Chapter 1

Fonctions continues

Les résultats de ce chapitre sont formulés pour des espaces métriques. Néanmoins ils restent vrais pour des espaces topologiques.

1.1 Convergence uniforme

Dans ce chapitre X désigne un espace métrique et K est le corps $\mathbb C$ ou $\mathbb R$. On note C(X,K) l'espace des fonctions continues de X à valeurs dans K. On dit qu'une fonction $f\in C(X,K)$ s'annule à l'infini si X est compact ou si pour tout $\varepsilon>0$ il existe un compact $Y\subset X$ tel que $|f(x)|<\varepsilon$ pour $x\notin Y$. On note par $C_0(X,K)$ le sous-espace de C(X,K) des fonctions qui s'annulent à l'infini. En particulier les fonctions de $C_0(X,K)$ sont bornées. On note aussi que, si X est compact, $C_0(X)=C(X)$.

Définition 1.1.1. On appelle

$$||f||_{\infty} = \sup_{x \in X} |f(x)|$$

la norme sup ou norme ∞ de $f \in C_0(X,K)$. Une suite $(f_n)_n$ des fonctions de $C_0(X,K)$ converge uniformément vers une fonction $f: X \to K$ si la suite des nombres $\|f - f_n\|_{\infty}$ tend vers 0 pour $n \to \infty$. On va utiliser les notations $f_n \stackrel{u}{\longrightarrow} f$ ou $f_n \stackrel{\|\cdot\|_{\infty}}{\longrightarrow} f$ pour la convergence uniforme.

La convergence uniforme d'une suite $(f_n)_n$ de fonctions vers f entraı̂ne la convergence ponctuelle, c'est-à-dire que $\forall x \in X: f_n(x) \longrightarrow f(x)$. Par contre, la réciproque est fausse.

Les résultats suivants font partie du cours de Topologie.

Théorème 1.1.2. Si une suite $(f_n)_n$ de fonctions de $C_0(X, K)$ converge uniformément vers une fonction $f: X \to K$ alors f est continue.

Théorème 1.1.3. L'espace vectoriel $(C_0(X,K),\|\cdot\|_{\infty})$ est un espace de Banach (c'est-à-dire, un espace vectoriel normé complet : toute suite de Cauchy admet une limite dans $C_0(X,K)$).

Le produit de deux fonctions, défini par (fg)(x)=f(x)g(x), est associatif et distributif. Il définit donc une structure d'algèbre sur $C_0(X,K)$. De plus on a le résultat suivant :

Lemme 1.1.4. $||fg||_{\infty} \le ||f||_{\infty} ||g||_{\infty}$.

Ce lemme, dont la preuve est triviale, dit que $C_0(X, K)$ est muni d'une **norme** d'algèbre.

1.2 Le Théorème de Stone-Weierstraß

On va maintenant considérer le cas où X est compact et se poser le problème d'approcher une fonction continue en norme ∞ par des fonctions plus simples.

Théorème 1.2.1 (Stone-Weierstraß). Soit X un espace métrique compact et $K = \mathbb{C}$ ou \mathbb{R} . Soit $A \subset C(X,K)$ tel que :

- (i) A est une sous-algèbre auto-adjointe (c'est-à-dire, $f \in A$ implique $\overline{f} \in A$).
- (ii) A contient les fonctions constantes.
- (iii) A sépare les points de X (c'est-à-dire, pour tous $x, y \in X$, $x \neq y$, il existe une fonction $f \in A$ telle que $f(x) \neq f(y)$).

Alors A est dense dans C(X,K) pour la topologie de la norme $\|\cdot\|_{\infty}$. Autrement dit, pour toute fonction $f \in C(X,K)$, il existe une suite $(f_n)_n$ dans A qui converge uniformément vers f.

Exemple 1.2.2. Soit $X=[a,b]\subset\mathbb{R}$ un intervalle compact et soit A l'algèbre des polynômes sur [a,b] à valeurs dans K. Alors X est compact et A satisfait les critères du Théorème 1.2.1 (le polynôme P(x)=x sépare les points). Donc toute fonction continue sur [a,b] (à valeurs dans K) peut être approchée par des polynômes sur [a,b].

