Chapitre 6

Eléments de correction des exercices

6.1 Exercices du Chapitre I

Correction de l'exercice 1.4.1

1. Nous allons montrer que uv est harmonique si et seulement si u est constante ou v est constante ou il existe deux réels α et β non nuls tels que la fonction $\alpha u + i\beta v$ soit holomorphe.

La fonction uv est harmonique si et seulement si $\frac{\partial^2 uv}{\partial \overline{z}\partial z} = 0$. Or

$$\frac{\partial^2 uv}{\partial \overline{z}\partial z} = \frac{\partial}{\partial \overline{z}} \left(u \frac{\partial v}{\partial z} + v \frac{\partial u}{\partial z} \right)
= \frac{\partial u}{\partial \overline{z}} \frac{\partial v}{\partial z} + u \frac{\partial^2 v}{\partial \overline{z}\partial z} + \frac{\partial v}{\partial \overline{z}} \frac{\partial u}{\partial z} + v \frac{\partial^2 u}{\partial \overline{z}\partial z}.$$

Comme u et v sont harmoniques, on obtient :

$$\frac{\partial^2 uv}{\partial \overline{z}\partial z} = \frac{\partial u}{\partial \overline{z}} \frac{\partial v}{\partial z} + \frac{\partial v}{\partial \overline{z}} \frac{\partial u}{\partial z}.$$
 (6.1)

Il est clair que si u ou v est constante alors uv est harmonique. D'autre part, s'il existe deux réels α et β non nuls tels que la fonction $\alpha u + i\beta v$ soit holomorphe, alors $(\alpha u + i\beta v)^2$ est holomorphe et donc $Im((\alpha u + i\beta v)^2) = 2\alpha\beta uv$ est harmonique. Ainsi uv est harmonique.

Réciproquement supposons que uv est harmonique. Comme v est harmonique, $\frac{\partial}{\partial \overline{z}} \left(\frac{\partial v}{\partial z} \right) = 0$ et donc $\frac{\partial v}{\partial z}$ est holomorphe. Si l'on suppose que $\frac{\partial v}{\partial z} = 0$, comme $\frac{\partial v}{\partial z} = \frac{1}{2} \left(\frac{\partial v}{\partial x} - i \frac{\partial v}{\partial y} \right)$

et comme v est réelle, on a donc $\frac{\partial v}{\partial x} = 0 = \frac{\partial v}{\partial y}$. Finalement v est constante. De même, comme u est harmonique, $\frac{\partial u}{\partial z}$ est holomorphe et $\frac{\partial u}{\partial z}$ si et seulement si u est constante. Supposons que ni u ni v n'est constante, autrement dit que $\frac{\partial u}{\partial z}$ et $\frac{\partial v}{\partial z}$ sont des fonctions holomorphes non identiquement nulles. L'ensemble des zéros de $\frac{\partial v}{\partial z}$ et de $\frac{\partial u}{\partial z}$ sont discrets. Soit $D(a,r)\subset\Omega$ tel que $\frac{\partial v}{\partial z}$ ne s'annule pas sur D(a,r). La fonction $h:=\frac{\partial u}{\partial z}$ est donc holomorphe sur D(a,r).

Comme u et v sont réelles, $\frac{\overline{\partial v}}{\partial z} = \frac{\partial v}{\partial \overline{z}}$ et $\frac{\overline{\partial u}}{\partial z} = \frac{\partial u}{\partial \overline{z}}$. D'après (6.1), $h = -\overline{h}$ sur D(a, r), i.e. Re(h) = 0 sur D(a, r). D'après les équations de Cauchy-Riemann, Im(h) est constante sur D(a, r). Comme on a supposé que u était non constante, h est non nul et donc il existe $\lambda \in \mathbb{R} \setminus \{0\}$ tel que $\frac{\partial u}{\partial z} = i\lambda \frac{\partial v}{\partial z}$ sur D(a, r). D'après le principe des zéros isolés (que l'on peut appliquer car Ω est un ouvert connexe) $\frac{\partial u}{\partial z} = i\lambda \frac{\partial v}{\partial z}$ sur Ω . Finalement $\frac{\partial}{\partial z}(u - i\lambda v) = 0$ sur Ω , i.e. $\frac{\partial}{\partial \overline{z}}(u + i\lambda v) = 0$ sur Ω car $\lambda \in \mathbb{R}$ et u et v sont des fonctions réelles. La fonction $u + i\lambda v$ est donc holomorphe sur Ω .

