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Université de Lyon, CNRS, Institut Camille Jordan UMR 5208
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This paper establishes the existence of smooth solutions for the Doi–Edwards rheological

model of viscoelastic polymer fluids in shear flows. The problem turns out to be formally

equivalent to a K-BKZ equation but with constitutive functions spanning beyond the usual

mathematical framework. We prove, for small enough initial data, that the solution remains

in the domain of hyperbolicity of the equation for all t � 0.
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1 Introduction

Modelling industrial flows of non-Newtonian and viscoelastic fluids using molecular

models and theories is nowadays of utter importance, see e.g. [1, 2, 4, 5, 7, 10, 11, 14–17,

21, 26, 28, 29, 32, 34]. However, this activity success hinges on users ability to cope with

significant mathematical difficulties. This paper presents existence results for the shear

flow of a Doi–Edwards/K-BKZ fluid, and before getting to the matter, for sake of clarity,

we quickly introspect the key physical considerations laying at the model foundation.

In the realm of unfilled polymeric liquids, one distinguishes dilute systems from con-

centrated and melt ones and notices a physico-mathematical divide: constitutive laws

and related mathematical technicalities are to a good extent different. When polymer

concentration increases beyond a critical value, molecules overlap and excluded volume

interactions, hydrodynamic interactions and entanglement interactions all strongly affect

the molecular motion making calculations significantly complicated. At the present, there

† Dedicated to Professor Denis Serre, Ecole Normale Supérieure de Lyon, France, on the occasion

of his 60th birthday anniversary.
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are two theories – which are reasonably supported by experiments – that account for the

molecular dynamics, called the density (concentration) fluctuation theory and the kinetical

theory. Although they describe different aspects of the dynamics, they are nonetheless

seen as related to each other; however, the interrelation is far from being conspicuous

and remains a matter of debate. The kinetical theory of Bird, Curtiss, Armstrong and

Hassager [6] on one hand, and that of Doi and Edwards [20] (DE for the short) based on

de Gennes’ reptation diffusion [18] on the other, are considered of paramount importance.

Here, we shall talk about the later.

In the DE model, a polymer chain – which consists of articulated segments – is seen as

confined within a tube made-up of the surrounding chains and is free to wriggle out of it

under imposed strain in a snake-like diffusion called reptation. As DE put it, this is not to

say the tube vanished, but the protruding part moves into a newly formed tube segment

while the portion that has been vacated on this occasion ceases to exist. Put it otherwise,

the chain uses the degrees of freedom of its extremities to gradually change its shape by

reptating. Under the influence of an external field, both the macromolecule and the tube

are deformed in a cooperative manner. The chain configuration is actually determined by

the new tube-like surrounding it just moved in, and is a many body problem of great

complexity. DE first assumed that each chain segment deforms independently, hypothesis

known as the Independent Alignment Approximation (IAA). The chain segment motion is

seen as a concatenation of three processes which chronologically are: (a) an instantaneous

deformation, followed by (b) a quick retraction to its original length, and eventually (c)

undergoes a slow reptation motion out of the tube it initially occupied. Processes (a) and

(b) affect the chain orientation without stretching it, while a relaxation occurs at stage

(c). A more realistic view (albeit still an idealization of the real diffusion) is to consider

(d) that the deformation (i.e. the flow) causes an extension of the segments at a rate

proportional to the macroscopic velocity gradient. In this case, one needs to account for a

retraction–extension mechanism by which the chain keeps its curvilinear length constant.

When this is done, one gets what is commonly termed by physicists “the full non-linear

DE model”, in the sense that a more complicated diffusion equation results in a more

complex stress tensor expression, hence the non-linear model.

Let s ∈ (0, L) be the curvilinear coordinate along the chain, and u = (u1, u2, u3) a unitary

vector belonging to the unit sphere S2 that gives, for any s, the orientation of the chain

segment.

At the heartcore of any kinetical model one finds a configurational probability diffusion

equation the solution of which – here for convenience denoted F – is needed to obtain

the stress tensor (or put it differently, to get the corresponding constitutive equation,

CE). The solution F is a probability density with respect to the variable u, and solves

([13, 20, 35, 36]):

∂F

∂t
+ (V · ∇X)F = D

∂2F

∂s2
− ∂

∂u
· [M (t, u)F] + εFκ : uu− ε

∂

∂s
[Fκ : λ(F)] ,

for (X, t, u, s) ∈ Ω̃ × (0,+∞) × S2 × (0, L)

F(s = 0) = F(s = L) =
1

4π
; F(t = 0) = F0(X, s, u) a given function, (1.1)

where (X, t, u, s) ∈ Ω̃ × (0,+∞) × S2 × (0, L), and
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λ(F)(X, t, s) =

∫ s

0

[∫
S2

F(X, t, u, s′)uudσ

]
ds′ (1.2)

and

M (t, u) = κ · u− (κ : uu)u. (1.3)

In the above, D > 0 the diffusion coefficient, X = (x1, x2, x3) ∈ Ω̃ ⊂ �3 is the macroscopic

Eulerian variable, t the time. F = F(X, t, u, s) is the configurational probability, κ = ∇XV

the velocity gradient and ε � 0 a model parameter. Einstein’s usual summation convention

over repeated indices applies wherever needed; classical tensor calculus notations are also

used, e.g. uu stands for u ⊗ u, etc. Note the presence of velocity V in equation (1.1). If

one sets ε = 0, the simplified diffusion equation is proper to the IAA version of the

DE model, where chain segment extension–retraction mechanism is neglected. If ε > 0,

then all mechanisms from (a) to (d) are taken into consideration and one deals with a

non-linear diffusion equation. A more detailed discussion on the physical meaning of the

four terms in the r.h.s. of (1.2) is given e.g. in [13, 20, 35, 36].

The stress tensor Σ̃ reads [13, 35, 36]:

Σ̃ = α
(
H + εH̃

)
(1.4)

H(X, t) =
1

L

∫
S2

∫ L

0

(uu− δ)F(X, t, u, s)dsdσ (1.5)

H̃(X, t) =
1

L

∫
S2

∫ L

0

uuF(t, u, s, X) ln [4πF(X, t, u, s)] dsdσ, (1.6)

where α > 0 a physical constant; observe the stress tensor Σ̃ is made up of two parts H

and H̃ given in (1.5) and (1.6), δ being the unit tensor.

The fluid flow is governed by the classical momentum balance equation:

∂V

∂t
+ (V · ∇X)V = −∇p+ ∇X · Σ̃ + f̃, in Ω̃

∇X · V = 0, in Ω̃ (1.7)

with p denoting the pressure. For the system of equations (1.1)–(1.7), energy and entropy

estimates can be obtained by usual means. However, estimates on higher-order derivatives

are necessary in order to prove the existence of a solution to the aforementioned system.

In [13], we proved the existence and uniqueness of solutions to the diffusion equation

(1.1) assuming V (t) is given and independent of X, using the Schauder fixed point theorem

and the Galerkin’s approximation method (for the existence and uniqueness of solutions

of the corresponding stationary equation see [12]).

Compared to this manuscript framework, previously published papers on other polymer

molecular models – e.g. [3, 27, 31, 32, 39] or [43] – deal with a different type of system

of equations in that one notices the presence of Newtonian fluid related term, i.e. the

Laplacian ΔXV , in the corresponding momentum balance equations. There, this term

originates from physical considerations regarding the choice of a suitable constitutive

law for the stress tensor Σ̃. Specifically, if one deals with a dilute polymeric fluid, then

it is customary to assume that the total Cauchy extra-stress tensor is given by the sum
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between the solvent contribution which generally behaves like an ideal Newtonian fluid

– hence the ΔXV term – and a purely non-Newtonian or viscoelastic contribution. This

assumption is in excellent agreement with experimental observations on dilute polymer

liquids. However, in this work case, the fluid under scrutiny is solvent-free. Consequently,

there is no Newtonian contribution to the stress tensor and we must deal with the

additional difficulty that springs off from the absence of the otherwise convenient ΔXV

term.

In view of this difficulty, we choose here to solve the important problem of existence of

a solution to (1.1)–(1.7) in the case of a simple shear flow for which V (X, t) = (v(x2, t), 0, 0),

F = F(x2, t, u, s), p = p(x2, t), f̃ = (f(x2, t), 0, 0)), and taking ε = 0 which corresponds to

the IAA version of the model. For simplicity, from here on we denote x2 by x: e.g. v(x2, t)

reads v(x, t).

The governing equations for the shear flow are given below:

∂v

∂t
=

∂Σ̃12

∂x
+ f (1.8)

∂p

∂x
=

∂Σ̃22

∂x
(1.9)

∂Σ̃32

∂x
= 0, (1.10)

where

Σ̃j2 =
1

L

∫ L

0

∫
S2

u2ujFduds− 4π

3
δj2, j = 1, 2, 3 (1.11)

∂F

∂t
=

∂2F

∂s2
− ∂v

∂x

∂

∂u
· (H0(u)F) . (1.12)

In the above, H0(u) = M0 · u− (M0 : uu)u, with (M0)ij = δi1δ2j .

To the system of equations (1.8)–(1.12), we assign the following boundary and initial

conditions: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

v = 0, for x ∈ ∂Ω

v = v0, for t = 0

F =
1

4π
, for s = 0or s = L

F = F0, for t = 0,

(1.13)

where Ω ⊂ � is the range for x, while v0(x) and F0(x, u, s) are initial data.

From [19], one sees the equation (1.12) for F can be solved allowing for the obtainment

of Σ̃ as a function of the velocity gradient ∂v
∂x

. How this may be done is detailed in

Appendix 1 (see Section A.1); here below we summarize – for sake of clarity – the

aforementioned calculations and give the algebraic expression of Σ̃j2, j = 1, 2, 3.
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The solution F is obtained via the method of characteristics which allows for arbitrary

initial data. One gets F(x, t, u, s) =
∑+∞

k=1 Fk(x, t, u) sin
(
kπ
L
s
)

, wherever

Fk(x, t, u) =
e−k2π2Dt/L2∥∥∥∥χ(∫ t

0

∂v

∂x
(x, λ)dλ, u

)∥∥∥∥3
F0k

⎛⎜⎜⎝x, χ

(∫ t

0

∂v

∂x
(x, λ)dλ, u

)
∥∥∥∥χ(∫ t

0

∂v

∂x
(x, λ)dλ, u

)∥∥∥∥
⎞⎟⎟⎠

+
π

4

D

L2
akk

2

∫ t

0

e−k2π2D(t−τ)/L2∥∥∥∥χ(∫ t

τ

∂v

∂x
(x, λ)dλ, u

)∥∥∥∥3
dτ (1.14)

with

χ(y, u) = (u1 − yu2, u2, u3), ∀y ∈ �, ∀u = (u1, u2, u3) ∈ S2.

F0k(x, u) is such that

F0(x, u, s) =

+∞∑
k=1

F0k(x, u) sin

(
kπ

L
s

)
(1.15)

1 =

+∞∑
k=1

ak sin

(
kπ

L
s

)
, ak ∈ �. (1.16)

Function F allows for calculating Σ̃j2, j = 1, 2, 3 in (1.11) as a function of the gradient
∂v
∂x

(x, t). Observe that (1.8) now becomes the main equation, of unknown v. Assuming it

has a solution v – actually the goal of the present paper is to prove the existence of such

a solution – one gets the pressure field p from (1.9).

Next, one sees that for any k ∈ �∗ function F0k(x, u1, u2, u3) – as a function of u3 –

depends on u2
3, and so does Fk for any k as well. Consequently, Σ̃32 = 0 and (1.10) always

holds true.

In this work, we shall assume that

F0 =
1

4π
(1.17)

which amounts to assuming F0k = ak
4π

, ∀k ∈ �∗. Use (1.17) into (1.14), and since ak =
2
L

∫ L
0

sin( kπ
L
s)ds = 4

kπ
for any odd k and ak = 0 for any even k, one formally gets

F(x, t, u, s) =
ã(t, s)∥∥∥∥χ(∫ t

0

∂v

∂x
(x, λ)dλ, u

)∥∥∥∥3
−
∫ t

0

∂ã

∂t
(t− τ, s)∥∥∥∥χ(∫ t

τ

∂v

∂x
(x, λ)dλ, u

)∥∥∥∥3
dτ, (1.18)

where

ã(t, s) =
1

π2

+∞∑
p=1

1

2p+ 1
e−D(2p+1)2π2t/L2

sin

(
(2p+ 1)π

L
s

)
, ∀t � 0, s ∈ (0, L).
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The assumption (1.17) is critical to ensure a K-BKZ type of equation in v is obtained (see

equation (1.23)); altering it would lead to a different kind of problem hence a different

mathematical setting.

Posing v(x, τ) = 0 for τ < 0 leads to

∫ 0

−∞

∂ã

∂t
(t− s, s)∥∥∥∥χ(∫ t

τ

∂v

∂x
(x, λ)dλ, u

)∥∥∥∥3
dτ = − ã(s, t)∥∥∥∥χ(∫ t

0

∂v

∂x
(x, λ)dλ, u

)∥∥∥∥3
(1.19)

and with help of (1.18),

F(x, t, u, s) = −
∫ t

−∞

∂ã

∂t
(t− s, s)∥∥∥∥χ(∫ t

τ

∂v

∂x
(x, λ)dλ, u

)∥∥∥∥3
dτ (1.20)

which is equation (3.10) of [19] (reference in which the result is obtained via a Green’s

function technique), unanimously used when the IAA version theory is used. As an aside,

we mention that in the rheology literature one commonly states that the “configurational

probability density must vanish in the sufficiently distant past” i.e. F0 = 0 for t = −∞.

But this gives F0 = 1
4π

for t = 0, hence (1.17). However, taking F0 � 1
4π

leads to a different

mathematical problem, unrelated to the fluid under scrutiny here.

Moreover, a straightforward calculation shows that

1

L

∫ L

0

ã(t, s)ds =
2

π3
aDE(t),

where the Doi–Edwards kernel (a.k.a. the Doi–Edwards relaxation function) aDE is given

by

aDE(t) =

+∞∑
p=1

1

(2p+ 1)2
e−D(2p+1)2π2t/L2

, ∀t � 0.

