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Abstract. We develop necessary conditions of broad applicability for optimal control problems
in which the state and control are subject to mixed constraints. We unify, subsume and significantly
extend most of the results on this subject, notably in the three special cases that comprise the bulk of
the literature: calculus of variations, differential-algebraic systems, and mixed constraints specified
by equalities and inequalities. Our approach also provides a new and unified calibrated formulation
of the appropriate constraint qualifications, and shows how to extend them to nonsmooth data.
Other features include a very weak hypothesis concerning the type of local minimum, nonrestrictive
hypotheses on the data, and stronger conclusions, notably as regards the maximum (or Weierstrass)
condition. The necessary conditions are stratified, in the sense that they are asserted on precisely the
domain upon which the hypotheses (and the optimality) are assumed to hold. This leads to local,
intermediate, and global versions of the necessary conditions, according to how the hypotheses are
formulated.
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1. Introduction. We study in this article an optimal control problem with stan-
dard cost and dynamics, but in which the state x and control u are subject to joint,
or mixed constraints through the condition (x(t), u(t)) ∈ S(t). The presence of such
constraints has long been known to constitute a challenge as regards the derivation of
appropriate necessary conditions of maximum principle type. Problems with mixed
constraints have been studied systematically by Hestenes [23], Dubovickĭı and Mi-
lyutin [21], Gamkrelidze [22] and Neustadt [28] among many others, and remain an
active subject: see [1, 2, 6, 7, 12, 14, 15, 17, 18, 19, 20, 26, 27, 29, 30, 31, 33, 34].

In [7], Clarke presents a synthesis of what has been called the nonsmooth analysis
approach to necessary conditions in optimal control. The results constitute, from sev-
eral points of view, the current state of the art for standard optimal control problems.
Although the issue of mixed constraints is broached, it is not completely developed.
The purpose of this article is to do so. The principal result, Theorem 2.1 below, is a
set of necessary conditions obtained under a geometric hypothesis called the bounded
slope condition. A functional form of the theorem is also derived (Theorem 4.3).

It turns out that these theorems unify and significantly extend most of the ex-
isting results, notably in the three special cases that comprise the bulk of the litera-
ture: calculus of variations (Section 5), differential-algebraic systems (Section 6), and
mixed constraints specified by equalities and inequalities (Section 7). Our approach
also provides a new and unified calibrated formulation of the appropriate constraint
qualifications (Section 4), and shows how to extend them to nonsmooth data. Other
features include a very weak hypothesis concerning the type of local minimum, non-
restrictive hypotheses on the data (on convexity, regularity, and boundedness), and
stronger conclusions (notably as regards the maximum – or Weierstrass – condition),
even for problems with smooth data. The necessary conditions are stratified, in the
sense that they are asserted to exactly the same extent that the hypotheses (and the
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optimality) are assumed to hold, as specified by the presence of a radius function.
This leads to local, intermediate, and global versions of the results, according to how
the hypotheses are framed.

We proceed to review for the reader’s convenience some basic definitions from
nonsmooth analysis. Given a nonempty closed subset S of Rn and a point x in S, we
say that ζ ∈ Rn is a proximal normal (vector) to S at x if there exists σ = σ(x, ζ) ≥ 0
such that

〈ζ, x′ − x〉 ≤ σ|x′ − x|2 ∀x′ ∈ S.

This is the proximal normal inequality. The set of such ζ, which is a convex cone
containing 0, is denoted NP

S (x), and is referred to as the proximal normal cone. It
can be viewed as the basic building block of the proximal theory of nonsmooth analysis
(which applies to smooth Banach spaces, such as Rn). Given a lower semicontinuous
function f : Rn → R ∪ {+∞} and a point x at which f is finite, we say that ζ is a
proximal subgradient of f at x if there exists σ = σ(x) ≥ 0 and a neighborhood Vx of
x such that

f(x′)− f(x) + σ|x′ − x|2 ≥ 〈ζ, x′ − x〉 ∀x′ ∈ Vx.

The set of such ζ, which may be empty, is denoted ∂P f(x) and referred to as the
proximal subdifferential. The limiting normal cone NL

S (x) to S at x is obtained by
applying a sequential closure operation to NP

S :

NL
S (x) :=

{
lim ζi : ζi ∈ NP

S (xi), xi → x, xi ∈ S
}
.

A similar procedure defines the limiting subdifferential :

∂Lf(x) :=
{

lim ζi : ζi ∈ ∂P f(xi), xi → x, f(xi)→ f(x)
}
.

In an arbitrary Banach space, one can develop nonsmooth calculus via the theory
of generalized gradients. In the case of a locally Lipschitz function f : Rn → R, the
generalized gradient ∂Cf(x) coincides with co ∂Lf(x); further, the associated normal
cone NC

S (x) to a set S at a point x coincides with coNL
S (x).

If the set S is convex, the three normal cones defined above coincide with the
familiar normal cone of convex analysis, in which ζ is normal to S at x iff 〈ζ, x′ − x〉 ≤
0 ∀x′ ∈ S. If S is a smooth manifold, or manifold with boundary, then NL

S (x) and
NC
S (x) coincide with the classical normal space, or half-space. If f is convex, then

∂P f(x), ∂Lf(x) and ∂Cf(x) all coincide with the subdifferential of convex analysis.
If the function f is strictly differentiable at x (in particular, if f is C1 near x), then
∂Lf(x) = ∂Cf(x) = {f ′(x)}.

Because of these facts, the theorem statements in this article can all be understood
without reference to nonsmooth analysis, by simply assuming the data of the under-
lying problems to be smooth, in which case the generalized derivatives and normals
in the statements coincide with the usual ones. We stress, however, that nonsmooth
calculus plays an essential role in the proofs; this would still be the case even if only
problems with smooth data were considered, and even in that case the results of this
article furnish a new state of the art. We refer to [10] for a detailed exposition of
nonsmooth calculus in the notation used here.
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2. A geometric theorem on mixed constraints. We are given an interval
[a, b] in R and a subset S of [a, b]× Rn×Rm. We write

S(t) :=
{

(x, u) : (t, x, u) ∈ S
}
, S(t, x) :=

{
u : (t, x, u) ∈ S

}
.

Also given are a subset E of Rn×Rn together with functions

f : [a, b]×Rn×Rm → Rn, Λ : [a, b]×Rn×Rm → R, ` : Rn×Rn → R.

We consider the following problem (P ) of optimal control :

(P )


Minimize J(x, u) := `(x(a), x(b)) +

∫ b
a

Λt(x(t), u(t)) dt
subject to

x′(t) = ft(x(t), u(t)) a.e. t ∈ [a, b]
(x(t), u(t)) ∈ S(t) a.e. t ∈ [a, b]
(x(a), x(b)) ∈ E.

Notice that the t-dependence of Λ and f is reflected by means of a subscript. This will
be convenient for notational reasons, and should cause no confusion, since no partial
derivatives with respect to t are ever taken. The basic hypotheses on the problem
data, in force throughout, are the following: f,Λ are L×B measurable1; S is L×B
measurable; E is closed; ` is locally Lipschitz.

It is understood that this problem involves measurable control functions u(t) and
absolutely continuous functions x(t) (arcs). Such a pair (or process) (x, u) is said to
be admissible for (P ) if the constraints are satisfied and J(x, u) is well-defined and
finite. The main theorem features hypotheses directly related to a given pair (x∗, u∗)
that is admissible for (P ). Let R : [a, b] → (0,+∞] be a given measurable radius
function, and ε > 0. We say that (x∗, u∗) is a local minimum of radius R for (P )
provided that for every pair (x, u) admissible for (P ) which also satisfies∣∣x(t)− x∗(t)

∣∣ ≤ ε, ∣∣u(t)− u∗(t)
∣∣ ≤ R(t) a.e.,

∫ b

a

∣∣x′(t)− x′∗(t)∣∣ dt ≤ ε,
we have J(x, u) ≥ J(x∗, u∗). This resembles a so-called W 1,1 local minimum, which
is known to be a weaker hypothesis than the classical strong local minimum. But it is
even weaker than that notion, because of the additional restriction stemming from the
radius function. (This restriction vanishes, of course, if R is identically +∞, which is
allowed.)

The two main hypotheses of the theorem are conditioned by the radius R; they
concern Lipschitz behavior of f and Λ with respect to (x, u) and a certain bounded slope
condition bearing upon the sets S(t). Both of these are imposed only at points (x, u) ∈
S(t) that are near (x∗, u∗), as determined by ε and R in the following definition:

Sε,R∗ (t) :=
{

(x, u) ∈ S(t) : |x− x∗(t)| ≤ ε, |u− u∗(t)| ≤ R(t)
}
.

In generic terms, we shall say that any given function φt(x, u) satisfies Lε,R∗ if the
following holds:

Lε,R∗ : There exist measurable real-valued functions kφx , kφu such that, for almost

every t in [a, b], for every (xi, ui) in a neighborhood of Sε,R∗ (t) (i = 1, 2), we have∣∣φt(x1, u1)− φt(x2, u2)
∣∣ ≤ kφx(t)

∣∣x1 − x2

∣∣+ kφu(t)
∣∣u1 − u2

∣∣.
1This hypothesis, familiar in control theory, refers to measurability relative to the σ-field gener-

ated by the products of Lebesgue measurable subsets in R and Borel measurable subsets in Rn×Rm.
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Thus, when we require later that f satisfy Lε,R∗ , for example, the associated
Lipschitz parameters are denoted by kfx , kfu. Concerning the mixed constraint, the
hypothesis is the following:

BSε,R∗ : There exists a measurable real-valued function kS such that, for almost
every t, the following bounded slope condition holds:

(x, u) ∈ Sε,R∗ (t), (α, β) ∈ NP
S(t)(x, u) =⇒ |α| ≤ kS(t)|β|.

We assume that S(t) is locally closed at each point (x, u) ∈ Sε,R∗ (t), so that the normal
cone appearing above is well-defined.

