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1 Introduction

In many applications, the geometry of the flow is anisotropic (i.e. one dimension is small
with respect to the others), e.g. in lubrication problems. In the Newtonian case, the flow
of a fluid between two close surfaces in relative motion is described by an asymptotic ap-
proximation of the Navier-Stokes equations, the Reynolds equation. This equation makes
it possible to uncouple the pressure and the velocity. Indeed, in thin films, the pressure
is considered to be independent of the direction in which the domain is thin. Thus an
equation on the pressure only is obtained, and the velocity can be deduced from the pres-
sure. This approach was introduced by Reynolds, and has been rigorously justified in [3]
for the Stokes equation, and generalized afterwards in many works: for the steady-case
Navier-Stokes equations [1], for the unsteady case [4], for compressible fluids with the
perfect gases law [17]... It is of interest to investigate how this approach can be used for
the case of a two fluid flow.

A first diphasic model consists in introducing a variable viscosity η, which is either
equal to the viscosity η1 of one fluid or the viscosity η2 of the other fluid (that is to say
that the fluids are considered to be non-miscible). The behavior of η is described by a
transport equation. In that case, when assuming the interface between the two fluids
to be the graph of a function, the asymptotic equations corresponding to the thin film
approximation can be interpreted as a generalized Buckley-Leverett equation, which gov-
erns the behavior of the saturation (i.e. the proportion of one fluid in the mixture) inside
the gap, coupled with a generalized Reynolds equation, which governs the behavior of the
pressure. These equations are investigated in [19] without shear effects, and in [6] with
shear effects. One of the main disadvantages of the method is that the fluid interface
is supposed to be the graph of a function, which hinders for example the formation of
bubbles. In addition, this kind of model only takes into account hydrodynamical effects
between the two phases, and surface tension effects are neglected.

The second class of models describing diphasic flows, which has been used up to now
only for the Navier-Stokes equations, is the class of the so-called diffuse interface mod-
els. They take into account chemical properties at the interface between the two fluids,
enabling an exchange between the two phases. In this paper, we use a Cahn-Hilliard
equation, which involves an interaction potential, enhanced with a transport term. Thus
this model describes both the chemical and the hydrodynamical properties of the flow.
An order parameter ϕ is introduced, for example the volumic fraction of one phase in the
mixture. The surface tension can be taken into account via an additional term depending
on ϕ in the Navier-Stokes equations. This kind of model has been studied for the complete
Navier-Stokes equations in [7], and for viscoelastic fluids in [10].

In this paper, we consider an asymptotic system (i.e. a thin film approximation)
for a diphasic fluid in a thin film modelled by the Cahn-Hilliard equation. As for the
Newtonian case, the Navier-Stokes equations are approximated by a modified Reynolds
equation, in which the viscosity is not constant anymore. We study the Reynolds/Cahn-
Hilliard system, and prove the existence and the regularity of a weak solution under a
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smallness assumption on the initial data and the geometry.
Let us describe briefly the main steps of the mathematical analysis. First, we study

the Reynolds equation and investigate the regularity of the pressure and the velocity as
functions of the order parameter. Next, we prove the existence of a solution to the system
Reynolds/Cahn-Hilliard, by using a Galerkin process, which consists in introducing finite
dimension approximations of ϕ. After obtaining a priori estimates for these approxima-
tions, we conclude that they converge to a solution of the system Reynolds/Cahn-Hilliard.

This paper is organized as follows. In Section 2, we introduce the two-dimensional
model for a diphasic fluid in a thin film, which consists of a generalized Reynolds equation
and of a diffuse-interface model (the Cahn-Hilliard equation). In Section 3, we state the
main theorem, and give the main steps and difficulties of the proof. In Section 4, we
deal with the Reynolds equation, and obtain some existence and regularity result on the
velocity field and the pressure. In Section 5, we first introduce some specific results on
trace estimates and Poincaré inequalities. They are used in the rest of the section for
obtaining a priori estimates for the Cahn-Hilliard equation. At last, convergence results
are deduced from these estimates, and allow to conclue the proof of the main theorem.

2 Modelling a diphasic fluid in a thin film

In this section, we will first present how a fluid is described in a thin domain by the
Reynolds equation. Next, we introduce the hydrodynamical Cahn-Hilliard model for any
fluid. Lastly, we combine both aspects and state the model of a diphasic fluid in a thin
domain.

We introduce the domain Ω (see Fig. 1)

Ω =
{

(x, z) ∈ R2, 0 < x < L, 0 < z < h(x)
}
, (1)

where the function h ∈ C2(R) satisfies

∀x ∈ [0, L], 0 < hm ≤ h(x) ≤ hM ,

∀x ∈ [0, L], |h′(x)| ≤ h′M .

Observe that the regularity of h ensures that the domain Ω defined by (1) satisfies the
segment property and cone property (see [2, § 4.2 and 4.3]).

The thin film approximation for an incompressible fluid leads to the following equations
[3], describing the behavior of the pressure p and the velocity field u = (u, v), η being the
viscosity of the fluid:

∂z (η ∂zu) = ∂xp, ∂zp = 0, ∂xu+ ∂zv = 0. (2)

The boundary conditions on u are suitable for lubrication applications: Dirichlet bound-
ary conditions are imposed on the velocity on {z = 0} and {z = h(x)} in order to model
shear effects. The boundary conditions are written:

∀x ∈ [0, L] u(x, 0) = s and u(x, h(x)) = v(x, 0) = v(x, h(x)) = 0. (3)
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Without loss of generality, the shear velocity s ≥ 0 is supposed to be positive. For the
lateral part of the boundary, it has been showed in [3] that only the input flow q =∫ h(0)

0

u(0, ξ) · n dξ needs to be prescribed, where n denotes the exterior normal to the

domain. Observe that according to the divergence-free condition and the boundary con-
ditions on u, this flow is constant on any “vertical” section of the domain:

∂x

(∫ h(x)

0

u(x, ξ)dξ

)
= h′(x)u(x, h(x))︸ ︷︷ ︸

=0

+

∫ h(x)

0

∂xu(x, ξ)dξ = −
∫ h(x)

0

∂ξv(x, ξ)dξ

= −v(x, h(x)) + v(x, 0) = 0,

thus

q =

∫ h(x)

0

u(x, ξ)dξ, ∀x ∈ (0, L).

x

z

u = (s, 0)

u = (0, 0)

q Ω

h(x)

Figure 1: Domain Ω and boundary conditions on the velocity

2.1 Modelling one fluid in a thin domain

The usual procedure [3] is to integrate twice the first equation of (2) with respect to z,
make use of the boundary conditions (3) and of the fact that ∂zp = 0. This allows us to
express u as a function of p:

u(x, z) =
z(z − h(x))

2η
∂xp(x) + s

(
1− z

h(x)

)
. (4)

Then, putting this expression in the divergence-free equation leads to the Reynolds equa-
tion:

∂x

(
h3

12η
∂xp

)
= s∂x

(
h

2

)
. (5)

A first boundary condition on p is deduced from the ones on u. In fact, the choice of the
input flow q corresponds to a Neumann condition for p at x = 0. This condition can be
determined as a function of q by

q =

∫ h(0)

0

u(0, ξ)dξ = −∂xp(0)
h(0)3

12η
+
sh(0)

2
.
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Let us denote w := ∂xp(0) =
12η(q − sh(0)/2)

h(0)3
. Moreover, the solution p of (5) with

the Neumann boundary condition ∂xp(0) = w is defined up to a constant. We can thus
choose p(L) = 0 to gain a well-defined pressure p. It is to be noticed that once p is
computed from (5), then (4) allows us to compute u, while the other component of the
velocity field v is obtained by:

v(x, z) = −
∫ z

0

∂xu(x, ξ) dξ. (6)

2.2 Modelling a mixture

Since we want to study the mixture of two fluids, we introduce an order parameter ϕ
describing the volumic fraction of one fluid in the flow. All physical parameters can be
written as functions of ϕ, in particular the viscosity η. We assume that η(ϕ) satisfies:

η ∈ C1(R) and ∀ϕ ∈ R, 0 < ηm ≤ η(ϕ) ≤ ηM , η′(ϕ) ≤ η′M . (7)

For −1 ≤ ϕ ≤ 1, we can use a specific realistic law as a function of the viscosities of the
two fluids η1 and η2 (see [9] or [18]):

1

η(ϕ)
=

1 + ϕ

2η1

+
1− ϕ
2η2

for ϕ ∈ [−1, 1], (8)

so that ϕ = 1 and ϕ = −1 correspond respectively to the fluids of viscosity η1 and η2

only. However, we will not be able to prove mathematically that ϕ remains in the interval
[−1, 1] (see [7]).

The effects of a possible variation of the density in the mixture will not be taken into
account in this paper. Therefore, the density of the mixture is assumed to be constant (i.e.
the two densities of the two incompressible phases ρ1 and ρ2 are supposed to be equal).
Let us notice that due to the loss of the local conservation equation for the density, the
non-homogeneous case ρ1 6= ρ2 induces further difficulties (see [8]).

The Cahn-Hilliard equation describes the evolution of ϕ and consists of both a trans-
port term, taking the mechanical effects into account, and a diffusive term modelling the
chemical effects. The Cahn-Hilliard equation is written:

∂t ϕ+ u · ∇ϕ− 1

Pe
div (B(ϕ)∇µ) = 0, (9)

µ = −α2∆ϕ+ F ′(ϕ). (10)

The variable µ is the chemical potential, B(ϕ) is called mobility, Pe is the Péclet number, α
is a non-dimensional parameter measuring the thickness of the diffuse interface, and the
function F is called Cahn-Hilliard potential. Physical considerations show that F must
have a double-well structure, each of the wells representing one of the two fluids. A
rational choice for F is given by a logarithmic form (for more details, we refer to [12] or
[15])

F (ξ) = 1− ξ2 + c ((1 + ξ) log(1 + ξ) + (1− ξ) log(1− ξ)) ,
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for some constant 0 < c < 1, or its polynomial approximation

F (ξ) = (1− c′ξ2)2,

where c′ is another constant. These physically realistic potentials share several mathema-
tical properties. In the following, we prove mathematical results for potentials F having
the following properties:

• The function F is supposed to be regular (e.g. of class C2).

• Since F is a physical potential, it is bounded from below. Moreover, only the
derivative of F occurs in the equations, therefore the addition of a constant does
not change the equations. It is thus realistic to make the following assumption:

∃F0 > 0, ∀ξ ∈ R, F (ξ) ≥ F0. (11)

• The convexity of the potential corresponds to the stability of the mixture. Usual
potentials contain some stable and unstable regions (see for example Figure 2). In
order to include such cases, we impose:

∃F5 ≥ 0, ∀ξ ∈ R, F ′′(ξ) ≥ −F5, . (12)

• Moreover the following hypothesis on the growth of the potential is imposed:

∃F1, F2 > 0, ∃r ∈ [1,+∞), ∀ξ ∈ R,
|F ′(ξ)| ≤ F1|ξ|r + F2 and |F ′′(ξ)| ≤ F1|ξ|r−1 + F2.

(13)

This hypothesis is satisfied for any polynomial function.

• At last, we assume a generalization of the convexity:

∀γ ∈ R, ∃F3(γ) > 0, F4(γ) ≥ 0, ∀ξ ∈ R, (ξ − γ)F ′(ξ) ≥ F3(γ)F (ξ)− F4(γ). (14)

These hypotheses are satisfied by functions of the form F (ϕ) =
ϕ4

4
− ϕ2

2
+ F0 (as in

Figure 2), which can be used as a model case. As far as the mobility B is concerned, it is
supposed to be regular, positive, and bounded from above and from below:

B ∈ C2(R), ∀ξ ∈ R, 0 < Bm ≤ B(ξ) ≤ BM . (15)

Let us mention that other types of functions B can be considered, in particular the
degenerate case B(ξ) = (1 − ξ2)σ, with σ ≥ 0, which has been studied in [13] and in [7],
but introduces further mathematical difficulties.
Equations (9)-(10) must be equipped with boundary conditions on ϕ and µ. We are
interested in modelling injection phenomena, which arise for example in lubrication or
polymer injection problems. To this end, it is important to control the composition of
the input. Thus we use Dirichlet boundary conditions on some part of the boundary,
namely where the fluid is supplied. For the other part of the boundary, classical Neuman
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ϕ

F (ϕ)

Figure 2: Possible appearance of the potential F (ϕ)

x

y

Γl Γ0

Ω

h(x)

Γlat

Figure 3: Domain Ω and notations for the boundary

boundary conditions for both ϕ and µ are considered. Let us observe that in previous
works ([7], [10]) Neuman boundary conditions were imposed on the whole boundary.