Letting now gDE : � → �,

gDE(y) = −2α

π3

∫
S2

u1u2[
(u1 − u2y)2 + u2

2 + u2
3

]3/2 du, ∀y ∈ �, (1.21)

we obtain

Σ̃12 = −gDE

(∫ t

0

∂v

∂x
(x, τ)dτ

)
aDE(t) +

∫ t

0

gDE

(∫ t

τ

∂v

∂x
(x, r)dr

)
a′

DE(t− τ)dτ. (1.22)

Before proceeding further, we make at this stage a final remark: had one chosen

F0 � 1
4π

, then equation (1.23) would have contained an additional term of the form
∂ϕ
∂x

(t,
∫ t

0
∂v
∂x

(x, r)dr), where ϕ is a “small” function whenever (F0 − 1
4π

) is “small”, resulting

in a different mathematical problem.
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From the above considerations, one infers the shear flow problem under scrutiny is

tantamount to solving for v the below integro-differential equation:

∂v

∂t
= − ∂

∂x
gDE

(∫ t

0

∂v

∂x
(x, τ)dτ

)
aDE(t)

+
∂

∂x

∫ t

0

gDE

(∫ t

τ

∂v

∂x
(x, r)dr

)
a′

DE(t− τ)dτ+ f, t > 0. (1.23)

Now equation (1.23) – here obtained on molecular dynamics grounds – has been focused

on within the area of viscoelastic fluids as it appears when one studies shear flows for

the K-BKZ fluids. There is no contingency here as in their 1978 original paper [19], DE

have shown the simplified IAA version of their non-linear model actually enters the class

of K-BKZ integral models, which are based on continuum mechanics concepts (for more

on see [6, 33, 39]). Consequently, when undertaking the study of certain particular flows

of the IAA-version of DE fluids, one may capitalize on previously obtained results for

K-BKZ liquids.

In this paper, we study equation (1.23) with more general functions g and a replacing

gDE and aDE, respectively. We prove a global in time solution existence result for small

enough data. Equation (1.23) – as well as variants of it – was studied by various authors,

see Renardy, Hrusa and Nohel [38], Engler [22], Brandon and Hrusa [8] and references

cited therein.

The existence of local in time solutions [38] and of global solutions [8, 22] are known

under more restrictive conditions compared to those stated in this paper. One of the

assumptions in [22] and [8] is g′(y) < −γ, for any y ∈ �, with γ > 0, which is not verified

by the function g = gDE. This is a consequence of the fact that gDE(0) = 0, g′
DE(0) < 0 and

limy→+∞ gDE(y) = 0. Here, we make use of the less restrictive assumption g′(y) < 0, for

any y ∈ [−θ, θ], with θ > 0 – assumption verified by gDE – and show that the argument

of g′ is confined to [−θ, θ]. The requirement g′ < 0 in a neighbourhood of 0 is a necessary

hyperbolicity condition for the solution local existence. For the work presented in this

paper, this condition being valid only locally makes it necessary to control, w.r.t. time t,

the argument
∫ t

0
∂v
∂x

(x, τ)dτ of g′. Observe that at a first sight, this argument may become

large with increasing t; we obtain estimates for this term using the maximal function

concept. Notice that in [22], the problem is studied in n-dimensional framework but in

a weak functional setting which is unsuitable for our problem because the condition

g′(y) < −γ, ∀y ∈ �, does not hold in our case.

Next, among the restrictive hypotheses invoked by the authors of [8] for function a

is that a′′ ∈ L1(0,+∞), which a = aDE does not verify. Comparatively, here we shall

place significantly less restrictions on a and accordingly will construct a class of totally

monotone functions, an element of which is a = aDE. Moreover, we prove and make use

of a new inversion formula for the operator u �→ a ∗ u, a technique different from the

(classical) one used in [8].

The manuscript is organized as following:

In Section 2, we introduce the problem and enunciate the main result.

Section 3 is devoted to the proof of several necessary results such as a G̊arding type

inequality and an inversion formula for the operator u �→ a ∗ u.
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In Section 4, we introduce an approximated problem and obtain useful estimates for its

solution. The proof of the main result is achieved in Section 5.

In the ending Section 6, we construct a class of totally monotone functions that is

compatible with the hypothesis made about a.

2 Presentation of the problem, of the main result, and the proof strategy

Let from now on Ω ⊂ � be a bounded, open interval. Let the functions f : Ω× [0,+∞) →
�, g : I ⊂ � → �, with I  0 an open interval, v0 : Ω → �, a : [0,+∞) → �.

The aim is to search for a solution v : Ω × [0,+∞) → � to the below given initial

boundary value problem:

vt(x, t) = −a(t) ∂

∂x
g

(∫ t

0

vx(x, s)ds

)
+

∂

∂x

∫ t

0

g

(∫ t

s

vx(x, τ)dτ

)
a′(t− s)ds+ f(x, t) (2.1)

v(x, t = 0) = v0(x), ∀x ∈ Ω, and v(x, t) = 0, ∀t < 0 (2.2)

v = 0, ∀x ∈ ∂Ω, ∀t � 0. (2.3)

In the above, vx ≡ ∂v
∂x

and a′ stands for the derivative of a. Throughout this paper, any

function defined for t � 0 is understood as being set equal to 0 for t < 0, i.e. it has

domain �. Moreover, for a function ϕ ∈ Wk,1(0,+∞) we denote by ϕ(k) the distributional

derivative of ϕ on �∗
+, derivative which is understood to be extended to � by 0. Define

v̄t(x, s) :=

∫ t

t−s
v(x, τ)dτ, 0 � s, t; x ∈ Ω.

Equation (2.1) now takes on a simpler form:

vt(x, t) =

∫ +∞

0

a′(s)
∂

∂x
g
(
v̄tx(x, s)

)
ds+ f(x, t). (2.4)

Drawing inspiration from [8], (2.4) can be re-written as

vt(x, t) + g′(0)

∫ t

0

a(t− s)vxx(x, s)ds = f(x, t) + G(x, t), (2.5)

where

G(x, t) =

∫ +∞

0

a′(s)
[
g′ (v̄tx(x, s))− g′(0)

]
v̄txx(x, s)ds

=

∫ t

0

vxx(x, s)

∫ +∞

t−s
a′(τ)
[
g′ (v̄tx(x, τ))− g′(0)

]
dτds. (2.6)

Convolution with respect to t is denoted as usually by ∗; therefore (2.5) can be re-written

in a more close form as

vt + g′(0)a ∗ vxx = f + G. (2.7)

We now proceed to presenting several constitutive assumptions. The function g is taken

such that
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(g1) there exist θ ∈ [0, 1] and K > 0, such that g ∈ C 3 ([−θ, θ],�) and∣∣g(3)(y) − g(3)(0)
∣∣ � K|y|, ∀y ∈ [−θ, θ]

(g2) g(0) = g′′(0) = 0

(g3) g
′(0) < 0.

The function f is such that

(f1) f, fx, ft ∈ C 0
b

(
[0,+∞);L2(Ω)

)
∩ L2
(
[0,+∞);L2(Ω)

)
,

(f2) ftt ∈ L2
(
[0,+∞);L2(Ω)

)
,
∫ t

0 f(x, s)ds ∈ C 0
b

(
[0,+∞);H1(Ω)

)
,

where C 0
b ([0,+∞);X) is the set of all functions w : [0,+∞) → X which are bounded and

continuous, and X is a Banach space.

Next, let v0 be such that

(v0)1 v0 ∈ H2(Ω).

We assume that f and v0 are compatible with the already stated initial-boundary

conditions:

v0(x) = f(x, t = 0) = 0, ∀x ∈ ∂Ω. (2.8)

Let the measures associated to f and v0 be defined as

F(f) := sup
t�0

∫
Ω

[
f2 + f2

x + f2
t +

(∫ t

0

f(x, s)ds

)2

+

(∫ t

0

fx(x, s)ds

)2
]

dx (2.9)

+

∫ +∞

0

∫
Ω

(
f2 + f2

x + f2
t + f2

tt

)
(x, t)dxdt (2.10)

V0(v0) = ‖v0‖2
H2(Ω) =

∫
Ω

[
v20 + (v′

0)
2 + (v′′

0 )
2
]
(x)dx. (2.11)

For any function ϕ ∈ L1 ((0,+∞)), we denote by Fϕ (or alternatively by ϕ̂) and Lϕ the

corresponding Fourier and Laplace transforms, i.e.

Fϕ(ω) :=

∫ +∞

0

ϕ(t)e−iωtdt, ∀ω ∈ �

Lϕ(z) :=

∫ +∞

0

ϕ(t)e−ztdt, ∀z ∈ �,Rez � 0.

Let us now assume the function a satisfies the below given hypotheses (a1)–(a5):

(a1) a ∈ W 1,1 (0,+∞), a′(t) � 0 a.e. t � 0.

There exists a sequence of functions (an)n∈�, an ∈ C 2
(
[0,+∞) ∩W 2,∞([0,+∞)

)
s.t.

(a2) a
′
n(t) � 0, ∀ t � 0, (an)n∈� bounded in W 1,1 (0,+∞) and an

D ′(0,+∞)
−−−−−→
n→+∞

a,

(a3) supn∈�

[∫ 1

0

t |a′′
n(t)| dt+

∫ +∞

1

√
t |a′′

n(t)| dt+
∫ +∞

1

t2 |a′
n(t)| dt

]
< +∞,
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(a4) there exist constants M1 > 0 and n0 ∈ � s.t. Re (Fan(ω)) � M1

1+ω2 , ∀n ∈ �, n � n0,

∀ω ∈ �; observe that this is a strong positivity condition, common for this type

of problems (see [8]).

(a5) there exist constants M2 > 0, n0 ∈ �, p ∈ �∗, p � 2, s.t. [F(a′
n)]

p

Fan
∈

F
(
BL1(�)(0,M2)

)
, ∀n ∈ �, n � n0, where BL1(�)(0,M2) denotes the ball in L1(�)

centered at 0 and of radius M2; this assumption will be used to obtain a repres-

entation for the solution u of an ∗ u = b (see Theorem 3.1).

Remark 2.1 In Section 6, we shall construct a class of functions compliant with assumptions

(a1) to (a5). This class contains the Doi–Edwards relaxation kernel aDE : [0,+∞) → �,

aDE(t) =
∑
k�1

1

(2k + 1)2
e−(2k+1)2π2Dt/L2

. (2.12)

Also, since gDE ∈ C ∞ (�) is an odd function and g′
DE(0) = − 6α

π3

∫
S2
u2

1u
2
2du < 0, then gDE

also verifies (g1)–(g3) and this paper results equally apply to the function gDE.

The main result of this paper is stated below:

Theorem 2.1 (Main result) Assume that the hypotheses on the data given in (g1)–(g3), (f1)–

(f2), (v0)1, (a1)–(a5) and (2.8) hold true. Then, there exists a δ > 0 such that, if the additional

smallness assumption F(f) + V0(v0) � δ is verified, then there exists at least a solution

v ∈
{

2⋂
m=0

Wm,∞ ((0,+∞);H2−m (Ω)
)}

∩
{

2⋂
m=0

Wm,2
(
(0,+∞);H2−m (Ω)

)}

with ∫ t

0

v(x, s)ds ∈ L∞ ((0,+∞);H3 (Ω)
)

to the problem (2.4), (2.2), (2.3).

Next, we take on to introducing – and explaining – the proof stages for the afore-

mentioned Theorem 2.1. In short, first we obtain a regularized problem (Pn) obtained

from (2.5) with a being replaced by a sequence an satisfying hypotheses (a1) to (a5).

Doing this allows to obtain a local in time existence and uniqueness result capitalizing on

Renardy’s result in [38]. Next goal is to obtain estimates independent of n granting the

global existence of the solution for the approximated problem (Pn) and in the end, letting

n → +∞, obtaining our result. How to get these estimates is explained below.

Let u(x, t) =
∫ t

0 v(x, τ)dτ. For any t > 0, let E(t) stand for the sum of squared L∞
t L

2
x

norms of all derivatives in x and t of u up to third order and of all squared L2
t L

2
x norms

of all derivatives in x and t of v up to second order (see (4.4)). We prove that if E(t) is

“small” for t close to 0 (a consequence of the assumption made on data v0 and f), then

E(t) stays “small” for any t. We do this by obtaining an inequality of the type

E(t) �
1

2
E(t) + “small enough” quantities depending uniquely onV0 andF. (2.13)
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To achieve that, we calculate three energy estimates (in a way similar in nature with that

of Brandon and Hrusa [8]: we derivate (2.7) i-times (with i ∈ {0, 1, 2}) w.r.t. time t , then

multiply the result by div
dti

and integrate on Qt := Ω × (0, t). To calculate the second order

derivative, one uses a finite difference operator �hw(t) = w(t+h)−w(t), see (3.2). We sum

up the resulting three equations and get an equality in which the most important term

originates from the convolution part in the l.h.s. of (2.7). This term reads

−g′(0) [Q (vx, t, a) + Q (vxt, t, a) + Q (vxtt, t, a)] , (2.14)

where Q(w, t, a) =
∫ t

0

∫
Ω
w(x, s) (a ∗ w) (x, s)dxds (see (3.1)). We lower bound (2.14) using a

G̊arding type inequality: see Lemma 3.1.

The terms denoted by G in (2.7) can be controlled w.r.t. well-chosen norms by carrying

out an integration by parts w.r.t. time t, switching the time derivatives onto a and

using the fact that ta′′ ∈ L1(0, 1) (see assumption (a3)). This allows to upper bound the

L∞
t L

2
x norms of v, vx, vt, vxt, vtt, and the L2

t L
2
x norms of v, vx, vt, vxt. The results are

gathered into E1, see (4.6). We point out that the aforementioned energy estimates do

not provide norm estimates for vxx. To cope with this difficulty, we use (2.7) which allows

to express vxx as a function of vt, f and G with the help of an inversion Theorem for

the operator w �→ a ∗ w and using the previously obtained estimates. We cannot use

the resolvent kernel technique like in Brandon and Hrusa [9] because in this paper case

r′ � L1(�) (as a′′ � L1(�+)). Because of that we prove a point-wise inversion Theorem

for the convolution of a assuming the rather pretty weak constraints (a1)–(a5) on a: see

Theorem 3.1.

3 Preliminaries

For any T > 0, w ∈ C 0
(
[0, T ];L2(Ω)

)
, b ∈ L1(0,+∞) and t ∈ [0, T ], we define

Q(w, t, b) :=

∫ t

0

∫
Ω

w(x, s)

∫ s

0

b(s− τ)w(x, τ)dτdxds

=

∫ t

0

∫
Ω

w(x, s)(b ∗ w)(x, s)dxds, (3.1)

where w is considered as extended by 0 on (T ,+∞). For any T > 0 and h ∈ (0, T ), we

define the finite difference operator Δh

(Δhw) (x, t) = w(x, t+ h) − w(x, t) (3.2)

as a linear operator from C 0
(
[0, T − h];L2(Ω)

)
onto C 0

(
[0, T ];L2(Ω)

)
.

Moreover, if X(J) denotes a space of functions defined on J ⊂ � and I ⊂ J , then XI (J)

stands for the subspace of functions X(J) the supports of which are included in I (i.e.

that vanish on J − I).

Recall that b ∈ L1 (�+) is of positive type if, for any t � 0 and any ϕ ∈ L2 (�+), it

satisfies
∫ t

0 ϕ(s)
∫ s

0 b(s−τ)ϕ(τ)dτds � 0. Next, b is said to be of strong positive type if there

exists ε > 0 s.t. the function b(t) − εe−t is of positive type. Moreover, Qt := Ω × (0, t).
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The following Lemma is a G̊arding type inequality with boundary terms. It is proved

in [9] using preliminary results due to Staffans [40] (see also [24] and [42]). Here, we

shorten the original proof of [9] and remove the extraneous assumptions b ∈ W 3,1(0,+∞),

b′′ � 0.

