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Abstract. In the acyclic case, we etablish a one-to-one correspondence between the
tilting objects of the cluster category and the clusters of the associated cluster algebra.
This correspondence enables us to solve conjectures on cluster algebras. We prove a
positivity theorem, a denominator theorem, and some conjectures on properties of the
mutation graph. As in the previous article, the proofs rely on the Calabi-Yau property
of the cluster category.

1. Introduction

Cluster algebras are commutative algebras, introduced in [11] by S. Fomin and A. Zelevin-
sky. Originally, they were constructed to obtain a better understanding of the positivity
and multiplicativity properties of Lusztig’s dual (semi)canonical basis of the algebra of co-
ordinate functions on homogeneous spaces. Cluster algebras are generated by the so-called
cluster variables gathered into sets of fixed cardinality called clusters. In the framework
of the present paper, the cluster variables are obtained by a recurcive process from an
antisymmetric square matrix B.

Denote by Q the quiver associated to the matrix B. Assume that Q is connected.
A theorem of Fomin and Zelevinsky asserts that the number of cluster variables of the
corresponding cluster algebra AQ is finite if and only if the graph underlying Q is a simply
laced Dynkin diagram. In this case, it is known that the combinatorics of the clusters are
governed by the generalized associahedron.

Let Q be any finite quiver without oriented cycles and let k be an algebraically closed
field. The cluster category C = CQ was introduced in [8] for type An and in [6] in the
general case. This construction was motivated by the combinatorial similarities of CQ
with the cluster algebra AQ. The cluster category is the category of orbits under an
autoequivalence of the bounded derived category Db of the category of finite dimensional
kQ-modules. By [17], the category CQ is a triangulated category. Let us denote its shift
functor by S. By construction, the cluster category is Calabi-Yau of CY-dimension 2; in
other terms, the functor Ext1 is symmetric in the following sense:

Ext1C(M,N) ' D Ext1C(N,M).

In a series of articles [6], [3], [4], the authors study the tilting theory of the cluster
category. More precisely, they describe the combinatorics of the cluster tilting objects of
the category C, i.e. the objects without self-extensions and with a maximal number of non-
isomorphic indecomposable summands. In [4], the authors define a map β between the
set of clusters of AQ and the set of tilting objects of the category CQ. A natural question
arises: does β provide a one-to-one correspondence between both sets?

In the articles [7] and [10], it is proved that in the finite case, i.e. the Dynkin case, the
cluster algebra can be recovered from the corresponding cluster category as the so-called
exceptional Hall algebra of the cluster category. More precisely, in [7], the authors give
an explicit correspondence M 7→ XM between indecomposable objects of CQ and cluster
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variables of AQ. In [10], we provide a multiplication rule for the algebra AQ in terms of
the triangulated category CQ.

An ingenious application of the methods of [10] can be found in [14], where the authors
give a multiplication formula for elements of Lusztig’s dual semicanonical basis. Here,
the cluster category is replaced by the category of finite-dimensional modules over the
preprojective algebra and the rôle of the cluster algebra is played by the coordinate algebra
of the maximal unipotent subgroup in the corresponding semisimple algebraic group.

The aim of the present article is to generalize some of the results of [7], [10] to the case
where Q is any finite quiver without oriented cycles. Building on the important results
obtained in [4] we strengthen here the connections between the cluster category and the
cluster algebra by giving an explicit expression for the correspondence β and proving that
β is one-to-one. The key ingredient of the proof is a natural analogue of the map M 7→ XM

of [7]. With the help of a positivity result, we show that M 7→ XM defines a bijection
between the indecomposable objects without self-extensions of CQ and the cluster variables
of AQ.

This correspondence between cluster algebras and cluster categories gives positive an-
swers to some of the conjectures which S. Fomin and A. Zelevinsky formulated in [13]. We
prove a positivity conjecture for cluster variables, and connectedness properties of some
mutation graphs, cf. section 4.3. As a byproduct, we obtain a cluster-categorical interpre-
tation of the passage to a submatrix of the exchange matrix. This strengthens a key result
of [4] and may be of independent interest.

Another consequence of the bijectivity of β is that each seed is determined by its cluster.
As we have learned recently, this result is obtained independently in [5].

The paper is organized as follows: In the first part, we recall well-known facts on the
cluster category. For any object M of the cluster category, we define the Laurent polynomial
XM . Then as a first result, we prove the positivity of the coefficients of XM , which are
obtained from Euler characteristics of Grassmannians of submodules. For this, we need
some properties of Lusztig’s canonical bases in quantum groups. From the positivity, we
deduce that the map M 7→ XM is injective when restricted to the set of indecomposable
objects of CQ without self-extensions. With the techniques of [10], we prove an ‘exchange
relation’ for the XM . To be more precise, we prove that if M and N are indecomposable
objects of the category C = CQ such that Ext1C(M,N) = k, then

XMXN = XB + XB′ ,

where B and B′ are the unique objects (up to isomorphism) such that there exist non split
triangles

N → B →M → SN, M → B′ → N → SM.

This formula is an analogue of the ‘exchange relation’ between cluster variables. With
the help of a comparison theorem of [4], we prove by induction that the XM are cluster
variables. The injectivity property discussed above gives the one-to-one correspondence β
between the set of tilting objects of CQ and the set of clusters of AQ.

Acknowledgements: The first author is indebted to Thomas Brüstle, Ralf Schiffler
and Olivier Schiffmann for useful conversations. He also wishes to thank Andrei Zelevinsky
for his kind hospitality and for pointing out to him the conjectures of [13].

2. The cluster category and the cluster variable formula
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2.1. Let H be a finite dimensional hereditary algebra over an algebraically closed field
k. We denote by H -mod the category of finitely generated H-modules. We choose repre-
sentatives Si, 1 ≤ i ≤ n, of the isoclasses of the simple H-modules and denote by Ii the
injective hull and by Pi the projective cover of Si.

The Grothendieck group of H -mod is the group G0(H -mod) generated by the isoclasses
of modules in H -mod and subject to the relations X = M + N obtained from exact
sequences 0→M → X → N → 0 in H -mod. We denote by [M ] the class of a module M
in G0(H -mod). We put αi = [Si]. The Grothendieck group is free abelian on the αi. The
dimension vector dim (M) of a module M is by definition the vector of the coordinates of
[M ] in this basis.

We define the Euler form by < M, N >= dim Hom(M,N)−dim Ext1(M,N), for any M ,
N in H -mod. Since H is hereditary, this form is well-defined on the Grothendieck group.

Let τ be the Auslander-Reiten functor of H -mod. This functor verifies the Auslander-
Reiten formula:

D Hom(N, τM) = Ext1(M,N),
where D is the functor Homk(?, k).