Thus, the boundary conditions are written

ϕ|Γl
= ϕl, µ|Γl

= 0 and
∂µ

∂n

∣∣∣
Γ0

= 0,
∂ϕ

∂n

∣∣∣
Γ0

= 0, (16)

for some given boundary value ϕl defined on Γl.
Finally, let us define the initial condition: ϕ(t = 0) = ϕ0 ∈ H3(Ω), where ϕ0 is

supposed to be satisfying the same boundary conditions as ϕ. The compatibility condi-
tions also imply that µ0 defined by µ0 = −α2∆ϕ0 + F ′(ϕ0) satisfies the same boundary
conditions as µ.

2.3 Modelling a mixture in thin films

A diphasic flow in a thin domain is still described by the Reynolds system (2), where
the viscosity η is not constant anymore but depends on the order parameter ϕ. Because
of the non-constant viscosity, the coefficients in the Reynolds equation (which depend
on η) depend on ϕ. Let us introduce the following expressions that will be useful in the
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following:

a(x, z) =

∫ z

0

dξ

η(ϕ(x, ξ))
, b(x, z) =

∫ z

0

ξdξ

η(ϕ(x, ξ))
, c(x, z) =

∫ z

0

ξ2dξ

η(ϕ(x, ξ))
, (17)

and
ã(x) = a(x, h(x)), b̃(x) = b(x, h(x)), c̃(x) = c(x, h(x)),

for all (x, z) ∈ Ω. We define also:

d̃(x) =

(
c̃(x)− b̃(x)2

ã(x)

)
and ẽ(x) =

b̃(x)

ã(x)
. (18)

Following the same procedure as in Section 2.1, we integrate twice the first equation
of (2) with non-constant viscosity and using the boundary conditions, we obtain for all
(x, z) ∈ Ω:

u(x, z) =

(
b(x, z)− b̃(x)

ã(x)
a(x, z)

)
∂xp (x) +

(
1− a(x, z)

ã(x)

)
s, (19)

v(x, z) = −
∫ z

0

∂xu(x, ξ) dξ. (20)

We use the fact that u is divergence-free and the boundary conditions in order to write∫ h(x)

0

∂xu(x, z) dz = ∂x

(∫ h(x)

0

u(x, z) dz

)
= 0. (21)

After integrating (19), we obtain

∂x

(
d̃(x)∂xp (x)

)
= s∂x (ẽ(x)) , (22)

where the coefficients d̃ and ẽ are given by (18). Therefore the whole system (Reynolds/Cahn-
Hilliard) is written:

∂x(d̃ ∂xp) = s ∂xẽ (23a)

u =

(
b− a b̃

ã

)
∂xp+ s

(
1− a

ã

)
(23b)

v(·, z) = −
∫ z

0

∂xu(·, ξ)dξ (23c)

∂t ϕ+ u ∂xϕ+ v ∂zϕ−
1

Pe
div(B(ϕ)∇µ) = 0 (23d)

µ = −α2∆ϕ+ F ′(ϕ). (23e)

The coefficients a, b, ã, b̃, d̃, ẽ are explicit functions of ϕ (given by (17), (18)). The
functions B, F are also given explicitly. The quantities Pe and α are physical data. The
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boundary conditions are written

∂xp(0) = w, p(L) = 0, (24a)

∂ϕ

∂n
|Γ0 =

∂µ

∂n
|Γ0 = 0, ϕ|Γl

= ϕl. µ|Γl
= 0, (24b)

Let us notice that equations (23b)-(23c) and the boundary condition (24a) on p imply
that the following boundary conditions are satisfied for u:

u(x, 0) = s, u(x, h(x)) = v(x, 0) = v(x, h(x)) = 0, (25)∫ h(0)

0

u|x=0 · n = q, (26)

where w, q, the shear velocity s and ã0 = ã(0), b̃0 = b̃(0) are related by:

w =

q − s

(
h(0)− 1

ã0

∫ h(0)

0

a(0, ξ) dξ

)
∫ h(0)

0

b(0, ξ) dξ − b̃0

ã0

∫ h(0)

0

a(0, ξ) dξ

. (27)

3 Main result

Let us define some notations and function spaces:

• C denotes any constant depending only on physical parameters or on the size of the
domain (i.e. independent of the unknowns). Moreover, let us define the quantity

σ :=
hM
hm

.

Constants independent of the size of the domain Ω are denoted by C̄, as well as the
constants depending on Ω only through σ (i.e. for fixed σ, the constants C̄ remain
fixed, even if |Ω| changes).

• For f ∈ L1(Ω), we define the mean value of f , denoted by m(f) =
1

|Ω|

∫
Ω

f .

• For the usual Sobolev spaces, we denote by | · |p the Lp-norm in Ω, and by ‖ · ‖s
the Hs-norm in Ω.

• Let us define the following function spaces:

Φ = {φ ∈ D(Ω̄),
∂φ

∂n
|Γ0 = 0, φ|Γl

= 0}, Φs = Φ
Hs(Ω)

for s ≥ 1,

Φl = {φ ∈ D(Ω̄),
∂φ

∂n
|Γ0 = 0},

Φs
l = {φ ∈ Φl, φ|Γl

= ϕl}
Hs(Ω)

for s ≤ 3,
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and

X(Ω) = {f ∈ H1(Ω) ∩ L∞(Ω), ∂zf ∈ H1(Ω)}.

Observe in particular that

Φ1
l = {ϕ ∈ H1(Ω), ϕ|Γl

= ϕl}.

We introduce the following weak form of (23):

Problem 3.1. Let ϕ0 ∈ Φ1
l , and 0 < T ≤ +∞. Find (p,u, ϕ, µ) such that

- the following regularity is satisfied:

p ∈ L∞(0, T ;H2(0, L)), u ∈ L∞(0, T ;X(Ω)), v ∈ L∞(0, T ;L2(Ω)),

ϕ ∈ L∞(0, T ; Φ1
l ) ∩ L2

loc(0, T ; Φ3
l ) ∩ C0([0, T [; Φ1

l ), µ ∈ L2
loc(0, T ; Φ1).

- for any ψ ∈ Φ1, ∫
Ω

∂tϕψ +

∫
Ω

1

Pe
B(ϕ)∇µ∇ψ +

∫
Ω

u(ϕ) · ∇ϕψ = 0, (28)

with
µ = −α2∆ϕ+ F ′(ϕ). (29)

- the velocity field u(ϕ) = (u(ϕ), v(ϕ)) is given as a function of ϕ by (23a), (23b), (23c)
equipped with the boundary conditions (24a), (25), (26);

- the initial condition ϕ|t=0 = ϕ0 is satisfied.

The following sections are dedicated to the proof of the main theorem:

Theorem 3.2. Let ϕ0 ∈ Φ1
l , 0 < T ≤ +∞, and let ϕl satisfy Hypothesis 5.2 and let F

satisfy the assumptions stated in Section 2.2. Under a smallness assumption on L, there
exists a solution (p,u, ϕ, µ) of Problem 3.1.

Sketch of the proof. The proof is divided into two main parts, since the Reynolds equation
and the Cahn-Hilliard are treated separately:
Step 1. As far as the Reynolds equation is concerned, we prove the following proposition:

Proposition 3.3. For any ϕ ∈ H1(Ω), the Reynolds equation (23a) equipped with the
boundary conditions (24a) admits a unique solution which satisfies

∂xp ∈ H1(0, L).

The velocity field (u, v) given as a function of p by (23b)-(23c) satisfies

u ∈ H1(Ω) ∩ L∞(Ω) and v ∈ L2(Ω), with ∂zv ∈ L2(Ω).

Moreover, we have the following estimates

|u|∞ ≤ C̄(1 + h2
M) and |v|2 ≤ C̄(1 + h2

M)‖ϕ‖1. (30)
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Let us sketch the main steps of the proof of Proposition 3.3:

• The Reynolds equation can be solved explicitly, so that p is given as a function of the
coefficients d̃ and ẽ (given as functions of ϕ by (18)): recalling definition (27) of w,
we can integrate the Reynolds equation once and obtain

d̃ ∂xp = s ẽ+ d̃(0)w − s ẽ(0). (31)

The coefficients d̃(0) and ẽ(0) only depend on ϕl and are thus known. If d̃ does not
vanish, we compute formally ∂xp, and then p using the boundary condition p(L) = 0.

In order to obtain estimates on the pressure, we have to prove that the coefficients d̃
and ẽ are regular enough (see Lemma 4.1), and that d̃(ϕ) is greater than a strictly

positive constant (i.e. the operator ∂x(d̃ ∂x·) must be coercive, see Lemma 4.2).

• As far as the velocity is concerned,

u = f∂xp+ g,

where the coefficients are given by f =
(
b− b̃

ã
a
)

and g =
(

1− a

ã

)
s (and a, b, ã, b̃

are defined in (17)). It is enough to prove the regularity of f and g in order to
deduce the needed estimate on u from the estimate on ∂xp (see Lemma 4.3).

• The velocity v is given by

v(x, z) = −
∫ z

0

∂xu(x, ξ) dξ,

and the regularity of v follows from the regularity of u (see Lemma 4.4).

Step 2. As far as the Cahn-Hilliard equation is concerned, we proceed as in the earlier
works on Cahn-Hilliard equation (e.g. [7]), and we apply the Galerkin method in order to
prove the existence of a solution to the system (28), (29). This process consists in building
approximate solutions (ϕn, µn) in finite dimension, for which the existence follows from
the Cauchy-Lipschitz theorem. For these approximate solutions (ϕn, µn), we prove the
following proposition:

Proposition 3.4. For all t ≥ 0, let

Y(t) =
α2

2
|∇ϕn(t)|22 +

∫
Ω

F (ϕn(t)),

Z(t) =
α2

2
|∇ϕn(t)|22 + |∇µn(t)|22 + |∆ϕn(t)|22 +

∫
Ω

F (ϕn(t)).

Then the following estimate is satisfied:

Y ′(t) + C1Z(t) ≤ f(Y(t))Z(t) + C2Z(t) + C3,

where C1, C2, C3 are three positive constants, and f : R → R is a continuous function
satisfying f(0) = 0.
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• Estimates on |∇µn|2 are first obtained from (62). This allows to gain estimates
on |∇ϕn|2 and |∆ϕn|2 by using (63).

• Although estimates are similar are similar to the ones in [7] or [11], they involve
supplementary terms due to the different boundary conditions: because of the non-
homogeneous Dirichlet condition on ϕn on the left-hand side of the domain (fluid
injection), the conservation of the quantity of each fluid is not satisfied anymore (in
the sense that the mean value m(ϕn) of ϕn is not constant with respect to time).
For example, since m(ϕn) is not constant, we cannot apply classical inequalities on
ϕn−m(ϕn), such as the Poincaré inequality, and we have to work with the boundary
value of ϕn on the left-hand side of the domain.

• Additionnal difficulties come from the non-periodical condition for the velocity or
the fact that un ·n 6= 0 on the lateral part of the boundary. New terms have to be
treated.

• In order to control the boundary terms with the ones on the left-hand side of the
estimate, we have to work in adequate function spaces and choose in a suitable way
the coefficients in front of each term. This requires smallness conditions on some
parameters.

From Proposition 3.4, we deduce the convergence of the linear terms. However, it is not
enough to conclude the convergence of the nonlinear terms and the initial condition. To
this end, we obtain more regularity on ϕn and will prove the following proposition:

Proposition 3.5. There exists C > 0 such that for any T > 0:

‖ϕn‖L2(0,T ;Φ3
l ) ≤ CT + C,

∥∥∥∥dϕndt
∥∥∥∥
L2(0,T ;Φ1

l
∗
)

≤ CT + C,

where Φ1
l
∗

is the dual space of Φ1
l .

