Equilibrium analysis for a mass-conserving model in presence of cavitation

Ionel S. Ciuperca
CNRS-UMR 5208 Université Lyon1, MAPLY, 101, 69622 Villeurbanne Cedex, France. e-mail: ciuperca@maply.univ-lyon1.fr Mohammed Jai
CNRS-UMR 5208, Insa de Lyon, Bat Léonard de Vinci, 69621 Villeurbanne Cedex, France. e-mail: Mohammed.Jai@insa-lyon.fr
J.Ignacio Tello
Matemática Aplicada, ETSISI. Universidad Politécnica de Madrid, 28031 Madrid, Spain.
e-mail: jtello@eui.upm.es)

Abstract

We study the existence of equilibrium positions for the load problem in Lubrication Theory. The problem consists of two surfaces in relative motion separated by a small distance filled by a lubricant. The system is described by the modified Reynolds equation (Elrod-Adams model) which describes the behavior of the lubricant and an extra integral equation given the balance of forces. The balance of forces allows to obtain the unknown position of the surfaces, defined with one degree of freedom.

2010 Mathematics Subject Classification: Primary 35J25; Secondary 35J70, 34E15.
Keywords: Reynolds lubrication equation; Inverse Problems; Weighted Sobolev Spaces; Singular perturbation analysis; Maximum Principle

1 Introduction and problem setting

Lubrication is the process used in mechanical systems to carry the load between two surfaces in relative motion and close proximity. The narrow space between the surfaces is filled by the lubricant, its characteristics allow to avoid the direct contact between the surfaces and reduce the wear. In that case, when distance is strictly positive we say that the system is in Hydrodynamic regime. The force induced by the pressure of the fluid is developed by the relative motion of the surfaces and it depends on the geometry of the space filled by the lubricant.

For simplicity, we assume that the bottom surface is planar and moves with a constant horizontal translation velocity. The lubricant is assumed incompressible and the distance between the surfaces belongs to the range of admissible distances satisfying the thin-film hypothesis, and therefore the pressure fluid does not depend on the vertical coordinate.

Let us denote by Ω the two-dimensional domain in which the hydrodynamical contact occurs. We suppose, for simplicity, that $\Omega=] 0,1\left[{ }^{2}\right.$ and the boundary $\partial \Omega$ is split into two parts: Γ_{0} (defined by $\left\{x_{1}=0\right\}$) and the rest of the boundary, denoted by $\partial \Omega-\Gamma_{0}$. We also assume that the fluid flux at Γ_{0} is a given constant $\mu>0$. Without loss of generality we may assume that the velocity of the bottom surface is oriented in the direction of the x_{1} - axis and its normalized value is equal to 1 .

In order to take into account the cavitation in the fluid we introduce the so-called Elrod-Adams model in the stationary case. The problem consists of finding p (the pressure of the lubricant) and θ (the volume fraction occupied by the fluid), solution of the following system (see for example [9] and [1]):

$$
\left\{\begin{array}{l}
\nabla \cdot\left[h^{3}(x) \nabla p\right]=\frac{\partial(\theta h)}{\partial x_{1}} \quad x \in \Omega \tag{1.1}\\
\theta \in H(p), \quad p \geq 0 \\
p=0 \quad x \in \partial \Omega-\Gamma_{0} \\
h \theta-h^{3} \frac{\partial p}{\partial x_{1}}=\mu \quad \text { on } \Gamma_{0}
\end{array}\right.
$$

where h is the non-dimensional distance (the gap) between the surfaces and H is the Heaviside multivalued function defined by

$$
H(p)=\left\{\begin{array}{cc}
1 & p>0 \\
{[0,1]} & p=0 \\
0 & p<0
\end{array}\right.
$$

In many lubricated systems, the position of the surface is unknown and h may present some degrees of freedom. We reduce our study to the case where h will be given up to one degree of freedom which is the vertical translation, which results as a equilibrium position between the hydrodynamic force $\int_{\Omega} p(x) d x$ and the known exterior force F (assumed constant) applied upon the upper surface. Then, we assume that h is defined as follows

$$
\begin{equation*}
h(x)=h_{0}\left(x_{1}\right)+a \tag{1.2}
\end{equation*}
$$

where $a>0$ accounts for the vertical translation and $h_{0}:[0,1] \rightarrow[0, \infty[$ is a given regular nonnegative function which represents the gap corresponding to $a=0$ and defines the geometry of the space. For simplicity we assume that the surface is rigid (i.e. h_{0} is independent of the forces applied), depends only on x_{1} and is $C^{1}([0,1])$ function. We also suppose that $\min _{x_{1} \in[0,1]} h_{0}\left(x_{1}\right)=0$, which allows to say that a represents the minimum distance between the two surfaces.

We are interested in the equilibrium positions of the system, which are defined as the stationary solutions of the equation defined by the second Newton's Law. Then, for a given constant force F,
the problem consists in finding $a>0$ such that,

$$
\begin{equation*}
\int_{\Omega} p d x=F \tag{1.3}
\end{equation*}
$$

with h is defined in (1.2) and (p, θ) is a solution of (1.1).
The problem for a general $h_{0} \in C^{1}(\Omega)$ presents a high complexity and non-existence of solutions may occur for particular shapes h_{0} and some exterior forces. Therefore we should restrict the study to the case where the contact region in the limit case $(a=0)$ satisfies the following assumptions: There exist $\gamma \in] 0,1\left[, \alpha>1\right.$ and m_{1}, m_{2} two positive constants such that

$$
\begin{align*}
h_{0}(\gamma)=0 & \tag{1.4}\\
h_{0}^{\prime}\left(x_{1}\right)<0 & \text { for } x_{1} \in[0, \gamma] \tag{1.5}\\
h_{0}^{\prime}\left(x_{1}\right)>0 & \text { for } x_{1} \in[\gamma, 1] \tag{1.6}\\
h_{0} \text { is convex on }[0, \gamma] & \tag{1.7}\\
m_{1}\left|x_{1}-\gamma\right|^{\alpha} \leq h_{0}\left(x_{1}\right) \leq m_{2}\left|x_{1}-\gamma\right|^{\alpha} & \text { for } \left.x_{1} \in\right] 0,1[\tag{1.8}\\
m_{1}\left|x_{1}-\gamma\right|^{\alpha-1} \leq\left|h_{0}^{\prime}\left(x_{1}\right)\right| \leq m_{2}\left|x_{1}-\gamma\right|^{\alpha-1} & \text { for } \left.x_{1} \in\right] 0,1[\tag{1.9}
\end{align*}
$$