The following theorem asserts necessary conditions under optimality and regular-
ity hypotheses which are imposed only for a radius R, and whose conclusions hold to
the same extent; this situation is referred to in [7] as stratified.

Theorem 2.1. Let (x∗, u∗) be a local minimum of radius R for (P ), where BSε,R∗
holds, where f and Λ satisfy Lε,R∗ , where the functions

kfx , k
Λ
x , kS

[
kfu + kΛ

u

]
are summable, and where, for some η > 0, we have R(t) ≥ ηkS(t) a.e.

1. Then there exist an arc p and a number λ0 in {0, 1} satisfying the nontriv-
iality condition

(λ0, p(t)) 6= 0 ∀ t ∈ [a, b],

the transversality condition

(p(a),−p(b)) ∈ ∂Lλ0`(x∗(a), x∗(b)) +NL
E (x∗(a), x∗(b)),

the Euler adjoint inclusion for almost every t:

(−p′(t), 0) ∈ ∂C
{
〈p(t), ft〉 − λ0Λt

}
(x∗(t), u∗(t))−NC

S(t)(x∗(t), u∗(t)),

as well as the Weierstrass condition of radius R for almost every t:

(x∗(t), u) ∈ S(t), |u− u∗(t)| ≤ R(t) =⇒
〈p(t), ft(x∗(t), u)〉 − λ0Λt(x∗(t), u) ≤ 〈p(t), ft(x∗(t), u∗(t))〉 − λ0Λt(x∗(t), u∗(t)).

2. Further, if the hypotheses hold for a sequence of radius functions Ri going
to +∞ (with all parameters ε, kfx , kfu, kΛ

x , kΛ
u , kS, η possibly depending on i), in the

sense that lim infi→∞Ri(t) = +∞ a.e., then the conclusions above hold for an arc p
which satisfies the global Weierstrass condition for almost every t:

(x∗(t), u) ∈ S(t) =⇒
〈p(t), ft(x∗(t), u)〉 − λ0Λt(x∗(t), u) ≤ 〈p(t), ft(x∗(t), u∗(t))〉 − λ0Λt(x∗(t), u∗(t)).

Examples show that the hypothesis R(t) ≥ ηkS(t) a.e. is needed in the Theorem
(see [7, p. 47] ), as well as the summability conditions. We remark that the bounded
slope condition excludes unilateral state constraints; that is, constraints of the type
x(t) ∈ X(t). In such a case, we have

S(t) = {(x, u) : x ∈ X(t)} ,
4



a set admitting proximal normals of the form (α, 0) with α 6= 0, which makes the
bounded slope condition impossible. It is well-known that in the presence of such
constraints, necessary conditions of the type given above fail, and that their appro-
priate extensions involve measures and adjoint arcs p that are discontinuous (see for
example [35]).

The theorem is discussed further in Section 8, in the context of comparing our
results with those in the literature. Its proof is given in Section 9.

3. The unmixed case, and a hybrid theorem. In this section we consider
first the implications of Theorem 2.1 for the case in which S(t) = {(x, u) : u ∈ U(t)}.
Here the control constraints are unilateral or unmixed (but see the hybrid result
below), and the problem (P ) of Section 2 reduces to a classical optimal control problem
incorporating the dynamics and control constraints

x′(t) = ft(x(t), u(t)), u(t) ∈ U(t) a.e.

Let (α, β) belong to NP
S(t)(x, u). Then, by definition of proximal normal, for some

constant σ, the function

(y, w) 7→ − 〈α, y〉 − 〈β,w〉+ σ
{
|y − x|2 + |w − u|2

}
has a local minimum relative to (y, w) ∈ Rn × U(t) at (y, w) = (x, u). It follows

that α = 0, so that the bounded slope condition BSε,R∗ of Section 2 is automatically
satisfied, with kS = 0, for any radius R. We assume that f,Λ satisfy the Lipschitz
condition Lε,R∗ , and that kfx and kΛ

x are summable. Then, if U is measurable and
closed-valued, Theorem 2.1 applies, and we obtain:

Theorem 3.1. If (x∗, u∗) is a local minimum of radius R, then there exist p
and λ0 satisfying all the conclusions of Theorem 2.1, where the adjoint inclusion is
expressible in the form

(−p′(t), 0) ∈ ∂C
{
〈p(t), ft〉 − λ0Λt

}
(x∗(t), u∗(t))− {0}×NC

U(t)(u∗(t)),

and where the Weierstrass condition of radius R holds for almost every t:

u ∈ U(t), |u− u∗(t)| ≤ R(t) =⇒
〈p(t), ft(x∗(t), u)〉 − λ0Λt(x∗(t), u) ≤ 〈p(t), ft(x∗(t), u∗(t))〉 − λ0Λt(x∗(t), u∗(t)).

We remark that when f,Λ are locally Lipschitz, the above theorem applies for any
finite constant radius R if one makes the classically familiar hypotheses that u∗ is
bounded and that the local minimum is a strong one (W 1,1 would also suffice). In
that case, by letting R→ +∞, we may assert the global Weierstrass condition. If we
further specialize by requiring the data to be smooth in x, we recover the conclusions
of the usual Pontryagin maximum principle [25, 32, 35].

Notice that Theorem 3.1 features a coupled adjoint equation involving derivatives
with respect to (x, u) jointly, and referred to as the Euler adjoint inclusion. As regards
necessary conditions that incorporate this form of the adjoint equation, Theorem
3.1 goes beyond previous results in various ways: since kS = 0, we can allow any
(arbitrarily small) positive time-dependent radius function, and still assert the Euler
adjoint equation, as well as a local Weierstrass condition (absent in previous analyses).
In addition, the functions kfu, kΛ

u need not be summable.
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As in the classical maximum principle, the well-known nonsmooth maximum prin-
ciple [3, 4] features an adjoint inclusion that is decoupled from the control variable:

−p′(t) ∈ ∂C
{
〈p(t), ft(·, u∗(t))〉 − λ0Λt(·, u∗(t))

}
(x∗(t)),

the generalized gradient being taken solely with respect to x. The relative merits of the
two different forms of the adjoint inclusion are discussed in detail in [8, 13, 16, 24].
The Euler adjoint inclusion of Theorem 3.1 implies the decoupled one under some
circumstances, notably when f,Λ are smooth in x. But they are distinct conclusions
in general. There is a further distinction, however: Lipschitz behavior with respect to
u was not a required hypothesis in obtaining the earlier decoupled result, nor was U
necessarily closed-valued. For this reason, Theorem 2.1 does not directly subsume the
original nonsmooth maximum principle. To remedy this, we prove a hybrid theorem
that has more complicated hypotheses than Theorem 2.1, but which has the merit of
fully subsuming the nonsmooth maximum principle for the case of unmixed control
constraints (as well as Theorem 2.1).

A hybrid theorem. We consider the following hybrid problem (HP ), in which
the control u is partitioned into two components: u = (v, w).

(HP )


Minimize J(x, u) = J(x, v, w) := `(x(a), x(b)) +

∫ b
a

Λt(x(t), u(t)) dt
subject to

x′(t) = ft(x(t), u(t)) a.e. t ∈ [a, b]
(x(t), v(t)) ∈ S(t, w(t)), w(t) ∈W (t) a.e. t ∈ [a, b]

(x(a), x(b)) ∈ E.

Observe that in (HP ), only the w-component is subject to unilateral constraints as
given by the multifunction W , while the mixed constraints involving v are dependent
on w. The multifunctions W (t) and S(t, w) are taken to be L×B measurable.

We assume that (x∗, u∗) = (x∗, v∗, w∗) is a local minimum of radius R for (HP ):
for every (x, u) = (x, v, w) admissible for (HP ) which also satisfies

∣∣x(t)−x∗(t)
∣∣ ≤ ε, ∣∣(v(t), w(t))− (v∗(t), w∗(t))

∣∣ ≤ R(t) a.e.,

∫ b

a

∣∣x′(t)−x′∗(t)∣∣ dt ≤ ε,
we have J(x, u) ≥ J(x∗, u∗). We turn now to the main hypotheses, which are asym-
metrical in the v and w components for the reasons explained above; they impose no
Lipschitz behavior with respect to w, nor continuity. We define

Sε,R∗ (t, w) :=
{

(x, v) ∈ S(t, w) : |x− x∗(t)| ≤ ε, |v − v∗(t)| ≤ R(t)
}
.

In generic terms, we shall say that any given function φt(x, v, w) satisfies HLε,R∗ if the
following holds:

HLε,R∗ : There exist L×B measurable real-valued functions kφx , kφv such that, for
almost every t in [a, b], for every w ∈ W (t) ∩ B(w∗(t), R(t)), for every (xi, vi) in a

neighborhood of Sε,R∗ (t, w), (i = 1, 2), we have∣∣φt(x1, v1, w)− φt(x2, v2, w)
∣∣ ≤ kφx(t, w)

∣∣x1 − x2

∣∣+ kφv (t, w)
∣∣v1 − v2

∣∣.
We assume that for each w ∈ W (t) ∩ B(w∗(t), R(t)), the set S(t, w) is locally

closed at each point (x, v) ∈ Sε,R∗ (t, w). The bounded slope condition now becomes:
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HBSε,R∗ : There exists a measurable real-valued function kS such that, for almost
every t, for every w ∈ W (t) ∩ B(w∗(t), R(t)), the following bounded slope condition
holds:

(x, v) ∈ Sε,R∗ (t, w), (α, β) ∈ NP
S(t,w)(x, v) =⇒ |α| ≤ kS(t)|β|.

Theorem 3.2. Let (x∗, u∗) be a local minimum of radius R for (HP ), where

HBSε,R∗ holds, where f and Λ satisfy HLε,R∗ , where the functions

kfx(t, w∗(t)), k
Λ
x (t, w∗(t)), kS(t)

[
kfv (t, w∗(t)) + kΛ

v (t, w∗(t))
]

are summable, and where, for some η > 0, we have R(t) ≥ ηkS(t) a.e.

