivations to an action on Tp'oly,
T also acts on A®* by the (fiberwise) Lie derivative,

it also acts on D by taking the commutator,

as usual the action on O and D can be extended by derivations to an action on D

L[]
poly”
Remark 10.1. Observe that, given a connection V = V’ + 9 compatible with the complex
structure on 7", then one can identify D’ with S(7”). Moreover, this identification com-
mutes with the action of d on both sides (i.e. it is a morphism of holomorphic bundles).
Nevertheless, such an identification does NOT respect the product on both sides (since it is
commutative only on one side).

10.2. Resolutions of algebras.
In this paragraph B (resp. B) will denote any of the O-modules O, 7, Tpory, A, D or
Dpoly (resp. the bundles C,° T, T" , , A(T")*, D’ or D! ;).

poly’ poly
Let us consider the one-form valued fiberwise vector field 0 := dziaiyi, which is nothing
but the identity tensor id € (T")* ® T’, and write § := - for the degree one derivation of

Q*9(M,B), ¢ > 0, given by the action of § on it. It is an obvious fact that §od =0, i.e. §
is a differential.

Proposition 10.2. 1. H?(Q*9(M,B),6) = {0} for p > 0.
2. HO(Q*1(M,B),8) = Q%4(M, B) N (ker 6).

3. In case B is an algebra bundle the previous equality is an equality of algebras.

Proof. This is the Poincaré lemma (see example 1.7) | Namely, we define a degree —1 graded
0%9(M)-linear endomorphism x of Q%9(M, B) as follows: k(1) = 0 and
1

. dt
e (g d2) = y'ea (| Sy 12 T).

where p : Q%(M, B) — Q%4(M, B)N(ker §) is the projection on (0, ¢)-forms that are constant
in the fibers; i.e. p(f(y,dz) = f(0,0). As for the proof of the Poincaré lemma  is a homotopy
operator: it satisfies

(10.1) dok+Kkod=id—iop,

where i : Q%9(M, B) N (ker §) — Q*9(M, B) is the natural inclusion of B-valued (0, q)-forms
that are constant in the fibers into Q*9(M, B).
Finally, in the case B is an algebra bundle ¢ and p are algebra morphisms. (]

Observe that one also has ko r = 0. This fact will be very useful below. Observe
also that § commutes with 0, which means that we have injective quasi-isomorphisms i :
(QO"(M, B) Nker 4, 6) — (Q'(M, B),0 — 5).

One has obvious isomorphisms BN (ker §) = B of holomorphic bundles.!” Nevertheless if
Bis T, resp. D, and B is T’, resp. D’, then it does not respect the Lie bracket, resp. the
product.

We will remedy to this problem in the remainder of this section. More generally we
will perturb 9 — ¢ and i to a new differential D on Q®*(M,B) and a new injective quasi-
isomorphism A : (Q()"(M,B),g) — (Q'(M, B),D) that intertwines the 7'~ and 7 -actions
and respects all algebraic structures.

9Here C is considered as a bundle, the trivial line bundle on M, whose sections are functions on M.

! one needs to use the identification of

101y the case when B is D, resp. Dpoly, and B is D', resp. Dpo1y7

Remark 10.1.
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10.3. Fedosov differential.

We keep the notations of the previous paragraph and assume that V. = V’/ + 0 is a
connection compatible with the complex structure on 7.

Thanks to the pairing between T” and (7")*, V defines a connection compatible with the
complex structure on (77)*: for any v € I'(M,T”) and £ € I'(M, (T")*) one has

(V(&),v) = d{&,v) = (£, V(u)) .
We thAen extend it by derivations to a connection compatible with the complex structure on
O =5((T")*); it it thus locally given by the following formula:
(10.2) V=0+0-dz'T}(z, z)yﬂ'a—yk
Formula (10.2) finally extends to a connection compatible with the complex structure on any

of the bundles B, thanks to the 7-module structure on them. Therefore V defines a degree
one derivation of the graded algebra Q°*(M, B).

Lemma 10.3. One can always assume that ¥V has zero torsion. In this case V§ 4+ dV = 0.

Before proving the lemma we remind to the reader that the torsion of a connection
compatible with the complex structure on 77 is the tensor T € Q%°(M,T’) defined by
T(u,v) := V,v — Viu — [u,v]. Locally one has T} =T}, — T%,.