This proposition allows us to deduce the convergence of all terms in adequate function
spaces, using classical compacity results from [20].

4 About the Reynolds equation

4.1 Regularity of the coefficients

Lemma 4.1. If ϕ ∈ H1(Ω), the coefficients satisfy the following regularity:

a, b, c ∈ X(Ω),

ã, b̃, c̃, d̃, ẽ ∈ H1(0, L).

12



Proof. Let ϕ ∈ H1(Ω). The terms a, b, c are of the form

∫ z

0

ξi/η(ϕ(x, ξ)) dξ, for i = 0, 1, 2

(see definition (17) of a, b, c). We will present the details of the proof for the case i = 1.
The same computations can be used to obtain the regularity results for i = 0, i = 2. Let

f(x, z) =

∫ z

0

ξ/η(ϕ(x, ξ)) dξ.

Let us prove that f ∈ X(Ω) for any ϕ ∈ H1(Ω).

. First we prove that f ∈ L2(Ω) : for any (x, z) ∈ Ω, we have

f(x, z)2 =

(∫ z

0

ξ

η(ϕ(x, ξ))
dξ

)2

≤
( 1

ηm

∫ z

0

ξdξ
)2

≤ z4

4η2
m

.

After integrating with respect to z and x, we get∫ L

0

∫ h(x)

0

f(x, z)2dz dx ≤ h5
ML

20η2
m

<∞.

. Next, we show that f ∈ H1(Ω) and ∂zf ∈ H1(Ω):

– On one hand,

∂xf(x, z) = −
∫ z

0

ξη′(ϕ(x, ξ))

η(ϕ(x, ξ))2
∂xϕ(x, ξ) dξ,

with ∂xϕ ∈ L2(Ω). Let (x, z) ∈ Ω. Using the hypothesis (7), we compute

|∂xf(x, z)|2 =

(∫ z

0

ξη′(ϕ(x, ξ))

η(ϕ(x, ξ))
∂xϕ(x, ξ)dξ

)2

≤ η′M
2

η2
m

∫ z

0

ξ2dξ

∫ z

0

|∂xϕ(x, ξ)|2dξ ≤ η′M
2z3

3η2
m

∫ h(x)

0

|∂xϕ(x, ξ)|2dξ.

After integrating with respect to z, we get∫ h(x)

0

|∂xf(x, y)|2dy ≤ η′M
2h4

M

12η2
m

∫ h(x)

0

|∂xϕ(x, ξ)|2dξ,

and after integrating with respect to x

|∂xf |22 =

∫ L

0

∫ h(x)

0

|∂xf(x, y)|2dy dx ≤ η′M
2h4

M

12η2
m

|∂xϕ|22 <∞.

It follows that ∂xf ∈ L2(Ω).

– On the other hand, ∂zf(x, z) = z/η(ϕ(x, z)) ∈ H1(Ω), since ϕ ∈ H1(Ω) and η ∈ C1(R)
with η > 0.

13



. Next we show that f ∈ L∞(Ω): since ∂zf ∈ L2(Ω), we can write

f(x, z) = f(x, 0) +

∫ z

0

∂ξf(x, ξ) dξ.

By definition of f , we know that f(x, 0) = 0, ∀x ∈ [0, L]. Therefore, the usual trace
theorem for the Sobolev space H1/2(0, h(x)) implies that

|f(x, z)|2 ≤ z

∫ z

0

(∂ξf(x, ξ))2dξ ≤ hM

∫ h(x)

0

(∂ξf(x, ξ))2dξ = hM |∂zf |2L2(0,h(x))

≤ hM‖∂zf‖2
H1/2(0,h(x)) ≤ C‖∂zf‖2

H1(Ω),

thus
|f |2∞ ≤ C‖∂zf‖2

1 <∞.

It remains to prove the regularity of ã, b̃, c̃, d̃, ẽ.

. For the coefficients ã(x) = a(x, h(x)), b̃(x) = b(x, h(x)), c̃(x) = c(x, h(x)), the L∞-regu-
larity is obviously deduced from the one of a, b, c. The H1-regularity can be obtained
using the same procedure as in the first part of the proof.

. For d̃ and ẽ, the key point of the proof is to observe that H1(0, L) (which is embedded
in L∞(0, L)) is an algebra:

(f, g) ∈ H1(0, L)2 ⇒ fg ∈ H1(0, L).

Recalling the definitions d̃ =

(
c̃− b̃2

ã

)
and ẽ =

b̃

ã
, and using the fact that ã, b̃, c̃

belong to H1(0, L), we need to show that 1/ã remains bounded. Since η ≤ ηM , we have

ã(x) =

∫ h(x)

0

1

η(ϕ(x, ξ))
dξ ≥ hm

ηM
i.e.

1

ã
≤ ηM
hm

. (32)

From the regularity of ã, b̃, c̃, from the algebra structure and from (32), we deduce that

d̃ ∈ H1(0, L), ẽ ∈ H1(0, L).

4.2 Coercivity of the operator

Lemma 4.2. Let d̃ be defined by (18). It satisfies the following estimate:

∀x ∈ (0, L), d̃(x) ≥ δ :=
h3
m

12ηM
> 0. (33)
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Proof. By definition (18), d̃(x) can be written in the form:

d̃(x) = c̃(x)− b̃(x)2

ã(x)
=

∫ h(x)

0

z2

η(x, z)
dz −

(∫ h(x)

0

z

η(x, z)
dz

)2

∫ h(x)

0

1

η(x, z)
dz

.

In order to prove the assertion, it suffices to prove that there exists δ > 0 such that(∫ h

0

z2

η
dz

)(∫ h

0

1

η
dz

)
−
(∫ h

0

z

η
dz

)2

≥ δ

(∫ h

0

1

η
dz

)
.

Let us denote by P the following polynomial

P : λ 7→
∫ h(x)

0

(
z√

η(ϕ(x, z))
+

λ√
η(ϕ(x, z))

)2

dz

=

∫ h(x)

0

z2

η(ϕ(x, z))
+

λ2

η(ϕ(x, z))
+

2zλ

η(ϕ(x, z))
dz.

From (7), ∀λ ∈ R we get

P (λ) ≥ 1

ηM

∫ h(x)

0

(
z2 + 2zλ+ λ2

)
dz =

1

3ηM
(h(x)3 + 3h(x)2λ+ 3h(x)λ2).

A simple study of the right-hand side polynomial proves that

∀λ ∈ R, ∀x ∈ (0, L), h(x)2 + 3h(x)λ+ 3λ2 ≥ h(x)2

4
,

thus

P (λ) ≥ h(x)3

12ηM
, i.e. P (λ)− h(x)3

12ηM
≥ 0,

therefore the discriminant of the polynomial

P (λ)− h(x)3

12ηM
= λ2

∫ h

0

1

η
+ 2λ

∫ h

0

z

η
+

∫ h

0

z2

η
− h(x)3

12ηM

is negative:

4

(∫ h(x)

0

zdz

η(ϕ(x, z))

)2

− 4

(∫ h(x)

0

dz

η(ϕ(x, z))

)[(∫ h(x)

0

z2dz

η(ϕ(x, z))

)
− h(x)3

12ηM

]
≤ 0,

that is to say(∫ h

0

z2

η
dz

)(∫ h

0

1

η
dz

)
−
(∫ h

0

z

η
dz

)2

≥ h3
m

12ηM

(∫ h

0

1

η
dz

)
, i.e. d̃ ≥ h3

m

12ηM
> 0.

The two previous lemmas 4.1 (regularity of the coefficients) and 4.2 (coercivity of the
operator) with formula (31) imply that ∂xp ∈ H1(0, L), thus p ∈ H2(0, L).
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4.3 Estimates of |u|∞ and |v|2
Lemma 4.3. Let ϕ ∈ H1(Ω). The horizontal velocity u given by (23b) satisfies

|u|∞ ≤ C̄(1 + h2
M),

where C̄ denotes a constant depending on Ω only through the ratio σ = hM/hm.

Proof. The regularity of u follows from the regularity of p, equation (23b) and the regu-
larity of the coefficients (Lemma 4.1):

u = (b− ab̃

ã
)∂xp+ s(1− a

ã
) ∈ X(Ω)

Moreover, we know that u is a combination of coefficients of the form

∫ z

0

ξ/η(ϕ)dξ. Indeed

|u|∞ ≤

|b|∞ +
|a|∞|̃b|∞
min
x∈(0,L)

ã(x)

 |∂xp|∞ + s

1 +
|a|∞

min
x∈(0,L)

ã(x)

 , (34)

and ∂xp is given by (31), thus:

|∂xp|∞ ≤
1

min
x∈(0,L)

d̃(x)

(
s|e|∞ + |d̃l|∞|w|+ s|ẽl|∞

)
. (35)

Let us obtain estimates for these coefficients.

. Using the boundedness hypothesis on η, and applying the Cauchy-Schwarz inequality
and the fact that ∀x ∈ (0, L), h(x) ≤ hM , we can write for all (x, z) ∈ Ω

a(x, z) =

∫ z

0

dξ

η(ϕ(x, ξ))
≤ hM
ηm

, thus |a|∞ ≤ C̄hM , |ã|∞ ≤ C̄hM . (36)

. Similar computations for b, c and b̃, c̃ give

|b|∞, |̃b|∞ ≤ C̄h2
M , |c|∞, |c̃|∞ ≤ C̄h3

M . (37)

. Recalling definition (18) of ẽ, and using (32), it follows from (37):

|ẽ|∞ =
|b|∞

min
x∈(0,L)

ã(x)
≤ C̄h2

M

hm
≤ C̄σhM = C̄hM . (38)

We recall that we denote by C̄ any constant independent of Ω or depending on Ω only

through the rate σ =
hM
hm

.
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. Moreover, the same computations as for estimates (36), (37) lead to

|ãl|∞ ≤ C̄hM , |̃bl|∞ ≤ C̄h2
M , |c̃l|∞ ≤ C̄h3

M .

We get (since hM ≥ hm)

|d̃l|∞ ≤ |c̃l|∞ + |̃bl|2∞
hm
ηM
≤ C̄h3

M , |ẽl|∞ ≤ |̃bl|∞
hm
ηM
≤ C̄hM . (39)

Thus, using (33), (38), (39) in (35), it follows

|∂xp|∞ ≤ C̄(1 +
1

h2
m

). (40)

Now, using (36), (37), (32) and (40) in (34), we obtain the required estimate:

|u|∞ ≤ C̄h2
M

(
1 +

1

h2
m

)
≤ C̄(1 + h2

M), (41)

which ends the proof.

Lemma 4.4. Let ϕ ∈ H1(Ω). The vertical velocity v given by (23c) satisfies

|v|2 ≤ C̄(1 + h2
M)‖ϕ‖1,

where C̄ denotes a constant depending on Ω only through the ratio σ = hM/hm.

Proof. The regularity of v follows from the regularity of u, equation (23c) and the regu-
larity of the coefficients (Lemma 4.1):

v(x, z) = −
∫ z

0

∂xu(x, ξ)dξ.

From the Cauchy-Schwarz inequality, we deduce that

|v|2 ≤ hM |∂xu|2. (42)

Let us introduce the coefficients f = b − ab̃

ã
and g = 1 − a

ã
, so that u = f∂xp + sg.

Therefore
|∂xu|2 ≤ |∂xf |2|∂xp|∞ + |f |∞|∂2

xp|2 + s|∂xg|2, (43)

and ∂2
xp is given by taking the derivative of (31) with respect to x:

|∂2
xp|2 ≤

1

min
x∈(0,L)

d̃(x)

(
s|∂xẽ|2 + |∂xd̃|2|∂xp|∞

)
. (44)

Let us obtain estimates for each coefficient separately:

17



. We have

|f |∞ ≤ |b|∞ +
C̄

hm
|a|∞ |̃b|∞. (45)

. It remains to obtain estimates of the derivatives of the coefficients with respect to x.