1. Then there exist an arc p and a number λ0 in {0, 1} satisfying the nontriv-
iality condition

(λ0, p(t)) 6= 0 ∀ t ∈ [a, b],

the transversality condition

(p(a),−p(b)) ∈ ∂Lλ0`(x∗(a), x∗(b)) +NL
E (x∗(a), x∗(b)),

the hybrid adjoint inclusion for almost every t:

(−p′(t), 0) ∈
∂C
{
〈p(t), ft(·, ·, w∗(t))〉 − λ0Λt(·, ·, w∗(t))

}
(x∗(t), v∗(t))−NC

S(t,w∗(t))(x∗(t), v∗(t)),

as well as the Weierstrass condition of radius R for almost every t:

w ∈W (t), (x∗(t), v) ∈ S(t, w), |(v, w)− u∗(t)| ≤ R(t) =⇒
〈p(t), ft(x∗(t), v, w)〉−λ0Λt(x∗(t), v, w) ≤ 〈p(t), ft(x∗(t), u∗(t))〉−λ0Λt(x∗(t), u∗(t)).

2. Further, if the hypotheses hold for a sequence of radius functions Ri going
to +∞ (with all parameters ε, kfx , kfv , kΛ

x , kΛ
v , kS, η possibly depending on i), in the

sense that lim infi→∞Ri(t) = +∞ a.e., then the conclusions above hold for an arc p
which satisfies the global Weierstrass condition for almost every t:

w ∈W (t), (x∗(t), v) ∈ S(t, w) =⇒ 〈p(t), ft(x∗(t), v, w)〉 − λ0Λt(x∗(t), v, w)

≤ 〈p(t), ft(x∗(t), u∗(t))〉 − λ0Λt(x∗(t), u∗(t)).

Notice that in the hybrid adjoint inclusion above, the generalized gradient is taken
with respect to (x, v) jointly (but not w). When W (t) is taken to be {0} for every
t (or equivalently, when w is absent), Theorem 3.2 reduces to Theorem 2.1. At the
other extreme, when f and Λ are independent of v, the mixed constraint is irrelevant,
and we may take S(t, w) to be the whole space, and kS ≡ 0. Then, for R(t) ≡ +∞,
the theorem reduces to the nonsmooth maximum principle. The reductions are exact
with respect to the hypotheses as well as the conclusions. Theorem 3.2 is proved in
Section 9.
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4. Special structure of the constraint set. When the mixed constraint
(x, u) ∈ S(t) has special structure, it turns out to be possible in many cases to
conveniently specify conditions in terms of that structure that imply the bounded
slope condition needed in Theorem 2.1. In addition, such structure may give rise to
a more explicit adjoint equation by providing an interpretation of the normal cone
NC
S(t) via multipliers. We now develop some results along these lines, in a framework

general enough to subsume certain more familiar ones to be visited later. We record
the following fact from nonsmooth calculus:2

Proposition 4.1. Let Φ be a closed subset of RN , and let φ : Rn → RN be a
function which is Lipschitz in a neighborhood of a point u∗ satisfying φ(u∗) ∈ Φ. We
set S := {u : φ(u) ∈ Φ}, and we suppose that

λ ∈ NL
Φ (φ(u∗)), 0 ∈ ∂L〈λ, φ〉(u∗) =⇒ λ = 0. (4.1)

1. If ζ ∈ NL
S (u∗), there exists λ ∈ NL

Φ (φ(u∗)) such that ζ ∈ ∂L〈λ, φ〉(u∗).
2. If φ is strictly differentiable at u∗, and if ζ ∈ NC

S (u∗), then there exists
λ ∈ NC

Φ (φ(u∗)) such that ζ = ∇〈λ, φ〉(u∗).
The hypothesis (4.1) is a variant of what is known in mathematical programming

as a constraint qualification serving to rule out the abnormal case in the Lagrange
multiplier rule (see for example Section 6.3 of [5]).

A calibrated constraint qualification. We now return to the problem (P ),
under the assumption throughout this section that, for a given function φ : [a, b]×
Rn× Rm → RN and measurable mapping Φ from [a, b] to the closed subsets of RN ,
the set S(t) of Section 2 is described by

S(t) :=
{

(x, u) : φt(x, u) ∈ Φ(t)
}
. (4.2)

We postulate the same measurability and Lipschitz behavior for φ as we did for
f,Λ; in particular, we assume that φ satisfies Lε,R∗ . Thus φ is locally Lipschitz in
(x, u) at relevant points, but not necessarily in t. We are given as in Section 2 a
process (x∗, u∗) admissible for the problem (P ). The following calibrated constraint
qualification relative to (x∗, u∗) will prove relevant:

Mε,R
∗ : There exists M : [a, b]→ R measurable such that, for almost every t,

(x, u) ∈ Sε,R∗ (t), λ ∈ NL
Φ(t)(φt(x, u)), (α, β) ∈ ∂L〈λ, φt〉(x, u) =⇒ |λ| ≤M(t)|β|.

Proposition 4.2. If Mε,R
∗ holds, then BSε,R∗ holds with kS(t) := M(t)kφx(t).

Proof. Let t be such that the Mε,R
∗ property holds, as well as the Lipschitz

condition of φ. Let

(x, u) ∈ Sε,R∗ (t), (α, β) ∈ NP
S(t)(x, u).

By Prop. 4.1, there exists λ such that

λ ∈ NL
Φ(t)(φt(x, u)), (α, β) ∈ ∂L〈λ, φt〉(x, u).

Then |λ| ≤ M(t)|β| by Mε,R
∗ . In addition, we have |α| ≤ |λ|kφx(t), since the function

y 7→ 〈λ, φt〉(y, v) is Lipschitz with constant |λ|kφx(t) for (y, v) near (x, u). We deduce

|α| ≤ M(t)kφx(t)|β|,

2This is derivable, for example, from the proximal chain rule [10, Theorem 9.1].
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as required.
As an immediate application of the results of this section, we derive the following

consequence of Theorem 2.1 when the constraints are described as in (4.2).

Theorem 4.3. Let (x∗, u∗) be a local minimum of radius R for (P ), where Mε,R
∗

holds, where f , Λ, φ satisfy Lε,R∗ , where the functions

kfx , k
Λ
x , Mkφx

[
kfu + kΛ

u

]
are summable, and where, for some η > 0, we have R(t) ≥ ηM(t)kφx(t) a.e. Then
there exist p and λ0 satisfying all the conclusions of Theorem 2.1. Furthermore, if φt
is strictly differentiable at (x∗(t), u∗(t)) a.e., then there exists a measurable function
λ : [a, b]→ RN satisfying

λ(t) ∈ NC
Φ(t)(φt(x∗(t), u∗(t))) a.e.

such that the adjoint inclusion takes the explicit multiplier form

(−p′(t), 0) ∈ ∂C
{
〈p(t), ft〉 − λ0Λt − 〈λ(t), φt〉

}
(x∗(t), u∗(t)) a.e.

The multiplier λ satisfies

|λ(t)| ≤ M(t){|p(t)|kfu(t) + λ0k
Λ
u (t)} a.e.

In the case of a sequence of radius functions Ri going to +∞, this bound on |λ(t)|
holds for the data M , kfu, kΛ

u corresponding to any one of the radius functions.
Proof. Note that our hypotheses imply the local closedness of S(t) at points in

Sε,R∗ (t), as required in Theorem 2.1. According to Prop. 4.2, BSε,R∗ holds with kS(t) =
M(t)kφx(t). In light of this, the first assertion of the Theorem is a direct consequence
of Theorem 2.1. When φt is strictly differentiable, any element of NC

S(t)(x∗(t), u∗(t))
is expressible in the form

∇〈λ(t), φt〉 (x∗(t), u∗(t)),

in view of Prop. 4.1. In addition, we have by the sum rule

∂C{〈p(t), ft〉 − λ0Λt − 〈λ(t), φt〉} = ∂C{〈p(t), ft〉 − λ0Λt} − ∇〈λ(t), φt〉 .

There results the explicit adjoint inclusion of the Theorem. (That λ(t) may be chosen
measurably is an exercise in measurable selection theory; see for example [10, pp.
149-152].) It now follows from this adjoint inclusion that ∇〈λ(t), φt〉 (x∗(t), u∗(t)) is
of the form (q, r), with |r| ≤ {|p|kfu + λ0k

Λ
u }, where kfu and kΛ

u correspond to any

choice of radius function for which the hypotheses hold. This, together with Mε,R
∗ (for

that same radius), yields the given estimate for |λ(t)|.
We remark that the degree to which the explicit multiplier λ is summable is clearly

identified in our approach: it belongs to the same Lp space (if any) as M{kfu + kΛ
u }.

Note that λ(t) = 0 a.e. at points t for which φt(x∗(t), u∗(t)) ∈ int Φ(t) (since the
normal cone at such points reduces to {0}).

It turns out that various types of constraint qualifications encountered in the
literature are subsumed by the calibrated condition Mε,R

∗ introduced above (which
has the further merit of applying to nonsmooth data). We proceed in the rest of this
section to make this explicit in some important special cases.
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The first case invokes the generalized Jacobian ∂Jφ (see [5]), which reduces to the
usual Jacobian matrix if φ is continuously differentiable.

Proposition 4.4. Let there exist c > 0 such that, for almost every t,

(x, u) ∈ Sε,R∗ (t), (A,B) ∈ ∂Jφt(x, u) =⇒ detBBT ≥ c.

Then Mε,R
∗ holds with a constant M .

Proof. The right-hand side above implies that BBT is positive definite, so there
exists d > 0 (independent of t) such that

〈
BBTλ, λ

〉
≥ d|λ|2 ∀λ ∈ RN . Let t be such

that the hypothesis holds, and let

(x, u) ∈ Sε,R∗ (t), (α, β) ∈ ∂L 〈λ, φt〉 (x, u).

Then [5, 2.6.6] there exists (A,B) ∈ ∂Jφt(x, u) such that β = BTλ. We deduce

|β|2 ≥ d|λ|2, which gives Mε,R
∗ with M := d−1/2.