2.2. For any H-module M , and any e in G0(H -mod), we denote by Gre(M) the Grass-
mannian of submodules of M with dimension vector e:

Gre(M) = {N, N ∈ H -mod, N ⊂M, dim (N) = e}.
It is a closed subvariety of the classical Grassmannian of the vector space M . Let χc be
the Euler-Poincaré characteristic of the etale cohomology with proper support defined by

χc(X) =
∞∑
i=0

(−1)i dim H i
c(X, Ql).

Let Q[x±1
i , 1 ≤ i ≤ n] be the Q-algebra of Laurent polynomials in the variables xi’s. As

in [7], for any module M , we set

XM =
∑

e

χc(Gre(M))
∏

i

x−<e,αi>−<αi,m−e>
i ∈ Q[x±1

i , 1 ≤ i ≤ n],

where m := dim (M). Note that, as M is finite dimensional, there only exists a finite
number of non zero terms in this sum. Remark that XM only depends on the isoclass of
the module M . As in [7] one shows that

χc(Grg(M ⊕N)) =
∑

e+f=g

χc(Gre(M))χc(Grf (N)).

Hence, the bilinearity of the Euler form implies that

XM⊕N = XMXN .

As in [10], for any H-module M , the Laurent polynomial XM has (integral) positive coef-
ficients. We can be more precise

Proposition 1. Let M be a finite-dimensional H-module and suppose that Gre(M) is non
empty for some dimension vector e. Then we have χc(Gre(M)) > 0.

We will show that this is a consequence of Lusztig’s positivity theorem for the canonical
basis [18]. We first need to recall some basic facts from theory of quiver representations.

As H is hereditary and finite dimensional, there exists a finite quiver Q without oriented
cycles such that H is Morita equivalent to the path algebra kQ of Q. Let Q0 be the set of
vertices and Q1 the set arrows of Q. Let n be the number of vertices of Q. A representation
of Q over a field F is a Q0-graded F -vector space V = ⊕i∈Q0Vi together with an element
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x = (xh)h∈Q1 in EV :=
∏

h∈Q1
Hom(Vs(h), Vt(h)), where s(h) is the source and t(h) the target

of the arrow h. The group GV :=
∏

i∈Q0
GL(Vi) acts on EV by (gi).(xh) = (gt(h)xhg−1

s(h)). A
representation (M,x) over a field F can be considered as an FQ-module and the dimension
vector of this module is dim M = (dim Mi). Clearly, the isoclasses of finite-dimensional
H-modules are naturally identified with GV -orbits of representations of Q.

We can now sketch a proof of the proposition.

Proof. Set F := Fq. For m in NQ0 , and Vm = ⊕Fmi , let Hm(q) be the C-vector space of
all GVm-invariant functions on EVm . Let H(q) be the vector space ⊕m∈NQ0Hm(q). We can
define on H(q) a C-algebra structure by

(f1 ∗ f2)(M) =
∑

N⊂M

f1(M/N)f2(N).

For any isoclass X of FQ-module, let 1X ∈ H(q) be the caracteristic function of the
corresponding orbit. We have

(1X ∗ 1Y )(M) =| {N ⊂M, N ' Y, M/N ' X} | .
For any dimension vector m, let 1m be the constant function with value 1 on EVm . Set
m = dim M . Then it is easily seen that

(2.1) FM
m−e,e(q) := (1m−e ∗ 1e)(M) =| {N, N ⊂M, dim N = e} |,

Now, we fix an ordering of Q0 = [1, n] such that if there exists a path from j to i, then
j < i. Since Q has no oriented cycles, it is possible to construct such an ordering.

Consider the divided power

1(ei)
αi

=
1

[ei]q!
1ei

αi
,

where [ei]q! = [ei]q[ei − 1]q . . . [1]q, and [n]q :=
∑n−1

i=0 qi. Then we have

1(e1)
αi
∗ 1(e2)

αi
. . . ∗ 1(en)

αn
= 1e.

Hence, 1e is in the composition algebra of the quiver, i.e. the subalgebra of H(q) generated
by the 1αi ’s. Hence, FM

m−e,e(q) is a polynomial in q. Moreover, note that this polynomial
is non zero since by hypothesis, the set {N, N ⊂M, dim N = e} is not empty.

It is known that 1(ei)
αi is an element of Lusztig’s canonical basis. By Lusztig’s positivity

theorem, the product of elements of the canonical basis has positive coefficients in the
canonical basis and moreover, the evaluation of a canonical basis element on an orbit is
positive. We can conclude that the polynomial FM

m−e,e(q) has positive coefficients in q (and
is non zero). As seen in section 4.3 of [10], the Euler characteristic χc(Gre(M)) is FM

m−e,e(1),
and so is positive as desired.

�

We deduce a denominator property.

Corollary 1. Let M be an indecomposable H-module with dimension vector dim M = (mi).
Then the denominator of XM as an irreducible fraction of integral polynomials in the
variables xi is

∏
i x

mi
i .

Proof. By the positivity theorem, XM is a linear combination with positive integer coeffi-
cients of terms

∏
xnl

l , nl ∈ Z. These terms are indexed by the set of dimension vectors of
submodules N of M , and for each submodule N , we have that

nl = −〈N,Sl〉 − 〈Sl,M/N〉.
Let us put d = dim M and e = dim N . Then it is sufficient to prove that
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1. for all l, we have nl ≥ −dl and
2. for all l, there exists a submodule N such that the equality holds.

Now a simple computation shows that

nl = −dl +
∑
i→l

ei +
∑
l→j

(dj − ej) ,

where the first sum ranges over all arrows i → l of Q and the second sum over all arrows
l → j of Q. Since we have 0 ≤ ei ≤ di for all i, the first assertion is clear. For the second
one, we simply choose N to be the submodule of M generated by all the spaces Mj such
that there exists an arrow l→ j. Then the terms in

∑
i→l ei vanish since Q has no oriented

cycles and the terms in
∑

l→j(dj − ej) vanish by the construction of N . �

Another corollary is the following injectivity property:

Corollary 2. If M and M ′ are non isomorphic indecomposable modules without self-
extensions, then XM 6= XM ′.

Proof. This is clear from the corollary above and the fact that M and M ′ cannot have the
same dimension vector since their isoclass corresponds to the unique dense orbit of their
representation space. �

2.3. The bounded derived category Db = Db(H) of H -mod is a triangulated category.
We denote its shift functor M 7→M [1] by S. The category Db is a Krull-Schmidt category
and, up to canonical triangle equivalence, it only depends on the underlying graph of Q,
see [15]. We identify the category H -mod with the full subcategory of Db formed by the
complexes whose homology is concentrated in degree 0. We simply call ‘modules’ the
objects in this subcategory. The indecomposable objects of Db are the shifts SiM , i ∈ Z,
of the indecomposable objects of H -mod. We still denote by τ the AR-functor of Db; it is
known that τ is an autoequivalence characterized by the Auslander-Reiten formula.

