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Equilateral triangles and the Fano plane
Philippe Caldero and Jérôme Germoni

Abstract. We formulate a definition of equilateral triangles in the complex line that makes
sense over the field with seven elements. Adjacency of these abstract triangles gives rise to the
Heawood graph, which is a way to encode the Fano plane. Through some reformulation, this
gives a geometric construction of the Steiner systems S(2, 3, 7) and S(3, 4, 8). As a conse-
quence, we embed the Heawood graph in a torus, and we derive the exceptional isomorphism
PSL2(F7) ' GL3(F2).

1. EQUILATERAL TRIANGLES. Three points b, c, and d in C form an equilateral
triangle if and only if the ratio (d− b)/(c− b) is −j or −j2, where j is a primitive
cubic root of unity. With a (projective) view to extend the notion to other fields, this
can be written as [∞, b, c, d] ∈ {−j,−j2}, where the bracket denotes the cross-ratio
of four distinct elements a, b, c, d ∈ P1(C):

[a, b, c, d] =
c− a
d− a

× d− b
c− b

,

with the usual conventions about infinity: ifα ∈ C∗, thenα/0 =∞, and ifα, β, γ, δ ∈
C are such that αδ − βγ 6= 0, then (α∞+ β)/(γ∞+ δ) = α/γ.
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Figure 1. Equilateral triangle in the complex line

Definition. Let K be a field containing a primitive cubic root of unity j. As in C, there
are two of them, the roots ofX2 +X + 1. An unordered triple {b, c, d} (in short: bcd)
of distinct points in K is said to be an equilateral triangle if [∞, b, c, d] ∈ {−j,−j2}.

More generally, an equianharmonic quadrangle is a quadruple of distinct points
{a, b, c, d} in P1(K) such as [a, b, c, d] ∈ {−j,−j2}.

Remark. Harmonic quadrangles are a projective substitute for the notion of middle
in affine geometry in the following sense: a quadruple {a, b, c, d} is harmonic, i.e.
[a, b, c, d] ∈ {−1, 2, 1/2}, if and only if, when one point is mapped to infinity by
a homography, one of the other three is mapped to the middle of the last two ones.
Similarly, a quadrangle is equianharmonic if an only if, when one point is mapped to
infinity, the other three are mapped to an equilateral triangle.
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These two sets of values are remarkable in the fact that, by permuting the four
variables in the cross-ratio λ = [a, b, c, d], one obtains six different values, namely λ,
(λ− 1)/λ, 1/(1− λ), 1/λ, 1− λ, and λ/(λ− 1), unless the quadrangle is equian-
harmonic (resp. harmonic), in which case there are only two (resp. three) different
values. In particular, in the definition, the order of points and the choice of a cubic
root j versus the other one j2 are irrelevant.

Let us recall a few facts about the action of PGL2(K) on P1(K) and cross-ratio.

Lemma 1. The group PGL2(K) acts simply transitively on ordered triples of distinct
points points of P1(K). Cross-ratio is invariant under PGL2(K).

If −1 is not a square in K∗, the group PSL2(K) acts transitively on unordered
triples. It does not act transitively on ordered triples.

Proof. Let (a, b, c) be a triple of distinct points. The homography h defined by

∀z ∈ P1(K), h(z) =
c− a
c− b

× z − b
z − a

is the unique element in PGL2(K) that maps (a, b, c) to (∞, 0, 1) (if∞ ∈ {a, b, c},
simply erase the corresponding factors). Invariance of cross-ratio is easy to check.

Now, assume−1 is not a square. Then, the homography s defined by s(z) = 1− z
does not belong to PSL2(K), so that either h or sh does. Since s maps (∞, 0, 1) to
(∞, 1, 0), the unicity claimed above shows that PSL2(K) is not transitive on ordered
triples. On the other hand, both h and sh map {a, b, c} to {∞, 0, 1} and one of them
lies in PSL2(K). Thus, PSL2(K) is transitive on unordered triples.

2. EQUIANHARMONIC QUADRANGLES OVER F7. Let K = F7 be the field
with 7 elements. Since 7− 1 is a multiple of 3, there are two primitive cubic roots of
unity in K, namely j = 2 and j2 = 4. For example, note that the quadrangles Q3 =
{∞, 0, 1, 3} and Q5 = {∞, 0, 1, 5} are equianharmonic.