The weak formulation of problem (1.1) consists of finding (p, θ) in $V^{+} \times L^{\infty}(\Omega)$ such that

$$
\left\{\begin{array}{l}
\int_{\Omega} h^{3} \nabla p \cdot \nabla \varphi d x=\int_{\Omega} h \theta \frac{\partial \varphi}{\partial x_{1}} d x+\int_{\Gamma_{0}} \mu \varphi d \sigma \quad \forall \varphi \in V \tag{1.10}\\
\theta \in H(p)
\end{array}\right.
$$

where

$$
V=\left\{\varphi \in H^{1}(\Omega): \varphi=0 \text { on } \partial \Omega-\Gamma_{0}\right\} \text { and } V^{+}=\{\varphi \in V: \varphi \geq 0\} .
$$

The main result of this paper is the following
Theorem 1.1. Under assumptions (1.4)-(1.9), there exists at least one solution $(p, \theta, a) \in V^{+} \times$ $\left.L^{\infty}(\Omega) \times\right] 0,+\infty[$ to (1.10),(1.2) and (1.3).

Remark. We notice that if $a \geq \mu$, a solution to (1.1) or (1.10) is $p=0$ and $\theta(x)=\frac{\mu}{h_{0}(x)+a}$. Then, if the external force F is zero there exist infinity many solutions of the coupled problem (1.10), (1.2), (1.3) defined by $\left(0, \frac{\mu}{h_{0}(x)+a}, a\right)$ for any $a \geq \mu$.

In this paper we focus on the case $F>0$ which is more relevant from a physical point of view.

Up to our knowledge the equilibrium problem in lubrication with the use of the Elrod-Adams model from a theoretical point of view was not considered before. The existing literature in numerical simulations and applications has been growing in the last forty years, nevertheless a deep mathematical study of the existence of equilibrium positions has not been accomplished. Uniqueness /
multiplicity of solutions are not studied in the paper, the existing techniques to prove uniqueness of inverse problems can not be applied directly and new ideas should be introduced to obtain such results. There exist in the literature other theoretical studies of equilibrium problems in lubrication using different models as Reynolds equation (see for example [11], [4]) or Reynolds inequality (see [5] or [8]).

The content of the paper is the following: in Section 2 we consider a regularization of the problem and we prove the existence of at least a solution of this regularized problem, as well as appropriate estimations. In Section 3 we prove the main result by passing to the limit and in Section 4 we give some numerical simulations.

2 The regularized problem

2.1 Setting of the regularized problem

In this section we study a regularized problem of (1.1) with h given by (1.2), obtained by replacing in (1.1) the Heaviside function H by a regular approximation H_{ϵ} defined by

$$
H_{\epsilon}(z)= \begin{cases}1 & z \geq \epsilon \\ \bar{z} \epsilon & 0 \leq z \leq \epsilon \\ 0 & z \leq 0\end{cases}
$$

The regularized problem is as follows

$$
\left\{\begin{array}{l}
\nabla \cdot\left[h^{3}(x) \nabla p_{\epsilon, a}\right]=\frac{\partial\left[h H_{\epsilon}\left(p_{\epsilon, a}\right)\right]}{\partial x_{1}} \quad \text { in } \Omega \tag{2.1}\\
p_{\epsilon, a}=0 \quad \text { in } \partial \Omega-\Gamma_{0}, \\
h H_{\epsilon}\left(p_{\epsilon, a}\right)-h^{3} \frac{\partial p_{\epsilon, a}}{\partial x_{1}}=\mu \quad \text { on } \Gamma_{0}
\end{array}\right.
$$

The variational formulation of the problem consists of finding $p_{\epsilon, a} \in V$ such that

$$
\begin{equation*}
\int_{\Omega} h^{3} \nabla p_{\epsilon, a} \cdot \nabla \varphi d x=\int_{\Omega} h H_{\epsilon}\left(p_{\epsilon, a}\right) \frac{\partial \varphi}{\partial x_{1}} d x+\int_{\Gamma_{0}} \mu \varphi d \sigma \quad \forall \varphi \in V \tag{2.2}
\end{equation*}
$$

For any given $a>0$ it is well known that the problem (2.2) has a unique solution (see BayadaVázquez [2]) where the main ideas of the proofs are summarized for the journal bearing problem (see Bayada-Martin-Vázquez [3] and the references therein for more details). Since the proof for the slide is similar to the journal-bearing system, we omit the details. We also have for $\epsilon \rightarrow 0$

$$
\begin{align*}
p_{\epsilon, a} & \rightharpoonup p_{a} \tag{2.3}
\end{align*} \quad \text { weakly in } V \text {. }
$$

where $\left(p_{a}, \theta_{a}\right)$ is a solution of (1.10).
The weak formulation of the regularized coupled problem (1.10), (1.2), (1.3) consists of finding p_{ϵ} solution of (2.2) and $a_{\epsilon}>0$ such that

$$
\begin{equation*}
\int_{\Omega} h_{\epsilon}^{3} \nabla p_{\epsilon} \cdot \nabla \varphi d x=\int_{\Omega} h_{\epsilon} H_{\epsilon}\left(p_{\epsilon}\right) \frac{\partial \varphi}{\partial x_{1}} d x+\int_{\Gamma_{0}} \mu \varphi d \sigma \quad \forall \varphi \in V \tag{2.5}
\end{equation*}
$$

$$
\begin{gather*}
\int_{\Omega} p_{\epsilon} d x=F \tag{2.6}\\
h_{\epsilon}(x)=h_{0}\left(x_{1}\right)+a_{\epsilon} . \tag{2.7}
\end{gather*}
$$

In order to prove the existence of a solution of the coupled problem (2.5), (2.6), (2.7) we re-write the problem as an scalar problem with only one unknown. To reduce it, we introduce the function

$$
\left.g_{\epsilon}: a \in\right] 0,+\infty\left[\rightarrow g_{\epsilon}(a)=\int_{\Omega} p_{\epsilon, a}(x) d x\right.
$$

where $p_{\epsilon, a}$ is the unique solution of (2.2) with h defined by (1.2).
Then, (2.5), (2.6), (2.7) is described as follows:
Find $a_{\epsilon}>0$ such that

$$
\begin{equation*}
g_{\epsilon}\left(a_{\epsilon}\right)=F \tag{2.8}
\end{equation*}
$$

Since g_{ϵ} is a continuous function, we just need to obtain large and small values of g_{ϵ} and apply the intermediate value theorem to prove the existence of at least one solution of (2.8).
The most difficult part of the proof is to obtain a large value of g_{ϵ} and it can only be found for a small enough. So, the crucial step of the result is to prove that

$$
\begin{equation*}
\lim _{a \rightarrow 0} \sup g_{\epsilon}(a)>F \tag{2.9}
\end{equation*}
$$

The idea is to bound from below the solution p_{ϵ} by a subsolution of the problem which is large enough when a goes to zero.