Let F be the autoequivalence τ−1S of Db. The AR-formula implies that

Ext1Db(M,N) = HomDb(M,SN) = D Ext1Db(FN,M),

for any objects M , N of Db. Let C = C(H) be the orbit category Db/F : the objects of C
are the objects of Db and the morphisms of C are given by

HomC(M,N) = ⊕i∈Z HomDb(M,F iN).

The category C is the so-called cluster category, introduced and studied in depth in [6].
Let π be the canonical functor from Db to C. We will often omit the functor π from the
notations. We have, by [17] and [6]:

Theorem 1. (i) The category C is triangulated and
(ii) the functor π : D → C is a triangle functor.
(iii) The category C is a Krull-Schmidt category and
(iv) For any indecomposable object without self-extensions M of C, the ring EndC(M)

is the field k.

The shift functor of the triangulated category C will still be denoted by S. For any
objects M , N of C, the formulas above imply that there exists an (almost canonical)
duality

φ : Ext1C(M,N)× Ext1C(N,M)→ k.

The set of indecomposable objects of C is given by

Ind(C) = Ind(H -mod)
∐
{SPi, 1 ≤ i ≤ n}.
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Note that SPi = S−1τ−1SPi = S−1Ii.
We can extend the definition of XM to any object M of the category C by setting

XSPi = xi, 1 ≤ i ≤ n and XM⊕N = XMXN .
The AR-formula and the fact that τ passes to the Grothendieck group of the derived

category of H -mod allow us to rewrite XM for a module M as

(2.2) XM =
∑

e

χc(Gre(M))xτ(e)−dim M+e ,

where we have set

xv =
n∏

i=1

x
<dim Si,v>
i ,

for any v in Zn. Remark that this notation gives

XSPi = xdim Ii .

2.4. Each object M of C can be uniquely decomposed in the following way:

M = M0 ⊕ SPM = M0 ⊕ S−1IM ,

where M0 is the image under π of a module in Db, and where PM , respectively IM , is a
uniquely determined projective, respectively injective, module. We will say that an object
M of C is a module if M = M0, and that M is the shift of a projective module if M = SPM .

From [6], we recall the

Proposition 2. For any indecomposable modules M and N in C, we have

Ext1C(M,N) = Ext1H(M,N)⊕D Ext1H(N,M).

The module M0 can be recovered using the functor

H0 = HomC(HH , ?) : C → H -mod .

Indeed, we have

H0(M) = H0(M0)⊕H0(SPM ) = HomH -mod(HH ,M0)⊕ HomC(⊕iPi, SPM ) = M0 ,

as the last factor is zero. The functor H0 is a homological functor, i.e. it maps triangles
in C to long exact sequences of H-modules.

3. A multiplication formula

3.1. The aim of the section is to prove the following theorem:

Theorem 2. Let M and N be indecomposable objects of the category C such that Ext1C(M,N)
is one-dimensional. Then we have

XMXN = XB + XB′ ,

where B and B′ are the unique objects (up to isomorphism) such that there exist non split
triangles

N → B →M → SN, M → B′ → N → SM.

Note that when H is the path algebra of a Dynkin quiver, the theorem is a particular
case of the cluster multiplication formula of [10]. Actually, we will see that the method of
[10] generalizes nicely to the framework of the theorem.

Thanks to the hypotheses of the theorem and the symmetry of Ext1, we just need to
consider the two following cases

1. N = SPi for a i ∈ Q0 and M is an indecomposable module.
2. M and N are indecomposable modules.
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Indeed, the isomorphisms M = SPj and N = SPi would imply

Ext1C(M,N) = Ext1C(Pj , Pi) = 0.

3.2. We now prove the theorem in the first case. Suppose N = SPi, and let M be an
indecomposable module such that Ext1C(SPi,M) = k. Using theorem 1 and the AR-formula,
we obtain

dim (M)i = dim HomH(Pi,M) = dim HomC(Pi,M) = dim Ext1C(SPi,M) = 1.

Hence, up to a multiplicative scalar, there exists a unique non zero morphism ζ : M → Ii

and a non zero morphism ζ ′ : Pi →M .

Lemma 1. Let M ′ be a submodule of M . Then either M ′ ⊂ ker ζ or im ζ ′ ⊂M ′.

Proof. By the formula above, the space M ′
i is of dimension 0 or 1. We claim that

1. dim(M ′) = 0 if and only if M ′ ⊂ ker ζ,
2. dim(M ′) = 1 if and only if im ζ ′ ⊂M ′.
The lemma follows from the claim. Let’s prove part 1. The second part is similar and

left to the reader. The module im ζ is non zero and so it contains the simple socle Si of
Ii. Hence, dim(ker ζ)i = 0, which gives the ‘if’ part. Conversely, if dim(M ′)i = 0, then
ζ(M ′) ∩ Si = 0, hence ζ(M ′) = 0 as Si is the socle of Ii. �

Applying the functor H0 the non split triangle

(3.1) SPi
ι // B

π // M
ζ // S2Pi = Ii

we obtain a long exact sequences of H-modules

0 // H0B
H0π // M

H0ζ // Ii
H1ι // H0τB

H1π // H0τM ,

Now, H0τB = τH0B ⊕ IB, and the first factor is non injective. As the quotient of an
injective module is still injective, we have im(H1ι) ⊂ IB. Moreover, as H0τM is non
injective, we have IB ⊂ ker(H1π). Hence, we have equality and so the following exact
sequence holds

(3.2) 0 // H0B
H0π // M

H0ζ // Ii
H1ι // IB

// 0 .

Note that the morphism H0ζ = ζ is non zero.
In the same way, applying the functor H0, the non split triangle

(3.3) Pi
ζ′ // M

π′ // B′ ι′ // SPi,

we obtain

(3.4) 0 // PB′ // Pi
H0ζ′ // M

H0π′// H0B′ // 0 .

Note that the morphism H0ζ ′ = ζ ′ is non zero.
Now, the lemma implies that for any submodule M ′ of M , M ′ is a either submodule

of im H0π or contains ker H0π′. Hence, there is a natural bijection between Gre M and
Gre(H0B)

∐
Gre−k(H0B′), where

(3.5) k := dim ker H0π′ = dim Pi − dim PB′ .

We want to prove the multiplication formula, which in this case is

xdim Ii
∑

e

χc(Gre M)xτ(e)−dim M+e =
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xdim IB
∑

e

χc(Gre H0B)xτ(e)−dim H0B+e + xdim IB′
∑

e

χc(Gre H0B′)xτ(e)−dim H0B′+e.

