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ABSTRACT. A standard control system is considered, in conjunction with a
state constraint S and a target set . The properties of open loop S-constrained
control to ¥ and practical closed loop S-constrained control to » are shown to
be equivalent, and to be characterizable in terms of the existence of certain types
of control Lyapunov functions. Feedback S-constrained stabilizability to * can be
added to the list of equivalences, when a small time controllability property is posited.

1. INTRODUCTION
We consider a control system of the form

z(t) = f(z(t),u(?)) ae., u(t)elU. (1)

The state trajectory x () evolves in R™ and control functions u(-) are Lebesgue measurable
functions u : R — U, where U C R™ is a control constraint set. The standard hypotheses
made on the dynamics will be specified at the end of this section.

A general problem of considerable importance is to determine whether open loop
asymptotic controllability of the origin implies closed loop stabilization; we refer to this as
problem (P). Closed loop stabilization involves the existence of a feedback law k : R™ — U
such that the origin is stable (in the classical sense) with respect to the ordinary differential
equation

#(t) = f(x(t), k(x(1))). (2)

A minimal condition for the existence of classical solutions to (2) is that the feedback
law k() be continuous on R™\{0}. However, Sontag and Sussmann [25] and Brockett
[4] showed that in problem (P), continuity of feedback laws cannot be expected; see also
Ryan [23]. Therefore it is necessary to work with an alternative solution concept for (2),
rather than the classical one.
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Clarke, Ledyaev, Sontag and Subbotin [7] obtained a positive answer to problem (P)
in terms of the following “sample-and-hold” solution concept for (2). Let an initial state
a € R” be specified. Then given a partition

FI{to,tl,tz,...} (3)

of [0, 00) (where ty = 0), the associated 7m-trajectory z(-) on [0, 00) with z(0) = z(ty) = «
is the curve satisfying interval-by-interval dynamics as follows: Set g = a. Then on the
interval [tg, 1], #(-) is the classical solution of the differential equation

() = f(z(t), k(xo)), x(to) =x0, tE (to,t1). 4)
We then set 21 := #(t1), and restart the system on the next interval as follows:
() = f(z(t), k(x1)), (1) =21, tE (t1,12). (5)

The process is continued in this manner through each interval. Then z(-) is the unique
solution on [0, 00) of the differential equation #(t) = f(x(t), u(t)) satisfying 2 (7) = «, with
a certain piecewise constant control determined by the feedback k(x). The constructive
methods of [7] relied upon the existence of a nonsmooth control Lyapunov functions.

We refer the reader to Clarke, Ledyaev, Rifford and Stern [6] for more details on
the history of problem (P), nonsmooth control Lyapunov functions, Filippov solutions,
and related topics. Other relevant references are Clarke, Ledyaev and Stern [8], Clarke,
Ledyaev, Stern and Wolenski [9], [10], Clarke and Stern [11], Stern [27], Coron [12],
Coron and Rosier [13], Rifford [18], [19], [20], [21], [22], Hermes [14], [15], Sontag [26],
[24]), Bacciotti [2], Kokotovic and Sussmann [17], Ancona and Bressan [1], Teel and Praly
[29], and Kellett and Teel [16]. As is clear from these references, the complexity of the
feedback stabilization problem in the case of general nonlinear systems stems from the
fact that it is unavoidable to consider discontinuous feedbacks and nonsmooth Lyapunov
functions.

In [11], the authors considered a state constrained version of problem (P), with a
general (closed) target set. For a given state constraint set S C R™ and target set X such
that S MY # @, the following definitions are relevant:

Definition 1.1.