Lemma 3.1 Assume b ∈ L1
�+

(�) is such that Re (Fb(ω)) � M1

1+ω2 , for any ω ∈ �, where

M1 > 0. Then, for any T > 0, w ∈ C 1
(
[0, T ], L2(Ω)

)
and t ∈ [0, T ), we have

∫
Ω

w2(x, t)dx+

∫ t

0

∫
Ω

w2(x, s)dxds

� C

[
1

M1
Q(w, t, b) +

1

M1
Q(wt, t, b) +

∫
Ω

w2(x, 0)dx

]
(3.3)

with C > 0 independent of T , t, w and b.

Moreover, if w ∈ C 0
(
[0, T ], L2(Ω)

)
, then, for any t ∈ [0, T ],

∫
Ω

w2(x, t)dx+

∫ t

0

∫
Ω

w2(x, s)dxds

� C

[
1

M1
Q(w, t, b) +

1

M1
lim inf
h→0+

1

h2
Q(�hw, t, b) +

∫
Ω

w2(x, 0)dx

]
. (3.4)

Proof Assuming that inequality (3.3) holds true, we undertake to proving (3.4). Let

w ∈ C 0
(
[0, T ], L2(Ω)

)
and t ∈ [0, T ) be fixed. For 0 < h < (T − t)/2, define the function

wh ∈ C 1
([

0, (t+ T )/2
]
, L2(Ω)

)
by

wh(s) :=
1

h

∫ s+h

s

w(σ)dσ, s ∈
[
0, (t+ T )/2

)
. (3.5)

Applying (3.3) to wh and passing to the limit lim infh→0+
gives (3.4).

We now prove (3.3). Let w ∈ C 1
(
[0, t], L2(Ω)

)
, t ∈ [0, T ) be fixed, and let w̃ ∈

L2
[0,t)

(
�, L2(Ω)

)
be defined by w̃ = w a.e. in [0, t] and w̃ = 0 outside. Denote by Dw̃ the

distributional derivative of w̃ and by w̃′ its regular part, i.e.

Dw̃ = w̃′ + w(0)δ0 − w(t)δt. (3.6)

Due to the Parseval identity, we have

Q(w, t, b) =
1

2π

∫
�

∫
Ω

Re
(
b̂(τ)
) ∣∣∣̂̃w(x, τ)

∣∣∣2 dxdτ (3.7)

and a similar equation with w′ instead of w as well. For λ > 0 (to be later determined)

define I(w) by

I(w) := Q
(
w̃′, t, b

)
+ λQ (w̃, t, b) +

3M1

2

∫
Ω

w2(x, 0)dx (3.8)
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By (3.6) and (3.7) and the strong positivity of b,

I(w) �
M1

2π

∫
�

∫
Ω

(∣∣∣iτ̂̃w(τ) + w(t)e−iτt − w(0)
∣∣∣2 + λ

∣∣∣̂̃w(τ)
∣∣∣2 + 3|w(0)|2

)
dx

dτ

1 + τ2
. (3.9)

Since for any (a, b, c) ∈ �3, we have |a+ b+ c|2 � |a|2+|b|2
2

− 2|a||b| − 3|c|2, inequality (3.9)

implies

I(w) �
M1

2π

∫
�

∫
Ω

(
|τ|2 + 2λ

2

∣∣∣̂̃w(τ)
∣∣∣2 + |w(t)|2β

√
|τ| − 2|w(t)||τ|

∣∣∣̂̃w(τ)
∣∣∣) dx

dτ

1 + τ2
(3.10)

with

β =
1

2

(∫
�

dτ

1 + τ2

)/(∫
�

√
|τ|

1 + τ2
dτ

)
. (3.11)

But

2|w(t)||τ|
∣∣∣̂̃w(τ)
∣∣∣ �

β

2

√
|τ||w(t)|2 +

2

β
|τ|3/2

∣∣∣̂̃w(τ)
∣∣∣2

�
β

2

√
|τ||w(t)|2 +

(
|τ|2
4

+ L

) ∣∣∣̂̃w(τ)
∣∣∣2 (3.12)

with L > 0 independent of t, w, b. Choose λ = L+ 1/4. By (3.10) and (3.12), we get

I(w) �
M1

2π

∫
�

∫
Ω

(
|τ|2 + 1

4

∣∣∣̂̃w(τ)
∣∣∣2 +

β
√

|τ|
2

|w(t)|2
)

dx
dτ

1 + τ2
(3.13)

which is (3.3).

�

We now prove that, under suitable assumptions application w �→ b ∗w is invertible, and

obtain an inversion formula. We use truncated Neumann series and a special assumption

(see (b3) below) in order to control the remainder term.

For b ∈ L1(�), let the k-times convolution de denoted as b∗k := b ∗ b ∗ · · · ∗ b︸ ︷︷ ︸
k times

. For

1 � q � +∞ and t0 ∈ (0,+∞], the mapping Rt0 ,q is defined by

Rt0 ,q :

{
L
q
[0,t0)

(−∞, t0) −→ W
1,q
[0,t0)

(−∞, t0).
w �→ b ∗ w

Here, b ∗ w(t) :=
∫ t

0
b(t− s)w(s)ds, for any t < t0. We always write R in place of R+∞,2.

Next, function b is assumed to comply with

(b1) b ∈ W 1,1(0,+∞), b(0+)� 0,

(b2) there exists M > 0, β > 0 s.t.

|Lb(z)| �
M

1 + |z|β , ∀z ∈ �,Re(z) � 0, (3.14)
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(b3) there exists p ∈ �∗, p � 2 s.t.

F−1

[(
Fb′)p
Fb

]
∈ L1(�). (3.15)

Our goal is to prove the following inversion Theorem:

Theorem 3.1 (Inversion theorem) Let the assumptions (b1)–(b3) hold true. Then,

(i) for any 1 � q � +∞ and t0 ∈ (0,+∞], the mapping Rt0 ,q is a Banach isomorphism;

(ii ) functions B1, B2 that depend only on b and are being given by

B1 =

p−1∑
k=1

(−1)k
(b′)∗k

bk+1(0+)
(3.16)

B2 =
(−1)p

bp(0+)
F−1

[(
Fb′)p
Fb

]
, (3.17)

belong to L1
�+

(�);

(iii) for any l ∈ W
1,q
[0,t0)

(−∞, t0), one has

R−1
t0 ,q

(l) =
l′

b(0+)
+ B1 ∗ l′ + B2 ∗ l. (3.18)

For the proof, we first need to introduce and prove two preliminary Lemmas.

Lemma 3.2 Assume that b ∈ W 1,1
(
�∗

+

)
, b(0+) � 0. Let 1 � q � +∞, t0 ∈ (0,+∞). Then,

Rt0 ,q is a continuous injection.

Proof We begin by showing Rt0 ,q is well defined and continuous. Since b ∈ W 1,1
(
�∗

+

)
,

it is clear that for any w ∈ L
q
[0,t0)

(−∞, t0), the function b ∗ w belongs to W
1,q
[0,t0)

(−∞, t0).
Moreover, (b ∗ w)′ =

[
b(0+)w + b′ ∗ w

]
. Hence,

‖Rt0 ,q(w)‖W 1,q(0,t0)
�
[
|b(0+)| + ‖b‖W 1,1(�∗

+)

]
‖w‖Lq(0,t0) (3.19)

which proves Rt0 ,q is indeed continuous.

Next, assume w ∈ L
q
[0,t0)

(−∞, t0) satisfies Rt0 ,q(w) = 0. Derivating the later leads to

w(s) +

∫ s

0

b′(s− τ)

b(0+)
w(τ)dτ = 0, a.e. s < t0. (3.20)

Multiply (3.20) by e−θs, θ > 0, and set w1(s) = e−θsw(s), b1(s) = b′(s)
b(0+)

e−θs. Equality (3.20)

can now be re-written as

w1(s) +

∫ s

0

b1(s− τ)w1(τ)dτ = 0, a.e. s < t0. (3.21)
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It implies that

‖w1‖Lq(0,t0) � ‖b1‖L1(�∗
+)‖w1‖Lq(0,t0). (3.22)

Notice that ‖b1‖L1 =
∫ +∞

0 e−θs |b′(s)|
|b(0+)|ds−→θ→+∞ 0. Pick up a θ > 0 large enough s.t.

‖b1‖L1(�∗
+) < 1. From (3.22), we get ‖w1‖Lq(0,t0) = 0. Finally, w = 0 and Rt0 ,q is an

injection mapping.

�

Lemma 3.3 The Theorem 3.1 holds true for t0 = +∞ and q = 2.

Proof The proof consists of four steps.

Step 1 First, we prove the existence, as a consequence of assumptions (b1)–(b2) on b, of

a constant M3 > 0 s.t.

|F(b)(ω)| �
M3

1 + |ω| , ∀ω ∈ �. (3.23)

Indeed, one sees that (b2) implies

|F(b)(ω)| �
M

1 + |ω|β , ∀ω ∈ �.

Then, it suffices to prove the existence of m1, m2 > 0 s.t. |F(b)(ω)| � m1

|ω| , ∀ω ∈ �

with |ω| � m2. This follows from the fact that |F(b)(ω)| = 1
iω

[
F(b′)(ω) + b(0+)

]
, that

F(b′)(ω) → 0 for |ω| → ∞, and b(0+)� 0.

Step 2 Now, we prove R is a Banach isomorphism. Due to Lemma 3.2, one only needs

to prove R is surjective. To begin with, one establishes that, for any w ∈ L2
�+

(�), one has

(with M3 > 0 the constant in (3.23))

‖w‖L2(�) �
1√

πM3

‖R(w)‖H1(�). (3.24)

Actually using Parseval’s identity and (3.23), one gets

√
2π‖w‖L2(�) = ‖Fw‖L2(�) =

∥∥∥∥FR(w)

Fb

∥∥∥∥
L2(�)

�
1

M3
‖(1 + |ω|)FR(w)‖L2(�) . (3.25)

Since (1 + |ω|) �
√

2(1 + ω2), inequality (3.25) implies inequality (3.24). Next, inequalities

(3.19) and (3.24) prove that R(L2
�+

(�)) is closed. Therefore, in order to prove that R is

surjective it is sufficient to show that the dense subset (C ∞
c )(0,+∞)(�) of H1

�+
(�) is included

in R(L2
�+

(�)).

Let r ∈ (C ∞
c )(0,+∞)(�). We search for w ∈ L2

�+
(�) s.t. b ∗ w = r. Since we are unable

to identify the support of w by Fourier transform, we use Laplace transform instead.

Consider the function

z ∈ {z ∈ �/Re(z) � 0} �→ Lr(z)

Lb(z)
∈ �

which is well defined based on (b2) and the fact that r ∈ (C ∞
c )(0,+∞)(�). This function is

clearly continuous on Re(z) � 0 and analytic on Re(z) > 0. As for any z ∈ � and γ ∈ �,
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Lr(γ)(z) = zγLr(z), and as r(γ) ∈ L1(�), we deduce that there exists m3 � 0 s.t.

|Lr(z)| �
m3

1 + |z|β+2
, ∀z ∈ �, Re(z) � 0.

Now, it easily follows the existence of m4 � 0 s.t.∣∣∣∣Lr(z)

Lb(z)

∣∣∣∣ �
m4

1 + |z|2 , ∀z ∈ �, Re(z) � 0. (3.26)

Next, with the help of Bromwich–Mellin formula, for any t ∈ � and for fixed x > 0,

define w as

w(t) :=
1

2πi

∫
�
et(x+iy)

Lr

Lb
(x+ iy)dy. (3.27)

Owing to Cauchy’s formula and invoking (3.26), w thus defined is independent of x > 0.

Also, for fixed t < 0, letting x → +∞ in (3.27) leads to w(t) = 0. This is w(t) = 0 for

any t < 0. Next, for any fixed t ∈ �, using Lebesgue’s Theorem we calculate the limit

for x → 0 of (3.27) and obtain w = F−1( Fr
Fb

). By Parseval’s identity and by (3.26), w is

clearly an element of L2
�+

(�) and satisfies R(w) = r. Therefore, R is surjective.

Step 3 The task now is proving the representation formula. Let w ∈ L2
�+

(�) and set

l = R(w). Derivation of the later gives

w +
b′

b(0+)
∗ w =

l′

b(0+)
. (3.28)

Convolute (3.28) with the operator
∑p−1

k=0(−1)k( b′

b(0+)
)∗k∗ (by convention ( b′

b(0+)
)∗0 = δ0). We

obtain

w =
l′

b(0+)
+
(
B1 ∗ l′

)
+

(−1)p

bp(0+)

[
(b′)∗p ∗ w

]
. (3.29)

Since l = b ∗ w, we get Fl = FbFw. Hence,

F
[
(b′)∗p ∗ w

]
=
(
Fb′)p Fl

Fb
. (3.30)

By hypothesis (b3),
(Fb′)p

Fb
∈ L∞(�), which proves that inequality (3.30) holds in L2(�)

since Fl ∈ L2(�). This fact allows to state that (−b′)∗p

bp(0+)
∗w = B2 ∗ l with B2 given by (3.17).

Now, for any w ∈ L2
�+

(�) and l = R(w), (3.29) gives the representation formula

w =
l′

b(0+)
+ B1 ∗ l′ + B2 ∗ l. (3.31)

Step 4 Let us now show that the support of B1 and that of B2 are included in �+.

Since the support of b′ is in �+, B1 also has its support in �+ due to formula (3.16).

Let ρ ∈ D�+
(�) and set w = R−1(ρ) (see Step 2.). Equation (3.31) now ensures that, a.e.

t < 0,

0 = w(t) =
ρ′(t)

b(0+)
+
(
B1 ∗ ρ′) (t) + (B2 ∗ ρ) (t). (3.32)
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Since ρ′(s) = 0 a.e. s < 0 and since B1 has support in �+, we get

(B2 ∗ ρ) (t) = 0, a.e. t < 0. (3.33)

Take ρ � 0, ρ� 0, and set ρn(t) = nρ (nt), n ∈ �∗, t ∈ �. We know that

B2 ∗ ρn
L1(�)

−−−−→
n→+∞

‖ρ‖L1B2. (3.34)

Taking ρ = ρn in (3.33) and using (3.34), we obtain B2 = 0 a.e. t < 0. Hence, B2 has

support in �+.

�

We are now in a position allowing to prove the previously stated Inversion

Theorem 3.1.

Proof of the inversion Theorem 3.1 Let q ∈ [1,+∞) and t0 ∈ �∗
+ ∪ {+∞}. Define the

mapping St0 ,q by

St0 ,q =

⎧⎨⎩W
1,q
[0,t0)

(−∞, t0) −→ L
q
[0,t0)

(−∞, t0)

l �→ l′

b(0+)
+ B1 ∗ l′ + B2 ∗ l

with B1, B2 ∈ L1
�+

(�) given by (3.16)–(3.17). Clearly, St0 ,q is well defined and continuous.