- 2. D'après la première question, u^2 est harmonique si et seulement si u est constante ou s'il existe α et β constantes réelles non nulles telles que $\alpha u + i\beta u$ holomorphe. Or $\frac{\partial}{\partial \overline{z}}(\alpha u + i\beta u) = 0 \iff \frac{\partial u}{\partial \overline{z}} = 0$ sur Ω . Comme u est réelle, on obtient $\frac{\partial u}{\partial z} = 0$ sur Ω , ce qui implique que u est constante sur Ω .
- 3. D'après le calcul qui conduit à (6.1), puisque f et \overline{f} sont des fonctions harmoniques, on a :

$$\frac{\partial^2}{\partial z \partial \overline{z}} (f \overline{f}) = \frac{\partial f}{\partial \overline{z}} \frac{\partial \overline{f}}{\partial z} + \frac{\partial \overline{f}}{\partial \overline{z}} \frac{\partial f}{\partial z}.$$

Comme f est holomorphe, $\frac{\partial f}{\partial \overline{z}}=0$ et donc $|f|^2$ est harmonique si et seulement si

$$\frac{\partial \overline{f}}{\partial \overline{z}} \frac{\partial f}{\partial z} = \overline{\frac{\partial f}{\partial z}} \frac{\partial f}{\partial z} = \left| \frac{\partial f}{\partial z} \right|^2 = 0 \text{ sur } \Omega.$$

Finalement $\frac{\partial f}{\partial z} = 0$ sur Ω , ce qui implique f constante sur Ω .

Correction de l'exercice 1.4.2

1. f^2 harmonique sur Ω signifie $\frac{\partial^2 f^2}{\partial z \partial \overline{z}} = 0$ sur Ω . Comme $\frac{\partial^2 f^2}{\partial z \partial \overline{z}} = 2 \frac{\partial f}{\partial \overline{z}} \frac{\partial f}{\partial z} + 2 f \frac{\partial^2 f}{\partial \overline{z} \partial z}$ avec $\frac{\partial^2 f}{\partial \overline{z} \partial z} = 0$ car f est harmonique, on a donc :

$$\frac{\partial f}{\partial \overline{z}} \frac{\partial f}{\partial z} = 0 \text{ sur } \Omega. \tag{6.2}$$

Si $\frac{\partial f}{\partial z}=0$ sur $\Omega,$ alors $\frac{\partial \overline{f}}{\partial \overline{z}}=0$ sur Ω et donc \overline{f} est holomorphe.

Supposons à présent qu'il existe $z_0 \in \Omega$ tel que $\frac{\partial f}{\partial z}(z_0) \neq 0$. Comme f est harmonique (i.e. $\frac{\partial^2 f}{\partial \overline{z}\partial z} = 0$) la fonction $\frac{\partial f}{\partial z}$ est holomorphe sur Ω . Ses zéros sont donc discrets puisque nous la supposons non identiquement nulle. Ainsi il existe r > 0 tel que $\frac{\partial f}{\partial z}(z) \neq 0$ sur $D(z_0, r)$. D'après (6.2), on a donc $\frac{\partial f}{\partial \overline{z}} = 0$ sur $D(z_0, r)$ et par conséquent $\frac{\partial \overline{f}}{\partial z} = 0$ sur $D(z_0, r)$. Comme f est harmonique, \overline{f} est harmonique et ainsi $\frac{\partial^2 \overline{f}}{\partial \overline{z}\partial z} = 0$ sur Ω . On obtient $\frac{\partial \overline{f}}{\partial z}$ fonction holomorphe sur Ω et nulle sur $D(z_0, r)$. D'après le principe des zéros isolés (que l'on peut appliquer car Ω est un ouvert connexe) $\frac{\partial \overline{f}}{\partial z} = 0$ sur Ω ., i.e. $\frac{\partial f}{\partial \overline{z}} = 0$ sur Ω . La fonction f est donc holomorphe sur Ω .

2. Si $|f|^2$ est harmonique, sachant que f (et donc \overline{f}) est harmonique, on obtient :

$$0 = \frac{\partial^2 (f\overline{f})}{\partial z \partial \overline{z}} = \frac{\partial f}{\partial \overline{z}} \frac{\partial \overline{f}}{\partial z} + \frac{\partial f}{\partial z} \frac{\partial \overline{f}}{\partial \overline{z}} = \left| \frac{\partial f}{\partial \overline{z}} \right|^2 + \left| \frac{\partial f}{\partial z} \right|^2.$$

Ainsi $\frac{\partial f}{\partial \overline{z}} = \frac{\partial f}{\partial z} = 0$ sur Ω , ce qui implique f constante sur Ω .

Correction de l'exercice 1.4.3

f=u+iv où u et v sont des fonctions à valeurs réelles qui ne s'annulent pas simultanément. On pose $g:=\log|f|=\log(u^2+v^2)^{\frac{1}{2}}=\frac{1}{2}\log(u^2+v^2)$. Calculons $\Delta(g):=\frac{\partial^2 g}{\partial x^2}+\frac{\partial^2 g}{\partial y^2}$. On a

$$\frac{\partial g}{\partial x} = \frac{1}{2} \frac{1}{u^2 + v^2} \left(2u \frac{\partial u}{\partial x} + 2v \frac{\partial v}{\partial x} \right) = \left(u \frac{\partial u}{\partial x} + v \frac{\partial v}{\partial x} \right) \frac{1}{u^2 + v^2},$$

et donc:

$$\frac{\partial^2 g}{\partial x^2} = \frac{\left(\frac{\partial u}{\partial x}\right)^2 + u\frac{\partial^2 u}{\partial x^2} + \left(\frac{\partial v}{\partial x}\right)^2 + v\frac{\partial^2 v}{\partial x^2}\right) (u^2 + v^2)}{(u^2 + v^2)^2} - \frac{\left(2u\frac{\partial u}{\partial x} + 2v\frac{\partial v}{\partial x}\right) \left(u\frac{\partial u}{\partial x} + v\frac{\partial v}{\partial x}\right)}{(u^2 + v^2)^2}$$

$$= -\frac{u^2\left(\frac{\partial u}{\partial x}\right)^2 + v^2\left(\frac{\partial v}{\partial x}\right)^2 + 4uv\frac{\partial u}{\partial x}\frac{\partial v}{\partial x}}{(u^2 + v^2)^2} + \frac{u^3\frac{\partial^2 u}{\partial x^2} + u^2\left(\frac{\partial v}{\partial x}\right)^2 + u^2v\frac{\partial^2 v}{\partial x^2} + v^2\left(\frac{\partial u}{\partial x}\right)^2 + uv^2\frac{\partial^2 u}{\partial x^2} + v^3\frac{\partial^2 v}{\partial x^2}}{(u^2 + v^2)^2}$$

$$= \frac{\left(\frac{\partial u}{\partial x}\right)^2(v^2 - u^2) + \left(\frac{\partial v}{\partial x}\right)^2(u^2 - v^2) + \frac{\partial^2 u}{\partial x^2}(u^3 + uv^2) + \frac{\partial^2 v}{\partial x^2}(v^3 + vu^2) - 4uv\frac{\partial u}{\partial x}\frac{\partial v}{\partial x}}{(u^2 + v^2)^2}$$

$$= \frac{(v^2 - u^2)\left(\left(\frac{\partial u}{\partial x}\right)^2 - \left(\frac{\partial v}{\partial x}\right)^2\right) + \frac{\partial^2 u}{\partial x^2}(u^3 + uv^2) + \frac{\partial^2 v}{\partial x^2}(v^3 + vu^2) - 4uv\frac{\partial u}{\partial x}\frac{\partial v}{\partial x}}{(u^2 + v^2)^2}}{(u^2 + v^2)^2}.$$

L'expression de $\frac{\partial^2 g}{\partial y^2}$ s'obtient en remplaçant x par y. Comme u et v sont harmoniques en tant que partie réelle et imaginaire d'une fonction holomorphe, on a bien sur $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 = \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}$. On a donc :

$$\Delta(g) = \frac{(v^2 - u^2) \left(\left(\frac{\partial u}{\partial x} \right)^2 - \left(\frac{\partial v}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial y} \right)^2 - \left(\frac{\partial v}{\partial y} \right)^2 \right) - 4uv \left(\frac{\partial u}{\partial x} \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \frac{\partial v}{\partial y} \right)}{(u^2 + v^2)^2}$$

Comme f est holomorphe, d'après les équations de Cauchy-Riemann, $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ et $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$. On vérifie ainsi que $\Delta(g) = 0$ et donc $\log |f|$ est harmonique.

Correction de l'exercice 1.4.4

Comme Ω est simplement connexe et comme f ne s'annule pas, la fonction holomorphe $\frac{f'}{f}$ a une primitive holomorphe qui est une détermination holomorphe du logarithme de f. En d'autres termes il existe g holomorphe sur Ω tel que $f = e^g$. On a donc en particulier $|f| = e^{Re(g)}$, i.e. $\log |f| = Re(g)$. La fonction $\log |f|$ est donc harmonique comme partie réelle d'une fonction holomorphe.

Correction de l'exercice 1.4.5

Rappelons qu'une fonction f à valeurs complexes est analytique dans Ω si pour tout $z_0 \in \Omega$, il existe $R(z_0) > 0$ avec $\overline{D(z_0, R(z_0))} \subset \Omega$ et une série entière $\sum_{n \geq 0} a_n(z_0) X^n$ de rayon de convergence au moins égal à $R(z_0)$ tels que

$$f(z) = \sum_{n>0} a_n(z_0)(z-z_0)^n, \ z \in D(z_0, R(z_0)).$$

Rappelons le lien entre l'holomorphie et l'analyticité : si f holomorphe dans un ouvert Ω de \mathbb{C} alors f est analytique dans Ω . (cf. par exemple Section 2.4 de [21] ou [12]).

D'après les rappels ci-dessus, il suffit de montrer que si f et $z \longmapsto z f(z)$ sont harmoniques dans Ω alors f est holomorphe sur Ω , i.e. $\frac{\partial f}{\partial \overline{z}} = 0$ sur Ω . Or, comme $g: z \longmapsto z f(z)$ est harmonique, pour tout $z \in \Omega$, on a :

$$0 = \frac{\partial}{\partial \overline{z}} \left(\frac{\partial g}{\partial z} \right) (z) = \frac{\partial}{\partial \overline{z}} \left(z \frac{\partial f}{\partial z} (z) + f(z) \right) = z \frac{\partial^2 f}{\partial \overline{z} \partial z} (z) + \frac{\partial f}{\partial \overline{z}} (z).$$

Comme f est harmonique, on a donc $\frac{\partial^2 f}{\partial \overline{z} \partial z} = 0$ sur Ω et donc nécessairement $\frac{\partial f}{\partial \overline{z}} = 0$ sur Ω .