The advantage of having Mε,R
∗ hold with a constant M lies in more easily con-

firming the summability requirements of Theorem 4.3. The next case also leads to
this conclusion:

Proposition 4.5. Let φ be continuously differentiable on a neighborhood of S,
and let Φ(t) be convex-valued. If for some positive r, c we have, for almost every t,

for every (x, u) ∈ Sε,R∗ (t):

B(0, r) ⊂
{
φt(x, u) + 〈Duφt(x, u), u′〉 : |u′| ≤ c

}
− Φ(t),

then Mε,R
∗ holds for the constant M = c/r.

Proof. Let t be such that the hypothesis holds, and let

(x, u) ∈ Sε,R∗ (t), 0 6= λ ∈ NL
Φ(t)(φt(x, u)), (α, β) = ∇〈λ, φt〉(x, u).

By hypothesis, there exists φ′ ∈ Φ and u′ ∈ B(0, c) such that rλ/|λ| = φt(x, u) +
〈Duφt(x, u), u′〉 − φ′. Bearing in mind that 〈λ, φ′ − φt(x, u)〉 ≤ 0 (normality in the
convex sense), and taking inner products with λ, we discover

r|λ| ≤ |∇u〈λ, φt〉(x, u) · u′| ≤ c|β|,

which establishes Mε,R
∗ with M := c/r.

We turn our attention next to (uncalibrated) constraint qualifications of a type
often referred to as Mangasarian-Fromowitz conditions. We say that MFC holds at
(t, x, u) ∈ S provided that

λ ∈ NL
Φ(t)(φt(x, u)), (α, 0) ∈ ∂L〈λ, φt〉(x, u) =⇒ λ = 0. (MFC)

The goal below is to identify two easily-recognized scenarios under which this simpler
hypothesis implies Mε,R

∗ . For this purpose we set

C ε,R
∗ := cl

{
(t, x, u) ∈ [a, b]×Rn×Rm : (x, u) ∈ Sε,R∗ (t)

}
.

Note that in defining this set, a specific value of u∗(t) (as well as the t-dependent data
R, φ, Φ) must be assigned for every t, not just almost everywhere.3

Proposition 4.6. Let Φ be autonomous and C ε,R
∗ compact. Suppose that MFC

holds at every (t, x, u) ∈ C ε,R
∗ . Then Mε,R

∗ holds for a constant M in either of the
following cases:

3The ensuing results are sharpest when, for every t, an essential value is picked, in the sense of
[11]; we do not pursue this here, however.
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1. φ is autonomous and kφx is constant.

2. In a neighborhood of C ε,R
∗ , Duφ exists, and φ, Duφ are continuous in (t, x, u).

Proof. We proceed to prove the first case by contradiction. Suppose that for
each i there exist ti ∈ [a, b], (xi, ui) ∈ Sε,R∗ (ti), λi ∈ NL

Φ (φ(xi, ui)), and (αi, βi) ∈
∂L〈λi, φ〉(xi, ui) such that |λi| > i|βi|. By normalizing and taking subsequences, we

may take |λi| = 1, and we may suppose (ti, xi, ui) → (t, x, u) ∈ C ε,R
∗ , λi → λ,

where λ is a unit vector in NL
Φ (φ(x, u)). It follows that βi → 0. We also have

|αi| ≤ kφx [10, 1.7.3], so that we may assume αi → α. Then in the limit we derive
(α, 0) ∈ ∂L〈λ, φ〉(x, u), which contradicts MFC at the point (t, x, u). The proof of the

second case is similar. Suppose again that for each i there exist (xi, ui) ∈ Sε,R∗ (ti),
λi ∈ NL

Φ (φti(xi, ui)), and (αi, βi) ∈ ∂L〈λi, φti〉(xi, ui) such that |λi| > i|βi|. Then
βi = ∇u〈λi, φti〉 (xi, ui). Once more, we may take |λi| = 1, and we may suppose

(ti, xi, ui) → (t, x, u) ∈ C ε,R
∗ , λi → λ, where λ is a unit vector in NL

Φ (φt(x, u)). We
have βi → 0, and 0 = ∇u〈λ, φt〉(x, u) in the limit, contradicting MFC at (t, x, u).

It is natural to ask whether the constraint qualification could be imposed only
along the optimal process. To this end, we introduce

Definition 4.7. We say that (t, x∗(t), u) is an admissible cluster point of (x∗, u∗)
if there exists a sequence ti ∈ [a, b] converging to t and corresponding points (xi, ui) ∈
S(ti) such that limxi = x∗(t) and limui = limu∗(ti) = u. We say that M0

∗ holds if
MFC holds at all admissible cluster points of (x∗, u∗).

Note that if u∗ is continuous, then u = u∗(t) above, and, if all the data are
continuous in t, the definition amounts to imposing MFC at (t, x∗(t), u∗(t)) for every
t; that is, the Mangasarian-Fromowitz condition along the optimal process (x∗, u∗).
When the t-behavior is discontinuous, however, the definition takes account of limit
points in a way that can be shown to be essential for the necessary conditions to hold
(see the example in Section 8). Note that in this setting we have as before assigned a
value to u∗(t) for every t, not just almost everywhere.

In the following, the constraint qualification is imposed only with reference to the
optimal process, in the sense of Definition 4.7. Naturally, the conclusion is weaker:
we obtain the Weierstrass condition only for a sufficiently small radius δ > 0. This is
new, however, relative to the existing literature.

Theorem 4.8. Let (x∗, u∗) be a local minimum of constant radius R for (P ),
where Φ is autonomous, φ continuously differentiable, and u∗ bounded. Let f , Λ
satisfy Lε,R∗ , with kfx , kΛ

x , kfu, kΛ
u summable. Then, if M0

∗ holds, there exist p and
λ0 satisfying the nontriviality and transversality conditions of Theorem 2.1, together
with a summable function λ(t) with values in NC

Φ (φt(x∗(t), u∗(t))) a.e. such that the
following adjoint inclusion holds:

(−p′(t), 0) ∈ ∂C
{
〈p(t), ft〉 − λ0Λt − 〈λ(t), φt〉

}
(x∗(t), u∗(t)) a.e.

Furthermore , we have a local Weierstrass condition: for some δ > 0, for t a.e.,

|u− u∗(t)| ≤ δ, φt(x∗(t), u) ∈ Φ =⇒
〈p(t), ft(x∗(t), u)〉 − λ0Λt(x∗(t), u) ≤ 〈p(t), ft(x∗(t), u∗(t))〉 − λ0Λt(x∗(t), u∗(t)).

Proof. Since φ is C1 and u∗ is bounded, φ satisfies Lε,R∗ with constant kφx and kφu .

Mimicking the proof of Prop. 4.6, we show that Mη,δ
∗ holds for some η ∈ (0, ε) and

δ ∈ (0, R) sufficiently small, with a constant M ( we omit the details). We then apply
Theorem 4.3 to directly obtain the stated conclusions.
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5. The multiplier rule in the calculus of variations. We consider in this
section the historically significant question of formulating a multiplier rule in the
calculus of variations, in the context of the following classical problem of Lagrange:

minimize J(x) := `(x(a), x(b)) +

∫ b

a

Λt(x(t), x′(t)) dt

over the arcs x satisfying the following boundary conditions and pointwise constraint:

(x(a), x(b)) ∈ E, ht(x(t), x′(t)) = 0 a.e. t ∈ [a, b],

where h : [a, b]×Rn×Rn → RN . There is a large literature on the issue: see Hestenes
[23] and the references therein. We demonstrate in this section how Theorem 2.1
subsumes and extends the known results. The above problem is the special case of
(P ) of Section 2 in which ft(x, u) = u, so that u is identified with x′. Here, the set
S(t) = {(x, u) : ht(x, u) = 0}. We consider as before a local minimum x∗ of radius R
for the problem; that is, for any admissible arc x satisfying

|x(t)− x∗(t)| ≤ ε, |x′(t)− x′∗(t)| ≤ R(t) a.e.,

∫ b

a

|x′(t)− x′∗(t)| dt ≤ ε,

we have J(x∗) ≤ J(x). The Lipschitz hypothesis Lε,R∗ for Λ is retained (it is evidently
satisfied by f with kfx = 0, kfu = 1). We assume that h is L×B measurable and also

satisfies Lε,R∗ . We posit moreover the following:

Mε,R
∗ : There exists M : [a, b]→ R measurable such that, for almost every t,

(x, u) ∈ Sε,R∗ (t), λ ∈ RN , (α, β) ∈ ∂L〈λ, ht〉(x, u) =⇒ |λ| ≤M(t)|β|.

It is easy to see that this is precisely the condition Mε,R
∗ of Section 4 if we identify φ

with h and Φ with {0} (which is the case under consideration).
Theorem 5.1. Under the hypotheses above, let the functions kΛ

x and Mkhx(1+kΛ
u )

be summable, and suppose that for some η > 0 we have R(t) ≥ ηM(t)khx(t) a.e. Then
there exist p and λ0 satisfying all the conclusions of Theorem 2.1, where the Euler
adjoint inclusion is expressible in the form:

(p′(t), p(t)) ∈ ∂C
{
λ0Λt

}
(x∗(t), x

′
∗(t)) +NC

S(t)(x∗(t), x
′
∗(t)) a.e.

Furthermore, if ht is strictly differentiable at (x∗(t), x
′
∗(t)) a.e., then there exists a

measurable function λ : [a, b] → RN with |λ(t)| ≤ M(t){|p(t)| + λ0k
Λ
u (t)} a.e. such

that the Euler inclusion takes the explicit multiplier form

(p′(t), p(t)) ∈ ∂C
{
λ0Λt + 〈λ(t), ht〉

}
(x∗(t), x

′
∗(t)) a.e.