Lemma 2. There are 28 equianharmonic quadrangles in P1(F7).

Proof. Observe that the cross-ratio is a homography with respect to every variable.
Hence, given three distinct points a, b, c in P1(F7) and λ in P1(F7), there is a unique d
such that [a, b, c, d] = λ. If λ /∈ {∞, 0, 1}, the point d is automatically distinct
from a, b, and c. By multiplying the number of triples by the number of admissi-
ble values for the cross-ratio, one obtains 8 × 7 × 6 × 2 ordered quadruples and
8× 7× 6× 2/4! = 28 equianharmonic quadrangles.

Lemma 3. Equianharmonic quadrangles form a single orbit under PGL2(F7), and
two orbits under PSL2(F7).

Proof. Let Q = {a, b, c, d} be an equianharmonic quadrangle. Let h be the homog-
raphy that maps (a, b, c) to (∞, 0, 1). Then, h(d) = [∞, 0, 1, h(d)] = [a, b, c, d].
Since Q is equianharmonic, h maps Q to {∞, 0, 1, 3} or {∞, 0, 1, 5}. Since s : z 7→
1− z exchanges these two quadrangles, h or shmapsQ to {∞, 0, 1, 3}, which proves
the first claim.

Recall that the cardinality of the orbit ofQ3 = {∞, 0, 1, 3} under a groupG acting
on the set of quadrangles is |G|/|GQ3

|, where GQ3
is the stabilizer of Q3. Since

PGL2(F7) acts transitively on the 28 quadrangles, the stabilizer A ofQ3 in PGL2(F7)
has cardinality 336/28 = 12. The group A acts faithfully on Q3: by lemma 1, if a
homography fixes three points, it is the identity. Since its order is 12, it is isomorphic
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to the alternating group A4 (the unique subgroup of index 2 in the symmetric group).
In fact, using the proof of lemma 1, let us look for homographies that act on Q3 like
double transpositions: one finds that z 7→ 3/z acts on Q3 as (∞0)(13); that z 7→
(z − 3)/(z − 1) acts as (∞1)(03); and z 7→ (3z − 3)/(z − 3) acts as (∞3)(01).
These are involutions and they commute on Q3, so that they commute on P1(F7).

The point is that these involutions belong to PSL2(F7). Hence, A ∩PSL2(F7) con-
tains a subgroup K ' (Z/2Z)2 of order 4; besides, it also contains the order-3 element
z 7→ 1/(1− z), that permutes {∞, 0, 1} cyclically and fixes 3. Hence, the group A
is included in PSL2(F7), and A is the stabilizer of Q3 in PSL2(F7). Therefore, the
PSL2(F7)-orbit of Q3 has cardinality 168/12 = 14. Since Q5 = {∞, 0, 1, 5} is in
the same PGL2(F7)-orbit as Q3, its stabilizer is conjugated to A, and the orbit of Q5

has cardinality 14 too.

Lemma 4. The complement of an equianharmonic quadrangle in P1(F7) is equian-
harmonic. Moreover, both are in the same orbit under PSL2(F7).

Proof. We start with an example: [∞, 0, 1, 3] = 3 = [4, 2, 5, 6]. The homography
defined by h(z) = 5(z − 2)/(z − 4) = (6z + 2)/(4z + 5) maps (4, 2, 5, 6) to
(∞, 0, 1, 3), and h belongs to PSL2(F7). This proves the claim for {∞, 0, 1, 3}.

Now, let Q = {a, b, c, d} be an equianharmonic quadrangle. By lemma 3, there is
a homography g ∈ PGL2(F7) such that g(Q) = {∞, 0, 1, 3}. Then, the bijection g
maps the complement ofQ to {2, 4, 5, 6}, which is equianharmonic. Moreover, g−1hg
maps the complement of Q to Q. This proves the claim for a general Q.

3. EQUILATERAL TRIANGLES OVER F7.

Corollary 5. There are 14 equilateral triangles over F7. They are the following ones:
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1
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z+1

22 452

z+1
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z+1

22 605.