Correction de l'exercice 1.4.6

1. $\frac{\partial f}{\partial x}$ est harmonique car

$$\frac{\partial^2}{\partial x^2} \left(\frac{\partial f}{\partial x} \right) + \frac{\partial^2}{\partial y^2} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \right) = 0,$$

car f est harmonique de classe C^3 . De façon analogue on montre que $\frac{\partial f}{\partial y}$ est harmonique.

2.

$$P_r(\theta - t) = \sum_{n \in \mathbb{Z}} r^{|n|} e^{in(\theta - t)}$$

$$= \sum_{n \ge 0} r^n e^{in(\theta - t)} + \sum_{n > 0} r^n e^{-in(\theta - t)}$$

$$= \sum_{n \ge 0} z^n e^{-int} + \sum_{n > 0} (\overline{z})^n e^{int},$$

si $z=re^{i\theta}$. Comme, pour $n\geq 0$, $\frac{\partial}{\partial\overline{z}}(z^n)=0$ et $\frac{\partial}{\partial z}(\overline{z}^n)=0$, on a donc $\frac{\partial^2 P_r(\theta-t)}{\partial\overline{z}\partial z}=0$ et donc $P_r(\theta-t)$ est harmonique (à t fixé) sur \mathbb{D} .

3. Pour $z = re^{i\theta}$,

$$P(\mu)(re^{i\theta}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(\theta - t) d\mu(t)$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\sum_{n>0} z^n e^{-int} + \sum_{n>0} (\overline{z})^n e^{int} \right) d\mu(t).$$

Comme pour |z| < 1 les sommes convergent normalement, on obtient :

$$P(\mu)(re^{i\theta}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \sum_{n\geq 0} z^n e^{-int} d\mu(t) + \frac{1}{2\pi} \int_{-\pi}^{\pi} \sum_{n>0} (\overline{z})^n e^{int} d\mu(t).$$

Les dérivées des séries étant elles aussi convergentes et comme $|\mu|(0,2\pi) < \infty$, la dérivée des intégrales et les intégrales de la dérivée sont égales. On obtient ainsi :

$$\frac{\partial^2 P(\mu)}{\partial \overline{z} \partial z}(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \sum_{n \ge 0} \frac{\partial^2 (z^n e^{-int})}{\partial \overline{z} \partial z} d\mu(t) + \frac{1}{2\pi} \int_{-\pi}^{\pi} \sum_{n \ge 0} \frac{\partial^2 ((\overline{z})^n e^{int})}{\partial \overline{z} \partial z} d\mu(t) = 0,$$

ce qui prouve que $P(\mu)$ est bien une fonction harmonique sur \mathbb{D} .

Correction de l'exercice 1.4.7

1. D'après le Corollaire 1.3.1, nous savons que si $a \in \mathbb{D}$ et si R > 0 satisfait $\overline{D(a,R)} \subset \mathbb{D}$ alors pour tout r vérifiant $0 \le r < R$, on a :

$$u(a + re^{i\theta}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_{r/R}(\theta - t)u(a + Re^{it})dt.$$

Comme $P_{r/R}(\theta - t) = \frac{R^2 - r^2}{R^2 - 2rR\cos(\theta - t) + r^2}$, on a :

$$\frac{R-r}{R+r} = \frac{R^2 - r^2}{R^2 + 2rR + r^2} \le P_{r/R}(\theta - t) \le \frac{R^2 - r^2}{R^2 - 2rR + r^2} = \frac{R+r}{R-r}.$$

D'autre part, d'après la formule de la moyenne, $u(a) = \frac{1}{2\pi} \int_{-\pi}^{\pi} u(a + Re^{it}) dt$. De plus, comme $u(a) \ge 0$, on obtient :

$$\frac{R-r}{R+r}u(a) \le u(a+re^{it}) \le \frac{R+r}{R-r}u(a).$$

Prenons $a=0,\,r=\frac{1}{2},\,t=0$ et $R=1-\delta$ avec $\delta\in]0,\frac{1}{2}[$. On obtient :

$$\frac{1/2 - \delta}{3/2 + \delta} \le u(1/2) \le \frac{3/2 - \delta}{1/2 - \delta}.$$

Comme $\delta \longmapsto \frac{3/2-\delta}{1/2-\delta}$ est une fonction croissante et comme $\delta \longmapsto \frac{1/2-\delta}{3/2+\delta}$ est une fonction décroissante, c'est en faisant tendre δ vers 0 que l'on obtient le meilleur encadrement. On a donc $1/3 \le u(1/2) \le 3$.