Proof. Locally the zero torsion condition can be written as follows: l"fj — I‘é?i = 0. Therefore
one sees that a connection compatible with the complex structure on 7" having zero torsion
always exists. Namely, given a covering (U, )q of M by trivializing opens one defines V,, by
taking (T’ )” = 0. Let then (fo)o be a partition of unity and defines V:=3"  f.V

Now we assume V has zero torsion and compute: since d = 9 + d obviously commutes
with § one has

0 0 0
ipk 1 k
Vod+doV= [sz Jak,dzay} = —dz! /\dzJFUa =0

This ends the proof of the lemma. O

From now we assume that V has zero torsion.
Let R = R%? + RY € O?(M, End(( ’)*) be the curvature tensor of V. Then Vo V acts

on Q*(M,B) as —R- = —RLy"*-2 3,7 in other words
KO
oyt
Theorem 10.4. There ezists an element A € QY (M, T>2) as in such that kA = 0 and the
corresponding derivation D :=V — § + A- has square zero: D o D = 0.

1. ; 1 i ; l
—(gdz Aded (R20),;! + dz /\dzJ(Rl’l)ijk)

Before proving the theorem let us observe that there is a filtration on the bundle O that
is given by the polynomial (i.e. symmetric) degree in the fibers (i.e. in y’s). It induces a
filtration on B (including 7). This is the filtration we consider in the statement and proof
of the theorem.

Proof. Since k raises the degree in the filtration there is a unique solution 4 € Q'(M, B) to
the following equation:

(10.3) A=k(—R+VA+ - [A A])
First observe that xox = 0 implies that k(A) = 0. Now let us show that A satisfies equation

(10.4) ~R+VA-G0A+= [A Al =0,
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which obviously implies that D o D = 0. Using (10.1) together with x(A4) = 0 = p(A) one
finds that

(10.5) KOA = K(~R+ VA L[4, A)

Define C := —R + VA — 6A + 3[A, A]. One can rewrite Bianchi identities for V in the
following way: 6R = 0 = VR. Thanks to these equalities and (10.1) on has

VC —6C = (V —5)(%[A,A]) —[R,A]=[VA—6A—R, Al =[C, 4],

where the last equality follows from the (super-)Jacobi identity. Finally, due to (10.5) one
has kC = 0 and thus C = k(VC + [A,C]). Since the operator x raises the degree in the
filtration this latter equation has a unique solution, that is zero. Thus A satisfies (10.4) and
the theorem is proved. O

D is refered to as the Fedosov differential.

10.4. Fedosov resolutions.
We keep the notations of the previous paragraphs.

Theorem 10.5. There exists quasi-isomorphisms € : (Q%*(M, B),0) — (Q*(M, B), D) with
the following properties:

(1) € is QV*(M)-linear;

(2) if B#£T then £ is a graded associative algebra morphism;

(3) if B=Dpoly then commutes with Hochschild differentials and thus becomes a quasi-

isomorphism (QO’*(M, B),0+ dH) — (Q*(M,B),D + dH);

(4) ¢ is compatible with the contraction of polyvector fields by forms.
Proof. We first prove that H*(Q*(M, B), D) = H*(Q%*(M,B) N (kerd),d).

Observe that D = D'+ D", with D’ : Q**(M, B) — Q*T4*(M, B) and D" : Q**(M,B) —
Q** T (M, B), and let us compute the cohomology with respect to D’. We consider the
spectral sequence associated to the filtration given by the degree in the fibers, for which D’
decreases the degree by one. We have d_; = —J. Therefore thanks to Proposition 10.2

E(;’. = E870 = QO’*(M, B) n (keI‘(S) B

and thus H'(Q*(M,B),D’) = H°(Q*(M, B),D’) = Q% (M, B) N (ker D').
Now since the D’-cohomology is concentrated in degree zero then the D-cohomology,
which is the cohomology of the double complex (Q"'(M, B),D’, D”), is

H*(Q*(M, B), D) = H* (HO (2 (M, B), D’),D") — e (QO’*(M, B)N (ker D'), D”) .

We then construct an isomorphism of complexes
A (QU(M,B)N (ker§),0) — (Q%*(M,B)N (ker D'),D").
For any u € Q%*(M, B) such that 6(u) = 0 we define
Au) == u+ m((D' +4) ()\(u))) :

This is well-defined (by iteration) since & raises the filtration degree and D’ + § respects it.
Thanks to k(u) = 0, p(A(u)) = u, k o k = 0 and equation (10.1), one has

/{(D’(/\(u))) - n((D’ +0) ()\(u))) - 11(5(/\(11))) = (\u) — u) — (A(w) —u) =0.