We begin by studying the case t0 = +∞.

Notice that S+∞,q ◦ R+∞,q restricted to D = L
q
�+

(�) ∩ L2
�+

(�) is the identity (see

Lemma 3.3). Since D is dense in L
q
�+

(�), and S+∞,q and R+∞,q are continuous, we find

that S+∞,q ◦ R+∞,q is the identity on Lq�+
(�). Similarly, R+∞,q ◦ S+∞,q is the identity on

W
1,q
�+

(�). This proves the Theorem for t0 = +∞.

Assume now that t0 > 0 and q ∈ [1,+∞]. We know from Lemma 3.2 that Rt0 ,q is

continuous and injective. We now prove that Rt0 ,q is surjective and that St0 ,q is its inverse.

Let l ∈ W
1,q
[0,t0)

(−∞, t0) and extend l into L ∈ W
1,q
[0,2t0)

(�) by reflexion

L(t) =

{
l(t) for t < t0
l(2t0 − t) for t > t0

.

Let W = (S+∞,q)(L) and define w ∈ L
q
[0,t0)

(−∞, t0) as the restriction of W to (−∞, t0).
Then, b ∗ w = b ∗W = l on (−∞, t0), and

w = W =
L′

b(0+)
+ B1 ∗ L′ + B2 ∗ L, on (−∞, t0). (3.35)

This is w = St0 ,q(l). This proves the Theorem.

�

We now have the following result:

Proposition 3.1 There exists n0 ∈ � s.t. for any n ∈ �, n � n0, the function an introduced
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in the string of assumptions (a2)–(a5) satisfies the hypotheses (b1)–(b3) of Theorem 3.1.

Moreover, functions B1, B2 of equations (3.16)–(3.17), having b substituted by an, belong to

a ball of radius independent of n that is included into L1(�).

Proof One has

an(0+) =
1

π
lim
k→+∞

∫ k

−k
Fb(ω)dω =

1

π
lim
k→+∞

∫ k

−k
Re [Fb(ω)] dω.

Invoking the hypothesis (a4) leads to

an(0+) � M1 (3.36)

meaning an satisfies (b1). From (a5), we see that an satisfies (b3).

Moreover, one has (Fe−t)ω = 1
1+ω2 . This fact, together with Theorem 2.4 on page 494

of [25] imply that the function t ∈ [0,+∞) → an(t) −M4e
−t is of positive type. From the

same Theorem, one also gets Re(L(an − M1e
−t)(z)) � 0, for any z ∈ � s.t. Re(z) � 0.

The later in turn implies Re(Lan(z)) � M1
1+z1

(1+z1)2+z
2
2
, for any z = z1 + iz2, z1 � 0. Then, an

satisfies (b2) with β = 2.

The last statement of the Proposition is obvious.

�

4 Approximated problems and estimates

4.1 Approximated and local problems. Preliminary notations and estimates

Remark that a is not smooth enough to ensure a straightforward local in time exist-

ence result for a solution v to our problem. As a consequence, we study the following

approximated problem which we denote by Pn.

Problem Pn Find vn : Ω × [0,+∞) → � s.t.

(Pn)1 (vn)t =
∫ +∞

0
a′
n(s)

∂
∂x
g(
(
vtn
)
x
)(x, s)ds+ f(x, t)

(Pn)2 vn = 0 on ∂Ω, vn(t) = 0, ∀t < 0

(Pn)3 vn(x, 0) = v0(x) for x ∈ Ω.

Given the assumptions on g, we conclude there exist γ > 0 and θ ∈ [0, 1] s.t.

g′(y) < −γ, ∀y ∈ [−θ, θ]. (4.1)

Clearly, we can take the same θ as in assumption (g1). Moreover, there exists K > 0 s.t.

|g′(y) − g′(0)| � Ky2, ∀y ∈ [−θ, θ]. (4.2)

In the above, one may consider the same K as in (g1).

Let us denote, for almost every x ∈ Ω,

un(x, t) =

∫ t

0

vn(x, s) ds.
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The proof of the next Proposition is very similar to that of Theorem 3.10 in [38] and is

omitted.

Proposition 4.1 Assume that the hypotheses (g1)–(g3), (f1)–(f4), (v0) and (a1)–(a5) on the

data hold true. Then, the initial value problem (Pn)1, (Pn)2, (Pn)3 has a unique solution vn
defined on a maximal time interval [0, Tn), Tn > 0, and s.t. vn ∈ C 0([0, Tn);H

2(Ω)), (vn)t ∈
C 0([0, Tn);H

1(Ω)), (vn)tt ∈ C 0
(
[0, Tn);L

2(Ω)
)

and un ∈ C 0
(
[0, Tn);H

3(Ω)
)
. Moreover, if

sup
t∈[0,Tn)

{
‖vn(·, t)‖2

H2(Ω) + ‖(vn)t(·, t)‖2
H1(Ω) + ‖(vn)tt(·, t)‖2

L2(Ω) + ‖un(·, t)‖2
H3(Ω)

}
< ∞ (4.3)

and

sup
x∈Ω

0�t�Tn

|(un)x (x, t)| �
θ

2

with θ as in (g4), then Tn = +∞.

Notice that our functional framework is different from that of [8]. As a consequence,

here it is necessary to obtain new estimates on ‖un‖H3(Ω).

In this Section, we obtain the necessary estimates to proving Tn = +∞. These estimates

will be proved to be independent of n, fact which allows to pass to the limit as n → +∞.

To simplify notations, we drop the subscript n of an, vn and Tn.

Drawing inspiration from [8], we introduce the following expressions:

E(t) = sup
s∈[0,t)

[∫
Ω

(
v2 + v2x + v2t + v2xx + v2xt + v2tt + u2 + u2

x + u2
xx + u2

xxx

)
(x, s)dx

]
+

∫ t

0

∫
Ω

(
v2 + v2x + v2t + v2xx + v2xt + v2tt

)
(x, s)dxds

= sup
s∈[0,t)

(
‖v‖2

H2(Ω) + ‖vt‖2
H1(Ω) + ‖vtt‖2

L2(Ω) + ‖u‖2
H3(Ω)

)
(s) + ‖v‖2

H2(Ω×[0,t)) (4.4)

and

ν(t) = sup
x∈Ω
s∈[0,t)

[√(
v2 + v2x + v2t

)
(x, s)

]
+

√∫ t

0

sup
x∈Ω

(vx(x, s))
2 ds. (4.5)

For simplicity, let us denote

E1(t) = sup
s∈[0,t)

[∫
Ω

(
v2 + v2x + v2t + v2xt + v2tt

)
(x, s)dx

]
+

∫ t

0

∫
Ω

(
v2 + v2x + v2t + v2xt

)
(x, s)dxds. (4.6)

In fact, E1(t) collects the terms of E(t) which will be estimated in a first step with the help

of energy estimates.

Remark that, due to Sobolev inequalities, there exists a constant CΩ > 0 s.t.

ν(t) � CΩ
√

E(t), ∀t ∈ [0, T ) (4.7)
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and

sup
x∈Ω

|ux(x, t)| � CΩ
√

E(t), ∀t ∈ [0, T ). (4.8)

Next, from (2.6) we get

Gt(x, t) = vxx(x, t)

∫ +∞

0

a′(s)
[
g′ (vtx(x, s))− g′(0)

]
ds

−
∫ t

0

vxx(x, s)a
′(t− s)

[
g′ (vtx(x, t− s)

)
− g′(0)

]
ds

+

∫ t

0

vxx(x, s)

∫ +∞

t−s
a′(τ)g′′ (vtx(x, τ)) [vx(x, t) − vx(x, t− τ)] dτds.

(4.9)

All subsequent estimates will be obtained under the following smallness hypothesis on

E(t):

E(t) �
θ2

4C2
Ω

, ∀t ∈ [0, T ) (4.10)

which implies

sup
x∈Ω

0�t�T

|ux(x, t)| �
θ

2
(4.11)

Then,

sup
x∈Ω

0�s�t�T

∣∣vtx(x, s)∣∣ � θ, a.e. x ∈ Ω. (4.12)

We shall frequently employ the following inequalities:

|xy| � μx2 +
1

4μ
y2, x, y ∈ �, μ > 0 (4.13)

and

‖F1 ∗ F2‖Lp(0,T ) � ‖F1‖L1(0,+∞)‖F2‖Lp(0,T ), (4.14)

for any T > 0, F1 ∈ L1(0,+∞), and F2 ∈ Lp(0, T ), with p � 1; functions F1 and F2 are

extended to � by 0.
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For future reference, we prove the following Lemmas:

Lemma 4.1 Let the mappings ϕ and s �→ sϕ(s) be elements of L1(�+). Then, the function

s �→
∫ +∞
s

ϕ(τ)dτ belongs to L1(�+) and we have the estimate∫ +∞

0

∣∣∣∣∫ +∞

s

ϕ(τ)dτ

∣∣∣∣ ds �

∫ +∞

0

|sϕ(s)| ds.

Proof The proof is a direct consequence of Fubini’s Theorem.

�

Lemma 4.2 Let ϕ ∈ L1 (�+). Then,

(i) for any w1, w2 ∈ L2(Qt) we have∣∣∣∣∫ t

0

∫
Ω

w1(x, s)(w2 ∗ ϕ)(x, s)ds

∣∣∣∣ � ‖ϕ‖L1(�+)‖w1‖L2(Qt)‖w2‖L2(Qt); (4.15)

(ii) for any w3 ∈ L2(Ω), w4 ∈ L∞ (0, T ;L2(Ω)
)

we have∣∣∣∣∫
Ω

w3(x)(ϕ ∗ w4)(x, t)dx

∣∣∣∣ � ‖ϕ‖L1(0,T )‖w3‖L2(Ω) sup
0�τ�t

‖w4(τ)‖L2(Ω), a.e. t ∈ [0, T ).

(4.16)

Proof Part (i): observe that∣∣∣∣∫ t

0

∫
Ω

w1(x, s)(w2 ∗ ϕ)(x, s)ds

∣∣∣∣ �

∫
Ω

‖w1(x, ·)‖L2(0,t) ‖(w2 ∗ ϕ)(x, ·)‖L2(0,t) dx

� ‖ϕ‖L1(�+)

∫
Ω

‖w1(x, ·)‖L2(0,t) ‖w2(x, ·)‖L2(0,t) dx (4.17)

which gives the result.

Part (4.2): one has∣∣∣∣∫
Ω

w3(x)(ϕ ∗ w4)(x, t)dx

∣∣∣∣ � ‖w3‖L2(Ω)

∫ t

0

‖w4(x, t− τ)‖L2(Ω)|ϕ(τ)|dτ (4.18)

and the result follows. �

Let r0 : �+ → �+, r0(s) := min
{
s,

√
s
}
. We have the following estimates:

Lemma 4.3 Let t ∈ [0, T ), assume (4.10) is satisfied. Then,

(i)
∣∣g(j)
(
vtx(x, s)

)
− g(j)(0)

∣∣ � Kmin {ν(t)r0(s), θ} a.e. x ∈ Ω, s ∈ [0, t], j = 0, 1, 2, 3

(ii) |G(x, t)| � Kν(t)[|vxx(x, ·)| ∗ ψ](t), a.e. x ∈ Ω

(iii) |Gt(x, t)| � Kν(t)a |vxx(x, t)| +Kν(t)
[
|vxx(x, ·)| ∗ ψ

]
(t), a.e. x ∈ Ω,
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where

a =

∫ +∞

0

|a′(s)| r0(s)ds. (4.19)

ψ(t) = |a′(t)| r0(t) + 2

∫ +∞

t

|a′(τ)| r0(τ)dτ (4.20)

Remark 4.1 Lemma 4.1 and the assumptions made about function a grant the fact that ψ

in (4.20) is s.t. ψ ∈ L1 (�+).

Proof

(i) On one hand, as a consequence of (g1) and (4.12), we have∣∣g(j)
(
vtx(x, s)

)
− g(j)(0)

∣∣ � K
∣∣vtx(x, s)∣∣ , j = 0, 1, 2, 3. (4.21)

On the other hand,

∣∣vtx(x, s)∣∣ �

∫ t

t−s
|vx(x, λ)| dλ � s sup

t−s�λ�t
|vx(x, λ)| � sν(t) (4.22)

and ∣∣vtx(x, s)∣∣ �
√
s

[∫ t

t−s
|vx(x, λ)|2 dλ

]1/2
�

√
sν(t) (4.23)

which gives the result.

(ii) From (2.6) and (i) above, one gets

|G(x, t)| � Kν(t)

∫ t

0

|vxx(x, s)|
∫ +∞

t−s
a′(τ) min{τ,

√
τ}dτds

� Kν(t)

∫ t

0

|vxx(x, s)|ψ(t− s)ds (4.24)

from which the result follows.

(iii) We use (4.9), (g1), (i), the fact that g′′(0) = 0 and 0 � θ � 1 to obtain

|Gt(x, t)| � K |vxx(x, t)| ν(t)
∫ +∞

0

|a′(s)|r0(s)ds

+Kν(t)

∫ t

0

|vxx(x, s)| |a′(t− s)| r0(t− s)ds

+ 2Kθν(t)

∫ t

0

|vxx(x, s)|
∫ +∞

t−s
|a′(τ)|r0(τ)dτds (4.25)

which gives the result.
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4.2 Energy estimates

�

The next Lemmas give energy estimates for the terms in E1(t) (see (4.6)), as in [8].

In what follows, the notation C > 0 stands for a generic constant that is independent

of n.

Lemma 4.4 Assume the inequality (4.10) holds true. Then,∫
Ω

v2(x, t)dx− 2g′(0)Q (vx, t, a) � V0 + 2
√
F
√

E(t) + 2K‖ψ‖L1(�+)ν(t)E(t). (4.26)

Proof For a fixed t ∈ (0, T0), we multiply (2.5) by v(x, t) and integrate on Ω and on (0, t).

We get

1

2

∫
Ω

v2(x, t)dx− 1

2

∫
Ω

v20dx− g′(0)Q(vx, t, a)

=

∫ t

0

∫
Ω

f(x, s)v(x, s)dxds+

∫ t

0

∫
Ω

G(x, s)v(x, s)dxds. (4.27)

Observe that
∫ t

0

∫
Ω
fvdxds � ‖f‖L2(Qt)‖v‖L2(Qt) �

√
F

√
E.

Now, using Lemma 4.3 we get∣∣∣∣∫ t

0

∫
Ω

G(x, s)v(x, s)dxds

∣∣∣∣ � Kν(t)

∫ t

0

∫
Ω

|v(x, s)|
(
|vxx| ∗ |ψ|

)
(x, s)dxds.