2. Comme u est une fonction harmonique sur \mathbb{D} , d'après le Corollaire 1.3.1, pour tout $0 \le r < R < 1$, on a :

$$u(re^{i\theta}) = \frac{1}{2\pi} \int_0^{2\pi} P_{r/R}(\theta - t) u(Re^{it}) dt,$$

ce qui revient à dire que :

$$Re(f(z)) = Re\left(\frac{1}{2\pi} \int_0^{2\pi} \frac{Re^{it} + z}{Re^{it} - z} u(Re^{it}) dt\right) \text{ avec } |z| < R < 1.$$

D'après les équations de Cauchy-Riemann, il existe $\lambda \in \mathbb{R}$ tel que

$$f(z) = \frac{1}{2\pi} \int_0^{2\pi} \frac{Re^{it} + z}{Re^{it} - z} u(Re^{it}) dt + i\lambda \text{ pour tout } z \in D(0, R).$$

En particulier, d'après le Corollaire 1.2.3 on a $f(0) = \frac{1}{2\pi} \int_0^{2\pi} u(Re^{it}) dt + i\lambda = u(0) + i\lambda$. Comme f(0) = 0 = u(0), on obtient $\lambda = 0$. On a donc $f(z) = \frac{1}{2\pi} \int_0^{2\pi} \frac{Re^{it} + z}{Re^{it} - z} u(Re^{it}) dt$ dès que |z| = r < R < 1. Comme |u| < 1 sur \mathbb{D} , on en déduit :

$$|f(z)| \le \frac{R+r}{R-r}$$
 dès que $|z| = r < R < 1$.

Comme la fonction $x \longmapsto \frac{x+r}{x-r}$ est décroissante, on en déduit :

$$|f(re^{i\theta})| \le \frac{1+r}{1-r}$$
 dès que $|z| = r < 1$.

Correction de l'exercice 1.4.8

Montrons que u est continue. Soit $\overline{D(a,r)}\subset\Omega$. Nous savons qu'alors

$$u(a) = \frac{1}{\pi r^2} \iint_{\overline{D(a,r)}} u(x+iy) dx dy.$$

Soit $b \in D(a,r)$ et soit $r_1 := r - |b-a|$. Par construction on a $\overline{D(b,r_1)} \subset \Omega$. On a donc $u(b) = \frac{1}{\pi r_1^2} \int \int_{\overline{D(b,r_1)}} u(x+iy) dx dy$ et ainsi :

$$|u(a) - u(b)| = \left| \frac{1}{\pi r^2} \iint_{\overline{D(a,r)}} u(x+iy) dx dy - \frac{1}{\pi r_1^2} \iint_{\overline{D(b,r_1)}} u(x+iy) dx dy \right|$$

$$\leq \left| \frac{1}{\pi r^2} \iint_{\overline{D(a,r)}} u(x+iy) dx dy - \frac{1}{\pi r_1^2} \iint_{\overline{D(a,r)}} u(x+iy) dx dy \right| +$$

$$\left| \frac{1}{\pi r_1^2} \iint_{\overline{D(a,r)}} u(x+iy) dx dy - \frac{1}{\pi r_1^2} \iint_{\overline{D(b,r_1)}} u(x+iy) dx dy \right|$$

$$\leq \left| \frac{1}{\pi r^2} - \frac{1}{\pi r_1^2} \right| \iint_{\overline{D(a,r)}} |u(x+iy)| dx dy +$$

$$\frac{1}{\pi r_1^2} \left| \iint_{\mathbb{R}^2} u(x+iy) \chi_{\overline{D(a,r)} \setminus \overline{D(b,r_1)}} dx dy \right|.$$

Comme $u \in \mathcal{L}^1$ localement, $\iint_{\overline{D(a,r)}} |u(x+iy)| dxdy = M < \infty$ et comme $\lim_{b\to a} |b-a| = 0 \Rightarrow \lim_{b\to a} r_1 = r$, pour $\varepsilon > 0$ fixé, il existe $\delta > 0$ tel que si $|b-a| < \delta$ alors $\left|\frac{1}{\pi r^2} - \frac{1}{\pi r_1^2}\right| \iint_{\overline{D(a,r)}} |u(x+iy)| dxdy < \frac{\varepsilon}{2}$. D'autre part, comme $u \in \mathcal{L}^1$ localement et

comme $\lim_{b\to a} u(x+iy)\chi_{\overline{D(a,r)}\setminus \overline{D(b,r_1)}}=0$, d'après le théorème de convergence dominée de Lebesgue, il existe $\delta'>0$ tel que si $|b-a|<\delta'$ alors

$$\left| \frac{1}{\pi r_1^2} \left| \iint_{\mathbb{R}^2} u(x+iy) \chi_{\overline{D(a,r)} \setminus \overline{D(b,r_1)}} dx dy \right| < \frac{\varepsilon}{2}.$$

La fonction u est donc continue. Comme u vérifie la propriété de la moyenne, elle vérifie la propriété de la moyenne faible. D'après le Théorème 1.3.2, f est harmonique.

6.2 Exercices du Chapitre 2

6.2.1 Quelques rappels de topologie et notion de régularité de mesure de Borel positive

Rappels topologiques

Soit X un espace topologique.