Setting Y := D’(A(u)) one obtains x(Y) = 0 and 6(Y) = (D’ + §)(Y). Therefore using
(10.1) again we see that
Y =k((D"+6)(Y))
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which admits 0 as a unique solution (since  raises the filtration degree). Consequently,
D’ ()\(u)) = 0. X is an isomorphism of graded vector spaces with A=! = p. Moreover p (and
so \) is obviously a morphism of complexes since D" is given by d plus something that raises
the filtration degree.

Finally, composing A with the isomorphism BN (ker §) = B, we obtain the desired quasi-
isomorphism ¢, which is obviously Q°*(M)-linear.

Since BN (kerd) = B is an algebra bundle isomorphism when B is either O, 7pq1y, A or
Dpoly then the second property is satisfied in these cases. Moreover, the fourth property is
also obviously satisfied.

We now consider the situation when B = D.

Lemma 10.6. Let f,g € C®°(M) and u,v € T'(M,T"). Then £(fg) = £(f)l(g), £(fv) =
L)), £(v- f) = L) - £(f) and ([u,v]) = [£(u), £(0)].

Proof of the lemma. There are only two non trivial equalities to check: £(v - f) = £(v) - £(f)
and £([u,v]) = [£(u), £(v)]. First observe that

(€)= o L vomP)  md =t

Then compute:

ou®

) 8
i j k

azi):“a

+y(

() - () = S Olyl) = 7+ Oyl) = - )
and
Y L 0 . Ouk 0
(), ()] = wi (G o ﬂr’wa Z(a =+ uTh) 5z + Olly)
8 k
= ( 9z - ) |y|
0

= [uav]ka—ykJrO(Iyl):f([UW])

The lemma is proved. (|

The algebra of O-differential operators is generated by C°°(M) and T'(M,T’), and the
defining relations are fx g = fg, f*xu= fu,ux f— fru=wu-f and u*xv—v*u=[u,v].
Therefore the lemma proves that £ is an algebra morphism.

Moreover, it implies that for any O-diffferential operator P and any function f one has

U(P(f) = UP)(((S)
This last identity can be used to prove that £ commutes with Hochschild differentials when
B = Dpoly (this is the third property). This ends the proof of the theorem. O

10.5. Proof of Theorem 3.5.
Observe that D is locally given on any holomorphic coordinate chart U by the following
formula:

D=0+0+Qu-,
where Qu € Q' (U, T). The square zero property of D tells us that Qp satisfies the Maurer-
Cartan equation

(0+9)(@Qu) + 5[Qu. Qu] = 0.

One can therefore apply Theorem 5.3 and thus obtain a quasi-isomorphism

Ugy - (Q(Uﬂ'poly),a—i—g) — (Q(U,Dpoly),a—i—g—i—dﬁr)
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that induces an algebra isomorphism in cohomology. Let us remind to the reader that Ug,,
is given by the fiberwise HKR map 7,01y — DPpoly composed with
007

U ))

= d( oy

det (E—U) € @Q’“(U, Ak) (remember that (EU)i
k

eEu/Q_efEU/Q T

acting on Q(U, T,oly). On an intersection U NV the difference Qu — Qv is a linear vector
field, and thus Sy — Zy = 0. In particular Ug, and Ug, coincide on U N V'; one therefore
has a globally well-defined quasi-isomorphism

Ug - (Q(M,Tpoly),8+5) — (Q(M,Dpoly),8+ d+ dH) .
Proposition 10.7. Uqg induces an algebra isomorphism in cohomology.

Proof. On each holomorphic coordinate chart U there is a homotopy Hg,,. On an intersec-
tion U NV one has

HQU(a76) = Z% Z WFBF(Q757QU7"'7QU)

n>0 FGGn+2,m

Z% Z WFBF(aaﬁaQVw--vQV):HQV(O[,ﬁ),

n>0 ’ FEGn+2,7n

where the second equality follow from the fact that WFBF vanishes if at least one argument
is a linear vector field (thansk to Lemma 6.9). We therefore have a globally well-defined
homotopy Hg. (]

Remember that thanks to Theorem 10.5 ¢ defines a quasi-isomorphism
(Qo,*(M, AT @ End(T’))vg) s (Q(M,Ag; End(T)),D) ,

and one can check that it commutes with det. Therefore, to end the proof of Theorem 3.5,
it remains to prove that the class of = is the Atiyah class:

Proposition 10.8. [Z] = aty-.