We can compute ∂xa =

∫ y

0

η′(ϕ)

η(ϕ)2
∂xϕ, and the Cauchy-Schwarz inequality yields

|∂xa|22 ≤
η′M

2

η4
m

∫
Ω

(∫ y

0

∂xϕ(x, z) dz

)2

≤ C̄hM

∫
Ω

∫ y

0

|∂xϕ|2 ≤ C̄h2
M |∂xϕ|22 ≤ C̄h2

M‖ϕ‖2
1,

and similar estimates for all the other coefficients:

|∂xa|2, |∂xã|2 ≤ C̄hM‖ϕ‖1, |∂xb|2, |∂xb̃|2 ≤ C̄h2
M‖ϕ‖1,

|∂xc|2, |∂xc̃|2 ≤ C̄h3
M‖ϕ‖1.

(46)

. Let us write

∂x

(a
ã

)
=
∂xa ã− a ∂xã

ã2
.

From (32), we know that ã ≥ hm
ηM

. This estimate combined with (46) suffices to prove

that ∣∣∣∂x (a
ã

)∣∣∣
2
≤ C̄‖ϕ‖1, (47)

and ∣∣∣∣∣∂x
(
b̃

ã

)∣∣∣∣∣
2

≤ C̄hM‖ϕ‖1. (48)

. Since

∂xd = ∂xc− ∂xb̃
b̃

ã
− b̃∂x

(
b̃

ã

)
, ∂xe = ∂x

(
b̃

ã

)
,

∂xf = ∂xb− ∂xa
b̃

ã
− a∂x

(
b̃

ã

)
, ∂xg = ∂x

(a
ã

)
,

(49)

it follows, using (46), (47), (48) in (49), that

|∂xd̃|2 ≤ C̄h3
M‖ϕ‖1, |∂xẽ|2 ≤ C̄hM‖ϕ‖1,

|∂xf |2 ≤ C̄h2
M‖ϕ‖1, |∂xg|2 ≤ C̄‖ϕ‖1.

(50)

Putting (33), (50), (40) in (44) and (43), we deduce an estimate for each of the three
terms in (43):
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. The first term is estimated by:

|∂xf |2|∂xp|∞ ≤ C̄h2
M‖ϕ‖1

(
1 +

1

h2
m

)
≤ C̄(1 + h2

M)‖ϕ‖1.

. For the second term, we have:

|f |∞
δ

(
s|∂xẽ|2 + |∂xd̃|2|∂xp|∞

)
≤ 1

h3
m

h2
M

(
hM‖ϕ‖1 + h3

M‖ϕ‖1

(
1 +

1

h2
m

))
≤ C̄(1 + h2

M)‖ϕ‖1.

. The third term follows directly from (50):

|∂xg|2 ≤ C̄‖ϕ‖1.

Therefore, using (42) and these three estimates for |∂xu|2, we obtain:

|v|2 ≤ hM |∂xu|2 ≤ C̄(1 + h2
M)‖ϕ‖1,

which proves the lemma.

Remark 4.5. Observe that it is not straightforward to prove that v ∈ L∞(Ω) if ϕ only lies
in H1(Ω). Computing |v|∞, it is bounded by |∂xu|∞, and thus by |∂xf |∞ for example, i.e.
by |∂xa|∞. But writing |∂xa|∞ ≤ C|∂xϕ|∞, the regularity of ϕ does not allow to conclude.

Remark 4.6. Since (23a)-(23b)-(23c) are steady-state equations, the constants in the pre-
vious estimates are also independent of the time, so that the L∞(Ω) and L2(Ω)-estimates
of Lemma 4.3 and 4.4 can also be written in L∞(0,∞;L∞(Ω)) and L∞(0,∞;L2(Ω)).

5 About the Cahn-Hilliard equation

5.1 Useful inequalities

5.1.1 Boundary conditions and lift operator

In order to treat the boundary terms, it is a classical approach for the velocity u to
introduce a lift operator of the boundary values by means of a divergence-free function.

Lemma 5.1. Let (s, q) ∈ R2. There exists a vector field on Ω̄, denoted by g = (g1, g2),
satisfying the following conditions:

i) g ∈ H1(Ω)2,

ii) div g = 0 in Ω,

iii) g satisfies the following conditions:

g(x, 0) = (s, 0), g(x, h(x)) = (0, 0),

∫ h(0)

0

g|x=0 · n =

∫ h(L)

0

g|x=L · n = q. (51)
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Proof. Given s, q, it is possible to build a function g̃ ∈ H1/2(Γ) such that

g̃(x, 0) = (s, 0), g̃(x, h(x)) = (0, 0),

∫ h(0)

0

g̃|x=0 · n =

∫ h(L)

0

g|x=L · n = q.

Next, since

∫
Γ

g ·n = 0, there exists a lifting g ∈ H1(Ω)2 satisfying the required properties

by a classical result [14].

Hypothesis 5.2. As far as the boundary value ϕl of ϕ is concerned, we assume that it
is constant on Γl, with ϕl ∈ {0,−1, 1}. The regularity ϕl ∈ H5/2(Γl) follows immediately,
and it is easy to define a lifting ϕ̂l ∈ Φ2

l of the boundary value ϕl for all (x, z) ∈ Ω by
ϕ̂l(x, z) = ϕl.

This assumption corresponds to assuming a pure phase injection (ϕl = ±1) or a homo-
geneous mixture injection (ϕl = 0). It is necessary in Section 5.2 to define the Galerkin
approximation as in (63). Indeed, if F ′(ϕl) 6= 0, then F ′(ϕn) /∈ Ψn, thus PΨn does not
converge towards the identity when n goes to infinity. However, let us emphasize that the
propositions stated in this section 5.1 are valid for any ϕl ∈ H5/2(Γl).

5.1.2 Sobolev embeddings

Let us recall how the constants in the usual Sobolev embeddings depend on the domain.
The results of this section follow from [2, Cor. 5.13] and [2, Lem. 5.15], since the domain
Ω defined by (1) satisfies the segment and the cone property.

Proposition 5.3. Let Ω ⊂ R2 be defined by (1). Then H1(Ω) ↪→ Lq(Ω), for any
2 ≤ q < +∞. Moreover, the embedding constant can be specified:

∀f ∈ H1(Ω), |f |q ≤ C̄|Ω|1/q‖f‖1, (52)

where C̄ only depends on q.

Proposition 5.4. Let Ω ⊂ R2 be defined by (1). Then H2(Ω) ↪→ L∞(Ω). Moreover
let R = min(hm, L). Then

∀f ∈ H2(Ω), |f |∞ ≤ C̄(R−2/3|Ω|5/6 +R1/3|Ω|1/3)‖f‖2. (53)

Let us denote C∞ := C̄(R−2/3|Ω|5/6+R1/3|Ω|1/3). Let us observe that C∞ remains bounded
as |Ω| → 0.

5.1.3 Equivalence of norms

Proposition 5.5. Let ϕl ∈ H5/2(Γl), and let ϕ ∈ Φ2
l . We have

‖ϕ‖2 ≤ C̄|∆ϕ|2 + |ϕ̂l|2. (54)

This result is proved in [5]. Moreover, we can combine this result with Proposition 5.4:

Corollary 5.6. Let ϕl ∈ H5/2(Γl), and let ϕ ∈ Φ2
l . Let R = min(hm, L). The following

inequality applies:

|ϕ|∞ ≤ C̄(R−2/3|Ω|5/6 +R1/3|Ω|1/3) (|∆ϕ|2 + |ϕ̂l|2). (55)
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5.1.4 Anisotropic trace estimates

Proposition 5.7. If f ∈ H1(Ω) and if x̄ ∈ (0, L), then

|f(x̄, ·)|2L2(0,h(x̄)) ≤ C̄

(
L|∂xf |22 +

( 1

L
+ Lh′M

)
|f |22
)
.

Proof. We state the proof for x̄ = 0, the case x̄ 6= 0 being easily adapted. Introduce the
auxiliary function ξ(x) = 1

2
(x − L)2. This function satisfies for all x ∈ R, ξ′′(x) = 1.

Integration by parts gives:∫ L

0

∫ h(x)

0

f 2 =

∫ L

0

∫ h(x)

0

f 2ξ′′ =

[∫ h(x)

0

ξ′f 2

]x=L

x=0

−
∫ L

0

∫ h(x)

0

2f∂xfξ
′−
∫ L

0

h′(x)

∫ h(x)

0

ξ′f 2.

Since ξ′(L) = 0, and ξ′(0) = −L, we get

L

∫ h(0)

0

f 2|x=0 = |f |22 +

∫ L

0

∫ h(x)

0

2f∂xfξ
′ +

∫ L

0

h′(x)

∫ h(x)

0

ξ′f 2.

Moreover |ξ′(x)| ≤ L for x ∈ [0, L], |h′|∞ ≤ h′M , and the Cauchy-Schwarz inequality and
Young’s inequality imply

|f |2L2(Γl)
≤ 1

L
|f |22 + 2L|f |2|∂xf |2 + Lh′M |f |22 ≤ C̄

(( 1

L
+ Lh′M

)
|f |22 + L|∂xf |22

)
.

Remark 5.8. We can apply the previous result to ϕ and µ, leading to the following
estimates for ϕ ∈ Φ1

l , µ ∈ Φ1:

|ϕ|2L2(Γl)
, |ϕ|2L2(0,h(L)) ≤ C̄

(
L|∂xϕ|22 +

( 1

L
+ Lh′M

)
|ϕ|22

)
,

|µ|2L2(Γl)
, |µ|2L2(0,h(L)) ≤ C̄

(
L|∂xµ|22 +

( 1

L
+ Lh′M

)
|µ|22
)
.

(56)

For ϕ ∈ Φ2
l , we can also apply this proposition to ∂xϕ. Since (∂xϕ) |(0,h(L)) = 0, we can

apply the Poincaré inequality: |∂xϕ|22 ≤ L2|∂2
xϕ|22. Thus,

|∂xϕ|2L2(Γl)
≤ C̄L(1 + L2h′M)|∂2

xϕ|22. (57)

5.1.5 Specific Poincaré inequalities

The Poincaré inequalities stated in this section are specific to the functions ϕ and µ
satisfying the boundary conditions (24b) and relation (23e). First, observe that because
of Hypothesis 5.2, we have

|ϕl|L2(Γl) ≤ ‖ϕ̂l‖1/2 ≤ ‖ϕ̂l‖1 = |ϕ̂l|2.
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Proposition 5.9 (Poincaré inequality for ϕ). Let ϕ ∈ Φ1
l . Let L2

h = L2(1 + h2
M + h′M

2).
We have

|ϕ|22 ≤ C̄
(
L2(1 + h2

M + h′M
2
)|∇ϕ|22 + L|ϕ̂l|22

)
= C̄

(
L2
h|∇ϕ|22 + L|ϕ̂l|22

)
. (58)

Proof. This is a consequence of the usual Poincaré inequality with ϕ|x=0 = ϕl (see for
example [21, § II.1.4]). Let (x, z̃) ∈ (0, L)× (0, 1), and define ϕ̃(x, z̃) such that ϕ̃(x, z̃) =
ϕ(x, z), with z = h(x)z̃. Poincaré inequality for ϕ̃ leads to

|ϕ̃|22 ≤ C̄
(
L2|∂xϕ̃|22 + L|ϕl|2L2(Γl)

)
≤ C̄

(
L2|∂xϕ̃|22 + L|ϕ̂l|22

)
.

Since ∂xϕ̃ = ∂xϕ + z
h′

h
∂zϕ and ∂z̃ϕ̃ = h∂zϕ, we deduce from the fact that z/h(x) ≤ 1

that
|ϕ|22 ≤ C̄

(
L2
(
|∂xϕ|22 + h2

M |∂zϕ|22 + h′M
2|∂zϕ|22

)
+ L|ϕ̂l|22

)
, (59)

which proves the inequality claimed.