Remarque 1.2.3. L'hypothèse de compacité est nécessaire.

Exemple 1.2.4. Soit $X = \mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$ et A l'algèbre des polynômes de Laurent sur \mathbb{T} à valeurs dans \mathbb{C} , c'est-à-dire, $L \in A$ est de la forme

$$L(z) = \sum_{n=-N}^{N} a_n z^n$$

pour un certain $N \in \mathbb{N}$ avec $a_n \in \mathbb{C}$. Comme $\bar{z} = z^{-1}$ sur \mathbb{T} on a $\overline{L}(z) = \sum_{n=-N}^{N} \overline{a_{-n}} z^n$, donc A est autoadjoint. A satisfait les critères du Théorème 1.2.1 et donc est dense dans $C(\mathbb{T}, \mathbb{C})$.

Posons $\tilde{f}:\mathbb{R}\to\mathbb{C}$, $\tilde{f}(t)=f(e^{it})$ pour $f\in C(\mathbb{T},\mathbb{C})$. Alors \tilde{f} est continue et 2π -périodique. La densité de A dans $C(\mathbb{T},\mathbb{C})$ veut donc dire que toute fonction continue et 2π -périodique sur \mathbb{R} (à valeurs dans \mathbb{C}) peut être approchée par des polynômes trigonométriques, c'est-à-dire des fonctions de la forme $\tilde{L}(t)=\sum_{n=-N}^N a_n e^{int}$.

1.3 Preuve du théorème de Stone-Weierstraß

La démonstration est élémentaire mais longue. Nous la divisons en plusieurs étapes.

Lemme 1.3.1. Il existe une suite de polynômes $P_n(x) \in \mathbb{R}[x]$ qui converge uniformément vers f(x) = |x| sur [-1, 1].

(Notons que ceci est un cas particulier du théorème de Stone-Weierstraß, avec X = [-1, 1], $K = \mathbb{R}$ et $A \subseteq C([-1, 1], \mathbb{R})$ est l'ensemble des fonctions polynômiales).

Proof. Nous définissons par récurrence les fonctions polynômiales suivantes :

$$P_0(x) = 0,$$
 $P_{n+1}(x) = \frac{1}{2}(P_n(x)^2 + x).$ (1.1)

Un simple calcul donne :

$$2P_{n+2} - 2P_{n+1} = P_{n+1}^2 - P_n^2 = (P_{n+1} + P_n)(P_{n+1} - P_n)$$

ďoù

$$P_{n+2} - P_{n+1} = \frac{1}{2}(P_{n+1} + P_n)(P_{n+1} - P_n).$$
(1.2)

On vérifie aisément par récurrence que :

- (i) $P_n(x)$ est croissant sur [0,1], et $0 \le P_n(x) \le 1$ pour tout $x \in [0,1]$ (par (1.1)), et
- (ii) $P_{n+1}(x) P_n(x)$ est croissant sur [0, 1], et $0 \le P_{n+1}(x) P_n(x)$ pour tout $x \in [0, 1]$ (par (1.2)).

En particulier, pour tout n et pour tout $x \in [0, 1]$:

$$0 \le P_{n+1}(x) - P_n(x) \le P_{n+1}(1) - P_n(1),$$

d'où, pour tout $n \le m$ (et tout $x \in [0,1]$):

$$0 \le P_m(x) - P_n(x) \le P_m(1) - P_n(1),$$

8

et

$$||P_m - P_n||_{\infty} \le |P_m(1) - P_n(1)|.$$

Or, la suite $(P_n(1))_n$ étant croissante et bornée par 1, elle converge et est donc de Cauchy. Par conséquent, la suite des fonctions $(P_n)_n$ est de Cauchy dans $C([0,1], \mathbf{R})$. Par complétude de ce dernier, il existe une fonction continue $g \in C([0,1], \mathbf{R})$ telle que $P_n \to g$ uniformément sur [0,1].