(A) One has open loop S-controllability to ¥ prior to time T > 0 provided that for any
initial state o € S, there exists a control function u(-) and a time ¢(«) € [0, 7] such
that

o) = 2(t;0,0,u()) € 5 VL€ [0,4(a) (6)
and

z(t(a)) € X. (7)

(B) Onme has practical closed loop S-controllability to ¥ prior to time T > 0 provided
that for each y > 0, there exists a feedback law &k, : R” — U along with a scalar
B(y) > 0, such that the following holds: If

diam(r) ;== max{t;y1 —t; :1=0,1,...} < 3(v),
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then for every o € S, there exists t(a) € [0, T] such that the m-trajectory associated
with the ordinary differential equation

and initial condition #(0) = «, satisfies
z(t) e S Vtel0,t(x)] (8)

and o
2(t(a) € S+, (9)

(Here B denotes the open unit ball in R™ and B its closure.) The sense of this
definition is that for any given tolerance, there is a feedback whose associated tra-
jectories respect the state constraint (exactly) and attain the target prior to time

T (up to the prescribed tolerance), provided that the sampling rate is sufficiently
high.

(C) One has practical closed loop S-stabilizability to ¥ prior to time T > 0 provided
that practical closed loop S-controllability to ¥ prior to time 7" > 0 holds, with (9)
strengthened to

z(t) € SN(Z+49B) Vi>t(a), (10)

where t(a) € [0,7].

The distinction with (B) is of course that not only is the target attained (to the
prescribed tolerance), but the state remains there.

In Theorem 2.3 below, it is shown that under certain geometric assumptions on .S, open
loop S-control to X and practical closed loop S-control to X are equivalent and character-
izable in terms of the existence of control Lyapunov functions with certain infinitesimal
decrease properties, expressed in terms of nonsmooth Hamilton-Jacobi inequalities. Prac-
tical closed loop S-stabilizability to X i1s added to the list of equivalences, when a state
constrained small time controllability hypothesis is posited.

We shall assume that the following standard hypotheses hold for the dynamics:

(F1) The function f : R” x U — R"” is continuous and is locally Lipschitz in the state
variable z, uniformly for v € U where U C R™ is assumed to be compact; that is,
for each bounded set I' C R™, there exists Kt > 0 such that

1/ (x,u) = fy, u)ll < Krllz —yl],
whenever (z,u) and (y,u) are in ' x U.

F2) The function f possesses linear growth; that is, there exist positive numbers ¢y, co
g
such that
1/ (@, w)l] < eaffel|+ ez V(w,u) €R" < T,

where || - || denotes the Euclidean norm.
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(F3) The velocity set
fle, Uy = {f(x,u) :uc U}

is convex for every x € R™.

Under (F1)-(F2), for every initial phase (r,«) € R x R"™ and every control function
u(-), there exists a unique trajectory z(t) = x(t; 7, o, u()) defined for ¢ > 7 and satisfying
z(7) = a. Property (F3) is required so as to have available the familiar sequential com-
pactness property for trajectories of (1) on compact time intervals. (On the other hand,
in the absence of (F3), the results of this article could be framed in the context of relaxed
controls.)

2. CHARACTERIZATION THEOREM
We refer the reader to [10] as a basic reference on nonsmooth analysis. For a lower
semicontinuous extended real valued function ¢ : W — R U {400} (where W C R” is
open), we denote the proximal and limiting subdifferentials of ¢(-) at « by dpg(x) and
drg(x), respectively. For a closed set S C R™ and a point = € S, we denote by 7§ (=),
N&(z) and N§ (x) the Clarke tangent cone, the limiting normal cone, and the Clarke
normal cone to S at z, respectively.
The requisite geometric hypotheses on S will now be stated.

(S1) S is a compact subset of R™ which is wedged at each x € S; that is, int TS (z) # 0.

(S2) The following “strict inwardness” condition holds: for all € bdry(S5), for all { €
N§ () different from, 0, we have

min (v,{) < 0, 11
Uef(w)< ) (11)

where (-, -) denotes the standard inner product.

e Hypotheses (F1)-(F3) and (S1)-(S2) will be assumed to hold in all that follows.