So, it remains to prove that

dim Ii + τ(e)− dim M + e = dim IB + τ(e)− dim H0B + e,

and
dim Ii + τ(e)− dim M + e = dim IB′ + τ(e− k)− dim H0B′ + e− k.

The first formula is a direct consequence of 3.2. The second one comes from 3.4, 3.5 and
the formula τ(dim Pj) = −dim Ij .

3.3. This subsection and the following one are devoted to the proof of the theorem in the
second case. In order to simplify notations, we will write (X, Y ) for HomC(X, Y ).

Let M and N be two indecomposable modules such that Ext1C(N,M) = k. By proposition
2, we can suppose that Ext1H(N,M) = k and Ext1H(M,N) = 0. In this case, by theorem 1,
there exists (up to isomorphism) a unique non split short exact sequence of H-modules

0 // M
i // B+

p // N // 0 ,

and two triangles in C

M
i // B+

p // N // SM ,

N
i′ // B−

p′ // M // SN .

Note that B+ is a ‘module’ of C but B− is just an object; they both are uniquely determined
up to isomorphism. We want to prove the formula

XB+ + XB− = XMXN ,

and the idea is first to construct a morphism Ψ between Gr B+
∐

Gr H0B− and Gr M×Gr N .
For any submodule B′

+ of B+, set Ψ(B′
+) = (i−1B′

+, pB′
+), and for any submodule B′

−
of B−, set Ψ(B′

−) = ((H0p′)B′
−, (H0i′)−1B′

−). As a first step, we want to prove the
proposition

Proposition 3. The variety Gr M×Gr N is the disjoint union of Ψ(Gr B+) and Ψ(Gr H0B−).
Moreover, the fibers of Ψ are affine spaces.

This proposition will be proved at the end of this subsection.
Given a submodule M ′ of M , a submodule N ′ of N , and the corresponding embeddings

iM and iN , we have a diagram

S−1M
ε′ // N

ε // SM

S−1M ′

S−1iM

OO

N ′

iN

OO

SM ′

SiM

OO

and two complexes

(S−1M,N ′) α′ // (S−1M,N)⊕ (S−1M ′, N ′)
β′ // (S−1M ′, N)

(N ′, SM) (N,SM)⊕ (N ′, SM ′)αoo (N,SM ′)
βoo



FROM TRIANGULATED CATEGORIES TO CLUSTER ALGEBRAS II 9

where

α′ =
[

(iN ′)∗
(S−1iM ′)∗

]
, β′ =

[
(S−1iM ′)∗,−(i′N )∗

]
, α = [(iN ′)∗, (SiM ′)∗] , β =

[
(SiM ′)∗

−(iN ′)∗

]
.

The two sequences are dual to each other via the canonical duality φ.
The following proposition is straightforward by using basic properties of triangulated

categories.

Proposition 4. The following conditions are equivalent:
(i) There exists a submodule B′

+ ⊂ B+ such that the diagram

0 // M // B+
// N // 0

0 // M ′

OO

// B′
+

OO

// N ′

OO

// 0.

commutes.
(ii) There exists a morphism η : N ′ → SM ′ such that the square

N
ε // SM

N ′

iN

OO

η // SM ′

SiM

OO

commutes.
(iii) The composed morphism

ker α ↪→ (N ′, SM ′)⊕ (N,SM)→ (N,SM)

is non zero.
(iv) The composed morphism

cok α′ ← (S−1M ′, N ′)⊕ (S−1M,SN)←↩ (S−1M,N)

is non zero.

The following proposition sheds light on the situation when the conditions of proposition
4 do not hold.

Proposition 5. The following conditions are equivalent:
(i) The composition

cok α′ ← (S−1M ′, N ′′)⊕ (S−1M,SN)←↩ (S−1M,N)

vanishes, i.e. (S−1M,N) is contained in the image of α′.
(ii) There exist a submodule B′

− ↪→ H0B− and a commutative diagram

N
H0i′ // H0B′ H0p′ // M

N ′

OO

// B′
−

OO

// M ′

OO

// 0

0

OO

0

OO

0

OO

where M ′ := H0p′(B′
−) and N ′ = (H0i′)−1(B′

−).
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Proof. Let us show that (i) implies (ii). By the assumption, we can find a commutative
square

S−1M
ε′ //

f

''PPPPPPPPPPPPP N

S−1M ′

S−1iM

OO

0
// N ′

iN

OO

We complete it to a morphism between triangles:

S−1M
ε′ //

f

''PPPPPPPPPPPPP N
i′ // B−

p′ // M

S−1M ′

OO

0
// N ′

iN

OO

// N ′ ⊕M ′

OO

// M ′

iM

OO

We take the homology:

H0(S−1M)
H0(ε′) //

H0(f)

((QQQQQQQQQQQQQQ
N

H0i′ // H0B−
H0p′ // M

0 // N ′

iN

OO

// N ′ ⊕M ′

OO

// M ′

iM

OO

// 0

We take B′
− as the image of N ′⊕M ′ → H0B−. Let us show that N ′ ⊂ N is H0(i′)−1(B′

−).
Indeed, clearly the image of N ′ is contained in B′

−. Conversely, if we have x ∈ N whose
image lies in B′

−, then the image is the image of (x′, y′) in N ′⊕M ′, and the image of x ∈ N
under N → H0B− → M vanishes. So, the image of y′ in M vanishes. But M ′ → M is
mono. So y′ vanishes and we get x′ in N ′ such that x in N and x′ have the same image in
H0B−. Then x = x′ + (H0(ε′)(z) for some z in S−1M . But H0ε′ = (H0iN ) ◦ (H0f). So
(H0ε′)(z) lies in fact in N ′ ⊂ N and x lies in N ′.

Let us show that M ′ is the image of B′
−. Clearly, the image of B′

− is contained in M ′.
Conversely, if x′ ∈ M ′, we consider the image y in B′

− of (0, x′) ∈ N ′ ⊕M ′. Then clearly,
the image of y is x′.

Let us prove that (ii) implies (i). The hypothesis yields the following diagram

H0(S−1M)
H0(ε′) //

((

N
H0i′// H0B−

H0p′ // M
H0(Sε′)// H0(SN)

H0(S−1M ′)

OO

N ′

OO

// B′
−

OO

// M ′

OO

0
// H0(SN ′).

OO

0

OO

0

OO

0

OO

0

OO

As the composition H0(S−1M) → N → H0B− vanishes, the image of H0(S−1M) is
contained in N ′, which is the inverse image of B′

−.
As the composition H0(B−) → M → H0(SN) vanishes, M ′ is contained in the kernel

of M → H0(SN). We know that M is not injective, so, S−1M = τ−1M is still a module.
Moreover, we have

D Ext1(N,M) = HomH(τ−1M,N) = HomH(M, τN) = k.