En particulier $P_n(x) \to g(x)$ pour tout $x \in [0, 1]$, d'où

$$g(x) = \frac{1}{2}(g(x)^2 + x),$$
 ou: $(1 - g(x))^2 = 1 - x.$

Or, nous savons déjà que $1 - g(x) \ge 0$, d'où :

$$1 - g(x) = \sqrt{1 - x}$$
, i.e., $g(x) = 1 - \sqrt{1 - x}$.

On a donc $P_n(x) \to 1 - \sqrt{1-x}$ uniformément sur [0,1]. On en conclut que $1 - P_n(1-x^2) \to \sqrt{x^2} = |x|$ uniformément sur [-1,1].

Lemme 1.3.2. Soit X un espace compact contenant au moins deux points, $A \subseteq C(X, \mathbb{R})$, et supposons que :

- (i) Pour tous $x \neq y$ dans X, tous $r, s \in \mathbb{R}$ et tout $\varepsilon > 0$ il existe $f \in A$ telle que $|f(x) r| < \varepsilon$ et $|f(y) s| < \varepsilon$.
- (ii) Pour tous $f, g \in A$ on as aussi $\max(f, g) \in A$ et $\min(f, g) \in A$.

Alors A est dense dans $C(X, \mathbb{R})$.

Proof. Soit $h \in C(X, \mathbb{R})$, et soit $\varepsilon > 0$ donné. Tout d'abord, pour tous $x \neq y \in X$ nous trouvons une fonction $f_{xy} \in A$ telle que $|f_{xy}(x) - h(x)| < \varepsilon$ et $|f_{xy}(y) - h(y)| < \varepsilon$ En particulier on a :

$$f_{xy}(x) < h(x) + \varepsilon, \qquad f_{xy}(y) > h(y) - \varepsilon.$$

Fixons $x \in X$, et pour tout $y \in X$ posons $U_{xy} = \{z \in X : f_{xy}(z) > h(z) - \varepsilon\}$. On observe que c'est un voisinage ouvert de y. On a donc $X = \bigcup_{y \in X} U_{xy}$, et par compacité il existe $y_0, \ldots, y_{m-1} \in X$ tels que $X = \bigcup_{i=0}^{m-1} U_{xy_i}$. Nous posons alors $g_x = \max(f_{xy_0}, \ldots, f_{xy_{m-1}})$. Par hypothèse $g_x \in A$ et par construction nous avons :

$$g_x(x) < h(x) + \varepsilon$$
, $g_x(z) > h(z) - \varepsilon$ quelque soit $z \in X$.

On construit $g_x \in A$ avec ces propriétés pour chaque $x \in X$, et l'on pose $V_x = \{z \in X \colon g_x(z) < h(z) + \varepsilon\}$. Comme précédemment V_x est un voisinage de x, d'où

 $X = \bigcup_{x \in X} V_x$. Par compacité de X, il existe x_0, \ldots, x_{k-1} tels que $X = \bigcup_{j=0}^{k-1} V_{x_j}$. Nous posons alors $h_{\varepsilon} = \min(g_{x_0}, \ldots, g_{x_{k-1}})$. Par hypothèse $h_{\varepsilon} \in A$ et par construction nous avons :

$$h_{\varepsilon}(z) < h(z) + \varepsilon, \qquad h_{\varepsilon}(z) > h(z) - \varepsilon \quad \text{quelque soit } z \in X.$$

Autrement dit, $||h-h_{\varepsilon}||_{\infty} < \varepsilon$. Comme un tel $h_{\varepsilon} \in A$ existe pour tout $\varepsilon > 0$, nous avons démontré que h est dans l'adhérence de A.