We remark that (S1) holds automatically if S is a convex body (a compact convex
set with nonempty interior). It also holds if S is defined by (nondegenerate) inequalities
gi(x) < 0 where the g; are smooth functions. The sense of (S2) is that at the boundary
of S, there is available some “inward pointing” velocity direction.

The target set 3 is assumed to be closed with SN # @. For a closed set T’ and o > 0,
we adopt the neighborhood notation I'* = I' + aB and I'* = I' + aB. The indicator of .S
is the lower semicontinuous extended real valued function

(0 ifzes
IS(J:)'_{—I—OO ife¢gs

Prior to formulating the main result, certain types of CLF families will be specified.
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Definition 2.1.

(A) A strong CLF family is a family of functions {¢.(-)}, for which there exist ¢ > 0,
¢ > 0 such that for every v > 0, one has

(a) ¢~ is Lipschitz and locally semiconcave on S¢; that is, there exists ¢ > 0 such
that for any = € S°, the function z — ¢+ () — al|z||* is concave on an open
neighborhood of & contained in S¢.

(b) For every x € 5¢ \X27, one has

veTg(xm)lnnf(ny)@ ()< —c Y(€Lpy(x) if = (12)
and
fr(ni[r})<v,<’> < —c Y(EIpy(x) if z¢S. (13)

(c) ¢y >0o0n S\XY and ¢, =0on SNX7.

(B) A weak CLF family is a family of functions {¢-(-)}, for which there exist ¢ > 0,
¢ > 0 such that for every v > 0, one has

(a) ¢ is lower semicontinuous on S° and bounded above on S.

(b) For every x € 5¢ \X27, one has

' < — I . 14
UEI}}?U)@’W— c Ynedp(py+ Is)(x) (14)

(c) ¢y >0o0n S\XY and ¢, =0on SNX7.

The distinction between the CLF families described in (A) and (B) lies in two things:
the regularity of the functions, and the form in which the infinitesimal decrease is ex-
pressed. In (A), the functions are semiconcave (and hence Lipschitz continuous). This
class of functions has emerged as the “nicest” that can be hoped for, since smooth Lya-
punov functions do not exist in general. The Hamilton-Jacobi inequality (12),(13) is
relatively explicit and lends itself to feedback synthesis. In contrast, the functions in
(B) need not be continuous, and (14) is a more abstract expression of the infinitesimal
decrease property that lies at the heart of the Lyapunov approach.

When 1t is desired to confirm controllability, it is better to have a criterion involving
weak CLFs as in (B); it is easier to exhibit such a weak family of functions. But when
one has controllability and wishes to employ a family of CLFs (to synthesize a stabilizing
feedback, for example), then it is better to know that a strong CLF family exists. One of
the principal features of the theorem below is its assertion that the existence of a weak
family is equivalent to the existence of a strong one.

We also require below an S-constrained version of the small time controllability prop-
erty. The unconstrained case (that is, S = R") is discussed in [3], Cannarsa and Sinestrari
[5], and Wolenski and Zhuang [30]. The state constrained version of the property is char-
acterized in Stern [28].
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Definition 2.2. We say that (S, X)-small time controllability holds provided that there
exists € > 0 such that the following S-constrained minimum time function 7 : S — R to
the target 3,

me(a) :=min{t > 0: 2(f) € ¥, z(t) € SVt € [0,7], z(0) = a}, (15)

is continuous on S N {X°}, where trajectories z(-) are understood to be solutions of the
control system (1).

The following theorem summarizes, unifies and extends, in a general state constrained
setting, a number of recent results.

Theorem 2.3. The following four properties are equivalent:

(i) There exists T' > 0 such that one has open loop S-controllability to X prior to time
T.

(ii) There exists a strong CLF family with respect to S and .
(iii) There exists a weak CLF family with respect to S and 3.

(iv) There exists T' > 0 such that one has practical closed loop S-controllability to %
prior to time T'.