- Un voisinage d'un point $a \in X$ est un ouvert de X contenant a.
- X est **séparé** (ou **de Hausdorff**) lorsque l'on a la propriété suivante : pour deux points distincts quelconques a et b, il existe un voisinage U de a et un voisinage V de b tels que $U \cap V = \emptyset$.
- Un sous-ensemble K de X est **compact** si de tout recouvrement ouvert de K on peut extraire un sous-recouvrement fini.
- -X est localement compact si tout point de X possède un voisinage dont la fermeture est compacte. Naturellement si X est compact alors X est localement compact.
- Un sous-ensemble E de X est σ -compact si E est la réunion dénombrable de compacts de X.

Rappels sur les mesures de Borel

- Une **mesure de Borel** est une mesure définie sur la tribu des boréliens \mathcal{B} d'un espace topologique X séparé et localement compact.
- Une mesure de Borel μ est dite **positive** si $\mu(E) \in \mathbb{R}^+ \cup \{+\infty\}$ pour tout borélien E de X.

- Une mesure de Borel μ est dite **réelle** (resp. **complexe**) si $\mu(E) \in \mathbb{R}$ (resp. $\mu(E) \in \mathbb{C}$) pour tout borélien E de X. Naturellement les mesures de Borel réelles sont des mesures de Borel complexes et ce sont des mesures finies.
- Soit μ une mesure de Borel positive et soit E un borélien. Alors E est **extérieurement** régulier si

$$\mu(E) = \inf\{\mu(V) : V \text{ ouvert }, V \supset E\}.$$

– Soit μ une mesure de Borel positive et soit E un borélien. Alors E est **intérieurement** régulier si

$$\mu(E) = \sup{\{\mu(K) : K \text{ compact }, K \subset E\}}.$$

- Soit μ une mesure de Borel positive.
- Une mesure de Borel positive μ est **régulière** si tout borélien E est à la fois extérieurement et intérieurement régulier.

Théorème 6.2.1 (Théorème 2.18, p.47 de [18]) Soit X un espace topologique séparé localement compact sur lequel tout ouvert est σ -compact. Soit μ une mesure de Borel positive telle que $\mu(K) < \infty$ pour tout compact K de X. Dans ce cas μ est régulière.

En particulier si μ est une mesure de Borel positive et réelle (donc finie) sur \mathbb{R} , μ est régulière (en fait si μ est une mesure de Borel positive sur \mathbb{R} qui de plus est finie sur tout les compacts de \mathbb{R} , μ est régulière).

6.2.2 Corrections

Correction de l'exercice 2.4.1

1. La fonction u est harmonique sur $\mathbb D$ comme partie imaginaire d'une fonction holomorphe sur $\mathbb D$. De plus, si $z=e^{i\theta}$ avec $0\leq r<1$ et $\theta\in]0,2\pi[$, on a :

$$\frac{1+z}{1-z} = \frac{1+e^{i\theta}}{1-e^{i\theta}} = \frac{e^{-i\theta/2}+e^{i\theta/2}}{e^{-i\theta/2}-e^{i\theta/2}}$$
$$= \frac{2\cos(\theta/2)}{-2i\sin(\theta/2)} = i\cot(\theta/2).$$

Par conséquent, pour tout $z \in \mathbb{T} \setminus 1$, on a $\left(\frac{1+z}{1-z}\right)^2 \in \mathbb{R}$ et donc u(z) = 0. En 1 la limite radiale de u est égale à la limite quand $r \to 1^-$ de la partie imaginaire de $\left(\frac{1+r}{1-r}\right)^2$ est identiquement nulle. Ainsi les limites radiales de u sont identiquement nulles.

2. Supposons qu'il existe μ mesure réelle (finie) sur \mathbb{T} telle que $u=P(\mu)$. Soit $\rho(u):=\sup_{0\leq r<1}\int_0^{2\pi}|u(re^{it})|dt$. Si $u=P(\mu)$, d'après le Théorème 2.2.1, $\rho(u)<\infty$. Nous allons calculer $\rho(u)$ et en montrant que $\rho(u)$ n'est pas fini nous aurons montré que $u=P(\mu)$ est absurde.

Si $z = re^{i\theta}$ avec $0 \le r \le 1$, on a :

$$\frac{1+z}{1-z} = \frac{1+re^{i\theta}}{1-re^{i\theta}}$$
$$= \frac{1-r^2+2ir\sin\theta}{1+r^2-2r\cos\theta}.$$

Ainsi, on obtient $u(re^{i\theta}) = \frac{4r(1-r^2)\sin\theta}{(1+r^2-2r\cos\theta)^2}$, ce qui implique

$$|u(re^{i\theta})| = \frac{4r(1-r^2)|\sin\theta|}{(1+r^2-2r\cos\theta)^2}$$

Par conséquent,

$$\int_0^{2\pi} |u(re^{i\theta})| d\theta = \int_0^{\pi} \frac{4r(1-r^2)\sin\theta}{(1+r^2-2r\cos\theta)^2} d\theta - \int_{\pi}^{2\pi} \frac{4r(1-r^2)\sin\theta}{(1+r^2-2r\cos\theta)^2} d\theta.$$