Proof. A direct computation using the recursion relation (10.3) shows that
1. l i I\ 5 5 O
A= (A= ()i, + 42 (RN )7y 5+ OllyP)

Therefore applying the morphism p (that sends dz® and y® onto zero) to the matrix element

l l
=l d(aﬁ) 424

== dye) =G0

one gets

- i 1 l
P(EL) = dy/dz' ((R")igy, + (R )ar) -
The proposition is proved. O
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APPENDIX A. DEFORMATION-THEORETICAL INTEPRETATION OF THE HOCHSCHILD
COHOMOLOGY OF A COMPLEX MANIFOLD

In this appendix, we discuss, from the point of view of Cech cohomology, an interpretation
of the second Hochschild cohomology group of X in the framework of deformation theory.
This is in a certain sense analogous to the deformation-theoretical interpretation of the
Hochschild cohomology of an associative algebra A given by Gerstenhaber and sketched in
paragraph 2.1.

For a complex manifold X, we denote by D’ boly the holomorphic differential graded algebra
bundle of polydifferential operators on X of type (0, 1), i.e. the local holomorphic sections of
boly are holomorphic differential operators on X; the differential of D’ ,  is the Hochschild
differential, denoted by dg.

poly

Definition A.1. The Hochschild cohomology of the complex manifold X is the total coho-
mology of the double complex

(Q<0 (X, Dhoyy), 0+ dH) .

A.1. Cech cohomology: a (very) brief introduction.
We consider a general sheaf £ of abelian groups over a topological space X . Additionally,
we consider an open covering 4 of X.

Definition A.2. The Cech complez of £ w.r.t. {, denoted by C*(4, &), is defined as
CP(, E) H EUi, N-+-NUs,),

where the product is over all p + 1jtuples of indices for elements of 4, such that all indices
are distinct. The Cech differential ¢ is given explicitly by the formula

p+1

where, to keep notations simple, we have omitted to write down the restriction maps. The
corresponding cohomology groups H® (4L, &) form the Cech cohomology of £ w.r.t. the open
covering .

Thus, a Cech cochain a of degree p consists of a family of local sections of £ over all
non-trivial intersections of distinct open sets in 4. It is possible to show that, in fact, the
Cech complex, as introduced in Definition A.2, is quasi-isomorphic to the Cech complex with
the same differential, but whose cochains satisfy an antisymmetry relation w.r.t. the indices,
i.e. for which we have

Qg (ig),...,o(ip) = (_1)0%‘0,...71})7 0€6pp1.

Further, we see that Cech cohomology depends on the choice of an open covering of X. In
order to define the Cech cohomology H(X,E&) of X with values in £, we need the notion
of refinement of coverings: without going into the details, an open covering U is finer than
i, if for any open subset V; in 2, there is an open subset Uy; in 4, which contains V;.
The notion of refinement of coverings yields in turn a structure of direct system on Cech
cohomology w.r.t. open coverings, thus allowing to define the Cech cohomology H *(X,€) of
X with values in € as the direct limit
H*(X, &) =lim H*(4,€),
st

w.r.t. the direct limit structure sketched above.

For completeness, we cite the (adapted version of the) famous Leray’s Theorem on sheaf
cohomology.
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Theorem A.3 (Leray). If 4 is an acyclic open covering of X, i.e.

Hp(Uioﬂ'-'ﬂUi 5)20, p>1,

q?

and for any non-trivial multiple intersection Uy N --- N U, of open sets in U, then
H*(U4,8) = H*(X,€).

Remark A.4. We may also speak, a bit improperly, of H*(X, &) as of the sheaf cohomology
of X with values in £. More precisely, the sheaf cohomology of X with values in a sheaf £ of
abelian groups is defined by means of the right derived functor of the global section functor,
which, to a sheaf £ of abelian groups, associates the set of its global sections. Then, the
more general version of Theorem A.3 gives an identification between the sheaf cohomology
of X with values in a sheaf & of abelian groups and the Cech cohomology of X w.r.t. an
acyclic open covering of X with values in &£.