Definition 2.1. We say that $q_{\epsilon} \in V$ is a subsolution of (2.2) if it satisfies:

$$
\begin{equation*}
\int_{\Omega} h^{3} \nabla q_{\epsilon} \cdot \nabla \varphi d x \leq \int_{\Omega} h H_{\epsilon}\left(q_{\epsilon}\right) \frac{\partial \varphi}{\partial x_{1}} d x+\int_{\Gamma_{0}} \mu \varphi d \sigma \quad \forall \varphi \in V^{+} \tag{2.10}
\end{equation*}
$$

The next lemma gives a comparison principle for the solutions of (2.2).
Lemma 2.2. Let p_{ϵ} be a solution of (2.2) and q_{ϵ} a subsolution. Then $p_{\epsilon} \geq q_{\epsilon}$ a.e. on Ω.

Proof. We adapt a technique of Gilbarg and Trudinger [10] to non-linear problems (see also [6]). We set $w=q_{\epsilon}-p_{\epsilon}$ and our goal is to prove that $w^{+}=0$.
Substracting (2.2) from (2.10) we obtain

$$
\int_{\Omega} h^{3} \nabla w \cdot \nabla \varphi d x \leq \int_{\Omega} h\left(H_{\epsilon}\left(q_{\epsilon}\right)-H_{\epsilon}\left(p_{\epsilon}\right)\right) \frac{\partial \varphi}{\partial x_{1}} d x \leq c_{\epsilon} \int_{\Omega}|w| \cdot\left|\frac{\partial \varphi}{\partial x_{1}}\right| \quad \forall \varphi \in V^{+} .
$$

Now for any $\delta>0$ we take $\varphi=\frac{w^{+}}{w^{+}+\delta}$ and the end of the proof is like in Gilbarg and Trudinger [10].

2.2 Construction of a subsolution

In order to construct a subsolution we split the domain into several subdomains, we consider first the following subdomains:

$$
\left.\Omega_{\ell}=\right] 0, \gamma[\times] 0,1\left[\quad \text { and } \quad \Omega_{a}=\right] \beta, \gamma-a^{1 / \alpha}[\times] \frac{1}{4}, \frac{3}{4}[
$$

where $\beta \in] 0, \gamma[$ is a constant to be fixed later and $a \in] 0,(\gamma-\beta)^{\alpha}[$.
Let us denote by $R_{\epsilon, a}: \Omega_{a} \rightarrow \mathbb{R}$ the solution of the Reynolds equation

$$
\left\{\begin{array}{cl}
\nabla \cdot\left[h^{3} \nabla R_{\epsilon, a}\right]=\frac{\partial h}{\partial x_{1}} & \text { in } \Omega_{a} \tag{2.11}\\
R_{\epsilon, a}=\epsilon & \text { in } \partial \Omega_{a} .
\end{array}\right.
$$

It is clear that $R_{\epsilon, a}=R_{a}+\epsilon$ where R_{a} is the unique solution of

$$
\left\{\begin{array}{cl}
\nabla \cdot\left[h^{3} \nabla R_{a}\right]=\frac{\partial h}{\partial x_{1}} & \text { in } \Omega_{a} \tag{2.12}\\
R_{a}=0 & \text { in } \partial \Omega_{a}
\end{array}\right.
$$

Since $\frac{\partial h}{\partial x_{1}} \leq 0$ on Ω_{a} and thanks to maximum principle we have that $R_{a} \geq 0$, which implies $R_{\epsilon, a} \geq \epsilon$ on Ω_{a}.

In the following lemma we construct a subsolution to (2.2).
Lemma 2.3. Let $\xi_{\epsilon} \in H^{2}\left(\Omega_{\ell}-\Omega_{a}\right)$ be such that

$$
\begin{align*}
\xi_{\epsilon}=R_{\epsilon, a}=\epsilon & \text { on } \partial \Omega_{a} \tag{2.13}\\
\xi_{\epsilon}=0 & \text { on } \partial \Omega_{\ell}-\Gamma_{0} \tag{2.14}\\
\frac{\partial}{\partial x_{1}}\left(h H_{\epsilon}\left(\xi_{\epsilon}\right)\right)-\nabla \cdot\left(h^{3} \nabla \xi_{\epsilon}\right) \leq 0 & \text { on } \Omega_{\ell}-\Omega_{a} \tag{2.15}\\
h H_{\epsilon}\left(\xi_{\epsilon}\right)-h^{3} \frac{\partial \xi_{\epsilon}}{\partial x_{1}} \leq \mu & \text { on } \Gamma_{0} \tag{2.16}\\
h^{3} \frac{\partial R_{\epsilon, a}}{\partial \nu} \leq h^{3} \frac{\partial \xi_{\epsilon}}{\partial \nu} & \text { on } \partial \Omega_{a} \tag{2.17}\\
h^{3} \frac{\partial \xi_{\epsilon}}{\partial x_{1}} \leq 0 & \text { on }\left\{x_{1}=\gamma\right\} \tag{2.18}
\end{align*}
$$

where ν denotes the unitary exterior normal to $\partial \Omega_{a}$.
Then, $q_{\epsilon}: \Omega \rightarrow \mathbb{R}$ defined by

$$
q_{\epsilon}= \begin{cases}R_{\epsilon, a} & \text { on } \Omega_{a} \tag{2.19}\\ \xi_{\epsilon} & \text { on } \Omega_{\ell}-\Omega_{a} \\ 0 & \text { on } \Omega-\Omega_{\ell}\end{cases}
$$

is a subsolution of (2.2).