Using part (i) of Lemma 4.2 with w1 = v, w2 = vxx and ϕ = |ψ|, one gets∣∣∣∣∫ t

0

∫
Ω

G(x, s)v(x, s)dxds

∣∣∣∣ � Kν(t)‖ψ‖L1(�+)E(t),

thus ending the proof. �

Lemma 4.5 Let a and ψ be given by (4.19) and (4.20), respectively. Under the assumption

that (4.10) is fulfilled , one has the following inequality:∫
Ω

v2t (x, t)dx− 2g′(0)Q (vxt, t, a) � F + 2‖a‖L1(�+)

√
V0

√
E(t)

+ 2
√
F
√

E(t) + 2K
(
‖ψ‖L1(�+) + a

)
ν(t)E(t). (4.28)

Proof First, we derivate (2.5) w.r.t. t and obtain

vtt(x, t) + g′(0)a(0)vxx(x, t) + g′(0)

∫ t

0

a′(t− s)vxx(x, s)ds = ft + Gt. (4.29)



24 I. S. Ciuperca et al.

Second, multiplying the above by vt and integrating on Ω and on [0, t] leads to

1

2

∫
Ω

v2t (x, t)dx− 1

2

∫
Ω

v2t (x, 0)dx− g′(0)a(0)

∫ t

0

∫
Ω

vxvxtdxds

− g′(0)

∫ t

0

∫
Ω

∫ s

0

a′(s− τ)vx(τ)dτvxt(s)dxds =

∫ t

0

∫
Ω

ftvtdxds

+

∫ t

0

∫
Ω

Gtvtdxds. (4.30)

Observe now that∫ s

0

a′(s− τ)vx(τ)dτ = −a(0)vx(s) + a(s)vx(0) +

∫ s

0

a(s− τ)vxt(τ)dτ. (4.31)

One now gets

1

2

∫
Ω

v2t (x, t)dx− g′(0)Q (vxt, t, a) =
1

2

∫
Ω

v2t (x, 0)dx− g′(0)

∫ t

0

∫
Ω

a(s)v′′
0 (x)vt(x, s)dxds

+

∫ t

0

∫
Ω

(ftvt) (x, s)dxds+

∫ t

0

∫
Ω

(Gtvt) (x, s)dxds. (4.32)

Notice that

vt(x, 0) = f(x, 0) (4.33)

which gives
∫
Ω
v2t (x, 0)dx � F . We also have

∣∣∣∣∫ t

0

∫
Ω

a(s)v′′
0 (x)vt(x, s)dxds

∣∣∣∣ � ‖v′′
0‖L2(Ω) ‖a‖L1(�+) sup

0�s�t
‖vt(·, s)‖L2(Ω)

� ‖a‖L1(�+)

√
V0

√
E(t) (4.34)

and ∫ t

0

∫
Ω

(ftvt) (x, s)dxds �
√
F
√

E(t). (4.35)

Finally, invoking part (iii) of Lemma 4.3 and part (i) of Lemma 4.2, we deduce that

∫ t

0

∫
Ω

(Gtvt) (x, s)dxds � Kaν(t)E(t) +Kν(t)‖ψ‖L1(�+)E(t) (4.36)

and with the obtainment of this last estimates the proof ends.

�

Next, in order to obtain energy estimates for
∫
Ω
v2tt(x, t)dx, we shall use the difference

operator (�hw) (x, t) = w(x, t+ h) − w(x, t), for h > 0 small enough.
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Lemma 4.6 Under the assumption that (4.10) is fulfilled, one has∫
Ω

v2tt(x, t)dx− 2g′(0) lim
h→0+

1

h2
Q (�hvxt, t, a) � C

{
F +

√
F
√

E(t)

+
[
ν(t) + ν3(t)

]
E(t) +

√
V0E(t)

}
. (4.37)

For the Proof, see the Appendix Section.

Since ν(t) and E(t) are non-increasing functions in t, we obtain as a consequence of

Lemmas 4.4–4.6, 3.1 and Sobolev embeddings, that:

Lemma 4.7 Under the assumption stated in (4.10), one has

E1(t) � C
{
V0 + F +

(√
V0 +

√
F
)√

E(t) +
[
ν(t) + ν3(t)

]
E(t) +

√
V0E(t)

}
. (4.38)

4.3 Non-energy estimates

In the following, we obtain estimates for the other constitutive terms of E(t).

Now, from (2.5) and using for a.e. x ∈ Ω the result of Theorem 3.1 with b = a (see

Proposition 3.1),

l(t) = 1
g′(0)

[f(x, t) + G(x, t) − vt(x, t)], and w(t) = vxx(x, t), we deduce the equality

vxx =
1

g′(0)

[
1

a(0)
(ft + Gt − vtt) + A1 ∗ (ft + Gt − vtt) + A2 ∗ (f + G − vt)

]
, (4.39)

where A1, A2 ∈ L1
[0,+∞)(�) are two functions that depend on an, with bounded L1 norms

which are independent of n, due to Proposition 3.1.

We have the following estimate:

Lemma 4.8 Under the assumption stated in (4.10), one has∫
Ω

v2xx(x, t)dx+

∫ t

0

∫
Ω

v2xx(x, s)dxds+

∫ t

0

∫
Ω

v2tt(x, s)dxds

� C [F + E1(t) + ν(t)E(t)] . (4.40)

Proof

Step 1 We multiply (4.39) by vxx and integrate on Ω. It is clear that, for any η > 0, we

have ∣∣∣∣∫
Ω

(ft − vtt) vxxdx

∣∣∣∣ � η

∫
Ω

v2xxdx+
1

2η

∫
Ω

(
f2
t + v2tt

)
dx. (4.41)
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From part (iii) in Lemma 4.3, we obtain∣∣∣∣∫
Ω

Gtvxxdx

∣∣∣∣ � Kν(t)

∫
Ω

|vxx(x, t)|
(
|vxx| ∗ |ψ|

)
(x, t)dx

+ aKν(t)

∫
Ω

|vxx(x, t)|2 dx. (4.42)

Further, with the help of part (ii) in Lemma 4.2 we obtain∣∣∣∣∫
Ω

Gtvxxdx

∣∣∣∣ � Kν(t) ‖vxx(·, t)‖L2(Ω) ‖ψ‖L1(�+) sup
0�τ�t

‖vxx(·, τ)‖L2(Ω)

+ aKν(t) ‖vxx(·, t)‖2
L2(Ω) � Kν(t)

[
‖ψ‖L1(�+) + a

]
E(t). (4.43)

For any η > 0, one has∣∣∣∣∫
Ω

A1 ∗ (ft − vtt) vxxdx

∣∣∣∣ � ‖A1‖L1(�+) ‖vxx(·, t)‖L2(Ω) sup
0�τ�t

[
‖ft(·, τ)‖L2(Ω) + ‖vtt(·, τ)‖L2(Ω)

]
� η ‖vxx(·, t)‖2

L2(Ω) +
1

2η
‖A1‖2

L1(�+) sup
0�τ�t

[‖ft(·, τ)‖2
L2(Ω) + ‖vtt(·, τ)‖2

L2(Ω)] (4.44)

and also∣∣∣∣∫
Ω

A2 ∗ (f − vt) vxxdx

∣∣∣∣
� η ‖vxx(·, t)‖2

L2(Ω) +
1

2η
‖A2‖2

L1(�+) sup
0�τ�t

[
‖f(·, τ)‖2

L2(Ω) + ‖vt(·, τ)‖2
L2(Ω)

]
. (4.45)

We now have,∣∣∣∣∫
Ω

(A1 ∗ Gt)(x, t)vxx(x, t)dx

∣∣∣∣ � aKν(t)

∫
Ω

(|A1| ∗ |vxx|)(x, t)|vxx(x, t)|dx

+Kν(t)

∫
Ω

(|A1| ∗ |ψ| ∗ |vxx(x, t)|)(x, t)|vxx(x, t)|dx. (4.46)

Then,∣∣∣∣∫
Ω

(A1 ∗ Gt) (x, t)vxx(x, t)dx

∣∣∣∣
� Kν(t)

[
a ‖A1‖L1(�+) + ‖ |A1| ∗ |ψ| ‖L1(�+)

]
‖vxx(·, t)‖L2(Ω) sup

0�τ�t
‖vxx(·, τ)‖L2(Ω) . (4.47)

This gives ∣∣∣∣∫
Ω

(A1 ∗ Gt) (x, t)vxx(x, t)dx

∣∣∣∣ � Cν(t)E(t). (4.48)

Likewise, ∣∣∣∣∫
Ω

(A2 ∗ G) (x, t)vxx(x, t)dx

∣∣∣∣ � Cν(t)E(t). (4.49)

Now, from the above estimates (4.41)–(4.45), (4.48) and (4.49), with η > 0 small enough

leads to
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sup
0�s�t

∫
Ω

v2xx(x, s)dx � C [F + E1(t) + ν(t)E(t)] . (4.50)

Step 2 We multiply (4.39) by vxx and integrate on (0, t) and on Ω. Proceeding as in Step

1., using part (i) in Lemma 4.2, one gets for any η > 0 that∫
Qt

[ft + Gt + A1 ∗ ft + A2 ∗ (f − vt) + A1 ∗ Gt + A2 ∗ G] vxxdxds

� η

∫
Qt

v2xxdxds+
C

η
[F + E1(t)] + Cν(t)E(t). (4.51)

We are left to focus on terms that contain vtt. Invoking density arguments,∫
Qt

(vttvxx) (x, s)dxds =

∫
Ω

(vxxvt) (x, t)dx−
∫
Ω

v′′
0 (x)vt(x, 0)dx+

∫
Qt

v2xtdxds (4.52)

which gives, using (4.33),∣∣∣∣∫
Qt

(vttvxx) (x, s)dxds

∣∣∣∣ � ‖vxx(·, t)‖L2(Ω) ‖vt(·, t)‖L2(Ω)

+ ‖v′′
0‖L2(Ω) ‖f(·, 0)‖L2(Ω) +

∫
Qt

v2xt(x, s)dxds. (4.53)

Finally, we have∫
Qt

(A1 ∗ vtt) (x, s)vxx(x, s)dxds =

∫
Qt

(A1 ∗ vt)t vxx(x, s)dxds

−
∫
Qt

A1(s)vt(x, 0)vxx(x, s)dxds. (4.54)

Again, calling in the density arguments leads to∫
Qt

(A1 ∗ vt)t (x, s)vxx(x, s)dxds =

∫
Ω

(A1 ∗ vt) (x, t)vxx(x, t)dx

+

∫
Qt

(A1 ∗ vxt) vxtdxds. (4.55)

From equalities (4.54) and (4.55), one easily gets∣∣∣∣∫
Qt

(A1 ∗ vtt) vxx(x, s)dxds
∣∣∣∣ � ‖A1‖L1(�+)[∫

Qt

v2xtdxds+ ‖vxx(·, t)‖L2(Ω) sup
0�τ�t

‖vt(·, t)‖L2(Ω) + ‖f(·, 0)‖L2(Ω) sup
0�s�t

‖vxx(·, s)‖L2(Ω)

]
.

(4.56)
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Now, adding inequalities (4.51), (4.53), (4.56) and upon using (4.50) it allows us to get∫
Qt

v2xx(x, t)dx � C [F + E1(t) + ν(t)E(t)] . (4.57)

Step 3 We now multiply (4.29) by vtt and integrate on Qt. We have the listed below

results: ∣∣∣∣∫
Qt

vxxvttdxds

∣∣∣∣ � η

∫
Qt

v2ttdxds+
1

4η

∫
Qt

v2xxdxds (4.58)

∫
Qt

(
a′ ∗ vxx

)
vttdxds � ‖a′‖L1(�+) ‖vxx‖L2(Qt)

‖vtt‖L2(Qt)

� η ‖vtt‖2
L2(Qt)

+
1

4η
‖a′‖2

L1(�+) ‖vxx‖2
L2(Qt)

(4.59)

∫
Qt

ftvttdxds � η ‖vtt‖2
L2(Qt)

+
1

4η
‖ft‖2

L2(Qt)
(4.60)

∫
Qt

Gtvttdxds � akν(t)

∫
Qt

|vxx| |vtt| dxds+ kν(t)

∫
Qt

(
|vxx| ∗ |ψ|

)
|vtt| dxds

� kν(t)
(
a+ ‖ψ‖L1(�+)

)
E(t). (4.61)

We then obtain, taking η small enough and using (4.57), that∫
Qt

v2xx(x, t)dxds � C [F + E1(t) + ν(t)E(t)] . (4.62)

Now from estimates (4.50), (4.57) and (4.62), we obtain the result of Lemma 4.8.

�

Now, we take on to obtaining estimates for u defined as u(x, t) =
∫ t

0 v(x, s)ds. The idea

is to integrate (4.39) w.r.t. t; one gets

uxx =

1

g′(0)

{
f + G − vt

a(0)
+

∫ t

0

[A1 ∗ (ft + Gt − vtt)] (x, s)ds+

∫ t

0

[A2 ∗ (f + G − vt)] (x, s)ds

}
.

(4.63)

We shall use in the following the below Lemma:

Lemma 4.9 Suppose that A ∈ L1 (0, T ), ϕ ∈ W 1,1 (0, T ). Then, for any t ∈ (0, T ), we have∫ t

0

(A ∗ ϕ′)(s)ds = A ∗ [ϕ− ϕ(0)H] . (4.64)

Proof The proof is a direct consequence of Fubini’s Theorem. �
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Recall from (4.33) that (f + G − vt) (x, 0) = 0. Then, (4.63) can be re-written in the form

uxx =

1

g′(0)

{
f + G − vt

a(0)
+ A1 ∗ (f + G − vt) + A2 ∗

[∫ t

0

f(x, s)ds+

∫ t

0

G(x, s)ds− v + v0

]}
.

(4.65)

We deduce from the above equation that

uxxx =
1

g′(0){
fx + Gx − vxt

a(0)
+ A1 ∗ (fx + Gx − vxt) + A2 ∗

[∫ t

0

fx(x, s)ds+

∫ t

0

Gx(x, s)ds− vx + v′
0

]}
.

(4.66)

We can now prove the following:

Lemma 4.10 Consider the assumption formulated in (4.10) holds true. Then,

sup
0�s�t

‖uxx(·, s)‖2
L2(Ω) � C

{
V0 + F + ν2(t)E(t) + E3(t) + E1(t)

}
(4.67)

and

sup
0�s�t

‖uxxx(·, s)‖2
L2(Ω) � C

{
V0 + F + ν2(t)E(t) + ν2(t)E2(t) + E3(t) + E1(t)

}
, (4.68)

where C > 0 is a constant which is independent of n.

Proof The proof is performed in two steps.