A.2. The link between Cech and Dolbeault cohomology: Dolbeault Theorem.

We assume now X to be a complex manifold, and we assume F — X to be a holomorphic
vector bundle over X. We want to build a relationship between Dolbeault cohomology of X
with values in E and sheaf cohomology of X with values in the sheaf £ of local holomorphic
sections of F. For a complex manifold X, we denote by Ox the structure sheaf of X, i.e.
the sheaf, whose local sections are local holomorphic functions on X: the corresponding
holomorphic bundle is the trivial line bundle over X.

First of all, we need a complex version of Poincaré’s Lemma, which we state without
proof, referring e.g. to the 0-th chapter of [17].

Lemma A.5. If U is an open polydisk in C", then
H3(U) = Hg(U) = O(U).

In other words, the Dolbeault complex of a polydisk in C™ is acyclic.
Using Lemma A.5, we get Dolbeault’s Theorem, whose proof we only sketch, referring,
once again, to the 0-th chapter of [17].

Theorem A.6 (Dolbeault). Using the same notations as at the beginning of the Subsection,
we have the isomorphism

H3(X,E) = H*(X,€).
Proof. We consider a sufficiently nice open covering i of X, i.e. an open covering of X by
holomorphic charts of X (e.g. by polydisk charts) and simultaneously by local holomorphic

trivializations of F. Since X is paracompact, the open covering il is also locally finite.
The Cech—Dolbeault double complex of X w.r.t. & with values in F is defined as

(C* (4,99, 6+D),

where QSEQ"') denotes the sheaf of smooth forms of type (0, ) on X with values in E. To the

Cech—Dolbeault double complex we can associate two natural spectral sequences, according

to the two gradations. The “first” degree is the Cech degree, while the “second” degree is
the one coming from the Dolbeault complex.

1) The first spectral sequence is associated to the filtration w.r.t. the second degree.

The 0-the term of the spectral sequence is therefore the Cech complex of Qfg") w.r.t.

41, hence the first term E} is the Cech cohomology of Q(b?"') w.r.t. U, which is localized

in degree 0, since Q(Lg") is a sheaf of smooth forms and X admits a smooth partition
of unity:

By = H(,QF") = H°(,05") = 0O (X, E).
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The corresponding differential d; coincides therefore with the Dolbeault differential

0, and the spectral sequence abuts at the second term Es, which equals then
Ey = Hé(X JE).

i) The second spectral sequence is associated to the filtration w.r.t. the first degree.
The corresponding 0-th term is the Dolbeault complex on multiple non-trivial inter-
sections of open subsets of 4, hence the first term is, by means of Lemma A.5,

Ey=C*(4, Hy) = C*(4,€).

Lemma A.5 can be applied to this situation, since the open sets of U locally trivialize
the holomorphic bundle E. The corresponding differential d; corresponds to the Cech
differential 4. Hence, the spectral sequence abuts also at the second term FEs, which
then equals the Cech cohomology of X w.r.t. {{ with values in £. If, additionally, the
open covering i is acyclic in the sense of Theorem A.3, then the latter cohomology
coincides with the sheaf cohomology of £.

The claim follows then by general arguments on spectral sequences. (Il

We observe that we can consider the more general situation of a differential graded holo-
morphic vector bundle (E*®,dg) over X: Theorem A.6 can be further generalized as

(A1) HY(X, E) = H'(X, €),
where Hé(X , E) denotes the total cohomology of the Dolbeault double complex
(9(07.) (Xa E.)v 3 + dE')

and, denoting by &€ the complex (w.r.t. the differential dg) of sheaves of local holomorphic
sections of E, H*(X, &) denotes the hypercohomology of X with values in €. The latter
cohomology is defined, in this framework, as the total cohomology of the Cech complex
associated to £. Considering the generalization (A.1) of Dolbeault Theorem A.6 to the
differential graded holomorphic vector bundle (D) ,dm) of Definition A.1, whose local
holomorphic sections are, by definition, local holomorphic differential operators on X, we
may use the so-called Cech-Hochschild double complex

(é(ﬂ, Dp01y)v 5 + dH) )

for a sufficiently nice open covering i of X, in order to compute the Hochschild cohomology
of X. Here, Dpo1y denotes the sheaf of holomorphic differential operators on X.

A.3. Twisted presheaves of algebras.