Proof. It is clear that q_{ϵ} is an element of V. For any $\varphi \in V^{+}$we have

$$
\begin{gathered}
\int_{\Omega} h^{3} \nabla q_{\epsilon} \cdot \nabla \varphi d x-\int_{\Omega} h H_{\epsilon}\left(q_{\epsilon}\right) \frac{\partial \varphi}{\partial x_{1}} d x-\int_{\Gamma_{0}} \mu \varphi d \sigma=\int_{\Omega_{a}} h^{3} \nabla R_{\epsilon, a} \cdot \nabla \varphi+ \\
\int_{\Omega_{\ell}-\Omega_{a}} h^{3} \nabla \xi_{\epsilon} \cdot \nabla \varphi-\int_{\Omega_{a}} h \frac{\partial \varphi}{\partial x_{1}}-\int_{\Omega_{\ell}-\Omega_{a}} h H_{\epsilon}\left(q_{\epsilon}\right) \frac{\partial \varphi}{\partial x_{1}}-\int_{\Gamma_{0}} \mu \varphi d \sigma
\end{gathered}
$$

since $H_{\epsilon}\left(R_{\epsilon, a}\right)=1$.
Now we have

$$
\begin{equation*}
\int_{\Omega_{a}} h^{3} \nabla R_{\epsilon, a} \cdot \nabla \varphi-\int_{\Omega_{a}} h \frac{\partial \varphi}{\partial x_{1}}=\int_{\partial \Omega_{a}} h^{3} \frac{\partial R_{\epsilon, a}}{\partial \nu} \varphi-\int_{\partial \Omega_{a}} h \nu_{1} \varphi \tag{2.20}
\end{equation*}
$$

and also

$$
\begin{gather*}
\int_{\Omega_{\ell}-\Omega_{a}} h^{3} \nabla \xi_{\epsilon} \cdot \nabla \varphi-\int_{\Omega_{\ell}-\Omega_{a}} h H_{\epsilon}\left(\xi_{\epsilon}\right) \frac{\partial \varphi}{\partial x_{1}} \\
=\int_{\Omega_{\ell}-\Omega_{a}}\left\{\frac{\partial}{\partial x_{1}}\left[h H_{\epsilon}\left(\xi_{\epsilon}\right)\right]-\nabla \cdot\left[h^{3} \nabla \xi_{\epsilon}\right]\right\} \varphi-\int_{\partial \Omega_{a}} h^{3} \frac{\partial \xi_{\epsilon}}{\partial \nu} \varphi \tag{2.21}\\
+\int_{\partial \Omega_{a}} h H_{\epsilon}\left(\xi_{\epsilon}\right) \nu_{1} \varphi-\int_{\Gamma_{0}} h^{3} \frac{\partial \xi_{\epsilon}}{\partial x_{1}} \varphi+\int_{\Gamma_{0}} h H_{\epsilon}\left(\xi_{\epsilon}\right) \varphi \\
\quad+\int_{\left\{x_{1}=\gamma\right\}} h^{3} \frac{\partial \xi_{\epsilon}}{\partial x_{1}} \varphi-\int_{\left\{x_{1}=\gamma\right\}} h H_{\epsilon}\left(\xi_{\epsilon}\right) \varphi
\end{gather*}
$$

Adding (2.20) and (2.21) and using the hypothesis of the lemma we obtain the result.
We precise the choice of β in the definition of Ω_{a} : we choose $\left.\beta \in\right] 0, \gamma[$ such that

$$
\begin{equation*}
h_{0}(\beta)-\beta h_{0}^{\prime}(\beta)<\mu \tag{2.22}
\end{equation*}
$$

Such β clearly exists by continuity of h_{0} and h_{0}^{\prime} since $h_{0}(\gamma)=h_{0}^{\prime}(\gamma)=0$.
Then there exists $a_{0}>0$ small enough such that

$$
\begin{equation*}
\left.h(\beta)-\beta h^{\prime}(\beta)<\mu, \quad \text { for any } a \in\right] 0, a_{0}[. \tag{2.23}
\end{equation*}
$$

Then, we may assume that

$$
\begin{equation*}
a_{0}<\min \left\{(\gamma-\beta)^{\alpha},\left(\frac{\gamma}{2}\right)^{\alpha}\right\} \tag{2.24}
\end{equation*}
$$

Now we introduce the auxiliary function $q_{1 a}:[0, \gamma] \rightarrow \mathbb{R}$ defined by

$$
q_{1 a}\left(x_{1}\right)= \begin{cases}\frac{h(\beta)+h^{\prime}(\beta)\left(x_{1}-\beta\right)}{h\left(x_{1}\right)} & \text { for } 0 \leq x_{1} \leq \beta \\ 1 & \text { for } \beta \leq x_{1} \leq \gamma-a^{1 / \alpha} \\ \sin \left(\frac{\pi}{2 a^{1 / \alpha}}\left(\gamma-x_{1}\right)\right) & \text { for } \gamma-a^{1 / \alpha} \leq x_{1} \leq \gamma\end{cases}
$$

Since $q_{1 a}^{\prime}(\beta)=0$ then $q_{1 a} \in H^{2}(0, \gamma)$ with

$$
\begin{equation*}
q_{1 a}(\gamma)=0 \tag{2.25}
\end{equation*}
$$

It is clear that the function $q_{1 a}$ is non-negative and from the convexity of h on $] 0, \gamma[$ we also deduce

$$
\begin{equation*}
0 \leq q_{1 a} \leq 1 \quad \text { on }[0, \gamma] \tag{2.26}
\end{equation*}
$$

We also consider $q_{2}:[0,1] \rightarrow \mathbb{R}$ defined as follows

$$
q_{2}\left(x_{2}\right)= \begin{cases}\sin \left(2 \pi x_{2}\right) & \text { for } 0 \leq x_{2} \leq \frac{1}{4} \\ 1 & \text { for } \frac{1}{4} \leq x_{2} \leq \frac{3}{4} \\ \sin \left(2 \pi\left(1-x_{2}\right)\right) & \text { for } \frac{3}{4} \leq x_{2} \leq 1\end{cases}
$$

It is clear that $q_{2} \in H^{2}(0,1) \cap H_{0}^{1}(0,1)$ and

$$
\begin{equation*}
0 \leq q_{2} \leq 1 \quad \text { on }[0,1] \tag{2.27}
\end{equation*}
$$