Step 1 Here, we obtain the necessary estimates for G(t),
∫ t

0
G(s)ds, Gx(t) and for∫ t

0
Gx(s)ds. Using (2.6) and part (i) of Lemma 4.3, we have

|G(t)| � Kν(t)

∫ +∞

0

|a′(s)| r0(s) |uxx(x, t) − uxx(x, t− s)| ds (4.69)

and this gives

‖G(·, t)‖L2(Ω) � 2Kν(t)

∫ +∞

0

|a′(s)| r0(s)ds
(

sup
0�s�t

‖uxx(·, s)‖L2(Ω)

)
� Cν(t)

√
E(t). (4.70)

On the other hand, using (2.6) and (4.2), we have that

∣∣∣∣∫ t

0

G(x, s)ds

∣∣∣∣ � K

∫ +∞

0

|a′(τ)|
∫ t

0

|vsx(x, τ)|
2 |uxx(x, s) − uxx(x, s− τ)| dsdτ (4.71)
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which implies, taking the L2 (Ω)-norm, that∥∥∥∥∫ t

0

G(·, s)ds
∥∥∥∥
L2(Ω)

�2K

(
sup

0�τ�t
‖uxx(·, τ)‖L2(Ω)

)
∫ +∞

0

|a′(τ)|
∫ t

0

‖vsx(·, τ)‖
2
L∞(Ω) dsdτ. (4.72)

Now, we have by Sobolev inclusions

‖vsx(·, τ)‖L∞(Ω) � C

∫ s

s−τ
‖v(·, λ)‖H2(Ω) dλ � 2CτM

(
‖ṽ‖H2(Ω)

)
(s), (4.73)

where ṽ(x, s) is the function defined on Ω × � by

ṽ(x, s) =

{
v(x, s) for s ∈ [0, t)

0 for s ∈ � − [0, t)
(4.74)

and

M
(
‖ṽ‖H2(Ω)

)
(s) = sup

ρ>0

1

2ρ

∫ s+ρ

s−ρ
‖ṽ(·, τ)‖H2(Ω) dτ (4.75)

is the maximal function of s �→ ‖ṽ(·, s)‖H2(Ω) (see [41]).

Now, the maximal inequality (see Theorem 1, page 5 in [41]) in this case leads to∫
�

M
(

‖ṽ(·, s)‖2
H2(Ω)

)
(s)ds � 2

√
10

∫
�

‖ṽ(·, s)‖2
H2(Ω) (x, s)ds

= 2
√

10

∫ t

0

‖v(·, s)‖2
H2(Ω) (x, s)ds. (4.76)

Then, from (4.73) and (4.76) by Sobolev inclusions we have that∫ t

0

‖vsx(·, τ)‖
2
L∞(Ω) dτ � Cτ2

∫ t

0

‖v(·, s)‖2
H2(Ω)ds. (4.77)

Next, with the help of (4.72) we deduce

∥∥∥∥∫ t

0

G(·, s)ds
∥∥∥∥
L2(Ω)

� CK sup
0�τ�t

‖uxx(·, τ)‖L2(Ω)

∫ t

0

‖v(·, s)‖2
H2(Ω) ds

∫ +∞

0

|a′(τ)| τ2dτ (4.78)

that is ∥∥∥∥∫ t

0

G(·, s)ds
∥∥∥∥
L2(Ω)

� CE3/2(t). (4.79)

Next, let Gx(x, t) = I1 + I2, where

I1 =

∫ +∞

0

a′(s)g′′ (vtx(s)) ∣∣vtxx(s)∣∣2 ds (4.80)

I2 =

∫ +∞

0

a′(s)
[
g′ (vtx(s))− g′(0)

]
vtxxx(s)ds (4.81)
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and also
∫ t

0
Gx(x, s)ds = I3 + I4, where

I3 =

∫ t

0

∫ +∞

0

a′(τ)g′′ (vsx(τ)) |vsxx(τ)|
2 dτds (4.82)

I4 =

∫ t

0

∫ +∞

0

a′(τ)
[
g′ (vsx(τ))− g′(0)

]
vsxxx(τ)dτds. (4.83)

Since vt(s) = u(t) − u(t− s), using again part (i) in Lemma 4.3 we obtain

‖I1‖L2(Ω) � 2Kν(t)

∫ +∞

0

|a′(s)| r0(s)
[∥∥u2

xx(·, t)
∥∥
L2(Ω)

+
∥∥u2

xx(·, t− s)
∥∥
L2(Ω)

]
ds

� 4Kν(t) sup
0�s�t

‖uxx(·, s)‖2
L4(Ω)

∫ +∞

0

|a′(s)| r0(s)ds. (4.84)

This gives further down by Sobolev inclusion,

‖I1‖L2(Ω) � 4K

(∫ +∞

0

|a′(s)| r0(s)ds
)
ν(t)E(t). (4.85)

Next, as in (4.70), one easily obtains that

‖I2‖L2(Ω) � 2K

(∫ +∞

0

|a′(s)| r0(s)ds
)
ν(t)
√

E(t). (4.86)

Moreover,

‖I3‖L2(Ω) �

K

∫ t

0

∫ +∞

0

|a′(τ)| ‖vsx(·, τ)‖L∞(Ω) ‖uxx(·, s) − uxx(·, s− τ)‖L∞(Ω) ‖vsxx(·, τ)‖L2(Ω) dτds. (4.87)

As in the proof of (4.67), we have the following estimates:

‖vsx(τ)‖L∞(Ω) � 2τM
(
‖ṽx‖L∞(Ω)

)
(s)

‖vsxx(τ)‖L2(Ω) � 2τM
(
‖ṽxx‖L2(Ω)

)
(s)

which give

‖I3‖L2(Ω) � 8K sup
0�s�t

‖uxx(·, s)‖L∞(Ω)

∫ +∞

0

|a′(τ)| τ2dτ√∫ t

0

M
(
‖ṽx‖L∞(Ω)

)2
(s)ds

√∫ t

0

M
(
‖ṽxx‖L2(Ω)

)2
(s)ds. (4.88)
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Using again the maximal inequality from [41] and the Sobolev embeddings leads to

‖I3‖L2(Ω) � C sup
0�s�t

‖u(·, s)‖H3(Ω)

∫ t

0

‖v(·, s)‖2
H2(Ω) ds (4.89)

that is

‖I3‖L2(Ω) � CE3/2(t). (4.90)

Finally, for I4 we proceed as for obtaining (4.79) and get

‖I4‖L2(Ω) � CE3/2(t). (4.91)

The above estimates lead to the below ones:

‖Gx(·, t)‖L2(Ω) � Cν(t)
(

E(t) +
√

E(t)
)

(4.92)

∥∥∥∥∫ t

0

Gx(·, s)ds
∥∥∥∥
L2(Ω)

� CE3/2(t). (4.93)

Step 2 From (4.65), we obtain

‖uxx(·, t)‖L2(Ω) �
1

|g′(0)|

{
1

a(0)

[
‖f(·, t)‖L2(Ω) + ‖G(·, t)‖L2(Ω) + ‖vt(·, t)‖L2(Ω)

]
+ ‖A1‖L1(�+) sup

0�s�t

[
‖f(·, s)‖L2(Ω) + ‖G(·, s)‖L2(Ω) + ‖vt(·, s)‖L2(Ω)

]
+ ‖A2‖L1(�+) sup

0�s�t

[∥∥∥∥∫ s

0

f(·, τ)dτ
∥∥∥∥
L2(Ω)

+

∥∥∥∥∫ s

0

G(·, τ)dτ
∥∥∥∥
L2(Ω)

+ ‖v(·, s)‖L2(Ω) + ‖v0‖L2(Ω)

]}
.

(4.94)

Using now (4.70) and (4.79) and the fact that ν(t) and E(t) are increasing functions, we

obtain (4.67). Next, (4.68) is obtained in a similar manner: one produces an equality like

that of (4.94) satisfied by ‖uxxx(·, t)‖L2(Ω) with fx, Gx, vtx, vx, v
′
0 in place of f, G, vt, v, v0.

Using (4.92) and (4.93), we get (4.68).

�

4.4 Smallness estimates

The next Proposition proves the uniform boundedness of E(t).

Proposition 4.2 There exist two numbers E > 0 and δ > 0 independent of n such that,

whenever v0 and f verify F(f) + V0(v0) � δ, one has

E(t) �
E
2
, ∀t ∈ [0, T ). (4.95)
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Proof Remark first that, capitalizing on (4.29) and (4.9), one has vt(x, 0) = f(x, 0),

vxt(x, 0) = fx(x, 0), vtt(x, 0) = −g′(0)a(0)v′′
0 (x) + ft(x, 0). From the definition of E(t), we

deduce

E(0) �
[
1 + 2a2(0) |g′(0)|2

]
‖v0‖2

H2(Ω) +

∫
Ω

[
f2(x, 0) + f2

x(x, 0) + 2f2
t (x, 0)

]
dx. (4.96)

Therefore,

E(0) � 2
[
1 + a2(0) |g′(0)|2

]
(F + V0) . (4.97)

We now use the fact that the seminorm w ∈ H2 (Ω) �→ ‖wxx‖L2(Ω) is a norm on

H2 (Ω) ∩H1
0 (Ω), equivalent to the usual norm in H2 (Ω). We shall as well make use of the

inequality (
√
V0 +

√
F)

√
E(t) � ηE(t) +

1

2η
(V0 + F), with η > 0 small enough.

From Lemmas 4.7, 4.8 and 4.10, we deduce

E(t) � C
{
V0 + F +

[
ν(t) + ν3(t)

]
E(t) +

√
V0E(t) + E3(t) + ν2(t)E2(t)

}
(4.98)

provided (4.10) holds true.

Recall also the inequality (4.7):

ν(t) � cΩ
√

E(t), ∀t ∈ [0, T ). (4.99)

Then, we deduce from (4.98) that

E(t) � c1
[
V0 + F + E3(t)

]
(4.100)

with c1 > 0 a constant independent of n.

Now, observe that we can choose E > 0 and δ > 0 such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1E2
�

1

2

E <
θ2

4CΩ

c1δ �
E
4

2
[
1 + a2(0) |g′(0)|2

]
δ �

E
2

. (4.101)

Let us now prove that, for any t ∈ [0, T ), (4.95) holds true. Indeed, if the contrary were

true, then invoking the continuity w.r.t. time there exists t2 ∈ (0, T ) s.t. E(t) � E, for any

t ∈ (0, t2), but inequality (4.95) is false on an interval (t1, t2) with 0 < t1 < t2. From the

second inequality in (4.101), we deduce that (4.100) is satisfied on [0, t2]. Using once more

(4.101), one gets E(t) � E(t)
2

+ E
4

which triggers E(t) � E
2

on [0, t2], hence a contradiction.

This later fact ends the proof.

�
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5 Proof of the main result

Remark that from Proposition 4.2, we actually deduce that for vn – solution of (Pn)1,

(Pn)2, (Pn)3 – we have the following upper bounds:

sup
t∈[0,Tn)

[
‖un(·, t)‖2

H3(Ω) + ‖(un)t(·, t)‖2
H2(Ω) + ‖(un)tt(·, t)‖2

H1(Ω) + ‖(un)ttt(·, t)‖2
L2(Ω)

]
+

∫ Tn

0

{
‖vn(·, t)‖2

H2(Ω) + ‖(vn)t(·, t)‖2
H1(Ω) + ‖(vn)tt(·, t)‖2

L2(Ω)

}
dt �

E
2

(5.1)

and

sup
x∈Ω

0<s<t<Tn

∣∣∣∣∫ t

t−s
(vn)x (x, τ)dτ

∣∣∣∣ � θ. (5.2)

We then deduce from Proposition 4.1 that Tn = +∞, so (5.1) and (5.2) are valid upon

replacing Tn by +∞. It follows that there exist two limits

u ∈
3⋂

m=0

Wm,∞ ((0,+∞);H3−m(Ω)
)

and

v ∈
{

2⋂
m=0

Wm,∞ ((0,+∞);H2−m(Ω)
)}

∩
{

2⋂
m=0

Wm,2
(
(0,+∞);H2−m(Ω)

)}
with u(x, t) =

∫ t
0 v(x, s) ds s.t. (up to a subsequence of n) we have

dmun

dtm
⇀

dmu

dtm
weakly ∗ in L∞ ((0,+∞);H3−m(Ω)

)
, m = 0, 1, 2, 3

and
dmvn

dtm
⇀

dmv

dtm
weakly in L2

(
(0,+∞);H2−m(Ω)

)
, m = 0, 1, 2.

By the trace theorem, we have v = 0 for x ∈ ∂Ω, t � 0, and v(x, 0) = v0(x), for x ∈ Ω.

Now, remark that the equation (Pn)1 can be written in the form

(vn)t(x, t) = − ∂

∂x

∫ t

0

an(t− s)g′ ((un)x(x, t) − (un)x(x, s)) (vn)x(x, s)ds+ f(x, t). (5.3)

We now pass to the limit in (5.3) above, for any fixed t � 0. By the trace theorem, it is

clear that (vn)t(·, t)
L2(Ω)

−−−−→
n→+∞

vt(·, t) weakly. Next, we take on to proving that

∫ t

0

an(t− s)g′ ((un)x(x, t) − (un)x(x, s)) (vn)x(x, s)ds

weakly converges in L2 (Ω) towards∫ t

0

a(t− s)g′ (ux(x, t) − ux(x, s)) vx(x, s)ds.
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Let φ ∈ L2 (Ω) be fixed; we have to prove that

En −−−−→
n→+∞

E, (5.4)

where

En =

∫
Qt

φ(x)an(t− s)g′ ((un)x(x, t) − (un)x(x, s)) (vn)x(x, s)dxds (5.5)

E =

∫
Qt

φ(x)a(t− s)g′ (ux(x, t) − ux(x, s)) vx(x, s)dxds. (5.6)

By Sobolev compact inclusion, we have that (un)x
C(Qt)

−−−−→
n→+∞

ux strongly

and (un)x(·, t)
C(Ω)

−−−−→
n→+∞

ux(·, t) also strongly. From (5.2), with Tn = +∞ we deduce

sup
x∈Ω

0<s<t

∣∣∣∣∫ t

t−s
vx(x, τ)dτ

∣∣∣∣ � θ. (5.7)

Making use of (4.2) leads to the strong convergence

g′ ((un)x(x, t) − (un)x(x, s))
C(Qt)

−−−−→
n→+∞

g′ (ux(x, t) − ux(x, s)) . (5.8)

Since (vn)x
L2(Qt)−−−−→
n→+∞

vx strongly and an
L2(0,t)

−−−−→
n→+∞

a strongly (consequence of assumption

(a2)), one easily gets (5.4) which ends the proof of Theorem 2.1.

6 A class of totally monotone functions compliant with hypotheses (a1) to (a5)

The goal here is to introduce a large class of functions a compliant with assumptions

(a1)–(a5). The following Lemma gives sufficiently weak enough conditions so that (a5)

holds.

Lemma 6.1 Assume that b ∈ W 1,1 (0,+∞) satisfies the following conditions:

(i) tb′ ∈ L1 (0,+∞)

(ii) there exists M4 > 0 and α1 > 0 s.t. |Fb(ω)| � M4

1+|ω|α1 , ∀ω ∈ �

(iii) there exists M5 > 0 and α2 > 0 s.t. |Fb′(ω)| � M5

1+|ω|α2 , ∀ω ∈ �

(iv) there exists α3 ∈ � s.t. the function �  t �→ tb(t) ∈ � is an element of Hα3 (�).