Rappelons que $P_r(\theta) = \frac{1-r^2}{1-2r\cos\theta+r^2}$ et $P'_r(\theta) = -\frac{(1-r^2)2r\sin\theta}{(1-2r\cos\theta+r^2)^2}$. Ainsi on obtient :

$$\int_0^{2\pi} |u(re^{i\theta})| d\theta = 2 \int_0^{\pi} -P'_r(\theta) d\theta + 2 \int_{\pi}^{2\pi} P'_r(\theta) d\theta$$
$$= 2(-P_r(\pi) + P_r(0) + P_r(2\pi) - P_r(\pi)).$$

Comme $P_r(0) = P_r(2\pi) = \frac{1+r}{1-r}$ et $P_r(\pi) = \frac{1-r}{1+r}$, on obtient :

$$\int_0^{2\pi} |u(re^{i\theta})| d\theta = 4\left(\frac{1+r}{1-r} - \frac{1-r}{1+r}\right) = 16\frac{r}{1-r^2}.$$

Par conséquent $\rho(u) = \sup_{0 \le r < 1} \frac{r}{1 - r^2} = +\infty.$

Si l'on suppose que u est la différence de deux fonctions harmoniques positives sur \mathbb{D} , d'après le Corollaire 2.2.1, il existe deux mesures positives finies μ_1 et μ_2 telles que $u = P(\mu_1) - P(\mu_2) = P(\mu_1 - \mu_2)$. On a donc $u = P(\mu)$ avec $\mu = \mu_1 - \mu_2$ mesure réelle (finie). D'après ce qui précède ceci est absurde.

Correction de l'exercice 2.4.2

$$\mu(K) \leq \mu(\bigcup_{1 \leq i \leq k} I_i) \leq \sum_{i=1}^k \mu(I_i) < \alpha \sum_{i=1}^k m(I_i)$$

$$\leq 2\alpha m(\bigcup_{1 \leq i \leq k} I_i) \leq 2\alpha m(V) < 2\alpha \varepsilon.$$

Comme ε était arbitraire, $\mu(K) = 0$.

Correction de l'exercice 2.4.3

D'après la Proposition 2.3.1 si $u = P(\mu)$ alors $\liminf_{r \to 1^-} u(re^{i\theta}) \geq \underline{D}(\mu)(\theta)$ pour tout $\theta \in \mathbb{R}$. Si l'on suppose que $\lim_{r \to 1^-} u(re^{i\theta})$ existe pour tout $\theta \in \mathbb{R}$, on aura alors $\underline{D}(\mu)(\theta)$ finie pour tout $\theta \in \mathbb{R}$. Or nous avons vu dans l'Exercice 2.4.2 que, comme $\mu \perp m$, on a $\underline{D}(\mu)(\theta) = \infty$ μ -presque partout. Comme μ est non identiquement nulle, son support A est non vide et l'on obtient ainsi une contradiction.

Correction de l'exercice 2.4.4

D'après le Corollaire 2.3.3, il existe une mesure ν positive, $\nu \perp m$ telle que $u = P(u^*) + P(\nu)$ avec $u^* \in L^1(\mathbb{T})$, $u^*(e^{it}) = \lim_{r \to 1^-} u(re^{it})$ m-presque partout. Comme par hypothèse $u^*(e^{it}) = 0$ m-presque partout, on a donc $P(u^*) = 0$. On a donc $u = P(\nu)$ où $\nu \perp m$ et ν mesure positive finie. D'après la Proposition 2.3.1 $\liminf_{r \to 1^-} u(re^{i\theta}) \geq \underline{D}(\nu)(\theta)$ pour tout $\theta \in \mathbb{R}$. Par conséquent pour tout $\theta \in [0, 2\pi[$, on a $\underline{D}(\nu)(\theta) \leq 0$. Or d'après l'Exercice 2.4.2, comme $\nu \perp m$, $\underline{D}(\nu)(\theta) = \infty$ ν -presque partout. Comme u et donc ν est non identiquement nul, nécessairement le support de ν est réduit au point 1. Posons alors $c' = \nu(\{1\})$. On a donc $\nu = c'\delta_1$ où δ_1 est la mesure de Dirac concentrée au point 1. Finalement on obtient

$$u(re^{i\theta}) = P(c'\delta_1)(re^{i\theta}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(\theta - t)c'd\delta_0(e^{it}) = \frac{c'}{2\pi} P_r(\theta) = cP_r(\theta) \text{ avec } c = \frac{c'}{2\pi}.$$

Correction de l'exercice 2.4.5

D'après le Corollaire 2.2.1, nous avons

 $\Phi:=\{P(\mu): \mu \text{ mesure positive finie sur } \mathbb{R} \text{ avec de plus } P(\mu)(0)=1\}.$

Or
$$P(\mu)(0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_0(\theta - t) d\mu(t) = \frac{1}{2\pi} \mu([-\pi, \pi]) = \frac{\|\mu\|}{2\pi}$$
. On a donc

$$\Phi := \{ P(\mu) : \mu \text{ mesure positive finie sur } \mathbb{R}, \|\mu\| = 2\pi \}.$$

Par une homothétie évidente de rapport $\frac{1}{2\pi}$, le problème revient à chercher les points extrémaux de l'ensemble \mathcal{C} des mesures positives finies sur \mathbb{T} de variation totale 1.