In order to give now a meaningful interpretation, in the framework of deformations of
structures, of the second Hochschild cohomology group of a complex manifold X, we need a
new sheaf-theoretical object. Let X be a general topological space.

Definition A.7. A twisted presheaf F of algebras over X (or, alternatively, an algebroid
stack over X) consists of the following data:

i) an algebra F(U), for any open subset U of X;
i1) a restriction homomorphism py v from F(U) to F(V);
i4i) an invertible element ay v,w of F(W)*, for any three open subsets W C V C U of
X, satisfying the relations

(A.2) pv.w o puy = Ad(ayvw)opuvw, W CV CU,
A3) pu,z(av,v,w)av,w,z = av,w,zav,w,z, ZCW CV CU,

where Ad denotes the adjoint action of invertible elements of an algebra on itself by
conjugation.
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Identity (A.3) is a coherence requirement for the restriction morphism py v, in the fol-
lowing sense: for any four open subsets Z C W C V C U of X, we have

pwzopvwopuyv = pwzoAdlavv,w)opuw
= Ad(pw,z(av,v,w)) © pw,z © pu,w

= Ad(pw,z(av,v,w)) o Ad(av,w,z) © pu,z -

On the other hand, we also have

pw,z o pv,w o puy = Ad(av,w,z) o pv,z o puv
= Ad(avywyz) @] Ad(CLUywyz) [¢] pU,Z .

A usual (pre)sheaf is a twisted presheaf of algebras, where we set ay,y,w = 1, for any three
open subsets W C V' C U. Further, if we assume the twisting elements ay v, to be central
in the corresponding algebras, then the twisted presheaf of algebras F is a usual presheaf of
algebras, endowed with central invertible elements ay,y,w satisfying the coherence relation

(A.3).

Given two twisted presheaves of algebras A and B over the same topological space X, a
morphism ¢ from A to B consists of

i) an algebra morphism ¢y from A(U) to B(U), for any open subset U of X;
i7) an invertible element cyy of B(V)*, for any pair of open subsets V. C U of X,
satisfying the relations

(A4) v oty = Ad(cuy) o pgy oy, VU,

(A.5) ow (av,v.w)eow = evwpbw (cov)buvw, W CVcCU,

where p;}"v, resp. pgv, denotes the restriction morphism of the twisted sheaf of
algebras A, resp. B; ay,v,w and by v,w are the corresponding twisting elements.

An isomorphism from A to B is a morphism from A to B, which admits a left- and right-
inverse. Let F be a complex twisted presheaf over the topological space X.

Definition A.8. An order n deformation of F is a twisted presheaf A of k[e]/€"+-algebras
over X, such that AJe A= F as twisted presheaves of k-algebras.

In analogy with Gerstenhaber’s interpretation of the second Hochschild cohomology group
of an associative algebra A, we want to characterize the second Hochschild cohomology of
the complex manifold X in view of Definition A.8. Namely, we want to elucidate the fact
that the second Hochschild cohomology group of X parametrizes infinitesimal (i.e. order
1) deformations of the sheaf Ox of holomorphic functions on X as a twisted presheaf of
algebras, up to equivalence (an equivalence being, as usual, an isomorphism that reduces to
the identity mod ).

For this purpose, we consider a general 2-cocycle in the Cech-Hochschild double complex
of X w.r.t. a sufficiently nice open covering 4l of X in the sense specified above. Such a
2-cocycle consists of three components P/ where i and j are non negative integers such
that i +j = 2, and PU)) € CI(U, D, ).

Thus, P29 is a Cech 0-cochain with values in the sheaf Df)oly of holomorphic bidiffer-

ential operators on X, P11 is a Cech 1-cocycle with values in the sheaf D Dpoly of

1 _
poly —
holomorphic differential operators on X, and finally P(°2) is a Cech 2-cocycle with values
in the sheaf Ox. The cochain condition (§ &+ dg)P = 0 for the 2-cocycle P is equivalent

to the following set of identities (taking into account the Koszul sign convention for the
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Cech-Hochschild double complex):
dg P30 =0,
dg PV +5PR0 =0,
dg P02 —_5ptl) — ¢
6P =0.