Proposition 5.10 (Poincaré inequality for µ). We have

|µ|22 ≤ C̄L2
h|∇µ|22. (60)

5.2 Galerkin approximations

Let us build the Galerkin approximations of ϕ and µ. Since Φ1 is a separable Hilbert
space, there exists an Hilbertian basis (ψi)i≥1 of Φ1. The functions ψi can be chosen to be
eigenfunctions of the Laplacian −∆ with the boundary conditions (24b), and we denote
by λi the corresponding eigenvalues. We define Ψn = Span(ψ1, · · · , ψn), and PΨn the
orthogonal projector on Ψn in L2(Ω). As a projector, PΨn satisfies:

(PΨnf, g) = (f,PΨng), ∀(f, g) ∈ L2(Ω)2, (61)

where (·, ·) denotes the scalar product in L2(Ω).
Recalling that ϕ̂l ∈ Φ2

l satisfies the boundary conditions (24b), we consider the following
approximation of ϕ:

ϕn(t) =
n∑
i=1

βi(t)ψi + ϕ̂l,

where βi are unknown functions to be determined. The problem (28)-(29) becomes, after
integrating by parts:

Problem 5.11. Find (ϕn, µn) such that∫
Ω

∂tϕnψ +

∫
Ω

1

Pe
B(ϕn)∇µn∇ψ

−
����������
∫
Γ

B(ϕn)∇µn · nψ +

∫
Ω

u(ϕn) · ∇ϕnψ = 0, ∀ψ ∈ Φ1, (62)

µn = −α2∆ϕn + PΨnF
′(ϕn), (63)
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with the boundary conditions

µn|Γl
= 0, ϕn|Γl

= ϕl, ∇µn · n|Γ0 = ∇ϕn · n|Γ0 = 0, (64)

and where u(ϕn) is defined as a function of ϕn by the formulas (19)-(20) and (22).

Remark 5.12. Let us explain why the boundary term

∫
Γ

B(ϕn)∇µn · nψ is zero:

. On Γ0, we can compute ∇µn · n|Γ0, since the functions ψi are eigenfunctions of −∆
and ∇ϕ̂l · n|Γ0 = 0:

∇µn · n|Γ0 = −α2∇∆ϕn · n|Γ0 + ∇PΨnF
′(ϕn) · n|Γ0︸ ︷︷ ︸

=0, since PΨnF
′(ϕn)∈Ψn

= −α2∇

(
n∑
i=1

βiλiψi

)
· n|Γ0

Since ψi ∈ Ψn for any i ≤ n, we have ∇ψi · n|Γ0 = 0, and thus ∇µn · n|Γ0 = 0.

. On Γl, the boundary term is also equal to zero, since ψ ∈ Φ1, and thus vanishes on Γl.

Observe that the weak formulation (62)-(63) is well-defined since ψi ∈ H1(Ω) implies
that µn ∈ H1(Ω). Indeed, the functions ψi are eigenfunctions of −∆, so that the regularity
follows from definition (63).

Lemma 5.13. For n ∈ N, there exists (βi)1≤i≤n ∈ C1(0, tn) so that ϕn(t) =
n∑
i=1

βi(t)ψi+ϕ̂l

is a solution of Problem 5.11.

Proof. Replacing ϕn by its expression as a function of βi, the system (62)-(63) becomes:

n∑
i=1

β′i(t)

∫
Ω

ψi ψ+

∫
Ω

1

Pe
B

(
n∑
i=1

βi(t)ψi + ϕ̂l

)
∇µn∇ψ

+
n∑
i=1

βi(t)

∫
Ω

u

(
n∑
i=1

βi(t)ψi + ϕ̂l

)
· ∇ψiψ = 0, ∀ψ ∈ Φ1,

µn = −α2

n∑
i=1

βi(t)λiψi + PΨnF
′

(
n∑
i=1

βi(t)ψi + ϕ̂l

)
.

This formulation is an ordinary differential equation on (βi)1≤i≤n. The functions B and F ′

are C1 on R. Moreover, the function u as a function of ϕn given by (23a)-(23b)-(23c) is
also C1 on R (with respect to time): indeed, u(ϕn) is given as a combination of coefficients

of the form

∫ z

0

ξ/η(ϕn(x, ξ))dξ, and the function η is C1 by assumption (7). The second

component of the velocity v is given as a function of u, and is also C1 on R. Therefore,
the Cauchy-Lipschitz theorem ensures the existence of a unique solution (βi)1≤i≤n on a
time interval [0, tn).
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5.3 Estimates on ϕ

The proof of the main theorem consists in showing that tn = +∞ for any n ≥ 1, and
that ϕn converges in appropriate function spaces. In the sequel, we drop the subscripts n

for readability, and we write ϕ, µ instead of ϕn, µn.

Lemma 5.14. For ϕ and µ solutions of (62)-(63) with boundary conditions (64), the
following inequality applies:

d

dt

(
α2

2
|∇ϕ|22 +

∫
Ω

F (ϕ)

)
+
(3Bm

4Pe
− L0

)
|∇µ|22

≤ L1(u)|∆ϕ|22 + L3(u)|∇ϕ|22 + L4(u)|ϕ̂l|22,

(65)

where for any β > 0, the terms Li for 0 ≤ i ≤ 4 are given by

L0 =
C̄

β
(
L2
h

L
+ LL2

hh
′
M + L),

L1(u) = C̄
(PeC2

∞|v|22
Bm

+ βL3(1 + L2h′M)(1 + h2
M + h′M

2
)|g1|2L∞(Γlat)

)
,

L3(u) =
C̄PeL2

h|u|2∞
Bm

L4(u) = C̄
(PeC2

∞|v|22
Bm

+
PeL|u|2∞
Bm

+ βL(1 + L2h′M)|g1|2L∞(Γlat)

)
.

Proof. Let us take ψ = µ ∈ Φ1 in the weak formulation (62). Using definition (63) for µ,
we get ∫

Ω

∂tϕ(−α2∆ϕ+ PΨnF
′(ϕ))

︸ ︷︷ ︸
=:A

+
1

Pe

∫
Ω

B(ϕ)|∇µ|2

︸ ︷︷ ︸
=:B

= −
∫
Ω

u · ∇ϕµ

︸ ︷︷ ︸
=:D

. (66)

Let us obtain estimates for each term A, B, D:

. The A-term is composed of two parts:

A = −α2

∫
Ω

∂tϕ∆ϕ

︸ ︷︷ ︸
=:A1

+

∫
Ω

∂t ϕPΨnF
′(ϕ))

︸ ︷︷ ︸
=:A2

.

? For A1, we use integration by parts:

A1 = −α2

∫
Ω

∂tϕ∆ϕ =
α2

2

d

dt
|∇ϕ|22 − α2

∫
Γ

∂tϕ∇ϕ · n

The boundary condition ∇ψi ·n|Γ0 = 0, and the fact that ϕl is independent of t allow
us to treat the boundary term:

−α2

∫
Γ

∂tϕ︸︷︷︸
= 0 on Γl

∇ϕ · n︸ ︷︷ ︸
= 0 on Γ0

= 0,
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thus

A1 =
α2

2

d

dt
|∇ϕ|22. (67)

? For the second term A2, we use property (61) and the time-independency of ϕ̂l:

A2 = (∂tϕ,PΨnF
′(ϕ)) = (PΨn∂t ϕ, F

′(ϕ)) = (∂t ϕ, F
′(ϕ)).

Thus, ψi ∈ Ψn yields

PΨn∂t ϕ = PΨn

(
n∑
i=1

β′i(t)ψi

)
=

n∑
i=1

β′i(t)ψi = ∂t ϕ.

Thus, A2 can be expressed as a time derivative:

A2 =

∫
Ω

∂t ϕF
′(ϕ) =

d

dt

∫
Ω

F (ϕ). (68)

. The B-term is trivially estimated using that B(ϕ) ≥ Bm (from (15)):

B =
1

Pe

∫
Ω

B(ϕ)|∇µ|2 ≥ Bm
Pe
|∇µ|22. (69)

. For the D-term, after integrating by parts, we use the fact that div u = 0 and that
u|Γ = g|Γ (where g is a lifting of the boundary conditions on u defined by Lemma 5.1):

D = −
∫
Ω

u · ∇ϕµ =

∫
Ω

ϕu∂xµ︸ ︷︷ ︸
=:D1

+

∫
Ω

ϕv ∂zµ︸ ︷︷ ︸
=:D2

−
∫

Γ

g · nϕµ︸ ︷︷ ︸
=:D3

.

We observe that D1 and D2 must be handled separately, since v /∈ L∞(Ω).

? By Young’s inequality, we have for D1:

D1 =

∫
Ω

ϕu∂xµ ≤ |ϕ|2|u|∞|∂xµ|2 ≤
Bm
4Pe
|∂xµ|22 +

Pe
Bm
|u|2∞|ϕ|22.

Using the Poincaré inequality (58) for |ϕ|2, we conclude

D1 ≤
Bm
4Pe
|∂xµ|22 +

C̄PeL2
h

Bm
|u|2∞|∇ϕ|22 + +

C̄PeL
Bm

|u|2∞|ϕ̂l|22. (70)

? For D2, we get

D2 =

∫
Ω

ϕv ∂zµ ≤ |ϕ|∞|v|2|∂zµ|2 ≤
Bm
4Pe
|∂zµ|22 +

Pe
Bm
|v|22|ϕ|2∞.

We recall that by (55), |ϕ|2∞ ≤ C2
∞(|∆ϕ|22 + |ϕ̂l|22), so that we obtain

D2 ≤
Bm
4Pe
|∂zµ|22 +

C2
∞Pe
Bm

|v|22|∆ϕ|22 +
C2
∞Pe
Bm

|v|22|ϕ̂l|22. (71)
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? For the boundary term D3, we make use of the boundary conditions on g (51):

D3 =

∫
Γ

g · nϕµ =

∫
Γlat

g1 ϕµ.

We apply Young’s inequality (with β > 0), and combine it with the trace esti-
mate (56) for |µ|L2(Γlat) and |ϕ|L2(Γlat):

D3 ≤
1

4β
|µ|2L2(Γlat)

+ β|g1|2L∞(Γlat)
|ϕ|2L2(Γlat)

≤ C̄

β

(( 1

L
+ Lh′M

)
|µ|22 + L|∂xµ|22

)
+ C̄β|g1|2L∞(Γlat)

(( 1

L
+ Lh′M

)
|ϕ|22 + L|∂xϕ|22

)
.

With the Poincaré inequalities (59) and (60) it follows

D3 ≤
C̄

β
(
L2
h

L
+ LL2

hh
′
M + L)|∇µ|22

+ C̄β|g1|2L∞(Γlat)

(
L(1 + L2h′M)|∂xϕ|22 + L(1 + L2h′M)(h2

M + h′M
2
)|∂zϕ|22

+ (1 + L2h′M)|ϕ̂l|22 + L|∂xϕ|22
)
.

Let us denote by D′3 the second term on the right-hand side:

D′3 := C̄β|g1|2L∞(Γlat)

(
L(1 + L2h′M)|∂xϕ|22︸ ︷︷ ︸

=:D′31

+ L(1 + L2h′M)(h2
M + h′M

2
)|∂zϕ|22︸ ︷︷ ︸

=:D′32

+(1 + L2h′M)|ϕ̂l|22
)
.

(72)

- The Poincaré inequality applied to ∂xϕ implies, since (∂xϕ)|(0,h(L)) = 0:

D′31 = L(1 + L2h′M)|∂xϕ|22 ≤ C̄L3(1 + L2h′M)|∂2
xϕ|22. (73)

- The Poincaré inequality applied to ∂zϕ (since (∂zϕ)|Γl
= ∂zϕl = 0) and (54) yield:

D′32 =L(1 + L2h′M)(h2
M + h′M

2
)|∂zϕ|22

≤ C̄L(1 + L2h′M)(h2
M + h′M

2
)(L2|∂2

xzϕ|22)

≤ C̄L2(1 + L2h′M)(h2
M + h′M

2
)(L|∆ϕ|22).

(74)

Using (73), (74) in (72) and the fact that |Ω| ≤ LhM , we gain:

D′3 ≤C̄β|g1|2L∞(Γl∪Γr)

(
(L3(1 + L2h′M)(1 + h2

M + h′M
2
)|∆ϕ|22

+ (1 + L2h′M)|ϕ̂l|22
)
.