We obtain the commutative diagrams



FROM TRIANGULATED CATEGORIES TO CLUSTER ALGEBRAS II 11

S−1M
ε′ //

f
''

N

N ′

iN

OO M
Sε′ // SN

M ′

iM

OO

0

77

The module M ′ has no injective direct summand, because M is indecomposable and
non injective. So, S−1M ′ is still a module. Consider

S−1M
ε′ //

f

''PPPPPPPPPPPPP N

S−1M

S−1iM

OO

0
// N ′

iN

OO .

We have iN ◦ f ◦ S−1iM = ε′ ◦ S−1iM = 0. As iN is injective, this gives f ◦ S−1M = 0,
which implies (i). �

Propositions 4 and 5 imply the first part of proposition 3. The second part is a well-
known fact, cf. Lemma 3.8 of [7].

3.4. We want to prove the multiplication formula for the second. It reads as follows:∑
e

χc(Gre M)xτ(e)−dim M+e
∑

f

χc(Grf N)xτ(f)−dim N+f =

∑
g

χc(Grg H0B+)xτ(g)−dim B++g + xdim IB−
∑

g

χc(Grg H0B−)xτ(g)−dim H0B−+g.

By combining Proposition 3 with Proposition 3.6 of [7], we can compare Euler character-
istics on both sides of the equality. What we need to prove now is

(3.6) τ(e)− dim M + e + τ(f)− dim N + f = τ(g)− dim B+ + g,

with e = dim M ′, f = dim N ′, g = dim B′
+, in the setting of Proposition 4 (i), and then

(3.7) τ(e)− dim M + e + τ(f)− dim N + f = dim IB− + τ(g)− dim H0B− + g,

with e = dim M ′, f = dim N ′, g = dim B′
−, in the setting of Proposition 5 (ii).

The formula 3.6 is clear since g = e + f in this case.
In order to prove the second formula, we need to complete the diagram of proposition 5

by adding kernels and cokernels

N/N ′ // (H0B−)/B′
−

// M/M ′ // C // 0

H0(S−1M) // N

OO

H0(i) // H0B−

OO

H0(p) // M

OO

// H0(SN)

0 // K // N ′

OO

// B′
−

OO

// M ′

OO

With the notation above, the diagram implies the equalities

τ(e) + τ(f) = τ(g) + τ(dim K), (dim M − e) + (dim N − f) = (dim H0B− − g) + dim C.
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So, in order to prove formula 3.7, we remains to show that

(3.8) τdim K − dim C = dim IB− .

For this, we first note that we have the three triangles

N
H0(i)// H0B− // cok(H0i)⊕ SK // SN

SPB−
// B− // H0B−

0 // IB−

N → Y →M → SN

in CQ. Note that H0i is the composition of the morphism N → B− with the projection
B− → H0B−. If we form the octahedron associated with this composition, the three
triangles we have just mentioned appear among its faces, as well as a new triangle, namely

SPB−
// M // cok(H0i)⊕ SK // IB− .

If we apply H∗ to this triangle, we obtain the exact sequence of H-modules

0 // M // cok(H0i)⊕H0(τK) // IB−
// H0(τM) .

Since M is an indecomposable module, τM is either an indecomposable non injective
module or zero. The image of IB− → τM = H0τM is injective (as a quotient of an
injective module). Hence it is zero and we get an exact sequence

0 // M // cok(H0i)⊕H0(τK) // IB−
// 0 .

In the Grothendieck group, this yields

0 = dim M − dim cok(H0i)− dim H0(τK) + dim IB− = dim C − dim H0(τK) + dim IB− .

Now, by the third triangle, K is a quotient of H0(S−1M) = H0(τ−1M). As M is a non
injective indecomposable module, H0(τ−1M) = τ−1M , so τK is a quotient of M , and
hence, τK is a module. Thus, we get formula 3.8 as desired. This ends the proof of
theorem 2.

4. Application to a class of cluster algebras

4.1. We recall some terminology on cluster algebras. The reader can find more precise
and complete information in [12].

Let n be a positive integer. We fix the ambient field F = Q(x1, . . . , xn), where the xi’s
are indeterminates. Let x be a free generating set of F over Q and let B = (bij) be an
n× n antisymmetric matrix with coefficients in Z. Such a pair (x, B) is called a seed.

Let (u, B) be a seed and let uj , 1 ≤ j ≤ n, be in u. We define a new seed as follows.
Let u′j be the element of F defined by the exchange relation:

(4.1) uju
′
j =

∏
bij>0

u
bij

i +
∏

bij<0

u
−bij

i .

Set u′ = u ∪ {u′j}\{uj}. Let B′ be the n× n matrix given by

b′ik =

{
−bik if i = j or k = j

bik + 1
2( |bij | bjk + bij |bjk| ) otherwise.

By a result of Fomin and Zelevinsky, (u′, B′) = µj(u, B) is a seed. It is called the mutation
of the seed (u, B) in the direction uj (or j). We consider all the seeds obtained by iterated
mutations. The free generating sets occurring in the seeds are called clusters, and the
variables they contain are called cluster variables. By definition, the cluster algebra A(x, B)
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associated to the seed (x, B) is the Z-subalgebra of F generated by the set of cluster
variables. The graph whose vertices are the seeds and whose edge are the mutations
between two seeds is called the mutation graph of the cluster algebra.

The Laurent phenomenon, see [11], asserts that the cluster variables are Laurent polyno-
mials with integer coefficients in the xi, 1 ≤ i ≤ n. So, we have A(x, B) ⊂ Z[x±1

1 , . . . , x±1
n ].

Note that an antisymmetric matrix B defines a quiver Q = QB with vertices corre-
sponding to its rows (or columns) and which has bij arrows from the vertex i to the vertex
j whenever bij ≥ 0. The quivers Q thus obtained are precisely the finite quivers without
oriented cycles of length 1 or 2. For such quivers Q, we denote by BQ the corresponding
antisymmetric matrix. The cluster algebra associated to the seed (x, B) will be also de-
noted by A(Q). In the sequel, we will be concerned with cluster algebras associated to a
quiver Q without oriented cycles.

4.2. We fix a quiver Q without oriented cycles and we set H = kQ. We consider the
cluster category C = CH associated to the quiver Q, cf. [6]. An object T of C is called
exceptional if it has no self-extensions, i.e. if Ext1(T, T ) = 0. An exceptional object is
called cluster-tilting or simply tilting (although this is an abuse of language) if it has n
non isomorphic indecomposable direct summands, where n is the number of vertices of Q.
In the sequel, we will often identify a tilting object with the datum of its indecomposable
summands. An exceptional object is called almost tilting if it has n − 1 non isomorphic
indecomposable direct summands. It was shown in [6] that any almost tilting object T can
be completed to precisely two non isomorphic tilting objects T and T ∗.