In the case of a sequence of radius functions Ri going to +∞, the given bound on
|λ(t)| holds for the data M , kΛ

u corresponding to any one of the radius functions.
Proof. With the identifications that have been made, this is a special case of

Theorem 4.3; the Euler inclusion takes the form given here when ft(x, u) ≡ u.
We conclude this section with a brief discussion that clarifies how the theorem

above subsumes the multiplier rules found in the classical literature, where x∗ is
Lipschitz and where L, h are continuously differentiable (at least). For any finite
constant R, the regularity of L and the boundedness of x′∗ provide the requisite
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Lipschitz behavior Lε,R∗ (with constant Lipschitz functions). A rank hypothesis is
made, in which it is assumed that the matrix Duht(x, u) is of maximal rank N at
points for which ht(x, u) = 0. Since this implies MFC, Proposition 4.6 shows that
this furnishes the constraint qualification required by Theorem 5.1, with a constant
M (whence the required summability). In the case of a strong local minimum (a local
W 1,1 minimum actually suffices), the theorem allows us to let R → +∞ in order to
obtain the global Weierstrass condition. It follows in this classical setting that the
resulting multiplier λ(t) is essentially bounded (since, for the first radius (say), M and
kΛ
u are constants). We summarize the result for the classical setting:

Corollary 5.2. Let the Lipschitz arc x∗ provide a strong local minimum for
J(x) subject to the boundary conditions and the constraint ht(x, x

′) = 0 a.e., where
L, h ∈ C1, and where, for some ε > 0, Duh is of rank N at all points (t, x, u) for
which |x − x∗(t)| < ε and ht(x, u) = 0. Then the conclusions of Theorem 5.1 hold,
with a global Weierstrass condition, and for a bounded multiplier λ(t).

We remark that in some classical variants of the multiplier rule, it is assumed
that x′∗ is piecewise continuous and that the rank hypothesis holds solely along x∗,
in the following sense: Duh(t, x∗(t), x

′
∗(t)) has maximal rank for each t, where at a

corner, this is taken to hold for both x′∗(t+) and x′∗(t−). That situation is covered
by Theorem 4.8.

6. Differential-algebraic systems. In this section we consider the following
problem, for a given function h : [a, b]×Rn×Rm× Rn → RN : to minimize

J(x, u) := `(x(a), x(b)) +

∫ b

a

Λt(x(t), u(t), x′(t)) dt

over the pairs (x, u) satisfying the controlled differential-algebraic system (or implicit
differential equation) and control constraints

ht(x(t), u(t), x′(t)) = 0, u(t) ∈ U(t) a.e.

as well as the boundary conditions (x(a), x(b)) ∈ E. The problem is viewed as a
special case of (P ) of Section 2 in which the control variable is (u, v), ft(x, u, v) := v,
and

S :=
{

(t, x, u, v) : t ∈ [a, b], u ∈ U(t), ht(x, u, v) = 0
}
.

For a given admissible process (x∗, u∗, v∗), radius function R, and ε > 0, we suppose
as before that (x∗, u∗, v∗) is a local minimum of radius R for the problem. We take
U and h L×B measurable and U closed-valued, and we suppose that h and Λ satisfy
Lε,R∗ ; evidently, f satisfies Lε,R∗ with kfx = 0 = kfu and kfv = 1. The following constraint
qualification is made:

Mε,R
∗ : There exists M : [a, b]→ R measurable such that, for almost every t,

(x, u, v) ∈ Sε,R∗ (t), λ ∈ RN , µ ∈ NL
U(t)(u), (α, β − µ, γ) ∈ ∂L〈λ, ht〉(x, u, v)

=⇒ |λ| ≤M(t)|(β, γ)|.

It is easy to see that this coincides with the condition Mε,R
∗ of Section 4, when the

choice φt = [ht(x, u, v), u ], Φ(t) = {0}×U(t) is made (which is the case here). With
these identifications, the following is immediate from Theorem 4.3:
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Theorem 6.1. Under the hypotheses above, let the functions kΛ
x , Mkhx [1+kΛ

u+kΛ
v ]

be summable, and suppose that for some η > 0 we have R(t) ≥ ηM(t)khx(t) a.e. Then
there exist p and λ0 satisfying all the conclusions of Theorem 4.3 where, in the explicit
multiplier case, the adjoint inclusion is expressible in the form

(p′(t),−µ(t), p(t)) ∈ ∂C
{
λ0Λt + 〈λ(t), ht〉

}
(x∗(t), u∗(t), x

′
∗(t)) a.e.

for a measurable function µ(·) taking values in NC
U(t)(u∗(t)) a.e., and where

|λ(t)| ≤M(t)
{
|p(t)|+ λ0k

Λ
u (t) + λ0k

Λ
v (t)

}
a.e.

We conclude this section with a special case that facilitates comparison to the
existing literature, which has relied upon implicit function theorems and more re-
strictive hypotheses. Let Λ, h be continuously differentiable and U autonomous, and
assume that u∗ is bounded. In this context, it follows that for any constant finite
radius R, the functions khx , kΛ

x , kΛ
u , kΛ

v may all be taken to be constant. With φ and
Φ defined as above, the condition MFC of Section 4 at a point (t, x, u, v) reduces to
the following:

(0, 0) ∈ Du,v〈λ, ht(x, u, v)〉+NL
U (u)×{0} =⇒ λ = 0, (6.1)

and Prop. 4.6 implies that if (6.1) is satisfied on Cε,R∗ , then Mε,R
∗ holds (with a constant

M). By considering a sequence Ri → +∞, we obtain the following:
Corollary 6.2. For ε > 0, let (x∗, u∗) provide a minimum for the problem

relative to the admissible (x, u) satisfying |x(t)− x∗(t)| < ε, where Λ, h are C1, U is
autonomous, and u∗ is bounded. Suppose that (6.1) holds at each point (t, x, u, v) ∈ S
satisfying |x − x∗(t)| < ε. Then the conclusions of the Theorem hold, with the global
Weierstrass condition, and for a multiplier λ(t) that is bounded.

7. Constraints of equality/inequality type. In this section we consider the
following problem: to minimize

J(x, u) := `(x(a), x(b)) +

∫ b

a

Λt(x(t), u(t)) dt

subject to the dynamics, unilateral control constraints, and boundary conditions

x′(t) = ft(x(t), u(t)), u ∈ U(t) a.e., (x(a), x(b)) ∈ E,

as well as the pointwise mixed constraints

gt(x(t), u(t)) ≤ 0, ht(x(t), u(t)) = 0 a.e.

Here h has values in RN and g in RK (so that the inequality g ≤ 0 is understood
in the vector sense). This type of context has dominated the literature on mixed
constraints. The problem may be viewed as the special case of (P ) of Section 2 in
which

S :=
{

(t, x, u) : t ∈ [a, b], u ∈ U(t), gt(x, u) ≤ 0, ht(x, u) = 0
}
.

For a given admissible process (x∗, u∗), radius function R, and ε > 0, we suppose as
before that (x∗, u∗) is a local minimum of radius R for the problem. We take U , f ,
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g, h, Λ measurable, U closed-valued, and we suppose that the functions f , g, h, Λ
satisfy Lε,R∗ .

In the absence of the set U (or at points in its interior), the classical (smooth and
uncalibrated) Mangasarian-Fromowitz condition MFC corresponding to our equal-
ity/inequality system is given by

λ ∈ RN , γ ∈ RK+ , 〈γ, gt(x, u)〉 = 0, Du

{
〈γ, gt〉+ 〈λ, ht〉

}
(x, u) = 0 =⇒ γ = 0, λ = 0.

This is equivalent to requiring that, at admissible points, the gradients of the functions
{Dugi, Duhj} (where i is restricted to those indices for which the inequality constraint
is saturated) are linearly independent, with the further proviso that only nonnegative
coefficients need be considered for the Dugi. When U is present, the condition reads

λ ∈ RN , γ ∈ RK+ , 〈γ, gt(x, u)〉 = 0,

Du

{
〈γ, gt〉+ 〈λ, ht〉

}
(x, u) ∈ −NL

U(t)(u) =⇒ γ = 0, λ = 0.

The following calibrated and nonsmooth extension of this constraint qualification is
imposed:

Mε,R
∗ : There exists M : [a, b]→ R measurable such that, for almost every t,

(x, u) ∈ Sε,R∗ (t), λ ∈ RN , µ ∈ NL
U(t)(u), γ ∈ RK+ , 〈γ, gt(x, u)〉 = 0,

(α, β − µ) ∈ ∂L
{
〈γ, gt〉+ 〈λ, ht〉

}
(x, u) =⇒ |(γ, λ)| ≤M(t)|β|.

This coincides with the condition Mε,R
∗ of Section 4 for the relevant identifications:

φt(x, u) = [ gt(x, u), ht(x, u), u ], Φ(t) = RK−×{0}× U(t).

Thus the validity of Mε,R
∗ (for a constant M) would follow in certain scenarios from

Propositions 4.5, 4.4, or 4.6. As a special case of Theorem 4.3 we obtain the following
intermediate theorem (that is, for a given radius function R):

Theorem 7.1. Under the hypotheses above, let the functions

kfx , k
Λ
x , M

{
kgx + khx

}{
kfu + kΛ

u

}
be summable, and suppose that for some η > 0 we have

R(t) ≥ ηM(t)
{
kgx(t) + khx(t)

}
a.e.

Then there exist p and λ0 satisfying all the conclusions of Theorem 2.1. If gt, ht are
strictly differentiable at (x∗(t), u∗(t)) a.e., then there exist measurable functions

λ : [a, b]→ RN , γ : [a, b]→ RK+ , with 〈γ(t), gt(x∗(t), u∗(t))〉 = 0 a.e.

and

|(γ(t), λ(t))| ≤ M(t)
{
|p(t)|kfu(t) + λ0k

Λ
u (t)

}
a.e.

such that the adjoint inclusion is expressible in the explicit multiplier form

(−p′(t), µ(t)) ∈ ∂C
{
〈p(t), ft〉 − λ0Λt − 〈γ(t), gt〉 − 〈λ(t), ht〉

}
(x∗(t), u∗(t)) a.e.,

where µ is a measurable function satisfying µ(t) ∈ NC
U(t)(u∗(t)) a.e.
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We remark that this result, like the ones below, has an evident variant in which
either the equality or inequality constraints are absent; the elements corresponding
to h or g are simply deleted from the hypotheses and conclusions.

The intermediate form above generates, for example, the following global case of
the theorem in which the data are smooth and the Mangasarian-Fromowitz condition
appears in its classical form; the theorem results from invoking Prop. 4.6, and letting
Ri →∞:

Corollary 7.2. Let (x∗, u∗) be a strong (or W 1,1) local minimum, where all
the functions involved are C1, U is autonomous and u∗ bounded. Suppose that for
every t, at each point (x, u) ∈ S(t) for which |x− x∗(t)| < ε, the following constraint
qualification holds:

λ ∈ RN , γ ∈ RK+ , 〈γ, gt(x, u)〉 = 0,

Du

{
〈γ, gt〉+ 〈λ, ht〉

}
(x, u) ∈ −NL

U (u) =⇒ γ = 0, λ = 0.

Then the conclusions of Theorem 7.1 hold, with the global Weierstrass condition.
Having considered the intermediate and global situations above, we now present

a local (or pointwise) version, in which the constraint qualification is imposed only
with reference to the optimal process itself. Theorem 4.8 yields:

Corollary 7.3. We posit the same hypotheses as in Corollary 7.2, but with the
constraint qualification assumed to hold only at admissible cluster points (t, x, u) of
(x∗, u∗) (see Def. 4.7). Then there exist p, λ0, λ, γ, µ satisfying the conclusions of
Theorem 7.1, but with a local Weierstrass condition: for some δ > 0, for t a.e.,

(x∗(t), u) ∈ S(t), |u− u∗(t)| ≤ δ =⇒
〈p(t), ft(x∗(t), u)〉 − λ0Λt(x∗(t), u) ≤ 〈p(t), ft(x∗(t), u∗(t))〉 − λ0Λt(x∗(t), u∗(t)).

Another variation on our theme involves the use of Theorem 3.2 to allow asym-
metric hypotheses relative to a partitioned control u = (v, w). We illustrate this via
the problem of minimizing the same cost functional J(x, u) = J(x, v, w) as above,
subject to the same dynamics x′ = ft(x, v, w) and boundary conditions, but under
the constraints

gt(x(t), v(t), w(t)) ≤ 0, ht(x(t), v(t), w(t)) = 0, w(t) ∈W (t) a.e.,

where W is L×B measurable. We are given u∗ = (v∗, w∗), a local minimum of radius
R for the problem. The basic measurability hypotheses remain in force on f, g, h,Λ,
which are now assumed to satisfy the asymmetric hypothesis HBSε,R∗ of Theorem 3.2
(thus, continuity in w is not assumed). We define

S(t, w) :=
{

(x, v) : gt(x, v, w) ≤ 0, ht(x, v, w) = 0
}
.

The following calibrated constraint qualification is imposed:

HMε,R
∗ : There exists M : [a, b]→ R measurable such that, for almost every t,

w ∈W (t)∩B(w∗(t), R(t)), (x, v) ∈ Sε,R∗ (t, w), λ ∈ RN , γ ∈ RK+ , 〈γ, gt(x, v, w)〉 = 0,

(α, β) ∈ ∂L
{
〈γ, gt(·, ·, w)〉+ 〈λ, ht(·, ·, w)〉

}
(x, v) =⇒ |(γ, λ)| ≤M(t)|β|.

We invoke Theorem 3.2 (together with Propositions 4.1 and 4.2) to derive:

16



Theorem 7.4. Under the hypotheses above, let the functions

kfx(t, w∗(t)), k
Λ
x (t, w∗(t)) and

M(t)
{
kfv (t, w∗(t)) + kΛ

v (t, w∗(t))
}{
kgx(t, w∗(t)) + khx(t, w∗(t))

}
be summable, and suppose that for some η > 0 we have

R(t) ≥ ηM(t)
{
kgx(t, w∗(t)) + khx(t, w∗(t))

}
a.e.

Then there exist p and λ0 satisfying all the conclusions of Theorem 3.2. If gt(·, ·, w∗(t))
and ht(·, ·, w∗(t)) are strictly differentiable at (x∗(t), v∗(t)) a.e., then there exist mea-
surable functions

λ : [a, b]→ RN , γ : [a, b]→ RK+ , with 〈γ(t), gt(x∗(t), u∗(t))〉 = 0 a.e.

and

|(γ(t), λ(t))| ≤ M(t)
{
|p(t)|kfv (t, w∗(t)) + λ0k

Λ
v (t, w∗(t))

}
a.e.

such that the hybrid adjoint inclusion is expressible in the explicit multiplier form

(−p′(t), 0) ∈ ∂C
{
〈p(t), ft〉 − λ0Λt − 〈γ(t), gt〉 − 〈λ(t), ht〉

}
(x∗(t), v∗(t), w∗(t)) a.e.,

the generalized gradient being taken with respect to (x, v).

8. Relation to the literature. This section relates our results to the existing
literature. It is not meant to be a comprehensive survey, nor do we go beyond the
current framework: first-order necessary conditions for optimal control problems with
standard dynamics that include mixed constraints but not unilateral state constraints.
(We believe, however, that the methods will extend to that case.)

One of the novel features of this article is the presence of the radius function R(t).
Let us briefly explain how this stratified aspect is new. Even in the classical calculus of
variations, the addition of a constraint such as |x′(t)−x′∗(t)| ≤ R modifies the concept
of local minimum. In a control setting, the question is whether the radius constraint
|u− u∗(t)| ≤ R(t) can just be absorbed into the control constraint structure, thereby
changing our local minimum into one of the usual kind for the redefined problem, and
making it amenable to known results.

In the case of a standard optimal control problem with unmixed constraints u ∈ U ,
this reduction is possible: we simple replace U by U ∩B(u∗(t), R(t)), and known nec-
essary conditions then apply. The case of mixed constraints is different, because of the
fact that certain constraint qualifications (rank hypotheses, Mangasarian-Fromowitz
or bounded slope conditions) must be satisfied before the necessary conditions can
be invoked. To illustrate, consider the case in which the only control constraint is
h(x, u) = 0. For a strong local minimum, in order to assert the necessary conditions,
the usual multiplier rule requires the hypothesis that the rank of hu be maximal when
h = 0. Now suppose that we have instead a local minimum of radius R. In order
to absorb this additional constraint into the set of admissible control processes, we
would need to consider two constraints: h(x, u) = 0, |u − u∗(t)| ≤ R(t), where both
are active at certain points. Now the required rank condition that would allow us to
invoke the existing necessary conditions has changed: it is more complicated than hu
being of maximal rank. In our theorem, however, the radius constraint is part of the
definition of local minimum, and our results show that it does suffice to have the hu
rank condition. This is new (and useful).
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The role of the radius in obtaining directly either global, local, or pointwise ver-
sions of the necessary conditions is amply illustrated in Section 3 (in connection with
the Euler adjoint inclusion), in Section 5 (in connection with the classical multiplier
rule), and in Section 7 (in connection with equality/inequality constraints). In some
cases, this leads to the affirmation of a Weierstrass condition in contexts where prior
results made no such claim. The use of a radius also plays an important role in our
forthcoming extension of the Schwarzkopf multiplier rule (see below).

Another innovative aspect of our results is the weak regularity hypotheses imposed
on the data of the problem, for which continuous differentiability has been the norm
(with a few exceptions, see below). The general nature of the mixed constraint is
also new, whether it is the geometric form used in Theorem 2.1 or the functional
form φt(x, u) ∈ Φt studied in Section 4; prior results in the literature have been
framed in terms of equalities and inequalities. Our results also inherit from earlier
work on the nonsmooth maximum principle the very general nature of the endpoint
constraints, which need not be prescribed by a smooth manifold, in contrast to most
of the literature.

We now make more specific reference to related work. The best source for what
could be termed the classical approach is undoubtedly Hestenes [23], which synthe-
sizes the classical multiplier rules in the calculus of variations and extends them to
control problems. We find there piecewise continuous controls and data that is con-
tinuously differentiable in all variables. There is no unilateral control set constraint
to accompany the mixed constraints which, as is the case for all the references dis-
cussed below, are taken to be of equality/inequality type. A global rank hypothesis
is made (as in Section 5), but the reduction of independence to positive linear inde-
pendence for the inequality constraints (which is what the Mangasarian-Fromowitz
condition would give in this context) is not made. Section 5 shows how these results
are subsumed and extended.

Significant progress was made in the work of Neustadt and Makowski [26, 28]. The
data remain continuously differentiable, but controls are bounded and measurable,
and a unilateral control set that is ‘open in itself’ is allowed. The mixed constraints
are not necessarily ‘regular’: no linear independence is imposed. In this context, the
adjoint variable is a function of bounded variation.

In [20], Dmitruk presents the results of the Dubovitskĭı-Milyutin school for the
problem in question. This work features a partitioned control (v, w) as in Section 3,
and a constraint qualification including positive linear independence of the inequality
constraints. The constraint qualification, however, must be satisfied by the part of the
control v that is not subject to a unilateral constraint, in contrast to our Theorem 7.1
or Corollary 7.2. The regularity hypotheses on the data are also significantly stronger
than ours (see Theorem 7.4): bounded control, continuous differentiability in (x, v),
and continuity in w; furthermore, the boundary conditions correspond to smooth sets.
Unilateral state constraints are allowed, however.

In [19], Devdariani and Ledyaev break new ground by studying a difficult problem
with implicit dynamics (as in Section 6), and nonsmooth mixed constraints. The
analysis is limited to fixed initial condition and free endpoints, however, which is
quite restrictive.

The article by de Pinho and Rosenblueth [15] also allows merely Lipschitz dynam-
ics and cost, much like ours, and has the same general boundary conditions. Their
constraint functions are smooth in the state and the control, however, and their re-
sults do not include a Weierstrass condition. A full rank hypothesis is posited in a
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partitioned framework, along the lines of [20], but only pointwise along the optimal
process. This resembles our hypothesis in Theorem 4.8, but without the use of cluster
points. The following example shows that cluster points cannot be ignored, however.