The component P9 consists of a family of holomorphic bidifferential operators on X for
any open subset U, in 4: Identity (A.6) can be written more explicitly as

FPEO (g, h) + PEO(f,gh) = PEO(fg,h) + P2V (f, g)h,

for any triple of holomorphic functions f, g, h on U,. We may thus consider the sheaf A,
to be the restriction of the sheaf Ox[e]/€? to Uy, with deformed product given by

(f,9) = (fo+ef1,90 +€g1) ’—’f*ag—f090+€(f091+f190+P(20)(f0,90)) :

Identity (A.6) is easily verified to be equivalent to the fact that x, is an associative product
modulo €?; it is also obvious that the product x, reduces to the usual product modulo e.
We notice that, for a deformed product x,, for a choice of an open subset U, we still want
the unit 1 (the constant holomorphic function 1) to be a unit also w.r.t. x,: this is easily

achieved by adding the condition that the holomorphic bidifferential operator Po(?’o) vanishes,
whenever one of its arguments is a constant:

(fo+efi)*al=1xq (fo+ef1) = fo+efi < PEO(fo,1) = P*Y(1, fo) = 0.

Further, the component P11 consists of a family of holomorphic differential operators

Po(tlﬁ’l) on each (non-trivial) double intersection U, N Ug; additionally, Identity (A.7) can be
rewritten as

PO (f,9) + FPL " (9) + 9PV (F) = PEO(f,9) + PGV (f9),

for any pair of holomorphic functions f, g on U, N Ug. This means that the holomorphic

differential operator Po(tlﬁ’l) defines an isomorphism

(Aot|UaﬁUﬁ7*Oz) ﬂ) (AB|UaﬁUﬁ7*B) )

where ¢, is explicitly given by the formula

f=tfo+efir fote(fi+ P (1)

We want additionally the isomorphism ¢.g to preserve the unit of A, and Ag, which turns
out to be equivalent to the fact that the holomorphic differential operator Po(é},’l) vanishes on
constant functions:

vas(l) =1 PV (1) = 0.

The third component P(®2) is a family of holomorphic functions on each non-trivial triple
intersection U, NUgNU,: since Ox is a sheaf of commutative algebras, we have dy P02 = .
Hence, Identity (A.8) reduces to the simpler Cech cocycle condition
1,1 1,1
PV () + PV () = PV,

ary

for any holomorphic function on U, N Ug N U,. This identity is obviously equivalent to the
commutativity of the following diagram of sheaves (modulo € and again by the commutativity
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of Ox):

Paxy

(Alo) (Aa|UangﬂU77*a)

(Ay|vanusnu, s %)

(Aglu.nusnu, *p)

In spite of the observation made after Definition A.2, we may assume skew-symmetry w.r.t.
the indices of all Cech cochains involved, whence

P(i}a;l) =0,

which in turn implies ¢,q = id.

Summing up what was done until here, we get, for each open subset U,, by means of
P0(¢270)
twisted presheaf Ox |y, ; further, on each non-trivial intersection U, N Usg, P(ilﬁ’l) determines
an isomorphism between the sheaves (Aq|v,nus,*a) and (Aglu,nu,, *s), which, by (A.10),
satisfies the cocycle condition. Hence, the sheaves (A,, *o) define descent data, which can be
glued together to give a sheaf A = A(P), which is, by its very construction, an infinitesimal
deformation of Ox.

It remains to consider Identity (A.9), which can be written explicitly as

PR = 02
as a relation between functions on any non-trivial 4-fold intersection U, N Ug N U, N Us.
We observe first that, if f is a holomorphic function on some open subset of X, which is
contained in a non-trivial triple intersection U, N Ug N U,, then, setting

0,2
P o(zﬁv)’
we get an obviously invertible element of the algebras A,, Ag and A, restricted on the
triple intersection U, N Ug N U,, which is central in each of the three algebras w.r.t. the
corresponding products:

(A.ll) (f0+6f1) *a Qafy = Qafy *a (f0+6f1)7

and similar identities hold true, when %, is replaced by %z or x,: this follows from the
aforementioned fact that the holomorphic bidifferential operator Po(éz’o) vanishes if one of
its arguments is a constant. Furthermore, the central element a,g, is preserved by the
isomorphisms ¢ng, Y3y and @y, again as a consequence of the fact that the differential
operators Po(é}}’l), Pé}}y’l) and Po(é}y’l) vanish, if their argument is a constant. Finally, the Cech

cocycle relation can be reformulated as

, a sheaf (Aq,*q), which is obviously an infinitesimal deformation of the (trivial)

Qapy = 1+¢

(A.12) AB~6 *a AaBs = Qavys *a Gafy;

we can also exchange the product x, by any other product g, xy or %5, again the reason
being that bidifferential operators vanish if one of their arguments is constant. Assuming
furthermore that Po(é%’i) is skew-symmetric w.r.t. the indices, we have the additional relation

Qapy = 17

whenever two of the three indices are equal. Hence, the invertible elements anpg, define
a twist in the sense of Definition A.7 on A: the triangle relation (A.2) for the restriction
morphisms on A is trivially satisfied in spite of (A.11), while the coherence relation (A.3)
holds true in spite of (A.12).