For any tilting object T of C, let QT be the quiver associated to the algebra EndC(T ).
To be explicit, fix an ordering of the indecomposable objects T1, . . . , Tn of T and let A be
the endomorphism algebra of the sum of the Ti. Let ei ∈ A the idempotent corresponding
to Ti. Then the vertices of QT are 1, . . . , n, and the number of arrows from i to j is equal
to dim ej((rad A)/(rad A)2)ei. A pair (T,QT ) is called a cluster seed.

For 1 ≤ i ≤ n, we define, following [4], the mutation of the cluster seed (T,QT ) in
direction i by

δi(T,QT ) := (T ∗, QT ∗),
where T and T ∗ are the two complements of the almost tilting object

T = T1 ⊕ . . .⊕ Ti−1 ⊕ Ti+1 ⊕ . . .⊕ Tn.

Note that there exists an indecomposable object T ∗i , unique up to isomorphism, such that

T ∗ = T1 ⊕ . . .⊕ Ti−1 ⊕ T ∗i ⊕ Ti+1 ⊕ . . .⊕ Tn,

which provides a natural ordering of the indecomposable summands of T ∗.
The following theorem is the main result of this article. The first assertion is a refinement

of Conjecture 9.1 of [6] and the second assertion strengthens the main result of [4].

Theorem 3. Let Q be a quiver with n vertices and no oriented cycles, and let H = kQ be
the hereditary algebra associated to Q. Then

(i) The correspondence M 7→ XM provides a bijection between the set of indecompos-
able objects without self-extensions of CH and the set of cluster variables of A(Q).

(ii) The correspondence {T1, . . . , Tn} 7→ {XT1 , . . . , XTn} provides a bijection compatible
with mutations between the set of tilting objects of CH and the set of clusters of
A(Q).

Proof. By construction, any cluster variable belongs to a cluster. As the map M 7→ XM is
injective on the set of indecomposable objects without self-extensions by corollary 2, it is
enough to prove (ii).
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Let us prove (ii). Suppose that T = T1⊕ . . .⊕Tn is a tilting object of C and let T ∗ be its
mutation in direction i. Then Ext1(Ti, T

∗
i ) is one-dimensional by [6]. Hence, by theorem 2,

we have

(4.2) XTiXT ∗i
=

∏
j

X
aij

Tj
+

∏
j

X
cij

Tj
,

where aij and cij are integers defined by the following non split triangles (unique up to
isomorphism)

Ti → ⊕aijTj → T ∗i → STi

T ∗i → ⊕cijTj → Ti → ST ∗i .

By a theorem 6.2 b) of [4], the quiver QT is determined by these triangles: for any i and
j, there are aij arrows from i to j and cij arrows from j to i. Moreover, if there exists an
arrow from i to j , then there is no arrow from j to i, by Proposition 3.2 of [4].

We now define, as in [4], a correspondence β between tilting seeds and cluster seeds.
First note that the shift of H, is a tilting object and that (SH,Q) is a tilting seed. For a
given word i1 . . . it, we can define

(4.3) β(SH,Q) = (x, BQ),

(4.4) β(δit . . . δi1(SH,Q)) = µit . . . µi1(x, BQ).

Set (T,QT ) := δit . . . δi1(SH,Q)). By [4], the quiver obtained from Q by the sequence of
tilting mutation in direction i1, . . . , it is equal to the quiver obtained from Q by the se-
quence of cluster mutation in direction i1, . . . , it. Hence, by comparing the cluster exchange
relation 4.1 and the tilting exchange relation 4.2, we obtain by induction that

β(δit . . . δi1(SH,Q)) = ({XT1 , . . . , XTn}, BQT
).

In particular, β(δit . . . δi1(SH,Q)) does not depend on the choice of the word i1 . . . it.
By Proposition 3.5 of [6], the mutation graph on the set of tilting seeds is connected.

Hence, equalities 4.3 and 4.4 define a map β from the complete set of tilting seeds to the
set of cluster seeds. The surjectivity of β follows from the fact that its image is stable
under mutation. The injectivity of β follows from corollary 2. �

4.3. This section is devoted to the proof of some of the conjectures formulated by S. Fomin
and A. Zelevinsky in [13]. The first corollary follows from theorem 3 and proposition 1. It
corresponds to [13, Conjecture 4.19 (1)] in the acyclic case.

Corollary 3. Let Q be an finite quiver without oriented cycles. Then the cluster variables
of A(Q) are in N[x±1

1 , . . . , x±1
n ].

The next corollary is a straightforward consequence of theorem 3. It corresponds to [13,
Conjecture 4.14 (2)] in the acyclic case.

Corollary 4. Let Q be an finite quiver without oriented cycles. Then a cluster seed (u, B)
of A(Q) only depends on u.

This corollary is [13, Conjecture 4.14 (3)] in the acyclic case.

Corollary 5. For any cluster variable x, the set of seeds whose clusters contain x form a
connected subgraph of the exchange graph.
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Proof. Indeed, the cluster variable x corresponds to an exceptional indecomposable object
T1 of CQ. Without restriction of generality, we assume that T1 is non projective. The
seeds containing x are in bijection with the completions of T1, i.e. the sets {T2, . . . , Tn} of
indecomposables such that the sum of the Ti is cluster tilting. Two seeds are joined by an
edge of the exchange graph iff the corresponding sets of exceptional indecomposables are
obtained from one each other by a mutation. By [6], this occurs iff they differ by precisely
two indecomposables Ti and T ∗i and these satisfy

dim Ext1(Ti, T
∗
i ) = 1.

This makes it clear that theorem 4 below yields a bijection compatible with mutations

{T2, . . . , Tn} 7→ {PT2, . . . , PTn}
between the completions of T1 and the basic tilting sets of CQ′ , where Q′ is the quiver of
the endomorphism ring of a projective generator of the category H′ ⊂ mod kQ of modules
L with

Hom(M,L) = 0 = Ext1(M,L).
Thus, by theorem 3 (ii), the subgraph of the exchange graph of Q formed by the seeds
containing x is isomorphic to the exchange graph of Q′, which is connected by definition.

�

A consequence of Theorem 3 is also the proof of [13, Conjecture 4.14 (4)] in the general
case.

Corollary 6. The set of seeds whose matrix is acyclic form a connected subgraph (possibly
empty) of the exchange graph.

Proof. A seed with an acyclic matrix corresponds to a cluster tilting object T whose endo-
morphism algebra A = EndCQ

(T ) has a quiver without oriented cycles. Let us show that
A is hereditary. After replacing Q we may assume that T lifts to a tilting module T̃ of
projective dimension ≤ 1 in mod kQ. Let B be the endomorphism algebra of T̃ . We know
that there is a triangle equivalence Db(mod B) → Db(mod kQ) taking the free module B
to T . Using this, it is not hard to show that we have an isomorphism

(4.5) A ∼→ B ⊕ Ext2B(DB, B) ,

where Ext2B(DB, B) appears as a square-zero ideal with the natural bimodule structure. It
follows that the quiver of B is a subquiver of that of A. In particular, the quiver of B is
also directed so that we have a natural order on the set of indecomposable projectives such
that HomB(P,Q) 6= 0 implies P ≤ Q. This induces the corresponding order on the simples.
Let S1, S2 be two simple (right) B-modules such that Ext2B(S1, S2) 6= 0. By examining the
possible terms of a minimal projective resolution of S1, we see that we have S1 > S2. Now
B is of global dimension ≤ 2 so that Ext3B vanishes. This implies that Ext2B(νP1, P2) 6= 0,
where νP1 is the injective hull of S1 and P2 the projective cover of S2. It follows by 4.5
that the quiver of A contains a cycle passing through the vertices corresponding to P1 and
P2. This contradiction shows that we must have Ext2B(S1, S2) = 0 for all simple B modules
so that B is hereditary and A ∼→ B as well.

So we obtain a triangle equivalence CA ∼→ CQ which takes A to T . Such an equivalence
induces an isomorphism

ΓA → ΓB

of the Auslander-Reiten quivers of the two cluster categories. We refer to [6] for the
description of the Auslander-Reiten quivers. Since A is hereditary, the quiver of its inde-
composable projectives forms a slice of the component Γpr

A of ΓA containing the projectives
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(recall that a slice is a full connected subquiver whose vertices are a system of representa-
tives of the τ -orbits in the component). The isomorphism must take Γpr

A to Γpr
B since this

is the only components isomorphic to the repetition ZR of a finite quiver R. It is clear
that any slice of Γpr

B can be transformed to the slice of the projectives by finitely many
reflections at sources or sinks. �

4.4. Cluster tilting objects containing a given summand. Here, we refine a tech-
nique pioneered in section 2 of [4]: Let H be a finite-dimensional hereditary algebra and
H the category of finite-dimensional right H-modules. Let M ∈ H be a non projective
indecomposable with Ext1(M,M) = 0. Then End(M) is a (possibly non commutative)
field. Let H′ be the full subcategory on the modules L such that

Hom(M,L) = 0 and Ext1(M,L) = 0.

We know from [16] and [15] thatH′ is a hereditary abelian category with enough projectives
and that a projective generator G of H′ is obtained by choosing an exact sequence

0→ H → G→M r → 0

which induces an isomorphism

Hom(M,M r) ∼→ Ext1(M,H).

Let CH and CH′ be the cluster categories associated with H and H′. The following theorem
is an elaboration on Theorem 2.13 of [4].

Theorem 4. Let C(H,M) be the full additive subcategory of CH whose objects are the sums
of indecomposables L of CH such that Ext1(M,L) = 0. There is a canonical equivalence of
k-linear categories

P : C(H,M)/(M) ∼ // CH′ ,

where (M) denotes the ideal of morphisms factoring through a sum of copies of M . More-
over, we have

Ext1(L1, L2) ∼= Ext1(PL1, PL2)
for all L1, L2 ∈ C(H,M).

Note that C(H,M) is not a triangulated subcategory and not even stable under the shift
functor. The theorem merely claims that as a k-linear category, CH′ is a ‘subquotient’ of
CH. To construct the equivalence P , we choose a ‘fundamental domain’ for the action of
the autoequivalence F = τ−1S on D.

Let P be the full subcategory of the projectives ofH andH+ the full additive subcategory
of D = Db(H) each of whose indecomposables lies in H or SP. Let π : D → CH be the
projection functor. We know from [6] that π induces a bijection from the set of isoclasses
of indecomposables of H+ to that of CH and that we have

Ext1(π(L1), π(L2))
∼→ Ext1(L1, L2)⊕D Ext1(L2, L1)

for any two indecomposables ofH+. Moreover, the category CH is equivalent to the category
whose objects are those of H+ and whose morphisms are given by

Hom(L1, L2)⊕ Hom(L1, FL2)

with the natural composition. Therefore, theorem 4 follows from

Theorem 5. There is a canonical bijection L 7→ L′ from the set of isoclasses of indecom-
posables L of H+ with

L 6∼= M , Ext1(L,M) = 0 and Ext1(M,L) = 0 (∗)
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to the set of isoclasses of indecomposables of H′+. Moreover, for any two objects L1, L2 of
H+ satisfying (∗), there is a canonical isomorphism

Ext1(L1, L2)
∼→ Ext1(L′1, L

′
2)

and there are canonical isomorphisms

Hom(L1, L2)/(M) ∼→ Hom(L′1, L
′
2) and Hom(L1, FL2)/(M) ∼→ Hom(L′1, F

′L′2)

compatible with compositions.

Several of the arguments needed in the proof are contained in section 2 of [4]. For the
convenience of the reader, we nevertheless include them below.

Proof. Let U ⊂ D be the full triangulated subcategory generated by M . Since Ext1(M,M)
vanishes and Hom(M,M) is a field, its objects are the sums of shifted copies of M . Let V
be the full subcategory of D whose objects are the L ∈ D such that Hom(U,L) = 0 for all
U ∈ U . Then U ,V form a semiorthogonal decomposition [1] of D, i.e. for each object X of
D, there is a triangle

XU → X → XV → SXU

with XU ∈ U and XV ∈ V. This triangle is unique up to unique isomorphism; the functor
X → XU is right adjoint to the inclusion of U and the functor X 7→ XV is left adjoint to
the inclusion of V. We have H′ = H ∩ V and the inclusion H′ ⊂ V extends canonically
to an equivalence Db(H′) → V. In particular, each object of V is a direct sum of shifts of
objects of H′. We have U ∩ H =M, the full subcategory on the direct sums of copies of
M . The inclusion H′ ⊂ H commutes with kernels, cokernels and preserves Ext1-groups.
We will show that L 7→ L′ = LV yields the bijection announced in the assertion.

Let L be indecomposable in H+ such that (∗) holds. Let us first show that Hom(SiM,L)
vanishes if i 6= 0. Indeed, if L belongs to H, then this group clearly vanishes if i 6= 0,−1
and if i = −1, it vanishes because Ext1(M,L) = 0. If L = SP for a projective P ∈ H,
then Hom(SiM,L) = Hom(SiM,SP ) clearly vanishes for i 6= 0, 1 and it vanishes for i = 1
because M is a non projective indecomposable.

Now let us show that LV is indecomposable: Consider the canonical triangle

LU → L→ LV → SLU .