Let us now introduce the functions

$$
\xi_{\epsilon, a}: \Omega_{\ell} \rightarrow \mathbb{R} \text { defined by } \xi_{\epsilon, a}\left(x_{1}, x_{2}\right)=\epsilon q_{1 a}\left(x_{1}\right) q_{2}\left(x_{2}\right)
$$

and $q_{\epsilon, a}: \Omega_{\ell} \rightarrow \mathbb{R}$ defined by

$$
q_{\epsilon, a}= \begin{cases}R_{\epsilon, a} & \text { on } \Omega_{a} \tag{2.28}\\ \xi_{\epsilon, a} & \text { on } \Omega_{\ell}-\Omega_{a} \\ 0 & \text { on } \Omega-\Omega_{\ell}\end{cases}
$$

where $R_{\epsilon, a}$ is the solution of (2.11).
Observe that $\xi_{\epsilon, a}=\epsilon$ on $\partial \Omega_{a}$ and $\xi_{\epsilon, a}=0$ on $\partial \Omega_{\ell}-\Gamma_{0}$.
Lemma 2.4. Let a_{0}, β given by (2.22)-(2.24). Then for any $\left.\left.a \in\right] 0, a_{0}\right]$ there exists $\epsilon_{0}=\epsilon_{0}(a)$ such that for any $\epsilon \in] 0, \epsilon_{0}\left[\right.$ the function $q_{\epsilon, a}$ given by (2.28) is a subsolution of the problem (2.2).

Proof. We prove that the hypothesis of Lemma 2.3 are verified with $\xi_{\epsilon}=\xi_{\epsilon, a}$. It is clear that (2.13),(2.14) and (2.18) are satisfied.

Since $R_{\epsilon, \delta} \geq \epsilon$ on Ω_{a} then $\frac{\partial R_{\epsilon, \delta}}{\partial \nu} \leq 0$ on $\partial \Omega_{a}$ which implies (2.17) since $\frac{\partial \xi_{\epsilon, a}}{\partial \nu}=0$ on $\partial \Omega_{a}$. On the other hand, from (2.26)-(2.27) we deduce that

$$
H_{\epsilon}\left(\xi_{\epsilon, a}\right)=q_{1 a}\left(x_{1}\right) q_{2}\left(x_{2}\right) \quad \text { on } \Omega_{\ell}-\Omega_{a}
$$

so the inequality (2.16) is equivalent to

$$
\left[h(\beta)-\beta h^{\prime}(\beta)-\epsilon h^{3}(0) q_{1 a}^{\prime}(0)\right] q_{2}\left(x_{2}\right) \leq \mu \quad \forall x_{2} \in[0,1]
$$

Since $q_{1 a}^{\prime}(0)$ is independent of ϵ, from (2.23) and (2.27) we deduce that (2.16) is verified for $\epsilon>0$ small enough depending on a.
It remains to prove (2.15) which is equivalent to

$$
\begin{align*}
& q_{2}\left(x_{2}\right)\left(h q_{1 a}\right)^{\prime}\left(x_{1}\right)-\epsilon q_{2}\left(x_{2}\right)\left(h^{3} q_{1 a}^{\prime}\right)^{\prime}\left(x_{1}\right) \tag{2.29}\\
& -\epsilon\left(h^{3} q_{1 a}\right)\left(x_{1}\right) q_{2}^{\prime \prime}\left(x_{2}\right) \leq 0 \quad \text { in } \Omega_{\ell}-\Omega_{a}
\end{align*}
$$

Observe that

$$
\begin{equation*}
q_{2}^{\prime \prime}=-A_{0} q_{2}, \quad \text { with } A_{0}=4 \pi^{2} \mathbb{1}_{] 0,1 / 4[\cup] 3 / 4,1[} \tag{2.30}
\end{equation*}
$$

Then the inequality (2.29) is reduced to

$$
\begin{equation*}
\left(h q_{1 a}\right)^{\prime}\left(x_{1}\right)-\epsilon\left(h^{3} q_{1 a}^{\prime}\right)^{\prime}\left(x_{1}\right)+\epsilon A_{0}\left(x_{2}\right)\left(h^{3} q_{1 a}\right)\left(x_{1}\right) \leq 0 \quad \text { in } \Omega_{\ell}-\Omega_{a} \tag{2.31}
\end{equation*}
$$

We consider three cases

- Case $1.0<x_{1}<\beta$

In this case (2.31) becomes

$$
h^{\prime}(\beta)-\epsilon\left(h^{3} q_{1 a}^{\prime}\right)^{\prime}\left(x_{1}\right)+\epsilon A_{0}\left(x_{2}\right)\left(h^{3} q_{1 a}\right)\left(x_{1}\right) \leq 0
$$

For ϵ small enough (depending on a) this inequality is satisfied since $h^{\prime}(\beta)<0$.

- Case 2. $\beta<x_{1}<\gamma-a^{1 / \alpha}$

Then (2.31) becomes

$$
\begin{equation*}
h_{0}^{\prime}\left(x_{1}\right)+\epsilon A_{0}\left(x_{2}\right)\left(h^{3} q_{1 a}\right)\left(x_{1}\right) \leq 0 . \tag{2.32}
\end{equation*}
$$

From the fact that h_{0} is decreasing and convex on $] 0, \gamma[$ and using also (1.9) we deduce $h_{0}^{\prime}\left(x_{1}\right) \leq-m_{1} a^{(\alpha-1) / \alpha}$ for $\beta<x_{1}<\gamma-a^{1 / \alpha}$.
Then (2.32) is verified for ϵ small enough (depending on a).