 $\lambda \in (0,1]$ et soient u_1, u_2 deux fonctions harmoniques positives telles $u_1(0) = 1 = u_2(0)$. Il est clair que $\lambda u_1 + (1 - \lambda)u_2$ est bien un élément de \mathcal{C} . Ainsi \mathcal{C} est bien un ensemble convexe.

Nous allons montrer à présent que les points extrémaux de \mathcal{C} sont des mesures de Dirac concentrées en un point de \mathbb{T} . Soit $z_0 \in \mathbb{T}$ et soit δ_{z_0} la mesure de Dirac concentrée en z_0 . Nous allons tout d'abord montrer que δ_{z_0} est bien un point extrémal de \mathcal{C} . Soit $\lambda \in]0,1[$ et soit $\mu, \nu \in \mathcal{C}$ tels que $\delta_{z_0} = \lambda \mu + (1-\lambda)\nu$. En particulier on a :

$$1 = \delta_{z_0}(\{z_0\}) = \lambda \mu(\{z_0\}) + (1 - \lambda)\nu(\{z_0\}).$$

Il est clair que si $\mu(\{z_0\}) < 1$ ou si $\nu(\{z_0\}) < 1$ alors l'égalité ci-dessus n'est pas vérifiée. Finalement on a $\mu(\{z_0\}) = 1 = \nu(\{z_0\})$, ce qui implique (puisque ν et μ sont des mesures positives de variation totale 1) $\mu(\mathbb{T}\setminus\{z_0\}) = 0 = \nu(\mathbb{T}\setminus\{z_0\})$. Soit E un borélien quelconque de \mathbb{T} . Si $z_0 \notin E$, comme $\mu(E) \leq \mu(\mathbb{T}\setminus\{z_0\})$, on a donc $\mu(E) = 0$. Par contre si $z_0 \in E$, comme $1 \geq \mu(E) \geq \mu(\{z_0\}) = 1$, on a donc $\mu(E) = 1$. On a donc montré que $\mu = \delta_{z_0}$. De même on montre que $\nu = \delta_{z_0}$. On conclut alors que δ_{z_0} est bien un point extrémal de \mathcal{C} .

Supposons à présent que $\mu \neq \delta_{z_0}$ pour tout $z_0 \in \mathbb{T}$ et montrons que μ n'est pas un point extrémal de \mathcal{C} . Il est clair que si le support de μ (défini comme le complémentaire du plus grand ouvert V tel que $\mu(V)=0$) est réduit à un point z_0 alors μ est de la forme $\mu \neq \delta_{z_0}$. On peut donc supposer que le support de μ contient au moins deux points distincts $z_1 = e^{i\theta_1}$ et $z_2 = e^{i\theta_2}$ avec $0 \leq \theta_1 < \theta_2 < 2\pi$. Soit $A = \{e^{i\theta} : 0 \leq \theta \leq \frac{\theta_1 + \theta_2}{2}\}$ et $B = \{e^{i\theta} : \frac{\theta_1 + \theta_2}{2} < \theta < 2\pi\}$. Les boréliens A et B forment une partition de \mathbb{T} . Si $\mu(A) = 0$ alors A n'est pas dans le support de μ et donc $z_1 \in A$ n'est pas dans le support de μ , ce qui est absurde. De même, si $\mu(A) = 1$ alors $\mu(B) = 0$ et donc le support de μ est inclus dans A, ce qui implique que z_2 n'est pas dans le support de μ . Là encore on obtient une contradiction. Finalement $\mu(A) = \lambda \in]0,1[$ et $\mu(B) = 1 - \lambda$. Si l'on définit μ_1 et μ_2 par $\mu_1(E) = \frac{\mu(E \cap A)}{\lambda}$ et $\mu_2(E) = \frac{\mu(E \cap B)}{1 - \lambda}$ pour tout borélien E de \mathbb{T} , on obtient $\mu_1, \mu_2 \in \mathcal{C}$ avec $\mu = \lambda \mu_1 + (1 - \lambda)\mu_2$. Les mesures μ_1 et μ_2 sont distinctes n'ayant pas le même support. Ainsi μ n'est pas un point extrémal de \mathcal{C} .

6.3 Exercices du Chapitre 3

6.3.1 Rappels sur les produits infinis de nombres complexes

Définition 6.3.1 (Notion de convergence au sens strict) On suppose que pour tout $k \geq 1$, $u_k \in \mathbb{C} \setminus \{0\}$. On dit que le produit infini des u_n , noté $\prod_{n \geq 1} u_n$, converge strictement

vers
$$p \in \mathbb{C}$$
 si $\lim_{n \to \infty} p_n = p$ avec $p \in \mathbb{C} \setminus \{0\}$ et $p_n = \prod_{k=1}^n u_k$.

Définition 6.3.2 (Notion de convergence au sens large) Soit $(u_n)_{n\geq 1}$ une suite de nombres complexes telle qu'il existe $n_0 \geq 1$ tel que $u_n \neq 0$ si $n \geq n_0$. Si le produit infini