An example. In one dimension (for x) and two dimensions (for u), on the interval
[0, 1], we minimize −x(1) subject to x′(t) = u1(t), x(0) = −1 and the mixed constraint
x(t)+u2(t) ≤ 0 a.e., where u1, u2 are constrained by |ui| ≤ 2 and u1u2 ≥ 0. It is clear
that any admissible trajectory has x(t) ≤ 0 ∀ t, for otherwise there would exist a set of
positive measure in which x(t) and x′(t) are strictly positive, whence u1(t)u2(t) < 0,
a contradiction. Thus the cost corresponding to any admissible trajectory is always
nonnegative, and the arc x∗(t) = t− 1 is optimal, for the control

(u1(t), u2(t)) =

{
(1, 0) if t ∈ [0, 1)

(0,−1) if t = 1

Note that the single inequality constraint is unsaturated at every t, and there is no
equality constraint. Thus MFC holds at every point along the optimal process. This
may lead us to believe that the necessary conditions that apply in the absence of the
inequality constraint (the usual maximum principle) hold; indeed, this is asserted in
[15]. Such is not the case, however. (The necessary conditions would give p ≡ 0 and
(by transversality) λ0 = 0, contradicting nontriviality.) The inapplicability of our
Corollary 7.3 is due to the fact that the constraint qualification fails (as it must), in
this case at a single cluster point (t, x, u1, u2) = (1, 0, 1, 0): we have there

Du

{
γ(x+ u2)

}
(1, 0, 1, 0) = (0, γ) ∈ −NL

U (1, 0) = {0} × R+

for any γ > 0. We remark that when only equality constraints are present, the
results of [15] are correct and deducible from ours: one may show that the hypotheses

there (which are of the type that appear in Prop. 4.4) imply that Mε,R
∗ holds for a

constant M , when R is a sufficiently small constant. Thus we may add the Weierstrass
condition to the list of conclusions.

Finally, we note the existence of a multiplier rule due to Schwarzkopf [33] which
posits no explicit constraint qualification, but instead imposes a local surjectivity con-
dition on the functions defining the mixed constraint. (A partial convexity hypothesis
is also required.) This result, which is also unusual in asserting a Weierstrass con-
dition involving nonadmissible points, has long been viewed as an anomaly in the
theory. It turns out, however, that it can be obtained (and extended) by means of
Theorem 2.1, though not as directly as the others we have discussed. The details are
given in a companion paper [9].

9. Proofs of Theorems 2.1 and 3.2. We shall first prove the theorem in the
case Λ ≡ 0. We may assume without loss of generality that kfx , kS are positive-valued.
Set

k(t) := kfx(t) + kS(t)kfu(t) ∈ L1(a, b), c(t) := Mk(t)/kS(t),

where M > 1 is a parameter, and define

F (t, x) := {(ft(x, u), θt(u)) : u ∈ S(t, x)} , t ∈ [a, b], |x− x∗(t)| ≤ ε,

where θt(u) := c(t)(u− u∗(t)). The graph G(t) of F (t, ·) is then defined as usual:

G(t) := {(x, f(t, x, u), θt(u)) : (x, u) ∈ S(t)} .
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It follows that F is L×B measurable, and that for almost every t, G(t) is locally closed

around points (x, ft(x, u), θt(u)) for which (x, u) ∈ Sε,R∗ (t), |u− u∗(t)| < R(t). We set

K(t) := 2kfx(t) + (1 + kS(t))kfu(t), K ′M (t) := Mk(t)(1 + kS(t))/kS(t).

Proposition 9.1. Let (α, β, τ) belong to NL
G(t)(x, ft(x, u), θt(u)), where (x, u) ∈

Sε,R∗ (t) and |u− u∗(t)| < R(t). Then for almost every t, we have

|α| ≤ k(t) {|β|+M |τ |} , (9.1)

as well as (α, 0) ∈ ∂L
{
〈−β, ft〉 − 〈τ, θt〉+ [K(t)|β|+K ′M (t)|τ |]dS(t)

}
(x, u).

Proof. We suppose that t is a point where the properties in Lε,R∗ and BSε,R∗ hold.
We suppress t in order to simplify the notation, and we first treat the case in which the
following stronger inclusion holds: (α, β, τ) ∈ NP

G (x, f(x, u), θ(u)). By the definition
of proximal normal, there exists σ ≥ 0 such that the function (x′, u′) 7→

〈−(α, β, τ), (x′, f(x′, u′), θ(u′))〉+ σ {|(x′, f(x′, u′), θ(u′))− (x, f(x, u), θ(u))|}2

has a local minimum relative to (x′, u′) ∈ S at (x′, u′) = (x, u). From the Lipschitz
properties of f and θ it follows that for a sufficiently large value of σ′, the function

h(x′, u′) := 〈−(α, β, τ), (x′, f(x′, u′), θ(u′))〉+ σ′
{
|x′ − x|2 + |u′ − u|2

}
also has a local minimum relative to (x′, u′) ∈ S at (x′, u′) = (x, u). Writing the nec-
essary condition (0, 0) ∈ ∂L{h+ IS}(x, u) for the minimum (where IS is the indicator
function of S) yields

(α, 0) ∈ ∂L {〈−β, f(x, u)〉 − 〈τ, θ(u)〉}+NL
S (x, u),

by the sum rule [10, 1.10.1], and since ∂LIS = NL
S . In light of this inclusion, there

exists

(α′, β′) ∈ ∂L {〈−β, f(x, u)〉 − 〈τ, θ(u)〉}

such that (α − α′,−β′) ∈ NL
S (x, u). We deduce from BSε,R∗ the inequality |α − α′| ≤

kS |β′|, since NL
S (x, u) is generated by limits from NP

S (x, u). Furthermore, (α′, β′)
satisfies |α′| ≤ kfx |β|, |β′| ≤ kfu|β| + c|τ |, in view of the Lipschitz condition. These
facts yield

|α| ≤ |α′|+ kS |β′| ≤ kfx |β|+ kS(kfu|β|+ c|τ |) = (kfx + kSk
f
u)|β|+ kSc|τ |,

which gives rise to the estimate (9.1) claimed in the Proposition. It follows from this
estimate that for any m > 0, the function h admits the Lipschitz constant K(t)|β|+
K ′M (t)|τ |+m in a sufficiently small neighborhood of (x, u), where K,K ′M were defined
above. An exact penalization result [5, Prop. 2.4.3] implies then that the function
h+ [K(t)|β|+K ′M (t)|τ |+m]dS attains a local minimum at (x, u), whence

(0, 0) ∈ ∂P {h+ [K(t)|β|+K ′M (t)|τ |+m]dS} (x, u), or

(α, 0) ∈ ∂L {〈−β, f(x, u)〉 − 〈τ, θ(u)〉+ [K(t)|β|+K ′M (t)|τ |+m]dS(x, u)}
⊂ ∂L {〈−β, f(x, u)〉 − 〈τ, θ(u)〉+ [K(t)|β|+K ′M (t)|τ |]dS(x, u)}+m∂LdS(x, u).
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Letting m ↓ 0 gives the desired result.
Consider now the general case, in which (α, β, τ) ∈ NL

G(x, f(x, u), θ(u)). Then
there exist sequences (αi, βi, τi) converging to (α, β, τ) and (xi, f(xi, ui), θ(ui)) con-
verging to (x, f(x, u), θ(u)) such that

(αi, βi, τi) ∈ NP
G (xi, f(xi, ui), θ(ui)).

The estimate (9.1) for |αi| proven above (in terms of βi and τi) clearly implies the
required one in the limit. There remains the inclusion to verify.

It follows from the nature of θ that ui → u, and (by the case treated above) that

(αi, 0) ∈ ∂L {〈−βi, f(xi, ui)〉 − 〈τi, θ(ui)〉+ [K(t)|βi|+K ′M (t)|τi|]dS(xi, ui)}
⊂ ∂L {〈−β, f(xi, ui)〉 − 〈τ, θ(ui)〉+ [K(t)|β|+K ′M (t)|τ |]dS(xi, ui)}

+ ∂L {〈β − βi, f(xi, ui)〉 − 〈τi − τ , θ(ui)〉}
+ ∂L {[K(t)(|βi| − |β|) +K ′M (t)(|τi| − |τi|)]dS(xi, ui)} .

Passing to the limit in this relation, we obtain the required conclusion.
An auxiliary problem. We now define y∗(t) ≡ 0 as well as a radius function

RF (t) := c(t)R(t) (this is naturally taken to be +∞ when R(t) = +∞). We proceed
to observe that the arc (x∗, y∗) is admissible for the differential inclusion optimal
control problem (Q) of minimizing `(x(a), x(b)) over the arcs (x, y) satisfying

|(x′(t), y′(t))− (x′∗(t), y
′
∗(t))| ≤ RF (t), |x(t)− x∗(t)| ≤ ε a.e.,

∫ b

a

|x′(t)− x′∗(t)| dt ≤ ε

as well as

(x(a), x(b)) ∈ E, y(a) = 0, (x′(t), y′(t)) ∈ F (t, x(t)) a.e.

Indeed, (x∗, y∗) is a solution of this problem. This results from the fact that any
trajectory (x, y) for F as above admits a measurable u(·) such that (x(t), u(t)) ∈
S(t) and (x′(t), y′(t)) = (ft(x(t), u(t)), θt(u(t))) a.e. (this uses a measurable selection
theorem). Furthermore, we have, for almost every t,

|y′(t)− y′∗(t)| = |θt(u(t))| = c(t)|u(t)− u∗(t)| ≤ RF (t),

so that |u(t)−u∗(t)| ≤ RF (t)/c(t) = R(t). But we know that x∗ provides a minimum
of radius R for the problem (P), and it follows that (x∗, y∗) is optimal for (Q).