- Case 3. $\gamma-a^{1 / \alpha}<x_{1}<\gamma$

We have in this case

$$
q_{1 a}^{\prime}\left(x_{1}\right)=-\frac{\pi}{2 a^{1 / \alpha}} \cos \left(\frac{\pi}{2 a^{1 / \alpha}}\left(\gamma-x_{1}\right)\right)
$$

and

$$
q_{1 a}^{\prime \prime}=-\frac{\pi^{2}}{4 a^{2 / \alpha}} q_{1 a} .
$$

Dividing (2.31) by $q_{1 a}$ we deduce that (2.31) is equivalent to

$$
\begin{align*}
& h_{0}^{\prime}\left(x_{1}\right)-\frac{\pi}{2 a^{1 / \alpha}} h\left(x_{1}\right) \operatorname{cotan}\left(\frac{\pi}{2 a^{1 / \alpha}}\left(\gamma-x_{1}\right)\right)+ \\
& \frac{3 \pi}{2 a^{1 / \alpha}} \epsilon\left(h^{2} h^{\prime}\right)\left(x_{1}\right) \operatorname{cotan}\left(\frac{\pi}{2 a^{1 / \alpha}}\left(\gamma-x_{1}\right)\right)+\frac{\pi^{2}}{4 a^{2 / \alpha}} \epsilon h^{3}\left(x_{1}\right) \tag{2.33}\\
& +\epsilon A_{0}\left(x_{2}\right) h^{3}\left(x_{1}\right) \leq 0 \quad \text { in } \Omega_{\ell}-\Omega_{a} .
\end{align*}
$$

Observe that the three first terms in the above inequality are negative and the last two terms are non-negative. In the sub-case $\gamma-a^{1 / \alpha}<x_{1}<\gamma-\frac{1}{2} a^{1 / \alpha}$, we have $h_{0}^{\prime}\left(x_{1}\right) \leq-m_{1}\left(a^{1 / \alpha} / 2\right)^{\alpha-1}$ and this gives (2.33) for ϵ small enough. In the other sub-case $\gamma-\frac{1}{2} a^{1 / \alpha}<x_{1}<\gamma$ we have

$$
-\frac{\pi}{2 a^{1 / \alpha}} h\left(x_{1}\right) \operatorname{cotan}\left(\frac{\pi}{2 a^{1 / \alpha}}\left(\gamma-x_{1}\right)\right) \leq-\frac{\pi}{2 a^{1 / \alpha}} a=-\frac{\pi}{2} a^{1-1 / \alpha}
$$

and this gives (2.33) for ϵ small enough.

This ends the proof of lemma 2.4.
We now introduce a lower bound for $\int_{\Omega_{a}} R_{a}$ in the following lemma.
Lemma 2.5. There exists a constant $c>0$ independent of a and $a_{1}=\left(\frac{\mu}{2}\right)^{\alpha} \leq 1$ such that

$$
\left.\left.\int_{\Omega_{a}} R_{a} d x \geq c a^{1 / \alpha-1}, \quad \forall a \in\right] 0, a_{1}\right]
$$

Proof. We proceed as in [7] and consider the variational formulation of (2.12)

$$
\begin{equation*}
\int_{\Omega_{a}}\left(h_{0}+a\right)^{3} \nabla R_{a} \cdot \nabla \varphi=-\int_{\Omega_{a}} h_{0}^{\prime} \varphi, \quad \forall \varphi \in H_{0}^{1}\left(\Omega_{a}\right) \tag{2.34}
\end{equation*}
$$

where $R_{a} \in H_{0}^{1}\left(\Omega_{a}\right)$. From (2.34) we deduce, thanks to Cauchy-Schwarz inequality

$$
\begin{equation*}
\int_{\Omega_{a}}\left(h_{0}+a\right)^{3}\left|\nabla R_{a}\right|^{2} \geq \sup _{\varphi \in H_{0}^{1}\left(\Omega_{a}\right), \varphi \neq 0} \frac{\left|\int_{\Omega_{a}} h_{0}^{\prime} \varphi\right|^{2}}{\int_{\Omega_{a}}\left(h_{0}+a\right)^{3}|\nabla \varphi|^{2}} . \tag{2.35}
\end{equation*}
$$

Now consider $\psi_{1} \in \mathscr{D}(\mathbb{R}), \psi_{1}>0$, with support included in $[1,2]$ and $\psi_{2} \in \mathscr{D}(\mathbb{R}), \psi_{2}>0$ with support included in $[1 / 4,3 / 4]$.
We take in (2.34), $\varphi\left(x_{1}, x_{2}\right)=\psi_{1}\left(\frac{\gamma-x_{1}}{a^{1 / \alpha}}\right) \psi_{2}\left(x_{2}\right)$ which is an element of $H_{0}^{1}\left(\Omega_{a}\right)$ with support included in $\left[\gamma-2 a^{1 / \alpha}, \gamma-a^{1 / \alpha}\right] \times[1 / 4,3 / 4]$.
Since $-h_{0}^{\prime}\left(x_{1}\right) \geq m_{1}\left(\gamma-x_{1}\right)^{\alpha-1}$ we have

$$
\begin{aligned}
\left|\int_{\Omega_{a}} h_{0}^{\prime} \varphi\right| & \geq m_{1} \int_{\gamma-2 a^{1 / \alpha}}^{\gamma-a^{1 / \alpha}} \int_{1 / 4}^{3 / 4}\left(\gamma-x_{1}\right)^{\alpha-1} \psi_{1}\left(\frac{\gamma-x_{1}}{a^{1 / \alpha}}\right) \psi_{2}\left(x_{2}\right) d x_{1} d x_{2} \\
& \geq m_{1} a^{\frac{\alpha-1}{\alpha}} \int_{1 / 4}^{3 / 4} \psi_{2}\left(x_{2}\right) d x_{2} \int_{\gamma-2 a^{1 / \alpha}}^{\gamma-a^{1 / \alpha}} \psi_{1}\left(\frac{\gamma-x_{1}}{a^{1 / \alpha}}\right) d x_{1}
\end{aligned}
$$

and we easily see that there exists a positive constant c_{1} such that

$$
\begin{equation*}
\left|\int_{\Omega_{a}} h_{0}^{\prime} \varphi\right| \geq c_{1} a, \quad \forall a<\left(\frac{\gamma}{2}\right)^{\alpha} \tag{2.36}
\end{equation*}
$$

Using that $h_{0}(x) \leq m\left(\gamma-x_{1}\right)^{\alpha}$ we have that :

$$
\begin{aligned}
& \int_{\Omega_{a}}\left(h_{0}+a\right)^{3}|\nabla \varphi|^{2} \leq \int_{1 / 4}^{3 / 4} \int_{\gamma-2 a^{1 / \alpha}}^{\gamma-a^{1 / \alpha}}\left(m_{2}\left(\gamma-x_{1}\right)^{\alpha}+a\right)^{3} . \\
& {\left[\frac{1}{a^{2 / \alpha}}\left|\psi_{1}^{\prime}\left(\frac{\gamma-x_{1}}{a^{1 / \alpha}}\right)\right|^{2}\left|\psi_{2}\left(x_{2}\right)\right|^{2}+\left|\psi_{1}\left(\frac{\gamma-x_{1}}{a^{1 / \alpha}}\right)\right|^{2}\left|\psi_{2}^{\prime}\left(x_{2}\right)\right|^{2}\right]}
\end{aligned}
$$

This gives

$$
\begin{equation*}
\int_{\Omega_{a}}\left(h_{0}+a\right)^{3}|\nabla \varphi|^{2} \leq c_{2} a^{3-1 / \alpha}, \quad \forall a<\left(\frac{\gamma}{2}\right)^{\alpha} \tag{2.37}
\end{equation*}
$$

We deduce from (2.35), (2.36) and (2.37):

$$
\begin{equation*}
\int_{\Omega_{a}}\left(h_{0}+a\right)^{3}\left|\nabla R_{a}\right|^{2} \geq \frac{c_{1}^{2}}{c_{2}} a^{1 / \alpha-1}, \quad \forall a<\left(\frac{\gamma}{2}\right)^{\alpha} \tag{2.38}
\end{equation*}
$$

On the other hand taking $\varphi=R_{a}$ in (2.34) and using the fact that $-h_{0}^{\prime} \leq m_{2}$ on Ω_{a} and that $R_{a}>0$ on Ω_{a} we deduce

$$
m_{2} \int_{\Omega_{a}} R_{a} \geq-\int_{\Omega_{a}} h_{0}^{\prime} R_{a}=\int_{\Omega_{a}}\left(h_{0}+a\right)^{3}\left|\nabla R_{a}\right|^{2}
$$

so we obtain the result using (2.38), where $a_{1}=\left(\frac{\nu}{2}\right)^{\alpha}$.
The main result of this section is
Theorem 2.6. For any $F>0$ there exists $\epsilon_{0}>0, a_{2}>0$ and $a_{3}>a_{2}$ depending possibly on F but independent of ϵ, such that for any $\left.\epsilon \in] 0, \epsilon_{0}\right]$ there exists at least a solution $\left(p_{\epsilon}, a_{\epsilon}\right) \in V \times\left[a_{2}, a_{3}\right]$ of the coupled problem (2.5)-(2.6)-(2.7) or (2.8).
Moreover we have

$$
\begin{equation*}
\left\|p_{\epsilon}\right\|_{H^{1}(\Omega)} \leq C \tag{2.39}
\end{equation*}
$$

where C is a constant independent of ϵ.
Proof. For any fixed $\epsilon>0$ the continuity of g_{ϵ} is obvious as a consequence of the continuity of the solution of (2.2) with respect to a. On the other hand, for any $a>0$ take $\varphi=p_{\epsilon}$ in (2.2). We have

$$
\begin{aligned}
\int_{\Omega}\left(h_{0}+a\right)^{3}\left|\nabla p_{\epsilon}\right|^{2} & \leq \int_{\Omega}\left(h_{0}+a\right)\left|\frac{\partial p_{\epsilon}}{\partial x_{1}}\right|+\mu \int_{\Gamma_{0}} p_{\epsilon} d x_{2} \\
& \leq\left(\int_{\Omega}\left(h_{0}+a\right)^{3}\left|\nabla p_{\epsilon}\right|^{2}\right)^{1 / 2}\left(\int_{\Omega} \frac{d x}{h_{0}+a}\right)^{1 / 2}+\mu C_{1}\left\|p_{\epsilon}\right\|_{H^{1}(\Omega)} \\
& \leq \frac{1}{2} \int_{\Omega}\left(h_{0}+a\right)^{3}\left|\nabla p_{\epsilon}\right|^{2}+\frac{1}{2 a}|\Omega|+\mu C_{1}\left\|p_{\epsilon}\right\|_{H^{1}(\Omega)}
\end{aligned}
$$

with $C_{1}>0$ a constant. We deduce using also the Poincaré inequality:

$$
\begin{aligned}
C_{2} a^{3}\left\|p_{\epsilon}\right\|_{H^{1}(\Omega)}^{2} & \leq \frac{1}{a}|\Omega|+2 \mu C_{1}\left\|p_{\epsilon}\right\|_{H^{1}(\Omega)} \\
& \leq \frac{1}{a}|\Omega|+\frac{C_{2}}{2} a^{3}\left\|p_{\epsilon}\right\|_{H^{1}(\Omega)}^{2}+\frac{2}{C_{2} a^{3}} \mu^{2} C^{2} .
\end{aligned}
$$

We then deduce the existence of a constant $C_{3}>0$ such that

$$
\begin{equation*}
\left\|p_{\epsilon}\right\|_{H^{1}(\Omega)} \leq C_{3}\left(\frac{1}{a^{2}}+\frac{1}{a^{3}}\right), \quad \text { for any } a>0 \text { and } \epsilon>0 \tag{2.40}
\end{equation*}
$$

By Poincaré inequality there exists $C_{4}>0$ such that

$$
\begin{equation*}
g_{\epsilon}(a) \leq C_{4}\left(\frac{1}{a^{2}}+\frac{1}{a^{3}}\right), \quad \text { for any } a>0 \text { and } \epsilon>0 \tag{2.41}
\end{equation*}
$$

Finally from Lemma 2.5, Lemma 2.4 and Lemma 2.2, we deduce that for any $\left.a \in] 0, \min \left\{a_{0}, a_{1}\right\}\right]$, there exists $\epsilon_{0}=\epsilon_{0}(a)$ such that for any $\left.\left.\epsilon \in\right] 0, \epsilon_{0}\right]$ we have

$$
\begin{equation*}
g_{\epsilon}(a)>c a^{1 / \alpha-1} \tag{2.42}
\end{equation*}
$$

We now chose $a_{2}>0$ small enough such that

$$
\begin{equation*}
c a_{2}^{1 / \alpha-1} \geq F \tag{2.43}
\end{equation*}
$$

and $a_{3}>a_{2}$ large enough such that

$$
\begin{equation*}
C_{4}\left(\frac{1}{a_{3}^{2}}+\frac{1}{a_{3}^{3}}\right) \leq F . \tag{2.44}
\end{equation*}
$$

It is clear from (2.41)-(2.42)-(2.43)-(2.44) and the continuity of g_{ϵ} that there exists $a_{\epsilon} \in\left[a_{2}, a_{3}\right]$ such that

$$
\begin{equation*}
\left.\left.g_{\epsilon}\left(a_{\epsilon}\right)=F, \quad \text { for any } \epsilon \in\right] 0, \epsilon_{0}\left(a_{2}\right)\right] \tag{2.45}
\end{equation*}
$$

which ends the proof of the existence of the solution of (2.8).
From (2.40) we deduce also (2.39), with $C=C_{3}\left(\frac{1}{a_{2}^{2}}+\frac{1}{a_{2}^{3}}\right)$.