Thus, a 2-cocycle P in Cech—Hochschild cohomology, which represents an element of the
second Hochschild cohomology group of X, gives rise to an infinitesimal deformation A of
Ox in the sense of Definition A.8. It remains to prove that two cohomologous 2-cocycles
P, @ in Cech—Hochschild cohomology give rise to isomorphic infinitesimal deformations Ap,
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Ag of Ox. We assume therefore P and @) to be two cohomologous Cech-Hochschild, i.e.
there is a Cech—Hochschild 1-cochain R, such that
P—Q=(dyg £))R,

which can be rewritten extensively as

(A.13) PO _ 90 — g, R1LO),
(A.14) P _ Ul — g, ROD _ FRA0)
(A.15) p:2) _ 02 _ RO

The component R0 consists of a family of holomorphic differential operators R((ll’o) on
each element U, of the chosen open covering. We define an isomorphism 1, via

w()é

(Aa(P). %) — (Aa(@)*3) »

where the isomorphism 1, is explicitly defined as

Yalf) = valfo +efr) = fo+ e(fr+ RO (fo)).
Identity (A.13) can be rewritten explicitly as

PEO(f.9) + RYO(fg) = QEOV(f,9) + FRMO(g) + gRUO(f),

for any two holomorphic functions on U,: the previous identity can be reformulated

Vo ((fo + ef1) %5 (90 + €91)) = Ya(fo + €f1) xZ V(g0 + €g1),

i.e. the isomorphism 1, is an algebra isomorphism, interchanging the deformed products x%
and «&.

Further, Identity (A.14) can be rewritten in a simpler form, since the Hochschild differ-
ential of R(®1) vanishes, due to the fact that Oy is a sheaf of commutative algebras, whence
we get the simple relation

P(lﬁ,l) +R(61,0) _ Q(lﬁ,l) + RO

for holomorphic differential operators on any non-trivial double intersection U, N Ug. It is
easy to check that the previous identity implies the commutativity of the following diagram:

(Aa(P)|vanvy, %) —25 (Ag(P)|vanvs %5)

I

(Aa( Q)00+ %) —2 (A(Q)]vnvs %D) -

All these arguments imply that the local isomorphisms 1, can be glued together to define
an isomorphism 1) between the sheaves A(P) and A(Q), associated to the cocycles P and @
respectively by the above procedure.

Finally, we consider the holomorphic functions R
Uo NUg. If we set

(Oﬁ’l) on any non-trivial double intersection

«

Cap =1+ eRgoﬁ’l),
we get elements of A, (Q)(U, NUp) and of A, (Q)(Us NUg). It is obvious that cag is an

(2,0)

invertible element; since any holomorphic bidifferential operator @ vanishes, when one

of its arguments is a constant, it follows that

Cap *g (fo+ef1) = (fo+ef1) *S Cafs
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and the same identity holds true replacing ¢ by *g. It is also easy to prove that the

isomorphism v, (as well as )3 and 1) preserves the central invertible element al By 1€

Yal@apy) = Gapy,
as a consequence of the fact that ¢, preserves units w.r.t. the corresponding deformed
products. The explicit form of Identity (A.15) is

(0,2) 0,1) _ ~(0,2) (0,1) (0,1)
Pogy T Bay” = Qupy + Ry + Ry,

P

which, using the centrality of Ao by agﬁ,y w.r.t. the deformed product 9 (as well as *g and

*g), implies the relation

P
U)Ot (aaﬁ'y) *g Cay = CBy *g Cap *g agﬁ'y’

and similarly when making corresponding changes of the deformed products involved, or of
the isomorphisms v,. Hence, the elements c,g define a twist ¢ for the morphism ¢, which
satisfies (A.4) because of the centrality of cog w.r.t. the deformed products, and (A.5) by
the previous identity.
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