Démonstration du Théorème de Stone-Weierstraß. Nous observons d'abord que l'adhérence de A, notée \overline{A} , satisfait elle aussi toutes les hypothèses du théorème. En effet, si $f_n \to f$ et $g_n \to g$ uniformément, où $f_n, g_n \in A$, alors il existe nécessairement $M \in \mathbb{R}$ qui majore $\|f_n\|_{\infty}$, $\|f\|$, $\|g_n\|_{\infty}$ et $\|g\|$ pour tout n. Dans ce cas on a pour tout $x \in X$:

$$||(f_n + g_n) - (f + g)||_{\infty} \le ||f_n - f||_{\infty} + ||g_n - g||_{\infty},$$

$$||f_n g_n - f g||_{\infty} = ||f_n (g_n - g) + g(f_n - f)||_{\infty}$$

$$\le ||f_n||_{\infty} ||(g_n - g)||_{\infty} + ||g||_{\infty} ||(f_n - f)||_{\infty}$$

$$\le M||(g_n - g)||_{\infty} + M||(f_n - f)||_{\infty},$$

$$||\bar{f}_n - \bar{f}||_{\infty} = ||f_n - f||_{\infty}.$$

Nous obtenons que $f_n+g_n\to f+g$, $f_ng_n\to fg$ et $\bar f_n\to \bar f$ uniformément, d'où $f+g\in \overline A$, $fg\in \overline A$ et $\bar f\in \overline A$. Cela montre que $\overline A$ est également une sous algèbre auto-adjointe. Le fait que $\overline A$ contient les fonctions constantes et sépare les points découle de $A\subseteq \overline A$. Nous pouvons donc supposer que A est fermé dans C(X,K).

Nous traitons d'abord le cas réel, $K = \mathbb{R}$. Si X ne consiste que d'un seul point, toute fonction dans $C(X,\mathbb{R})$ est constante, d'où $A = C(X,\mathbb{R})$ par hypothèse. Nous pouvons donc supposer que X contient au moins deux points.

Soit $(Q_n(x))_n$ la suite de polynômes dans $\mathbb{R}[x]$ qui converge uniformément vers |x| sur [-1,1]. Si $f\in A$ satisfait $\|f\|_{\infty}\leq 1$ alors $Q_n(f)\in A$ (car A est une \mathbb{R} -algèbre contenant les constantes) et $Q_n(f)\to |f|$ uniformément (car $f(x)\in [-1,1]$ pour tout $x\in X$). Comme A est supposé fermé, $|f|\in A$. Si $\|f\|_{\infty}>1$ nous avons $\frac{f}{\|f\|_{\infty}}\in A$, $\left\|\frac{f}{\|f\|_{\infty}}\right\|_{\infty}=1$ et $|f|=\|f\|_{\infty}\left|\frac{f}{\|f\|_{\infty}}\right|\in A$. Ainsi, $|f|\in A$ pour tout $f\in A$. Si $g\in A$ est une autre fonction alors :

$$\max(f,g) = \frac{1}{2}(f+g+|f-g|) \in A, \qquad \min(f,g) = \frac{1}{2}(f+g-|f-g|) \in A.$$

Soient maintenant $x \neq y \in X$, $r,s \in \mathbb{R}$. Alors il existe $f \in A$ tel que $f(x) \neq f(y)$. Posons $g(z) = r + \frac{f(z) - f(x)}{f(y) - f(x)}(s - r)$. Alors $g \in A$, g(x) = r et g(y) = s. D'après le résultat

précédent, A est dense dans $C(X,\mathbb{R})$, et donc $A=C(X,\mathbb{R})$ (car A est fermé). Ceci conclut la démonstration du cas réel.

Dans le cas complexe, nous supposons également que $f \in A \Longrightarrow \bar{f} \in A$. Posons $A' = A \cap C(X,\mathbb{R})$. Alors pour tout $f \in A$ nous avons $Re(f) = \frac{f+\bar{f}}{2} \in A'$ et $Im(f) = Re(-if) \in A'$. Il est facile de vérifier que A' vérifie les hypothèses du cas réel, d'où $A' = C(X,\mathbb{R})$. De plus, toute fonction $f \in C(X,\mathbb{C})$ peut être écrite comme f = g + ih où $g,h \in C(X,\mathbb{R}) = A' \subseteq A$. Comme A est une \mathbb{C} -algèbre, on a $f = g + ih \in A$. On a donc démontré que $A = C(X,\mathbb{C})$, ce qui achève la preuve.