(75)
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Hence we obtain the following estimate on D3, after rearranging terms:

D3 ≤
C̄

β
(
L2
h

L
+ LL2

hh
′
M + L)|∇µ|22

+ C̄βL3(1 + L2h′M)(1 + h2
M + h′M

2
)|g1|2L∞(Γlat)

|∆ϕ|22
+ C̄βL(1 + L2h′M)|g1|2L∞(Γlat)

|ϕ̂l|22

(76)

Putting (67), (68), (69), (70), (71), (76) into (66), and rearranging terms, we get

d

dt

(
α2

2
|∇ϕ|22 +

∫
Ω

F (ϕ)

)
+

3Bm
4Pe
|∇µ|22

≤ C̄

β
(
L2
h

L
+ LL2

hh
′
M + L)|∇µ|22

+ C̄
(PeC2

∞|v|22
Bm

+ βL3(1 + L2h′M)(1 + h2
M + h′M

2
)|g1|2L∞(Γlat)

)
|∆ϕ|22

+
C̄PeL2

h|u|2∞
Bm

|∇ϕ|22 +
C̄PeC2

∞|v|22
Bm

|ϕ̂l|22 +
C̄PeL|u|2∞
Bm

|ϕ̂l|22

+ C̄βL(1 + L2h′M)|g1|2L∞(Γlat)
|ϕ̂l|22.

(77)

This proves inequality (65).

5.4 Estimates on µ

Lemma 5.15. For ϕ and µ solutions of (62)-(63) with boundary conditions (64), the
following inequality applies:

α2|∇ϕ|22 + F3(0)

∫
Ω

F (ϕ)

≤M0|∇µ|22 +M1|∆ϕ|22 +M2|∇ϕ|2r2 +M3|∇ϕ|22 +M4|ϕ̂l|22 +M5,

(78)

where r is defined in hypothesis (13) on F and for γ > 0, λ > 0 arbitrary constants, the
terms Mi are given by

M0 = C̄γL2
h, M1 =

C̄α2L(1 + L2h′M)

4λ
, M2 = C̄|Ω|1/2F 2

1 (1 + L2r
h ),

M3 =
C̄L2

h

4γ
, M4 = C̄|Ω|1/2F 2

1L
r|ϕ̂l|2(r−1)

2 +
C̄L

4γ
+ C̄|Ω|1/2 + α2λ,

M5 = |Ω|F4(0) + C̄F 2
2 |Ω|3/2.

Proof. Multiplying (63) by ϕ, we get

(µ, ϕ)︸ ︷︷ ︸
=:A

= −α2(∆ϕ, ϕ)︸ ︷︷ ︸
=:B

+ (PΨnF
′(ϕ), ϕ)︸ ︷︷ ︸

=:D

. (79)

As before, let us treat each term separately.
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. For B, we use integration by parts, and obtain:

B = α2|∇ϕ|22 − α2

∫
Γ

ϕ∇ϕ · n︸ ︷︷ ︸
=:B1

(80)

Observe that since ∇ϕ ·n|Γ0 = 0, the boundary term B1 is zero on Γ\Γl. Using Young’s
inequality with λ > 0, and (57), it follows:

|B1| = α2

∣∣∣∣∫
Γl

ϕl ∂xϕ

∣∣∣∣ ≤ α2|ϕl|L2(Γl)|∂xϕ|L2(Γl) ≤
α2

4λ
|∂xϕ|2L2(Γl)

+ α2λ|ϕ̂l|22

≤ α2C̄
(L(1 + L2h′M)

4λ
|∂2
xϕ|22 + λ|ϕ̂l|22

)
.

(81)

. For the D-term, let us use the projector property (61) and the fact that ϕ − ϕ̂l ∈ Ψn

(i.e. PΨn(ϕ− ϕ̂l) = ϕ− ϕ̂l):

D = (PΨnF
′(ϕ), ϕ) = (F ′(ϕ),PΨnϕ) = (F ′(ϕ),PΨn(ϕ− ϕ̂l) + PΨnϕ̂l)

= (F ′(ϕ), ϕ)︸ ︷︷ ︸
=:D1

−(F ′(ϕ), (Id− PΨn)ϕ̂l)︸ ︷︷ ︸
=:D2

.

Hypothesis (14) with γ = 0 yields

D1 =

∫
Ω

F ′(ϕ)ϕ ≥
∫
Ω

F3(0)F (ϕ)− F4(0)|Ω|. (82)

As far as D2 is concerned, we use the fact that Id−PΨn is a projector, thus its operator
norm (in L2(Ω)) is equal to 1. We also use the property (13) for |F ′(ϕ)| and (52)
for |ϕ|r2r to obtain:

|D2| = |(F ′(ϕ), (Id− PΨn)ϕ̂l)| ≤ |ϕ̂l|2|F ′(ϕ)|2 ≤ |ϕ̂l|2(F1|ϕ|r2r + F2|Ω|)
≤ C̄|ϕ̂l|2(F1|Ω|1/2‖ϕ‖r1 + F2|Ω|).

Last, we use the Poincaré inequality (58) by rewriting ‖ϕ‖r1 in terms of |ϕ|r2 and |∇ϕ|r2,
and we obtain

|D2| ≤ C̄|ϕ̂l|2

(
F1|Ω|1/2

(
(1 + Lrh)|∇ϕ|r2 + Lr/2|ϕ̂l|r2

)
+ F2|Ω|

)

= C̄|Ω|1/4|ϕ̂l|2

(
F1|Ω|1/4

(
(1 + Lrh)|∇ϕ|r2 + Lr/2|ϕ̂l|r2

)
+ F2|Ω|3/4

)

and by Young’s inequality

|D2| ≤ C̄F 2
1 |Ω|1/2

(
(1 + L2r

h )|∇ϕ|2r2 + Lr|ϕ̂l|2r2
)

+ C̄F 2
2 |Ω|3/2 + C̄|Ω|1/2|ϕ̂l|22. (83)
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. For the A-term, Cauchy-Schwarz inequality and Young’s inequality with γ > 0 imply:

A =

∫
Ω

µϕ ≤ |µ|2|ϕ|2 ≤ C̄

(
γ|µ|22 +

1

4γ
|ϕ|22

)
.

The last step consists in using both Poincaré inequalities (58) for ϕ and (60) for µ:

A ≤ C̄γL2
h|∇µ|22 +

C̄

4γ
(L2

h|∇ϕ|22 + L|ϕ̂l|22) (84)

Putting (81), (82), (83) and (84) in (79), and rearranging terms, it follows:

α2|∇ϕ|22 + F3(0)

∫
Ω

F (ϕ) ≤ C̄γL2
h|∇µ|22 +

C̄α2L(1 + L2h′M)

4λ
|∆ϕ|22

+ C̄|Ω|1/2F 2
1 (1 + L2r

h )|∇ϕ|2r2 +
C̄L2

h

4γ
|∇ϕ|22 + C̄|Ω|1/2F 2

1L
r|ϕ̂l|2r2

+
(C̄L

4γ
+ C̄|Ω|1/2 + α2λ

)
|ϕ̂l|22 + |Ω|F4(0) + C̄F 2

2 |Ω|3/2.

which is the inequality (78) we claimed.

Lemma 5.16. For ϕ and µ solutions of (62)-(63) with boundary conditions (64), the
following inequality applies:

α2|∆ϕ|22 ≤ N0|∇µ|22 +N1|∆ϕ|22 +N ′2|∇ϕ|42 +N3|∇ϕ|22 +N5, (85)

where for δ > 0, ζ > 0, ν > 0 arbitrary constants, the terms Ni are given by:

N0 = C̄
( L2

h

4ζL
+
LL2

hh
′
M

4ζ
+
L

4ζ
+

1

4δ

)
, N1 = C̄ζL(1 + L2h′M),

N ′2 =
C̄

ν
, N3 = δ, N5 = C̄νF 2

5 .

Proof. Multiplying (63) by −∆ϕ and integrating by parts, we get

α2|∆ϕ|22 = −(µ,∆ϕ)︸ ︷︷ ︸
=:A

+

∫
Ω

PΨnF
′(ϕ) ∆ϕ

︸ ︷︷ ︸
=:B

(86)

. For the B-term, since that the functions ψi are chosen to be eigenfunctions of −∆, and
recalling that ϕl is constant, we use the projector property (61) to obtain the following
relation:

B = (PΨnF
′(ϕ),∆ϕ) = (F ′(ϕ),PΨn∆ϕ) = (F ′(ϕ),∆ϕ),

which is rewritten

B = −
∫
Ω

F ′′(ϕ)|∇ϕ|2

︸ ︷︷ ︸
=:B1

+

∫
Γ

F ′(ϕ)∇ϕ · n

︸ ︷︷ ︸
=:B2

. (87)
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? We use hypothesis (12) on F ′′ and Young’s inequality with ν > 0 in order to obtain

B1 = −
∫
Ω

F ′′(ϕ)|∇ϕ|2 ≤ F5|∇ϕ|22 ≤ C̄

(
νF 2

5 +
1

ν
|∇ϕ|42

)
. (88)

? For the boundary term B2, let us observe that it is zero on Γ0, since ∇ϕ · n|Γ0 = 0.
Moreover, it is also zero on Γl, since F ′(ϕl) = 01. Thus

B2 = 0. (89)

. As far as the A-term is concerned, it is computed by integration by parts:

A = −(µ,∆ϕ) =

∫
Ω

∇µ · ∇ϕ

︸ ︷︷ ︸
=:A1

−
∫

Γ

µ∇ϕ · n︸ ︷︷ ︸
=:A2

. (90)

? The term A1 is easily bounded thanks to Young’s inequality with δ > 0:

A1 = −(∇µ,∇ϕ) ≤ 1

4δ
|∇µ|22 + δ|∇ϕ|22. (91)

? Since ∇ϕ ·n|Γ0 = 0, the boundary term A2 is non-zero on Γl only. It is treated with
the help of Young’s inequality with ζ > 0, the trace estimates (56) and (57) and the
Poincaré inequality (60):

A2 =

∫
Γl

µ∇ϕ · n ≤ |µ|L2(Γl)|∂xϕ|L2(Γl) (92)

≤ C̄

4ζ

(( 1

L
+ Lh′M

)
|µ|22 + L|∂xµ|22

)
+ C̄ζL(1 + L2h′M)|∂2

xϕ|22

≤ C̄

4ζ

((L2
h

L
+ LL2

hh
′
M

)
|∇µ|22 + L|∂xµ|22

)
+ C̄ζL(1 + L2h′M)|∆ϕ|22. (93)

Finally, we combine (88) and (89) in (87), (91) and (92) in (90), and use these estimates
in (86) to obtain

α2|∆ϕ|22 ≤C̄
( L2

h

4ζL
+
LL2

hh
′
M

4ζ
+
L

4ζ
+

1

4δ

)
|∇µ|22 + C̄ζL(1 + L2h′M)|∆ϕ|22

+
C̄

ν
|∇ϕ|42 + δ|∇ϕ|22 + C̄νF 2

5 .

This concludes the proof.

1Let us observe that the hypothesis (5.2) on ϕl is used at this point.
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5.5 Convergence results

5.5.1 A priori estimates

Let us sum (65), c1× (78) and c2× (85), where c1 and c2 are two positive constants that
will be determined in the sequel. We obtain

d

dt

α2

2
|∇ϕ|22 +

∫
Ω

F (ϕ)

+
(3Bm

4Pe
− L0 − c1M0 − c2N0

)
|∇µ|22 + c1α

2|∇ϕ|22

+c2α
2|∆ϕ|22 + c1F3(0)

∫
Ω

F (ϕ)

≤
(
L1(u) + c1M1 + c2N1

)
|∆ϕ|22 + c1M2|∇ϕ|2r2 + c2N

′
2|∇ϕ|42 (94)

+
(
L3(u) + c1M3 + c2N3

)
|∇ϕ|22 +

(
L4(u) + c1M4

)
|ϕ̂l|22 +

(
L5 + c1M5 + c2N5

)
.

We define for all t ≥ 0,

Y(t) =
α2

2
|∇ϕ(t)|22 +

∫
Ω

F (ϕ(t)),

Z(t) =
α2

2
|∇ϕ(t)|22 + |∇µ(t)|22 + |∆ϕ(t)|22 +

∫
Ω

F (ϕ(t)),

so that 0 < Y(t) ≤ Z(t), since F > 0 (by assumption (11)).