Furthermore, suppose that (S,X)-small time controllability holds. Then (i)-(iv) are
equivalent to

(v) There exists T > 0 such that one has practical closed loop S-stabilizability to %
prior to time T'.

Several of the implications of the theorem follow immediately from previously cited
results. The proof of Theorem 4.1 in [11] shows that (i) = (é¢). The method is rather
technical but constructive in nature. The specific family {¢~(-)} constructed in that re-
sult 1s obtained via infimal convolution of what might be termed a ”proto-CLF” family,
which is obtained via a constraint removal technique. As was shown in [11], the local
semiconcavity property of the constructed strong CLF family facilitates the construction
of a feedback law such that (iv) holds, and allows one to show that (iv) is equivalent to
(v) when (X, S)-small time controllability is assumed. (See also Remark 4.7 in [11].) The
implication (iv) = (4) is a straightforward consequence of the sequential compactness of
trajectories of (1) on compact time intervals.

Completing the proof of the theorem: In view of the preceding discussion, it suffices
to verify the two implications
and

(iii) => (i). (17)
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In order to verify implication (16), first note that for the functions ¢ occurring in
(ii), one has

Or(ey +1Is)(x) C Orey(z)+0rls(z) [L —sum rule of Proposition 1.10.1 in [10]]
= Jpyp,(2) + NE(z) [Exercise 1.10.3 in [10]]

for any z € S°\X27. Now, (12) and the fact that (v,%) < 0 for every v € T§ (=),
Y € NE(z), together imply that

i )< —¢ V(ED + Is)(2). 18
sepein (00 S e VCE Duley +15)(2) (18)

Then (16) follows readily from (18), (13), and the general fact that the P-subdifferential
1s a subset of the L-subdifferential.
We now turn to the verification of (17). Let us define

g(t,z) = oy (2) + Is(z) + ct.

By the “semismooth” proximal sum rule given by Proposition 1.2.11 in the reference [10],
one has the formula

dpg(t,z) =0p(py + Is)(z)+ ¢ V(t,z) e Rx S5 (19)
In view of condition (14), it follows that

min 1,v), <0 Yo €edpglt,z), VY(t,z)eR x {S\X27}. 20
L (L), 9SO VY Edpglta), Vita) € R (SATTL (20)
Then according to Theorem 4.6.1 of [10], the system g(-,-) is weakly decreasing on R x
{5°\X?7}, with respect to the dynamics {1} x f(z, ). This implies that for any startpoint
a € SE\X2V, there exists a trajectory z(-) of the control system (1) such that z(0) = «

and
o (2(0) + Is((2)) + ct < () + Is(a) 1)

on any interval [0,7] such that z(t) € S°\X27. If we take a € S, then since Is(a) = 0
and ¢~ («) is finite (by (iii)(a)), we deduce that z(¢) € S and
P (2(1)) < pr(a) —ct (22)

on any such interval. Furthermore, since ¢, () is bounded above on S, say by M > 0, (22)
together with (iii)(c) implies that z(¢) enters ¥27 not later than T := %, which shows
that (i) holds and completes the proof of the theorem. O

Remark 2.4. We refer the reader to §5 of [11] in regard to the following points:

e The (discontinuous) feedback laws in parts (iv) and (v) of the theorem possess a
robustness property with respect to state measurement errors which are small in an
appropriate sense. See also [24] and [6].
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(1]

e Suppose that the function f in the dynamics (1) is only defined for state values z € S.
Such a restricted definition is reasonable in many models, since the dynamics might
not make sense or break down when « ¢ S. In this situation, it is possible to extend
f from S x U to R® x U in a suitable way, so that Definition 1.1 as well as the
statement and proof of Theorem 2.3 remain the same.

e While Theorem 2.3 deals with the case of compact S, this can be relaxed to mere
closedness, if in the corresponding version of Definition 1.1 the open and closed loop
properties to target X are provided not for any a € S, but for any « in a specified

bounded subset of S.
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