Proof. By lemma 4, one can arrange the 28 equianharmonic quadrangles in 14 com-
plementary pairs. In a given pair, exactly one quadrangle contains ∞. Adding or
withdrawing∞ gives a one-to-one correspondence between equilateral triangles and
equianharmonic quadrangles containing ∞, hence between equilateral triangles and
pairs of complementary equianharmonic quadrangles. (E.g.: 013 corresponds to the
pair

{
{∞, 0, 1, 3}, {2, 4, 5, 6}

}
.) Hence, the first assertion holds.

To write a list, one starts with 013 and 015. Using invariance of ∞ under affine
transformations, one builds 7 new triangles out of the first two with the translation
z 7→ z + 1. These are the rows of the list in the corollary.

Remark. The vertical arrow in the statement of corollary 5 has the following mean-
ing. The triangle 013 corresponds to the pair

{
{∞, 0, 1, 3}, {2, 4, 5, 6}

}
. The homog-

raphy z 7→ 1/z maps this pair to
{
{∞, 0, 1, 5}, {2, 3, 4, 6}

}
, which corresponds to

015. This extends to an action of PGL2(F7) on triangles.

Lemma 6. There is a canonical action of PGL2(F7) on equilateral triangles. All
triangles are in the same PGL2(F7)-orbit, but there are two PSL2(F7)-orbits de-
scribed by the lines of corollary 5.
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Proof. By invariance of cross-ratio, a homography in PGL2(F7) maps an equihar-
monic quadrangle to another one. Since this action on parts of P1(F7) commutes with
taking the complement, it maps a pair of complementary equianharmonic quadran-
gles. Hence, the group PGL2(F7) acts on the set of pairs of complementary equian-
harmonic quadrangles. But there is a one-to-one correspondence between such pairs
and equilateral triangles, one inherits an action of PGL2(F7) on triangles: if abc is
a triangle and g ∈ PGL2(F7), one defines g · abc as the triangle corresponding to
g ·

{
{∞, a, b, },P1 \ {∞, a, b, c}

}
.

Two triangles abc and a′b′c′ are in the same PGL2(F7)-orbit by lemma 1: the
homography that maps (a, b, c) to (a′, b′, c′) also maps

{
{∞, a, b, c},P1 \ {a, b, c}

}
to

{
{∞, a′, b′, c′},P1 \ {a′, b′, c′}

}
.

As for PSL2(F7)-orbits, lemma 4 implies that the pairs of the form {Q,P1 \Q},
where Q runs over a PSL2(F7)-orbit of quadrangles, are orbits of pairs. Hence, by
lemma 3, there are two orbits of pairs, corresponding to two orbits of triangles. Since
triangles in the same line in corollary 5 are in the same orbit (simply apply z 7→ z + 1),
the two lines are exactly the two orbits.

E.g.: Let h(z) = 1/z. Then h
(
{∞, 0, 1, 3}

)
= {0,∞, 1, 5}, so h maps the triangle

013 to 015; moreover, h
(
{∞, 1, 2, 4}

)
= {0, 1, 2, 4} = P1(F7) \ {∞, 3, 5, 6}, so

that h maps the triangle 124 to 356.

Equilateral triangles over F7 as equilateral triangles on a torus. Say that two
(equilateral) triangles (over F7) are adjacent if they have two vertices in common.
It is easy to check that a triangle in either line of corollary 5 is adjacent to exactly three
triangles, and all three lie on the other line. The upshot is that one can arrange triangles
over F7 as equilateral triangles in the real plane in a periodic manner. By glueing the
sides of a fundamental parallelogram, one tiles a torus by 14 triangles (fig. 2).

026 156 045 346 235 124
126 015 046 356 245 134

124 013 026 156 045 346
245 134 023 126 015 046

045 346 235 124 013 026
046 356 245 134 023 126

026 156 045 346 235 124
023 126 015 046 356 245

235 124 013 026 156 045
245 134 023 126 015 046

045 346 235 124 013 026
015 046 356 245 134 023

Figure 2. Triangles over F7 as triangles on a torus

The picture is more appealing when one replaces the adjacency graph, embedded
in the torus, by its dual graph: the meeting points of triangles become 7 hexagons that
tile the torus (fig. 3). Since each face touches all the others, this tiling shows that the
chromatic number of the torus is at least 7. A polyhedral version of this tiling was
discovered by L. Szilassi [6].