Lemma 5.17. Let us define the constant C1 by:

C1 = min

{(
3Bm
4Pe

− L0 − c1M0 − c2N0

)
, 2c1, c2α

2, c1F3(0)

}
.

There exists two constants C2, C3 > 0 and f : R→ R is an increasing continuous function
satisfying f(0) = 0 such that the a priori estimate (94) can be rewritten in the following
form:

Y ′(t) + C1Z(t) ≤ f(Y(t))Z(t) + C2Z(t) + C3. (95)

Proof. The definition of C1 implies that the left-hand side of (94) is always greater
than Y ′(t) + C1Z(t). In order to rewrite (94) as the inequality (95), we have to set
apart the constant terms, the linear terms (with respect to Z) and the nonlinear terms
(which will appear in f(Y)Z). Let us recall that all coefficients Li, Mi, Ni are functions
of ϕ and µ, except for L1(u), L3(u), L4(u), in which the terms |u|∞ and |v|2 appear. For
these terms, we proved in (30) that

|u|∞ ≤ C̄(1 + h2
M), |v|2 ≤ C̄(1 + h2

M)‖ϕ‖1.

We apply the Poincaré inequality (58) to ϕ and the fact that |ϕl|L2(Γl) ≤ |ϕ̂l|2 to gain:

|u|2∞ ≤ C̄(1 + h2
M)2, |v|22 ≤ C̄(1 + h2

M)2
(

(1 + L2
h)|∇ϕ|22 + L|ϕ̂l|22

)
. (96)

Let us explain how the terms on the right hand side of (95) can be obtained.
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i) It is easy to determine the contributions to the constant part C3:

C3 = C31 + C32 + C33, (97)

where

? C31 := c1M4|ϕ̂l|22;

? C32 := (c1M5 + c2N5);

? the constant part of L4(u)|ϕ̂l|22, when using (96):

C33 := C̄
(PeC2

∞(1 + h2
M)2L|ϕ̂l|22

Bm
+
PeL(1 + h2

M)2

Bm
+βL(1+L2h′M)|g1|2L∞(Γlat)

)
|ϕ̂l|22.

ii) The linear terms come from:

? C21|∆ϕ|22 := (c1M1 + c2N1)|∆ϕ|22;

? if r = 1, C22|∇ϕ|2r2 := c1M2|∇ϕ|22;

? C23|∇ϕ|22 := (c1M3 + c2N3)|∇ϕ|22;

? the terms L1(u)|∆ϕ|22 and L3(u)|∇ϕ|22 lead to the following contributions:

C24|∆ϕ|22 := C̄
(PeC2

∞(1 + h2
M)2L|ϕ̂l|22

Bm
+ βL3(1 + L2h′M)(1 + h2

M + h′M
2
)|g1|2L∞(Γlat)

)
|∆ϕ|22,

C25|∇ϕ|22 :=
C̄PeL2

h(1 + h2
M)

Bm
|∇ϕ|22;

? in L4(u)|ϕ̂l|22, the product |v|22|ϕ̂l|22 contains the terms

C26|∇ϕ|22 :=
C̄PeC2

∞(1 + h2
M)2(1 + L2

h)

Bm
|∇ϕ|22|ϕ̂l|22,

which is a linear term with respect to |∇ϕ|22.

Therefore, since all the terms are positive, we can bound these linear terms by C2Z,
with

C2 = C21 + C22 + C23 + C24 + C25 + C26. (98)

iii) As far as the nonlinear terms are concerned, there are also several contributions:

? the term c2N
′
2|∇ϕ|42;

? if r > 1, the term c1M2|∇ϕ|2r2 ;

? in L1(u)|∆ϕ|22, the term
C̄PeC2

∞(1 + h2
M)2(1 + L2

h)|∇ϕ|22
Bm

|∆ϕ|22 is a nonlinear term.
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Since all nonlinear terms are positive, we can bound them by f(Y)Z, with the fol-
lowing expression of the function f defined in R+: for all ξ ∈ R+,

f(ξ) = c2N
′
2ξ + c1M2ξ

r−1︸ ︷︷ ︸
if r > 1

+
C̄PeC2

∞(1 + h2
M)2(1 + L2

h)ξ

Bm
. (99)

This allows us to write (94) in the form (95), with the following explicit expressions of
the constants C1, C2, C3, using the expressions of Li, Mi, Ni given in Lemmas 5.14, 5.15
and 5.16:

C1 = min

{
3Bm
4Pe

− C̄
(L2

h

βL
+
LL2

hh
′
M

β
+
L

β
+ c1γL

2
h +

c2L
2
h

4ζL
+
c2LL

2
hh
′
M

4ζ
+
c2L

4ζ
+
c2

4δ

)
,

2c1, c2α
2, c1F3(0)

}
,

C2 =C̄

(
PeC2

∞L(1 + h2
M)2|ϕ̂l|22

Bm
+ C̄βL3(1 + L2h′M)(1 + h2

M + h′M
2
)|g1|2L∞(Γlat)

+
c1α

2L(1 + L2h′M)

4λ
+ c2ζL(1 + L2h′M)

)
+

2C̄

α2

(
PeL2

h(1 + h2
M)

Bm
+ c1

L2
h

4γ
+ c2δ

)

+
2C̄

α2

PeC2
∞(1 + h2

M)2(1 + L2
h)

Bm
|ϕ̂l|22 + C ′2,

C3 =C̄c1F
2
1L

r|Ω|1/2|ϕ̂l|2r2 + C̄
(PeC2

∞L(1 + h2
M)2|ϕ̂l|22

Bm
+
PeL(1 + h2

M)2

Bm
+ C̄βL(1 + L2h′M)|g1|2L∞(Γlat)

+ c1

( L
4γ

+ |Ω|1/2 + α2λ
))
|ϕ̂l|22

+ c1

(
F 2

2 |Ω|3/2 + |Ω|F4(0)
)

+ c2C̄νF
2
5 .

where C ′2 is given by

C ′2 =

{
C̄c1|Ω|1/2F 2

1 (1 + L2r), if r = 1,

0, if r > 1.

If we ensure that C1 is positive and that C2 and C3 are sufficiently small, we will be able
to prove that ϕ and µ are bounded in adequate function spaces for any time T > 0 by
applying Proposition A.1 (given in Appendix) to estimate (95).

Lemma 5.18. There exists real numbers β∗, γ∗, δ∗, ζ∗, λ∗, c∗1, c∗2, ν∗, L∗ such that for
any γ < γ∗, δ < δ∗, λ < λ∗, c1 > c∗1, c2 < c∗2, ν < ν∗, L < L∗, and for β = β∗, ζ = ζ∗,
the hypotheses of Proposition A.1 are satisfied:

• C1 > 0;
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• there exists M > 0 such that

? f(M) + C2 < C1/2;

? C3 < MC1/2.

Proof. To prove the assertion, we will prove that there exists c∗2 > 0 such that for
all c2 < c∗2, we have

C1 = c2α
2 > 0, C2 < C1/2 = c2α

2/2.

Since f is a continuous increasing function satisfying f(0) = 0, it is possible to de-
fine M > 0 such that

f(M) + C2 < C1/2.

Then we will also prove that
C3 < MC1/2.

Remark 5.19. Let us explain in a few words the main idea of the proof: the constants Ci
can be written as functions of X = (ζ, β, δ, γ, λ, ν, c2, c1, L). The idea consists in observing
that Ci(X = 0) satisfy the conditions claimed, and thus that, by continuity of Ci with
respect to X, the same is true for Ci(X) for X small enough.
However, this is not entirely true, since there are some terms involving the inverse
of ζ, β, δ, γ, λ, L. Therefore, we have to proceed carefully in several steps, choosing the
constants small in the “right order” in order to ensure the claimed result.

Let us introduce the following quantities ζ̄ = ζL and β̄ = βL. Thus the corresponding
terms in C1, C2, C3 can be rewritten with these new variables.
• Let δ∗ > 0 such that

2C̄

α2
δ∗ <

α2

2
.

This is possible for δ∗ small enough.
• Then let c∗2 > 0 small enough such that

c∗2C̄

(
1

δ∗
+ α2

)
≤ 3Bm

4Pe
, i.e.

3Bm
4Pe

− c∗2C̄

δ∗
≥ c∗2α

2.

Moreover, choose
c∗1 ≥ max{c∗2α2, 1/2, 1/F3(0)}.

At this point, we thus have, for any δ < δ∗, c1 > c∗1, c2 < c∗2:

min

{
3Bm
4Pe

− C̄ c2

4δ
, 2c1, c2α

2

}
= c2α

2 > 0.

• By continuity, there exists β̄∗ > 0, ζ̄∗ > 0, γ∗ > 0, λ∗ > 0, ν∗ > 0 such that for
any β̄ ≤ β̄∗, ζ̄ < ζ̄∗, γ < γ∗, λ < λ∗, ν < ν∗, δ < δ∗, ζ̄ ≤ ζ̄∗, c1 > c∗1, c2 < c∗2, we
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have:

min

{
3Bm
4Pe

− C̄
(
c1γL

2
h +

c2

4δ

)
, 2c1, c2α

2

}
= c2α

2 > 0,

c2ζ̄ +
2C̄

α2
c2δ <

c2α
2

2
,

C̄
(

(β̄|g1|2L∞(Γlat)
+ c1α

2λ)|ϕ̂l|22 + νF 2
5

)
<
c2α

2M

2
.

• At last, by continuity also, there exists L∗ > 0 such that for any L ≤ L∗, β̄ ≤ β̄∗,
γ < γ∗, λ < λ∗, δ < δ∗, ζ̄ ≤ ζ̄∗, c1 > c∗1, c2 < c∗2, F5 < F ∗5 , it follows:

C1 = min

{
3Bm
4Pe

− C̄
(L2

h

β̄
+
L2L2

hh
′
M

β̄
+
L2

β̄
+ c1γL

2
h +

c2L
2
h

4ζ̄
+
c2L

2L2
hh
′
M

4ζ̄
+
c2L

2

4ζ̄
+
c2

4δ

)
,

2c1, c2α
2, c1F3(0)

}
= c2α

2 > 0,

C2 = C̄

(
PeC2

∞L(1 + h2
M)2|ϕ̂l|22

Bm
+ β̄L2(1 + L2h′M)(1 + h2

M + h′M
2
)|g1|2L∞(Γlat)

+
c1α

2L(1 + L2h′M)

4λ
+ c2ζ̄(1 + L2h′M)

)
+

2C̄

α2

(PeL2
h(1 + h2

M)2

Bm
+
c1L

2
h

4γ
+ c2δ

)
+

2C̄

α2

PeC2
∞(1 + h2

M)2(1 + L2
h)

Bm
|ϕ̂l|22 + C ′2 <

c2α
2

2
=
C1

2
,

C3 = C̄c1F
2
1L

r|Ω|1/2|ϕ̂l|2r2 + C̄

(
PeC2

∞L(1 + h2
M)2|ϕ̂l|22

Bm
+
PeL(1 + h2

M)2

Bm

+ C̄β̄(1 + L2h′M)|g1|2L∞(Γlat)
+ c1

( L
4γ

+ |Ω|1/2 + α2λ
))
|ϕ̂l|22

+ c1

(
F 2

2 |Ω|3/2 + |Ω|F4(0)
)

+ c2C̄νF
2
5 <

c2α
2M

2
=
MC3

2
.

This is true since all the terms added at this step are of the form LsC, with s > 0
and C which remains bounded as L→ 0.

• Thus, for ζ∗ =
ζ̄∗

L∗
and β∗ =

β̄∗

L∗
, the claimed assertion is proved.

From now on, let us come back to the notation with the subscripts n introduced in section
5.2, denoting the Galerkin approximations.