Then, there exists M6 > 0 depending only on M4,M5, α1, α2 and α3, and p ∈ �∗ depending

only on α1 and α2 and α3, s.t. (
Fb′)p
Fb

∈ F
(
BL1(�)(0,M7)

)
, (6.1)

where

M7 = M6

[
1 + ‖tb′‖L1(�) + ‖tb‖Hα3 (�)

]
. (6.2)
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Proof Since H1 (�) ⊂ FL1 (�) and
∥∥F−1w

∥∥
L1(�)

� C‖w‖H1(�), ∀w ∈ H1 (�) (see [30]),

it suffices to consider the H1 norm of E ≡ [Fb′]
p

Fb
. From hypotheses (ii) and (iii), it is clear

that, for p large enough depending on α1 and α2, we have

‖E‖L2(�) � M6, (6.3)

where M6 depends on M4, M5 and α2. We also have E ′ = E1 − E2, with

E1 := p

[
Fb′]p−1 [Fb′]′

Fb
(6.4)

E2 :=

[
Fb′]p [Fb]′

(Fb)2
. (6.5)

Since |(Fb′)′| = |F(tb′)| ∈ L∞(�+), from the above mentioned assumptions we get

there exists p large enough depending on α1 and α2 s.t.

‖E1‖L2(�) � M6‖tb′‖L1(�). (6.6)

From assumption (iv) and the fact that | (Fb)′ | = |F(tb)|, we have that the function

ω −→ (1 + ω2)α3/2(Fb)′(ω) ∈ L2(�), and, ‖(1 + ω2)α3/2(Fb)′(ω)‖L2(�) = ‖tb‖Hα3 (�).

Then, there exists p large enough depending on α1, α2 and α3 s.t.

‖E2‖L2(�) � M6‖tb‖Hα3 (�) (6.7)

with M6 as before. From (6.3), (6.6) and (6.7), the claimed result follows.

�

Let μ be a positive, finite and non-zero Borel measure on �+, satisfying

(μ1) the function �+  ρ �→ 1
ρ2 is an element of L1

μ(0,+∞)

(μ2) there exists γ ∈ (0, 1) s.t. the function �+  ρ �→ ργ is an element of L1
μ(0,+∞).

Remark that, as a consequence of these hypotheses, the function �+  ρ �→ ρβ is an

element of L1
μ(0,+∞) for any β ∈ [−2, γ].

We now consider the following totally monotone function (see [37])

ã : [0,+∞) → �, ã(t) =

∫
�+

e−ρtdμ(ρ), ∀t � 0. (6.8)
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This Section main result is contained in the below theorem:

Theorem 6.1 Assume the hypotheses (μ1) and (μ2) hold true. Then, the function ã given by

(6.8) satisfies the hypotheses (a1)–(a5) of Section 2 with

ãn(t) =

∫
[0,n)

e−ρtdμ(ρ), ∀t � 0, ∀n ∈ �∗.

Proof Since the measure μ is finite, it is clear that ãn ∈ C ∞ (�+), and for any t ∈ �+ and

k ∈ �, (ãn)
(k)(t) =

∫
[0,n)

(−1)kρke−ρtdμ(ρ). This gives ãn ∈ Wp,∞ (0,+∞), for any p ∈ � and

also ã′
n < 0.

Let k ∈ � and q ∈ �+. Then,∫ +∞

0

tq (ãn)
(k) (t)dt = (−1)k

∫ +∞

0

tq
∫

[0,n)

ρke−ρtdμ(ρ)dt

= (−1)k
∫

[0,n)

ρk
(∫ +∞

0

tqe−ρtdt

)
dμ(ρ).

Taking τ = ρt in the integral w.r.t. t leads to∫ +∞

0

tq
∣∣(ãn)(k) (t)∣∣ dt =

∫ +∞

0

τqe−τdτ

∫
[0,n)

ρk−q−1dμ(ρ). (6.9)

Invoking hypotheses (μ1) and (μ2) gives∫
[0,+∞)

ρk−q−1dμ(ρ) < ∞ (6.10)

provided that

0 � q + 1 − k � 2. (6.11)

For q = 0 and k = 0 or k = 1, one sees that (6.11) is verified, therefore (a1) and (a2) are

valid.

For q = 2 and k = 1 (6.11) is also verified, then
∫ +∞

0
t2|ã′

n(t)|dt is bounded. The same

for q = 1 and k = 2, with this time
∫ +∞

0
t|ã′′

n(t)|dt bounded. The later grants (a3) is valid.

Next, by Fubini’s theorem we obtain, for ω ∈ �,

Fãn(ω) =

∫ +∞

0

∫
[0,n)

e−ρtdμ(ρ)e−iωtdt =

∫
[0,n)

dμ(ρ)

ρ+ iω

from which one gets

Re [Fãn(ω)] =

∫
[0,n)

ρ

ρ2 + ω2
dμ(ρ).

Now, assumption (μ1) gives μ
(
{0}
)

= 0, so, there exists μ and μ s.t. 0 < μ < μ and

μ([μ, μ]) > 0. Take n > μ to get

Re [Fãn(ω)] �
μ

μ2 + ω2
μ
([
μ, μ
])
, ∀ω ∈ �

which proves (a4).
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Now, we prove that the hypotheses of Lemma 6.1 are verified for b = ãn, with constants

independent of n.

The last inequality also proves that (ii) of Lemma 6.1 is verified with M3 independent of

n and α1 = 2. Taking q = k = 1 (which satisfy (6.11)), we deduce that part (i) of Lemma

6.1 is also verified, and that ‖tã′
n‖L1(0,+∞) is bounded.

Next, on one hand, we easily calculate

Fã′
n(ω) = −

∫
[0,n)

ρ

ρ+ iω
dμ(ρ)

which gives

|Fã′
n(ω)| �

∫
[0,n)

ρ√
ρ2 + ω2

dμ(ρ). (6.12)

We deduce that

|Fã′
n(ω)| �

∫
�+

dμ(ρ). (6.13)

On the other hand now, we use the fact that

ρ2(1−γ)|ω|2γ � γ|ω|2 + (1 − γ)ρ2 � |ω|2 + ρ2

to get from (6.12), for ω� 0,

|Fã′
n(ω)| �

∫
[0,n)

ρ

ρ1−γ|ω|γ dμ(ρ) =
1

|ω|γ

∫
[0,n)

ργdμ(ρ).

Invoke (μ2) to get, for ω� 0,

|Fã′
n(ω)| �

1

|ω|γ

∫
�+

ργdμ(ρ). (6.14)

Then, (6.13) and (6.14) give

|Fã′
n(ω)| �

2

1 + |ω|γ

∫
�+

(1 + ργ) dμ(ρ).

Then, the assumption formulated in (iii) of Lemma 6.1 is verified with α2 = γ and a

constant M4 independent of n.

Finally, the inequality (6.11) is verified with q = 1 and k = 0. From (6.9) and assumption

(μ2), we get

‖tãn‖L1(�+) �

∫ +∞

0

τe−τdτ

∫
�+

ρ−2dμ(ρ) < ∞.

The above entails tãn is bounded in H−1(�); consequently hypothesis (iv) of Lemma 6.1

is verified with β = −1. We then deduce that the conclusion of Lemma 6.1 is verified with

a constant M6 > 0 independent of n. Then, hypothesis (a5) is verified. �
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Remark 6.1 The relaxation function of the Doi–Edwards theory,

aDE(t) =
∑+∞

k=1
1

(2k+1)2
e−(2k+1)2π2Dt/L2

, t � 0,

is actually a particular case of (6.8) with the measure μDE =
∑+∞

k=1
1

(2k+1)2
δ(2k+1)2π2D/L2 ,

where δ(2k+1)2π2D/L2 is Dirac’s measure at (2k + 1)2π2D/L2.

It is easy to see that the assumptions (μ1), (μ2) are verified for this measure, and this

paper results can be applied for the aDE function.
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1, Dunod, Paris.

[31] Masmoudi, N. (2008) Well-posedness for the FENE dumbbell model of polymeric flows.

Commun. Pure Appl. Math. 61(12), 1685–1714,.

[32] Masmoudi, N. (2013) Global existence of weak solutions to the FENE dumbbell model of

polymeric flows. Inventiones Math. 191, 427–500.
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Appendix A

A.1 Appendix 1

For sake of clarity, we show here how equation (1.12) can be solved employing the method

of characteristics in a more general case, that is with ∂v
∂x

H0(u) being replaced by the tensor

M (t, u) given in (1.3) with κ an arbitrary tensor. In the end, we shall make the necessary

particular assumptions to explicitly obtain the solution of (1.12).

Consider the problem:

∂F

∂t
= D

∂2F

∂s2
− ∂

∂u
· [M (t, u)F] , (t, u, s) ∈ [0,+∞) × S2 × (0, L) (A 1)

F(s = 0) = F(s = L) =
1

4π
(A 2)

F(t = 0) = F0. (A 3)

Given that ∂
∂u

· M = −3κu · u ≡ −3κ : uu, one may re-write (A 1) as

∂F

∂t
= D

∂2F

∂s2
+ (3κu · u)F − M · ∂F

∂u

and further on, with F = F − 1
4π

so that F(s = 0) = F(s = L) = 0, as

∂F

∂t
− D

∂2F

∂s2
− (3κu · u)F + M · ∂F

∂u
=

3

4π
κu · u. (A 4)

We now search for solutions F in the form

F(t, u, s) =

+∞∑
k=1

Fk(t, u) sin
kπ

L
s.

Introducing the above into (A 4) gives, for any k ∈ �∗,

∂Fk
∂t

+

(
k2π2D

L2
− 3κu · u

)
Fk + M · ∂Fk

∂u
=

(
3

4π
κu · u

)
ak

with ak satisfying (1.16). One gets

F(t, u, s) =

+∞∑
k=1

Fk(t, u) sin
kπ

L
s (A 5)
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with Fk solutions to

∂Fk
∂t

+

(
k2π2D

L2
− 3κu · u

)
Fk + M · ∂Fk

∂u
=

π

4

D

L2
k2ak (A 6)

Fk(t = 0) = F0k (A 7)

with F0k being given by (1.15). As an aside, in the above x is to be considered only as a

parameter, not entering the calculations.

To solve (A 6), (A 7) we use the method of characteristics. Specifically, for all t, τ � 0,

denote M(t, τ) the unique solution of the differential system

∂M

∂t
= κ(t)M,

M(t = τ, τ) = Id3,

where Id3 is the Kronecker’s delta (unity) tensor. For any w ∈ S2, set ξ(t, τ, w) = M(t,τ)w
‖M(t,τ)w‖ ∈

S2. One easily checks that

∂ξ

∂t
= κ(t)ξ − [κ(t)ξ · ξ] ξ, t, τ � 0

and that

ξ(t = τ, τ, w) = w, τ � 0.

Equation (A 6) is now solved along the characteristic curves ξ(t, 0, w). To do so, for any

fixed w ∈ S2, let Ak(t, w) = Fk (t, ξ(t, 0, w)); from (A 6), one obtains

∂Ak
∂t

=

[
3κ(t)ξ(t, 0, w) · ξ(t, 0, w) − k2π2D

L2

]
Ak +

π

4

D

L2
k2ak

with

Ak(t = 0) = F0k(w).

One gets

Ak(t) = exp

[
−k2π2D

L2
t+ 3

∫ t

0

κ(τ)ξ(τ, 0, w) · ξ(τ, 0, w)dτ

]
F0k(w)

+
π

4

D

L2
k2ak

∫ t

0

exp

[
−k2π2D

L2
(t− τ) + 3

∫ t

0

κ(r)ξ(r, 0, w) · ξ(r, 0, w)dr

]
dτ. (A 8)

Letting u = ξ(t, 0, w) implies ξ(τ, 0, w) = ξ(τ, t, u) (because w = ξ(0, t, u)). Next, for any

t1, t2 � 0, ∫ t2

t1

κ(τ)ξ(τ, t, u) · ξ(τ, t, u)dτ =

∫ t2

t1

κ(τ)
M(τ, t)w

‖M(τ, t)w‖ · M(τ, t)w

‖M(τ, t)w‖dτ

=

∫ t2

t1

∂
∂τ

(M(τ, t)w)

‖M(τ, t)w‖ · M(τ, t)w

‖M(τ, t)w‖dτ = log

(
‖M(t2, t)u‖
‖M(t1, t)u‖

)
.
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with the help of the above and from (A 8), we get

Fk(t, u) =
e−k2π2Dt/L2

‖M(0, t)u‖3
F0k

(
M(0, t)u

‖M(0, t)u‖

)
+

πDk2

4L2
ak

∫ t

0

e−k2π2D(t−τ)/L2

‖M(τ, t)u‖3
dτ. (A 9)

We conclude that the solution of (A 1)–(A 3) is given by (A 5), with Fk from (A 9)

above. In the particular case where M (t, u) = ∂v
∂x

H0(u) as in (1.12), one has

M(t, τ) = Id3 +

[∫ t

τ

∂v

∂x
(x, r)dr

]
M0,

for all t, τ � 0.

This allows to obtain (1.14) knowing that

M(τ, t)u =

(
u1 −
[∫ t

τ

∂v

∂x
(x, r)dr

]
u2, u2, u3

)
.

A.2 Appendix 2

The task here is to prove Lemma 4.6, relabelled below as Lemma A.2.

Let the function ξ = ξ(s, t, x) be defined a.e. as ξ(s, t, x) := a′(s)
[
g′ (vtx(x, s))− g′(0)

]
,

s ∈ [0,+∞), t ∈ [0, T ), x ∈ Ω. Let DT := {(s, t) : s ∈ [0,+∞), t ∈ [0, T ), s� t}.
In the following, ∂1ξ, ∂2ξ, ∂22ξ stand for ∂ξ

∂s
, ∂ξ

∂t
, and ∂2ξ

∂t2
, respectively.

The first step is proving the following:

Lemma A.1 Invoking the above defined notations,

(i) one has: ξ ∈ C 1
(
DT ;H1(Ω)

)
, ∂2ξ

∂t2
∈ C 0

(
DT ;L2(Ω)

)
;

(ii) assuming (4.10) holds true, one has the following estimates a.e. x ∈ Ω, s ∈ [0,+∞)

|ξ(s, t, x)| � Kν(t) |a′(s)| r0(s) (A 10)

∣∣∣∣∂ξ∂t (s, t, x)
∣∣∣∣ � 2Kθν(t) |a′(s)| (A 11)

∣∣∣∣∂ξ∂s (s, t, x)

∣∣∣∣ � Kν(t)
[
|a′′(s)| r0(s) + θ |a′(s)|

]
(A 12)

∣∣∣∣∂2ξ

∂t2
(s, t, x)

∣∣∣∣ � 4ν2(t)
[
Kθ +

∣∣g(3)(0)
∣∣] |a′(s)|

+Kν(t) |a′(s)| r0(s)
[
|vxt(x, t)| + |vxt(x, t− s)|

]
. (A 13)

The above derivatives may be considered in the classical sense, as they are defined for

s� t.
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Proof Observe that
∂ξ

∂t
= a′(s)g′′ (vtx(s)) [vx(t) − vx(t− s)]

∂ξ

∂s
= a′′(s)

[
g′ (vtx(s))− g′(0)

]
+ a′(s)g′′ (vtx(s)) vx(t− s)

∂2ξ

∂t2
= a′(s)g(3)

(
vtx(s)
)
[vx(t) − vx(t− s)]2 + a′(s)g′′ (vtx(s)) [vxt(t) − vxt(t− s)] .