Equilateral triangles and the Fano plane. Forgetting the tilings, let us consider the
graph with 14 vertices labeled by equilateral triangles over F7, where two vertices are
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026 156 045 346 235 124
126 015 046 356 245 134

124 013 026 156 045 346
245 134 023 126 015 046

045 346 235 124 013 026
046 356 245 134 023 126

026 156 045 346 235 124
023 126 015 046 356 245

235 124 013 026 156 045
245 134 023 126 015 046

045 346 235 124 013 026
015 046 356 245 134 023

Figure 3. Seven hexagons tiling a torus

connected if the corresponding triangles are adjacent. This gives rise to a graph known
as the Heawood graph (see [4]). It is bipartite because a triangle on a line of corollary 5
is adjacent to triangles on the other line.
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Figure 4. Incidence of triangles: Heawood graph and Fano plane

The Heawood graph is the incidence graph of the Fano plane: one can label vertices
and lines of the Fano plane by triangles, so that adjacency of triangles corresponds to
incidence (fig. 4).

Application: two exceptional isomorphisms.

Theorem 7. One has: PSL2(F7) ' GL3(F2).

Proof. One can label vertices of the Fano plane by nonzero vectors in F3
2 so that the

third vertex on the line containing v and v′ is labelled by v + v′ (put for instance the
canonical basis vectors on the vertices of the triangle and use this rule to complete the
labelling). Hence, a permutation f of vertices and lines of the Fano plane preserves,
once completed into a map F3

2 → F3
2 by setting f(0) = 0, is additive. However, on

a prime field, additivity is equivalent to linearity, so that automorphisms of the Fano
plane are linear automorphisms of F3

2. This is in fact a special case of the “funda-
mental theorem of projective geometry” ([1, Theorem 2.26]), by which any incidence
preserving map is a projective map, i.e. an element in PGL3(F2).

Remark. The action of PGL2(F7) on PSL2(F7) by conjugation embeds the former
group inAut(PSL2(F7)). On the other hand, the automorphism groupAut(GL3(F2))
is the semidirect product of GL3(F2) and Z/2Z acting by g 7→ (gT )−1. Hence:
PGL2(F7) ' AutGL3(F2).
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4. STEINER SYSTEMS. Recall a Steiner system with parameters (t, k, n), written
S(t, k, n), is a set of cardinality n and a collection of k-sets called blocks such that
every t-set is contained in a unique block.

Proposition 8. An orbit under PSL2(F7) of equianharmonic quadrangles forms an
S(3, 4, 8). An orbit under PSL2(F7) of triangles forms an S(2, 3, 7) (here, the action
is defined in lemma 6).

To be more explicit, recall that a PSL2(F7)-orbit of triangles is but a line in corol-
lary 5. Starting from such an orbit, one rebuilds quadrangles by adding ∞ to every
triangle and by adding to the collection the complements of these quadrangles. For
instance, starting from the orbit containing 013, one builds the following S(3, 4, 8):

∞013 ∞124 ∞235 ∞346 ∞045 ∞156 ∞026
2456 0356 0146 0125 1236 0234 1345.

Proof. The underlying set of the S(3, 4, 8) is P1(F7); blocks are quadrangles in
a given PSL2(F7)-orbit. To fix notations, let us consider that of {∞, 0, 1, 3}. Let
{a, b, c} be a 3-set. By lemma 1, there exists h ∈ PSL2(F7) that maps {a, b, c}
to {∞, 0, 1}. Then {a, b, c, h−1(3)} is an equianharmonic quadrangle in the same
PSL2(F7)-orbit as {∞, 0, 1, 3}. If {a, b, c} is included in some block {a, b, c, d},
then h(d) = [∞, 0, 1, h(d)] = [a, b, c, d] ∈ {3, 5}. Since {∞, 0, 1, 5} is not a block
(they are not in the same line in corollary 5, see lemma 6), one has h(d) = 3, which
proves the unicity of a block containing {a, b, c}.

Now, the underlying set of the S(2, 3, 7) is F7; blocks are triangles in a fixed
PSL2(F7)-orbit, say, that of 013. A block is in particular a triple {a, b, c} such that
{∞, a, b, c} is equianharmonic. Hence, given a pair {a, b} in F7, the unique block
containing {a, b} is obtained by erasing∞ from the unique equianharmonic triangle
in the PSL2(F7)-orbit of {∞, 0, 1, 3} that contains {∞, a, b}.