3 Proof of the main theorem

Now we can prove Theorem 1.1. We can extract a subsequence of ϵ denoted also by ϵ and we have $a^{*} \in\left[a_{2}, a_{3}\right]$ and $p^{*} \in V$ such that $a_{\epsilon} \rightarrow a^{*}$ and $p_{\epsilon} \rightarrow p^{*}$ in V weakly. Passing to the limit $\epsilon \rightarrow 0$ in a classical manner in (2.5), (2.6) and (2.7) we obtain the result.

4 Numerical results

The goal of this section is the numerical illustration of the theoretical result of Theorem 1.1 as well as some extensions.
We consider here $h_{0}(x)=\left|x_{1}-1 / 2\right|^{\alpha}$ corresponding to $\gamma=\frac{1}{2}$, with different values of $\alpha>0$ and we search for a numerical solution of the coupled problem (1.10)-(1.2)-(1.3) with $\mu=0.2$. To do this we represent graphically $\int_{\Omega} p d x$ as a function of $a>0$, where p is the numerical solution of (1.10) with $h=h_{0}+a$.

The simulation code is based on the Elrod-Adams algorithm [9], with the implementation detailed by Ausas et al. in [1].
In section 4.1 we take $\alpha=2$ (which is included in the case studied theoretically in this work) and we observe numerically the existence of a unique solution for any given $F>0$.
An interesting question here is to see what happens in the case $\alpha \leq 1$, which is still an open theoretical question. Recall that the stationary problem with Reynolds variational inequality in the place of (1.10) was studied in [7]; in the case $\alpha=1$ the authors still proved the existence of a solution for any $F>0$, while in the case $\alpha<1$ they proved the existence of a solution for $F<F_{0}$ only, where $F_{0}>0$ is a threshold value. In Section $4.2(\alpha=1)$ and Section $4.3\left(\alpha=\frac{1}{2}\right)$ we observe numerically that the results in [7] remain valid with an Elrod-Adams model (system (1.10)-(1.2)(1.3)).

4.1 Case 1. $\alpha=2$

The left plot of Fig. 1 represents the parabolic shape of h_{0} with $\alpha=2$ while in the right plot we can see the profile of $\int_{\Omega} p d x$ (the load) with respect to a. We can conclude that for any $F>0$ the studied coupled problem has a unique solution $a>0$ (remark that the theoretical uniqueness result is still an open question).
In Fig. 2 we represent the 3d profile of the pressure $p(x)$ and the contour plot of the corresponding θ field for, respectively, $a=0.1, a=0.01$ and $a=0.001$. One can observe that for $a=0.001$ we have large values of the pressure which is concentrated around the middle of the domain ($x_{1}=1 / 2$), as predicted theoretically.

Figure 1: Case $\alpha=2$. The shape of the upper body h_{0} (left plot) and the load versus a (right plot).

Figure 2: Case $\alpha=2$. Pressure (left) and corresponding theta-field profiles for different values of a. From top to bottom : $a=0.1,0.01,0.001$.

4.2 Case 2. $\alpha=1$

In this limit case we can expect that the result of Theorem 1.1 is still valid for any $F>0$. Nevertheless, we expect (as in [7]) that $\int_{\Omega} p d x$ goes very slowly to $+\infty$ when $a \rightarrow 0\left(\operatorname{as} \log \left(\frac{1}{a}\right)\right.$), which is confirmed by the numerical simulations (see Fig. 3).

Figure 3: Case $\alpha=1$. The shape of the upper body h_{0} (left plot) and the load versus a (right plot).

Figure 4: Pressure (left) and corresponding theta field profiles for different values of a. Values of a from top to bottom: $a=0.1,0.01,0.001$.

4.3 Case 3. $\alpha=\frac{1}{2}$

In this case we observe numerically the existence of a threshold $F_{0}=0.235$ such that the result is valid only for $F<F_{0}$ (see Fig. 5).

Figure 5: Case $\alpha=1 / 2$. The shape of the upper body h_{0} (left plot) and the load versus a (right plot).

Figure 6: Pressure (left) and corresponding theta-field profiles for different values of a. Values of a from top to bottom: $a=0.1,0.01,0.001$.

References

[1] R. Ausas, M. Jai and G. Buscaglia, A mass-conserving algorithm for dynamical lubrication problems with cavitation, ASME J. of Trib, 131 (3), 2009.
[2] G. Bayada, C. VÁzQuEz, A survey on mathematical aspects of lubrication problems. Bol. Soc. Esp. Mat. Apl. SëMA 39 (2007), 31-74.
[3] G. Bayada, S. Martin and C. VÁzQUEz, Two-scale homogenization of a hydrodynamic Elrod-Adams model. Asymptotic Analysis 44 (2005) 75-110.
[4] G. Buscaglia, I. Ciuperca, I. Hafidi and M. Jai, Existence of equilibria in articulated bearings, J. Math. Anal. Appl., 328 (2007) 24-45.
[5] G. Buscaglia, I. Ciuperca, I. Hafidi and M. Jai, Existence of equilibria in articulated bearings in presence of cavity, J. Math. Anal. Appl., 335 (2007) 841-859.
[6] I. Ciuperca, M. El Alaoui Talibi and M. Jai, On the optimal control of coefficients in elliptic problems. Application to the optimization of the head slider, ESAIM Control Optim. Calc. Variat. 11 (2005) no. 1, 102-121.
[7] I. Ciuperca and J.I. Tello, Lack of contact in a lubricated system, Quarterly of Applied Mathematics, 69(2011), no. 2, 357-378.
[8] I. Ciuperca, M. Jai and J.I. Tello, On the existence of solutions of equilibria in lubricated journal bearings, SIAM J. Math. Anal., 40 (2009) 2316-2327.
[9] H.G. Elrod and M. Adams, A computer program for cavitation, 1st Leeds-Lyon Symposium on Cavitation and Related Phenomena in Lubrication, I.M.E. 103, 1974.
[10] D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order. Second edition 1983. Springer-Verlag, Berlin.
[11] L. Leloup, Etude de la lubrification et Calculs de Paliers, Dunod, Paris, 1962.