Repeated use of part (i) of Lemma 4.3 triggers the result.

�

For sake of clarity and – last but not least – reader’s convenience, we restate Lemma’s

4.6 content and then achieve its proof.

Lemma A.2 Under the assumption that (4.10) is fulfilled, one has∫
Ω

v2tt(x, t)dx− 2g′(0) lim
h→0+

1

h2
Q (�hvxt, t, a) � C

{
F +

√
F
√

E(t)

+
[
ν(t) + ν3(t)

]
E(t) +

√
V0E(t)

}
. (A 14)

Proof Derivate (2.4) w.r.t. t and apply �h on the resulting equation. One gets

�hvtt =

∫ +∞

0

a′(s)�h

(
g
(
vtx(s)
))
xt

ds+ �hft. (A 15)

Multiply the above by �hvt, integrate on Ω × [0, t] to obtain

1

2

∫
Ω

[�hvt(x, t)]
2 dx− 1

2

∫
Ω

[�hvt(x, 0)]2 dx

= −
∫ t

0

∫
Ω

∫ +∞

0

a′(τ)�hg
(
vsx(x, τ)

)
s
�hvxt(x, s)dτdxds

+

∫ t

0

∫
Ω

�hft(x, s)�hvt(x, s)dxds. (A 16)

Observing that

g
(
vsx(x, τ)

)
s
= g′ (vsx(x, τ)) [vx(x, s) − vx(x, s− τ)]

leads to

−
∫ t

0

∫
Ω

∫ +∞

0

a′(τ)�hg
(
vsx(x, τ)

)
s
�hvxt(x, s)dτdxds = I1 + I2 + I3 + I4, (A 17)

where

I1 = −
∫ t

0

∫
Ω

∫ +∞

0

a′(τ)�hvxt(x, s)�hg
′ (vsx(x, τ)) [vx(s+ h) − vx(s+ h− τ)] dτdxds (A 18)
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I2 = −
∫ t

0

∫
Ω

∫ +∞

0

a′(τ)�hvxt(x, s)
[
g′ (vsx(x, τ))− g′(0)

]
�hvx(x, s)dτdxds (A 19)

I3 = g′(0)

∫ t

0

∫
Ω

∫ +∞

0

a′(τ)�hvxt(x, s) [�hvx(s− τ) − �hvx(s)] dτdxds (A 20)

I4 =

∫ t

0

∫
Ω

∫ +∞

0

a′(τ)�hvxt(x, s)
[
g′ (vsx(x, τ))− g′(0)

]
�hvx(s− τ)dτdxds. (A 21)

Integrating by parts w.r.t. s leads to I1 = I11 + I12, where

I11 = −
∫
Ω

∫ +∞

0

a′(τ)�hvx(x, t)�hg
′ (vtx(x, τ)) [vx(x, t+ h) − vx(x, t+ h− τ)] dτdx

+

∫ t

0

∫
Ω

∫ +∞

0

a′(τ)�hvx(x, s)�h

[
g′′ (vsx(x, τ)) (vx(x, s) − vx(x, s− τ))

]
× [vx(x, s+ h) − vx(x, s+ h− τ)] dτdxds

+

∫ t

0

∫
Ω

∫ +∞

0

a′(τ)�hvx(x, s)�hg
′ (vsx(x, τ)) [vxt(x, s+ h) − vxt(x, s+ h− τ)] dτdxds

(A 22)

and

I12 =

∫
Ω

∫ +∞

0

a′(τ)�hvx(0)�hg
′ (v0x(x, τ)) [vx(x, h) − vx(x, h− τ)] dτdx

−
∫ t

0

∫
Ω

a′(s+ h)�hg
′
(∫ s

0

vx(x, λ)dλ

)
v′
0(x)�hvx(x, s)dxds. (A 23)

Observe that∫
Ω

∫ +∞

0

a′(τ)�hvx(0)�hg
′ (v0x(x, τ)) [vx(x, h) − vx(x, h− τ)] dτdx

=

∫
Ω

[vx(h) − vx(0)]

∫ h

0

a′(τ)

[
g′
(∫ h

h−τ
vx(λ)dλ

)
− g′(0)

]
[vx(h) − vx(h− τ)] dτ

−
∫
Ω

a(h) [vx(h) − vx(0)]

[
g′
(∫ h

0

vx(λ)dλ

)
− g′(0)

]
vx(h)dx. (A 24)

By integrating the first term by parts w.r.t. τ, one gets

I12 =

∫
Ω

[vx(h) − vx(0)]2 a(h)

[
g′
(∫ h

0

vx(λ)dλ

)
− g′(0)

]
dx

−
∫
Ω

[vx(h) − vx(0)]

∫ h

0

a(τ)g′′
(∫ h

h−τ
vx(λ)dλ

)
vx(h− τ) [vx(h) − vx(h− τ)] dτdx

−
∫
Ω

[vx(h) − vx(0)]

∫ h

0

a(τ)

[
g′
(∫ h

h−τ
vx(λ)dλ

)
− g′(0)

]
vxt(h− τ)dτdx
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−
∫
Ω

a(h) [vx(h) − vx(0)]

[
g′
(∫ h

0

vx(λ)dλ

)
− g′(0)

]
vx(h)dx

−
∫ t

0

∫
Ω

a′(s+ h)�hg
′
(∫ s

0

vx(λ)dλ

)
v′
0(x)�hvx(s)dxds. (A 25)

Next, dividing the above by h2, passing to the limit for h → 0+ and using the fact that

v and its derivatives up to order 2 belong to C 2
(
[0, T );L2(Ω)

)
leads to

1

h2
I1 −−−→

h→0+

J1 + J01, (A 26)

where

J1 = −
∫
Ω

∫ +∞

0

∂2ξ(τ, t, x)vxt(x, t) [vx(x, t) − vx(x, t− τ)] dτdx

+

∫ t

0

∫
Ω

∫ +∞

0

∂22ξ(τ, s, x)vxt(x, s) [vx(x, s) − vx(x, s− τ)] dτdxds

+

∫ t

0

∫
Ω

∫ +∞

0

∂2ξ(τ, s, x)vxt(x, s) [vxt(x, s) − vxt(x, s− τ)] dτdxds (A 27)

and

J01 = −
∫ t

0

∫
Ω

a′(s)vxt(x, s)g
′′ (vsx(x, s)) vx(x, s)v′

0(x)dxds. (A 28)

The term I2 can be re-written as

I2 = − 1

2

∫ t

0

∫
Ω

∫ +∞

0

ξ(τ, s, x)
∂

∂s
|�hvx|2 (x, s)dτdxds

= − 1

2

∫
Ω

∫ +∞

0

ξ(τ, t, x) |�hvx(x, t)|2 dτdx

+
1

2

∫ t

0

∫
Ω

∫ +∞

0

∂2ξ(τ, s, x) |�hvx(x, s)|2 dτdxds. (A 29)

Dividing by h2 and passing to the limit for h → 0+, one obtains

1

h2
I2 −−−→

h→0+

J2, (A 30)

where

J2 = − 1

2

∫
Ω

∫ +∞

0

ξ(τ, t, x) |vxt(x, t)|2 dτdx

+
1

2

∫ t

0

∫
Ω

∫ +∞

0

∂2ξ(τ, s, x) |vxt(x, s)|2 dτdxds. (A 31)

Next, I3 = I31 + I32 + I33, where

I31 = g′(0)

∫ t

0

∫
Ω

∫ s

0

a′(τ)�hvxt(x, s)�hvx(x, s− τ)dτdxds (A 32)
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I32 = g′(0)

∫ t

0

∫
Ω

∫ s+h

s

a′(τ)�hvxt(x, s)vx(x, s+ h− τ)dτdxds (A 33)

I33 = g′(0)a(0)

∫ t

0

∫
Ω

�hvxt(x, s)�hvx(x, s)dxds. (A 34)

Upon integration by parts w.r.t. τ leads to

I31 = g′(0)

∫ t

0

∫
Ω

a(s)�hvxt(x, s)�hvx(x, 0)dxds

− g′(0)a(0)

∫ t

0

∫
Ω

�hvxt(x, s)�hvx(x, s)dxds

+ g′(0)Q (�hvxt, a, t) . (A 35)

The above implies, upon simplification and integration by parts w.r.t. s, that

I3 = g′(0)Q (�hvxt, a, t) + g′(0)

∫
Ω

a(t)�hvx(t)�hvx(0)dx

− g′(0)a(0)

∫
Ω

(�hvx(0))2 dx− g′(0)

∫ t

0

∫
Ω

a′(s)�hvx(s)�hvx(0)dxds

− g′(0)

∫ t

0

∫
Ω

∫ s+h

s

a′(τ)�hvt(x, s)vxx(x, s+ h− τ)dτdxds. (A 36)

Divide the above by h2 and taking the lower limit for h → 0+ gives

lim inf
h→0+

1

h2
I3 = g′(0) lim inf

h→0+

1

h2
Q (�hvxt, a, t) + J3, (A 37)

where

J3 = g′(0)

{
a(t)

∫
Ω

vxt(x, t)vxt(x, 0)dx− a(0)

∫
Ω

v2xt(x, 0)dx

−
∫ t

0

∫
Ω

a′(s)vxt(x, s)vxt(x, 0)dxds−
∫ t

0

∫
Ω

a′(s)vtt(x, s)v
′′
0 (x)dxds

}
. (A 38)

Next, we end up with the same result as in (A 37) with
(
lim infh→0+

)
being replaced by(

lim suph→0+

)
.

Now, we can write I4 in the form

I4 =

∫ t

0

∫
Ω

[∫ s

0

ξ(τ, s)�hvx(s− τ)dτ+

∫ s+h

s

ξ(τ, s)vx(s+ h− τ)dτ

]
�hvxt(x, s)dxds.

(A 39)

An integration by parts w.r.t. s gives

I4 = I41 + I42 + I43 + I44, (A 40)
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where

I41 = −
∫ t

0

∫
Ω

∫ s

0

[∂2ξ(τ, s)�hvx(x, s− τ) + ξ(τ, s)�hvxt(x, s− τ)] dτ�hvx(x, s)dxds (A 41)

I42 = −
∫ t

0

∫
Ω

∫ s+h

s

[∂2ξ(τ, s)vx(x, s+ h− τ) + ξ(τ, s)vxt(x, s+ h− τ)] dτ�hvx(x, s)dxds

(A 42)

I43 = −
∫ t

0

∫
Ω

[ξ(s+ h, s) − ξ(s, s)] v′
0(x)�hvx(x, s)dxds (A 43)

and

I44 =

[∫
Ω

∫ s+h

0

ξ(τ, s)�hvx(x, s− τ)�hvx(x, s)dτdx

]s=t
s=0

. (A 44)

We now deal with the second term in I41; we have

−
∫ s

0

ξ(τ, s)�hvxt(x, s− τ)dτ = ξ(s, s) [vx(h) − vx(0)] −
∫ s

0

∂1ξ(τ, s)�hvx(x, s− τ)dτ (A 45)

fact that allows to get

I41 = −
∫ t

0

∫
Ω

∫ s

0

[∂1ξ(τ, s) + ∂2ξ(τ, s)] �hvx(x, s− τ)�hvx(x, s)dτdxds

+

∫ t

0

∫
Ω

ξ(s, s) [vx(h) − vx(0)] �hvx(x, s)dxds. (A 46)

Now, we obtain

1

h2
I4 −−−→

h→0+

J4 + J04, (A 47)

where

J4 = −
∫ t

0

∫
Ω

∫ s

0

[∂1ξ(τ, s) + ∂2ξ(τ, s)] vxt(x, s− τ)vxt(x, s)dτdxds

+

∫ t

0

∫
Ω

ξ(τ, t)vxt(x, t− τ)vxt(x, t)dxdτ (A 48)

and

J04 = −
∫ t

0

∫
Ω

[∂1ξ(s, s) + ∂2ξ(s, s)] v
′
0(x)vxt(x, s)dxds. (A 49)

Now, from (A16), (A 17), (A 26), (A 27), (A 30), (A 31), (A 37), (A 38), (A 47), (A 48), we
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deduce that

1

2

∫
Ω

v2tt(x, t)dx− 1

2

∫
Ω

v2tt(x, 0)dx = g′(0) lim
h→0+

1

h2
Q (�hvxt, a, t)

+

∫ t

0

∫
Ω

vtt(x, s)ftt(x, s)dxds+ J1 + J2 + J3 + J4 + J01 + J04 (A 50)

with J1–J4 being given by (A 27), (A 31), (A 38) and (A 48), respectively. One now needs to

appropriately bound the terms J1–J4, J01 and J04. It may be easily seen, using Lemma A.1,

that all terms J1, J2 and J4 can be bounded by one of the following type of expressions:

cνk(t)

∫
Ω

|w1(x, t)| |w2(x, t)| dx (A 51)

or

cνk(t)

∫ t

0

∫
Ω

|w1(x, s)| |w2(x, s)| dxds (A 52)

or

cνk(t)

∫ t

0

∫
Ω

ϕ(τ) |w1(x, t− τ)| |w2(x, t)| dxdτ (A 53)

or

cνk(t)

∫ t

0

∫
Ω

∫ s

0

ϕ(τ) |w1(x, s− τ)| |w2(x, s)| dτdxds, (A 54)

where ϕ � 0 is a given function in L1(�+) depending on a, c > 0 is a constant, w1, w2

stand for either v or one of its derivatives up to second order, and k ∈ {1, 2, 3}. This is a

consequence of assumption (a3).

Terms like (A 51) and (A 52) can easily be bounded by cνk(t)E(t). Using Lemma 4.2,

terms like (A 53) and (A 54) can also be easily bounded by cνk(t)E(t). We then obtain that

there exists a constant c > 0 s.t.

J1 + J2 + J4 � c
[
ν(t) + ν3(t)

]
E(t). (A 55)

The estimates for J3, J01 and J04 are simpler to obtain since they contain initial data.

Using (4.33), we get vxt(x, 0) = fx(x, 0). It easily follows that

|J3| � |g′(0)|
(
|a(t)| + ‖a′‖L1(�+)

) [(√
F +
√
V0

)√
E(t) + a(0)F

]
(A 56)

|J01| � Kθ‖a′‖L1(�+)‖v0‖H2(Ω)E(t) (A 57)

and

|J04| � 3K
(
θ‖a′‖L1(�+) + ‖a′′r0‖L1(�+)

)
‖v0‖H2(Ω)ν(t)

√
E(t) (A 58)

From (A 50), (A 55), (A 56) and (A 58), the result stated in the Lemma now follows.

�


