Polytech Lyon, MAM3A, 2018-2019

Analyse Numérique (AN)

Partiel 1 - septembre 2018

Durée 1h et 10min - Calculettes interdites, une page de notes manuscrites autorisée

Exercice 1.

Soit $\Omega =]a, b[$ un ouvert borné dans \mathbb{R} , avec $a, b \in \mathbb{R}$, a < b. On se donne aussi une fonction $f \in C(\bar{\Omega})$ et une constante $\alpha > 0$.

On considère l'quation différentielle suivante: trouver $u \in C^2(\Omega) \cap C^1(\bar{\Omega})$ satisfaisant

$$-u''(x) = f(x), \quad \forall \ x \in \Omega$$

avec les conditions aux limites du type Robin suivantes:

$$(2) u'(a) = \alpha u(a)$$

et

(3)
$$u'(b) = -\alpha u(b).$$

Dans la suite de l'exercice on va utiliser la méthode et les notations du cours pour construire une approximation du problème (1) - (2) - (3). On fixe $N \in \mathbb{N}$ avec $N \geq 3$ assez grand, on pose $h = \frac{b-a}{N+1}$, on pose $x_i = a+ih$ pour tout $i \in \{0,1,\cdots N+1\}$ et on note par U_i une approximation de $u(x_i)$.

Pour tout $i = 1, 2, \dots N$ on approche $u''(x_i)$ en (1) par $\frac{U_{i-1} - 2U_i + U_{i+1}}{h^2}$. On approche ensuite u'(a) en (2) par $\frac{U_1 - U_0}{h}$ et U'(b) en (3) par $\frac{U_{N+1} - U_N}{h}$.

- a) Ecrire une approximation de (2) comme une équation faisant intervenir U_0 et U_1 . De même, écrire une approximation de (3) comme une équation faisant intervenir U_N et U_{N+1} . Montrer qu'on peut exprimer U_0 en fonction de U_1 et respectivement U_{N+1} en fonction de U_N .
- b) Ecrire un système algébrique linéaire d'inconnues $U_1, U_2, \dots U_N$ qui approche le problème (1) (2) (3). Ecrire ce système sous la forme matricielle AU = b avec $A \in \mathcal{M}_N(\mathbb{R})$ et $b \in \mathbb{R}^N$ à préciser.
- c) Montrer que A est une matrice symétrique et défine positive.

Exercice 2.

On considère la matrice réelle symétrique $A \in \mathcal{M}_3(\mathbb{R})$ donnée par

$$A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$

Calculer les normes subordonnées suivantes de A:

- a) $||A||_{\infty}$
- **b**) $||A||_1$
- c) $||A||_2$.

Exercice 3.

Soit $\|\cdot\|$ une norme vectorielle sur \mathbb{K}^n et notons encore par $\|\cdot\|$ la norme matricielle subordonnée à cette norme vectorielle.

Soit $B \in \mathcal{M}_n(\mathbb{K})$ une matrice carrée satisfaisant

- a) Montrer que la matrice $I_n + B$ est inversible. Indication: montrer que $Ker(I_n + B) = \{0\}$.
- **b)** Montrer qu'on a

$$\|(I_n+B)^{-1}\| \le \frac{1}{1-\|B\|}.$$

Indication: partir de l'égalité $(I_n + B)(I_n + B)^{-1} = I_n$.