Remark. The passage from quadrangles to triangles follows the classical construction
of an S(t− 1, k− 1, n− 1) out of an S(t, k, n) by selecting blocks containing a fixed
point (here,∞), then erasing it.

5. ALTERNATIVE PRESENTATIONS. We give two other ways to recover the
Fano plane from PGL2(F7). Proofs of these elementary results appear in [3].

“Nilpotent conic”. The group GL2(F7) acts by conjugation on the space gl2(F7) of
2 × 2 matrices (its Lie algebra). The action factors through PGL2(F7). Since trace
is preserved, the subspace sl2(F7) = ker(tr) is stable. The determinant is a quadratic
form on sl2(F7). LetQ = −det. By the Cayley-Hamilton theorem, the isotropic cone
ofQ is the setN of nilpotent matrices. Let C be the corresponding conic in P(sl2(F7))
defined by the equation Q = 0.

Say a line L in P(sl2(F7)) is tangent (resp. secant, resp. an exterior) to C if L ∩ C
is a unique point (resp. a pair of distinct points, resp. empty). A point p outside C is ex-
terior (resp. interior) if p belongs to two (resp. no) tangents. Recall that polarity (with
respect to C) between a point and a line is the projective counterpart of orthogonality
(with respect to Q) between a line and a plane. It turns out that the polar of an exterior
(resp. interior) point is a secant (resp. an exterior line). A triangle is self-polar if the
polar of every vertex is the opposite side. Two triangles are adjacent if they share a
common vertex: this makes the set of self-polar triangles into a graph. The action of
PGL2(F7) induces an action on all these geometric objects and on the graph.
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Proposition 9. There are 14 self-polar triangles whose vertices are interior points.
The corresponding graph is the Heawood graph.

This result slightly improves on [5, § 7], in which another quadratic form is used,
since here, the Heawood graph comes with a natural action of PGL2(F7).

Elementary 2-subgroups of PSL2(F7). In fact, the projective plane P(sl2(F7)) is
the set of involutions in PGL2(F7). For A ∈ GL2(F7), let [A] ∈ PGL2(F7) be the
homography defined by A. Then [A] is an involution in PGL2(F7) if and only if A2

is a scalar matrix. By the Cayley-Hamilton theorem, this means that tr(A) = 0, hence
the claim. Moreover, one can identify involutions in PSL2(F7) and interior points of C.

Since det(A) = (tr(A)2 − tr(A2))/2 for every 2 × 2 matrix A, the polar form
of Q on sl2(F7) is the bilinear form (A,B) 7→ tr(AB), two elements A,B ∈
GL2(F7) ∩ sl2(F7) are orthogonal with respect to Q if and only if [AB] is an in-
volution. This means that two involutions are orthogonal as points in P sl2(F7) if
and only if they commute. In other terms, the vertices of an self-polar triangles form,
together with the neutral elements, a subgroup isomorphic to (Z/2Z)2.

E.g.: The group K given by the classes of
(
1 0
0 1

)
,
(
0 3
1 0

)
,
(
1 −3
1 −1

)
,
(
3 −3
1 −3

)
.

From subgroups to equilateral triangles. A subgroup of PSL2(F7) isomorphic to
(Z/2Z)2 decomposes P1(F7) into two orbits of cardinal 4 that turn out to be equian-
harmonic. Since all of them are conjugated under PGL2(F7), it is enough (and easy)
to check it in a single example. This procedure induces a one-to-one correspondence
between self-polar triangles in P(sl2(F7)) and equilateral triangles in F7.
E.g.: The orbits of the subgroup K defined above are {∞, 0, 1, 3} and {2, 4, 5, 6}. To
check this, compute the action of all elements of K on∞ and take the complement.

Conclusion. In this article, we havec seen several geometric realizations of combina-
torial structures related to the Fano plane–the Heawood graph, a tiling of a torus by
seven hexagons, the Steiner systems S(2, 3, 7) and S(3, 4, 8). It is amusing that some
kind of special triangles is involved in each construction.
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