We now bring to bear upon (Q) Corollary 3.5.3 of [7], whose hypotheses we
verify. We have seen that (x∗, y∗) is a local minimum of radius RF for this prob-
lem. The condition (9.1) of Proposition 9.1 confirms the bounded slope condition of
radius RF required by that result, with the function Mk. We also have the ratio
RF (t)/(Mk(t)) = R(t)/kS(t) ≥ η bounded away from 0 as required.

We deduce the existence of an arc (p, q) and a number λ0 in {0, 1} satisfying the
nontriviality condition

(λ0, p(t), q(t)) 6= 0 ∀ t ∈ [a, b]

and the transversality condition:

(p(a),−p(b)) ∈ ∂Lλ0`(x∗(a), x∗(b)) +NL
E (x∗(a), x∗(b)), q(b) = 0
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and such that p satisfies the Euler adjoint inclusion:

(−p′(t),−q′(t)) ∈

co
{

(ω, ν) : (ω, ν, p(t), q(t)) ∈ NL
G+(t)(x∗(t), y∗(t), ft(x∗(t), u∗(t)), 0)

}
,

where G+(t) is the set {(x, y, ft(x, u), θt(u)) : (x, u) ∈ S(t)}. Because this set imposes
no restrictions on y, it follows that any point (ω, ν, p(t), q(t)) as above has ν = 0,
whence q′(t) = 0 a.e., so that q(t) ≡ 0 (since q(b) = 0).

It is a further conclusion that (p, q) satisfies the Weierstrass condition of radius
RF for almost every t : if u ∈ S(t, x∗(t)) satisfies the condition

|(ft(x∗(t), u), θt(u))− (ft(x∗(t), u∗(t)), 0)| ≤ RF (t), then (9.2)

〈p(t), ft(x∗(t), u)〉+ 〈q(t), θt(u)〉 ≤ 〈p(t), ft(x∗(t), u∗(t))〉+ 〈q(t), θt(u∗(t))〉 ,

or, since q = 0, 〈p(t), ft(x∗(t), u)〉 ≤ 〈p(t), ft(x∗(t), u∗(t))〉 . But (in view of the Lips-
chitz condition) (9.2) is certainly satisfied if

|u− u∗(t)| ≤
RF (t)

kfu(t) + c(t)
=

c(t)R(t)

kfu(t) + c(t)
=

M(k(t)/kS(t))R(t)

kfu(t) +Mk(t)/kS(t)
.

This last expression is no less than

Mk(t)R(t)

kfx + kS(t)kfu(t) +Mk(t)
=

M

M + 1
R(t).

We obtain therefore the following Weierstrass condition of radius RM/(M + 1):

t a.e., u ∈ S(t, x∗(t)), |u− u∗(t)| ≤ R(t)M/(M + 1)

=⇒ 〈p(t), ft(x∗(t), u)〉 ≤ 〈p(t), ft(x∗(t), u∗(t))〉 .

Bearing in mind again that q ≡ 0, we obtain (λ0, p(t)) 6= 0 on [a, b], as well as

(p′(t), 0) ∈ co
{

(ω, 0) : (ω, p(t), 0) ∈ NL
G(t)(x∗(t), f(t, x∗(t), u∗(t)), 0)

}
. (9.3)

We now produce an arc p that satisfies all the above, including the Weierstrass con-
dition of full radius R, by allowing M → ∞. This is carried out by a standard
argument that exploits the fact that the set of (λ0, p) satisfying transversality, the
adjoint inclusion (9.3) and λ0 + ‖p‖∞ = 1 (with λ0 ≥ 0) is sequentially compact (see
[7, Prop. 2.1.2]). We first get an arc pi as above for each integer M = i > 1. By
normalizing, we arrange to have λ0,i + ‖pi‖∞ = 1. Each pi (as a consequence of (9.3)
and (9.1)) satisfies |p′i(t)| ≤ k(t)|pi(t)| a.e., a uniform estimate which (with the help
of Gronwall’s Lemma) allows us to extract a convergent subsequence of the (λ0,i, pi)
whose limit (λ0, p) satisfies all the above, including the adjoint inclusion (9.3), but
now with the Weierstrass condition of full radius R. We then renormalize if necessary
to have λ0 ∈ {0, 1}.

At this point, we have an arc p satisfying all the required conclusions of Theorem
2.1, except that the adjoint inclusion is of the form (9.3) instead of the form given in
the Theorem. We proceed now to derive that form. Let ω be any point satisfying

(ω, p(t), 0) ∈ NL
G(t)(x∗(t), ft(x∗(t), u∗(t)), 0).
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According to Proposition 9.1, we have

(ω, 0) ∈ ∂L
{
〈−p(t), ft〉+K(t)|p(t)|dS(t)

}
(x∗(t), u∗(t)).

Since (p′(t), 0) is a convex hull of such points (ω, 0), and since the convex hull of ∂L
is ∂C , we obtain

(−p′(t), 0) ∈ ∂C
{
〈p(t), ft〉 −K(t)|p(t)|dS(t)

}
(x∗(t), u∗(t)) (9.4)

(the minus sign can be brought out because of the calculus rule ∂C(−f) = −∂Cf).
The Euler inclusion in the statement of the Theorem results from the sum rule for ∂C
together with the fact that ∂CdS(t) ⊂ NC

S(t).
There remains the final assertion of the Theorem, concerning the sequence of

increasing radius functions. Applying the theorem for each Ri, we obtain a couple
(λ0,i, pi) satisfying (among other things) a Weierstrass condition of radius Ri as well
as (9.3). Note that for each i, Prop. 9.1 applies with the data kfx , k

f
u, kS corresponding

to any given radius function, for example R1 (say). Thus the uniform estimates used
in the limiting procedure above are available, and the conclusion follows.

This completes the proof of the Theorem in the case Λ ≡ 0. However, the
case in which a nonzero Λ is present is reducible to the already treated one by
the familiar device of introducing an additional state coordinate y with dynamics
y′(t) = Λt(x(t), u(t)), an initial condition y(a) = 0, and an additional term y(b) in
the cost (replacing the integral). Following the application of the Theorem (for this
problem having zero integral cost), a straightforward decoding of notation leads to
the full statement of Theorem 2.1. We omit these details.

Remark: The proof shows that the Euler inclusion can be stated in the poten-
tially sharper form

(−p′(t), 0) ∈ ∂C
{
〈p(t), ft〉 − λ0Λt −K(t)|p(t)|dS(t)

}
(x∗(t), u∗(t)) a.e.

Proof of Theorem 3.2. As in the proof of Theorem 2.1, we reduce to the case
Λ ≡ 0. The following extra hypotheses allow us to adapt the proof of that theorem
to the hybrid case.

Interim Hypotheses:

[IH1] For each t, the set W (t) consists of finitely many points;
[IH2] There exists C > 0 such that, for almost all t:

w ∈W (t) ∩B(w∗(t), R(t)), (x, v) ∈ Sε,R∗ (t, w) =⇒
|kfx(t, w∗(t))− kfx(t, w)|+ kS(t)|kfv (t, w∗(t))− kfv (t, w)|+ |ft(x, v, w)− x′∗(t)| ≤ C.

We remark that the use of such interim hypotheses follows closely the lines of the proof
of Theorem 5.1.2 in [5]. We modify the definition of the underlying multifunction F
as follows, where u = (v, w):

F (t, x) := {(ft(x, u), θt(u)) : (x, v) ∈ S(t, w), w ∈W (t)} .

Then F (t, ·) continues to have locally closed graph, since W (t) is a finite set (by [IH1]).
The proof of Prop. 9.1 goes through without essential change and gives (9.1), for the
modified function

k(t) := sup
w∈W (t)

kfx(t, w) + kS(t) sup
w∈W (t)

kfv (t, w),
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which is summable because of [IH2].
In the next step, the auxiliary problem is defined exactly as before. The necessary

conditions again apply, and the main point is to derive the new hybrid adjoint inclusion
from relation (9.3). This amounts to truncating its last component, the one involving
w. The argument is the following.

Fixing a suitable t, let ω be any point satisfying (in partitioned notation)

(ω, p(t), 0, 0) ∈ NL
G(t)(x∗(t), ft(x∗(t), u∗(t)), 0, 0).

Then (ω, p(t), 0, 0) is obtained as the limit of points

(ωi, pi, ai, bi) ∈ NP
G(t)(xi, ft(xi, ui), θt(vi, wi)),

where

(xi, vi) ∈ S(t, wi), (xi, ft(xi, ui), θt(vi, wi))→ (x∗(t), ft(x∗(t), u∗(t)), 0, 0).

It follows that vi → v∗(t) and that wi = w∗(t) for all i sufficiently large (since W (t)
is finite). Then (from the definition of proximal normal) we have

(ωi, pi, ai) ∈ NP
G0(t)(xi, ft(xi, vi, w∗(t)), c(t)(vi − v∗(t))),

where G0(t) is the set

{(x, ft(x, v, w∗(t)), c(t)(v − v∗(t))) : (x, v) ∈ S(t, w∗(t))} .

In the limit this gives the required ‘truncated’ inclusion:

(ω, p(t), 0) ∈ NL
G0(t)(x∗(t), ft(x∗(t), u∗(t)), 0),

which implies the hybrid adjoint inclusion, by the same arguments as in the previous
proof.

In the last stage of the proof, we treat the problem without the Interim Hy-
potheses through inner approximation, as follows. It is possible to define finitely
many measurable selections wj of W (·) (one of which is w∗(t)) in such a way that
the Interim Hypotheses hold when W (t) is replaced by {wj(t)}, and also such that
the Weierstrass condition corresponding to the family {wj(t)} (when written for w∗)
implies (to any specified tolerance) the one for W (t). Since u∗ remains optimal for
this subproblem, the case of the theorem proven above can be invoked. There result
multipliers which meet all the requirements, except that the Weierstrass condition
holds only to the prescribed tolerance. The last step consists of a familiar sequential
compactness argument. (See [5, pp. 207-209] for details.)
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