Lemma 5.20. For any n ∈ N, under a smallness assumption on L, there exists C > 0
such that for any T > 0,

‖ϕn‖L∞(R+;Φ1
l ) ≤ C, ‖ϕn‖L2(0,T ;Φ2

l ) ≤ CT, ‖µn‖L2(0,T ;Φ1) ≤ CT. (100)
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Proof. Let n ∈ N, T > 0. The smallness condition on L is enough to apply Lemma 5.18,
since the other parameters that have to be chosen small enough are arbitrary constants
independent of the data of the problem. Thus Lemma 5.18 and Proposition A.1 imply that
under a smallness assumption on L, we have Yn ∈ L∞(0, T ) with a bound independent
of T , and Zn ∈ L1(0, T ) with a bound depending on T . From this, we deduce several
results on ϕn, µn:

• The quantity ∇ϕn is bounded in L∞(0,∞;L2(Ω)), uniformly with respect to n.

• The quantities ∇µn, ∇ϕn and ∆ϕn are bounded in L2
loc(0,∞;L2(Ω)), uniformly

with respect to n.

• Furthermore, applying the Poincaré inequality (58) to ϕn allows us to control the
whole H1(Ω)-norm by the L2-norm of the gradient.

• As far as the H2-norm of ϕn is concerned, we know by Proposition 5.5 that it is
equivalent to the L2-norm of the Laplacian, and thus controlling |∆ϕn|2 is enough
to control the whole H2(Ω)-norm.

• For µn, the Poincaré inequality (60) also allows us to control the H1-norm by the L2-
norm of the gradient.

From these arguments, we conclude that there exists C > 0 such that for any T > 0,
estimate (100) holds true.

Let us observe that the first estimate of (100) is enough to show that the time inter-
val (0, tn) on which the functions ϕn exist is (0,+∞).
Estimates (100) are not enough to conclude for the convergence of the nonlinear terms
and of the initial condition ϕn(0). Therefore, some more regularity on ϕn and ∂t ϕn will
be proved in the next subsections.

5.5.2 H3-estimate for ϕ

Lemma 5.21. For any n ∈ N, under a smallness assumption on L, there exists C > 0
such that for any T > 0,

‖ϕn‖L2(0,T ;Φ3
l ) ≤ CT + C. (101)

Proof. We compute the gradient of (63):

α2∇∆ϕn = ∇PΨnF
′(ϕn)︸ ︷︷ ︸

=:A

−∇µn. (102)

. Let us prove that |A|22 ≤ |∇F ′(ϕn)|22. We have by integration by parts

|A|22 =

∫
Ω

∇PΨnF
′(ϕn) · ∇PΨnF

′(ϕn)

= −
∫
Ω

∆PΨnF
′(ϕn) PΨnF

′(ϕn) +

����������������∫
∂Ω

∇PΨnF
′(ϕn) · n PΨnF

′(ϕn),
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since PΨnF
′(ϕn) ∈ Ψn ⊂ Φ1. Let us denote F ′(ϕn) =

+∞∑
i=1

γiψi. Since F ′(ϕn) ∈ Ψ, we

have PΨnF
′(ϕn) =

n∑
i=1

γiψi. Thus, we can compute

|A|22 = −
∫
Ω

n∑
i=1

λiγiψi

n∑
i=1

γiψi,

and since the ψi are orthogonal, we have

|A|22 = −
n∑
i=1

(λiγiψi, γiψi) = −
n∑
i=1

(∆γiψi, γiψi) =
n∑
i=1

(∇γiψi,∇γiψi)

= (PΨn∇F ′(ϕn),PΨn∇F ′(ϕn)) = |PΨn∇F ′(ϕn)|22 ≤ |∇F ′(ϕn)|22,

since the operator norm of PΨn is equal to 1.

. It follows from hypothesis (13) on F that:

|A|22 ≤
∫

Ω

(F1|ϕn|r−1 + F2)2|∇ϕn|2 ≤ C̄(|∇ϕn|22 + |ϕr−1
n ∇ϕn|22),

where C̄ is a constant depending on F1 and F2. Let us distinguish two cases:

- If r > 1, the Hölder inequality implies

|∇F ′(ϕn)|22 ≤ C̄(|∇ϕn|22 +

(∫
Ω

|ϕ2(r−1)
n |q

)1/q (∫
Ω

|∇ϕn|2q
′
)1/q′

)

= C̄(|∇ϕn|22 + |ϕn|2(r−1)
2(r−1)q|∇ϕn|

2
2q′),

with
1

q
+

1

q′
= 1, for any q > 1. Let q =

1

r − 1
. Then 2(r − 1)q ≥ 2, thus H1(Ω) ↪→

L2(r−1)q(Ω) and 2q′ ≥ 2, thus H1(Ω) ↪→ L2q′(Ω). We finally obtain

|A|22 ≤ C(|∇ϕn|22 + ‖ϕn‖r−1
1 ‖ϕn‖2

2), (103)

- If r = 1, then ϕr−1
n ∇ϕn = ∇ϕn, and estimate (103) is obvious.

. At last, taking the L2-norm of (102), it follows from (103) that

α2|∇∆ϕn|22 ≤ C(|∇µn|22 + |∇ϕn|22 + ‖ϕn‖r−1
1 ‖ϕn‖2

2,

This estimate combined with (100) allows us to conclude that estimate (101) is satisfied.
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5.5.3 Time derivative estimate for ϕ

Lemma 5.22. For any n ∈ N, under a smallness assumption on L, there exists C > 0
such that for any T > 0, ∥∥∥∥dϕndt

∥∥∥∥
L2(0,T ;Φ1

l
∗
)

≤ CT + C, (104)

where Φ1
l
∗

is the dual space of Φ1
l .

Proof. We introduce the dual operator P∗Ψn
of PΨn . Equation (62) can be rewritten in the

following form:

(∂t ϕn,PΨnχ) + (u(ϕn) · ∇ϕn,PΨnχ) + (div(B(ϕn)∇µn),PΨnχ) = 0, ∀χ ∈ Φ1
l ,

which becomes

dϕn
dt

= −P∗Ψn

(
u(ϕn) ∂xϕn + v(ϕn) ∂zϕn + div(B(ϕn)∇µn)

)
.

Let us treat each term separately:

. By Proposition 3.3 and estimate (100), we have

u(ϕn) ∈ L∞(0, T ;H1), v(ϕn) ∈ L∞(0, T ;L2).

Moreover, previous estimate (101) implies that ϕn belongs to L2(0, T ; Φ3
l ). By a classical

result on the multiplicative algebra structure of the Sobolev spaces proved e.g. in [16],
we deduce that

u(ϕn) ∂xϕn ∈ L2(0, T ;H1(Ω)), v(ϕn)∂zϕn ∈ L2(0, T ;L2(Ω)),

with the following estimate:

‖u(ϕn) ∂xϕn‖L2(0,T ;H1) + ‖v(ϕn) ∂zϕn‖L2(0,T ;L2)

≤ C
(
‖u(ϕn)‖L∞(0,T ;H1) + ‖v(ϕn)‖L2(0,T ;L2) + ‖ϕn‖L2(0,T ;H3)

)
.

. Furthermore, since B ≤ BM :

‖ div(B(ϕn)∇µn)‖H−1 ≤ Bm|∇µn|2.

. Moreover, since PΨn is a projector, its operator norm is ‖PΨn‖ = ‖P∗Ψn
‖ = 1.

Using the previous estimates (100) and (30), it follows the claimed estimate (104).
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5.5.4 Final convergence results

It is now possible to prove the main theorem 3.2, re-stated here for the sake of readibility:

Theorem 5.23. Let ϕ0 ∈ Φ1
l , 0 < T ≤ +∞, and let ϕl satisfy Hypothesis 5.2 and let F

satisfy the assumptions stated in Section 2.2. Under a smallness assumption on L, there
exists a solution (p,u, ϕ, µ) of the weak problem 3.1.

Proof. From the previous lemmas 5.20, 5.21 and 5.22 (i.e. estimates (100), (101), (104)),
we obtain the following convergence results (up to a subsequence):

ϕn ⇀ ϕ in L∞(R+; Φ1
l ) ∗-weak,

ϕn ⇀ ϕ in L2
loc(R+; Φ3

l ) weak,

µn ⇀ µ in L2
loc(R+; Φ1) weak,

dϕn
dt

⇀
dϕ

dt
in L2

loc(R+; Φ1
l
∗
) weak.

Moreover, Proposition 3.3 combined with the previous global convergence result on ϕ
implies the following convergence results (up to a subsequence):

un ⇀ u in L∞(R+;X(Ω)) ∗-weak,

vn ⇀ v in L∞(R+;L2(Ω)) ∗-weak,

pn ⇀ p in L∞(R+;H2(0, L)) ∗-weak.

Furthermore, by a classical embedding result due to [20], we deduce from (101) and (104)
that for any T > 0

ϕn → ϕ in L2
loc(R+;H2(Ω)) strong,

ϕn → ϕ in C0([0, T [;L2(Ω)) strong,

ϕn ⇀ ϕ in C0([0, T [; Φ1
l ) weak.

Therefore, we can conclude for the convergence of the non-linear terms:

• Since ϕn converges strongly in C0([0, T [;L2(Ω)) ∩ L2
loc(R+;H2(Ω)), the nonlinear

terms B(ϕn) and F ′(ϕn) converge strongly in C0([0, T [;L2(Ω)).

• As far as the convection term u(ϕn) · ∇ϕn is concerned, we know from Lemmas
4.3 and 4.4 that u(ϕn) is bounded in L∞(R+;L2(Ω)). From the strong convergence
of ∇ϕn in L2

loc(R+;L2(Ω)), we conclude the convergence of u(ϕn) · ∇ϕn.

Lastly, we deduce from the last convergence result that ϕ(0) converges weakly to ϕ(0)
in H1(Ω), and thus ϕ(0) = ϕ0 because PΨn converges to the identity for the strong topo-
logy of operators.

It remains to prove that the functions u, ϕ and µ satisfy (62), (63).
Let ρ ∈ D′(R+), and let N ≥ 1. For any n ≥ N , ϕn satisfies (62) with ψ = ψN . We
multiply this equation by ρ(t) and integrate by parts. From the convergence results stated
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above, we can pass to the limit in this equation. The limit equation obtained is fulfilled
for any N ≥ 1, and any ρ ∈ D′(R+), thus we conclude from the density of Span(ψi)i≥1

in Φ1 that u, ϕ and µ satisfy (62).
Lastly, since PΨn converges to the identity for the strong topology of operators, the do-
minated convergence theorem allows us to conclude that ϕ and µ also satisfy (63).

A Appendix

Proposition A.1. Let T > 0. Let Y and Z be two functions in C1([0, T ]), such that there
exists three real constants C1, C2, C3, a time T > 0 and a function f : R→ R satisfying

Y ′ + C1Z ≤ f(Y)Z + C2Z + C3, 0 ≤ Y ≤ Z on [0, T ]. (105)

If

• f is an increasing continuous function such that f(0) = 0,

• C1 > 0,

• there exists M > 0 such that

? f(M) + C2 <
C1

2
,

? C3 <
MC1

2
,

then we have the following implication

Y(0) < M =⇒ Y(t) < M for t ∈ [0, T ].

This means that if Y(0) < M , then there exists a constant C such that for any T > 0,

‖Y(t)‖L∞(0,T ) ≤M.

Moreover, we have
‖Z(t)‖L1(0,T ) ≤ CT + C.

Proof. Suppose that there exists 0 < T ∗ < T , such that Y(T ∗) = M and Y ′(T ∗) > 0.
Then, evaluating (105) at T ∗, and using the hypothesis on C2 and C3, we get

0 < Y ′(T ∗) ≤ Z(T ∗)(f(M)− C1 + C2) + C3 ≤ −
C1

2
Z(T ∗) + C3 ≤

C1

2
(M −Z(T ∗)).

But since M = Y(T ∗) ≤ Z(T ∗), we have M −Z(T ∗) ≤ 0, which leads to a contradiction.
The regularity of Z follows by integrating (105) over (0, T ), and using the regularity of Y :

C1

2
‖Z(t)‖L1(0,T ) ≤ Y(T ) +

C1

2
‖Z(t)‖L1(0,T ) ≤ Y(0) + C3T ≤M + C3T,

which is written ‖Z(t)‖L1(0,T ) ≤ CT + C.

The second author of this work has been partially supported by the ANR project n◦ ANR-
08-JCJC-0104-01 : RUGO (Analyse et calcul des effets de rugosités sur les écoulements).
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