Since Hom(SiM,L) vanishes for i 6= 0, we have LU ∈ M. Therefore, in the associated
exact sequence

Hom(L,L)→ Hom(L,LV)→ Hom(L, SLU )

the third term vanishes. Thus the composition

Hom(L,L)→ Hom(L,LV) ∼→ Hom(LV , LV)

is surjective and End(LV) is local as a quotient of the local ring End(L).
Let us show that L′ belongs to H′+. Since LU belongs to M, the canonical mor-

phism f : LU → L is a morphism of H and therefore its cone LV in D is isomorphic
to cok(f) ⊕ S ker(f). Since LV is indecomposable, one of the two summands vanishes. If
ker(f) vanishes, then LV belongs to H′ ⊂ H′+. If cok(f) vanishes, we have to show that
ker(f) is projective in H′. Now indeed the short exact sequence

0→ ker(f)→ LU → L→ 0

induces a surjection
Ext1H(LU , U)→ Ext1H(ker(f), U)→ 0
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for each U ∈ H. The left hand term vanishes since LU is a sum of copies of M and the
right hand term is isomorphic to Ext1H′(ker(f), U) because the inclusion H′ ⊂ H preserves
extension groups. Thus, ker(f) is projective in H′.

From what we have shown, we conclude that the map L → L′ is well-defined. Let us
show that it is injective. For this, we show that the morphism LV → SLU occuring in
the canonical triangle is a minimal left SM-approximation. Then L is determined up to
isomorphism as the shifted cone over this morphism. To show that LV → SLU is a minimal
left approximation, consider the canonical triangle

LU → L→ LV → SLU

and the induced sequence

Hom(L, SM)← Hom(LV , SM)← Hom(SLU , SM).

Since Hom(L, SM) vanishes by assumption, we do get a surjection Hom(LV , SM) ←
Hom(SLU , SM). If it is not minimal, then there is a retraction r : SLU → SM whose
composition with LV → SLU vanishes. Then r extends to a retraction r̃ : SL→ SM . This
is impossible since L is indecomposable and not isomorphic to M .

Let us show now that L 7→ L′ is surjective. Let N be indecomposable in H′+. Let
N → SM ′ be a minimal SM-approximation and form the triangle

M ′ → L→ N → SM ′.

Let us show that L is indecomposable. Since M ′ ∈ U , we have LV ∼→ NV and since N ∈ V,
we have LU

∼→M ′. If L is decomposable, say L = L1 ⊕ L2, then we get

LV1 ⊕ LV2
∼→ N

and, say, LV1 vanishes. Then L1 belongs to U and thus M ′ ∼→ L1⊕ (L2)U . Since N → SM ′

is a minimal SM-approximation, we have L1 = 0. So L is indecomposable.
Let us show that L belongs toH+. It is clear from the above triangle that L has homology

at most in degrees 0 and 1. Since L is indecomposable, its homology is concentrated in one
degree. If the homology is concentrated in degree 0, then L belongs to H ⊂ H+. Suppose
that L has its homology concentrated in degree 1. Then we must have N = SQ for some
indecomposable projective Q of H′. We know that if PH is a projective generator for H,
then PVH is is a projective generator for H′. Thus, there is a projective P of H and a
section s : Q → PU which identifies Q with a direct factor of PU . Since N → SM ′ is an
SM-approximation, the composition

N
Ss // SPU // SPM

extends to SM ′ so that we obtain a morphism of triangles

M ′ //

��

L //

��

N //

Ss
��

SM ′

��
SPU // SP // SPU // SPM.

The morphism L → SP is non zero since its composition with SP → SPU equals the
composition of the non zero morphism L → N with the section Ss. So we obtain a non
zero morphism S−1L→ P in H. Since S−1L is indecomposable and P is projective, S−1L
is projective and we have L ∈ H+.

Finally, let us show that L satisfies the condition (∗). If L was isomorphic to M , we
would have N = LV = 0 contrary to our hypothesis that N is indecomposable.
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The triangle
M ′ → L→ N → SM ′

yields an exact sequence

Hom(M ′, SM)← Hom(L, SM)← Hom(N,SM)← Hom(SM ′, SM).

Here the leftmost term vanishes since Ext1(M,M) = 0 and the rightmost map is surjective
since N → SM ′ is a left SM-approximation. Thus we have Ext1(L,M) = 0. The triangle
also yields the sequence

Hom(S−1M,M ′)→ Hom(S−1M,L)→ Hom(S−1M,N).

The left hand term vanishes since Ext1(L1,M) = 0 and the right hand term vanishes since
N belongs to V. Thus we have Ext1(M,L) = 0.

Now let L1, L2 be indecomposables of H+ satisfying condition (∗). Consider the triangle

(L2)U → L2 → LV2 → S(L2)U .

It induces an exact sequence

Hom(S−1L1, (L2)U )→ Hom(S−1L1, L2)→ Hom(S−1L1, L
V
2 )→ Hom(S−1L1, S(L2)U ).

The leftmost term vanishes since Ext1(L1,M) = 0 and the rightmost term vanishes since
Ext2(L1,M) = 0. Thus we have

Hom(L1, SL2)
∼→ Hom(L1, SLV2 ) ∼→ Hom(LV1 , SLV2 ) ,

which proves the assertion on the extension groups. The above triangle also induces an
exact sequence

Hom(L1, (L2)U )→ Hom(L1, L2)→ Hom(L1, L
V
2 )→ Hom(L1, S(L2)U ).

The last term vanishes since Ext1(M,M) = 0. Thus the kernel of the map

Hom(L1, L2)→ Hom(L1, L
V
2 ) ∼→ Hom(LV1 , LV2 )

is formed by the morphisms factoring through sums of M . Put F = τ−1S. Consider the
triangle

(FL2)U → FL2 → (FL2)V → S(FL2)U .

Note that the functor F does not take V to itself. We have

Hom(SiM,FL2)
∼→ D Hom(L2, S

iτ2M).

This can be non zero only if i equals 0 or 1. Thus (FL2)U is a sum of copies of M and
SM . Therefore, in the exact sequence

Hom(L1, (FL2)U )→ Hom(L1, FL2)→ Hom(L1, (FL2)V)→ Hom(L1, S(FL2)U )

the last term vanishes and

Hom(L1, (FL2)V) ∼→ Hom(LV1 , (FL2)V)

identifies with the quotient of Hom(L1, FL2) by the subspace of morphisms factoring
through a sum of copies of M and SM . Since Hom(L1, SM) vanishes, this is also the
subspace of morphisms factoring through a sum of copies of M . To finish the proof, it re-
mains to be noticed that under the canonical equivalence Db(H′) ∼→ V, if LV2 corresponds to
L′2, then the object (FL2)V does correspond to τ−1

H′ SL′2, by Lemma 2.14 of [4] or section 8.1
of [17].

�
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