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Lyon 1, 69622 Villeurbanne, France. clarke@igd.univ-lyon1.fr

Summary. The method of Lyapunov functions plays a central role in the study
of the controllability and stabilizability of control systems. For nonlinear systems,
it turns out to be essential to consider nonsmooth Lyapunov functions, even if the
underlying control dynamics are themselves smooth. We synthesize in this article a
number of recent developments bearing upon the regularity properties of Lyapunov
functions. A novel feature of our approach is that the guidability and stability is-
sues are decoupled. For each of these issues, we identify various regularity classes of
Lyapunov functions and the system properties to which they correspond. We show
how such regularity properties are relevant to the construction of stabilizing feed-
backs. Such feedbacks, which must be discontinuous in general, are implemented
in the sample-and-hold sense. We discuss the equivalence between open-loop con-
trollability, feedback stabilizability, and the existence of Lyapunov functions with
appropriate regularity properties. The extent of the equivalence confirms the cogency
of the new approach summarized here.

1 Introduction

We consider a system governed by the standard control dynamics

ẋ(t) = f(x(t), u(t)) a.e., u(t) ∈ U a.e.

or equivalently (under mild conditions) by the differential inclusion

ẋ(t) ∈ F (x(t)) a.e.

The issue under consideration is that of guiding the state x to the origin. (The
use of more general target sets presents no difficulties in the results presented
here.)

A century ago, for the uncontrolled case in which the multifunction F is
given by a (smooth) single-valued function (that is, F (x) = {f(x)}), Lyapunov
introduced a criterion for the stability of the system, a property whereby
all the trajectories x(t) of the system tend to the origin (in a certain sense
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which we gloss over for now). This criterion involves the existence of a certain
function V , now known as a Lyapunov function. Later, in the classical works
of Massera, Barbashin and Krasovskii, and Kurzweil, this sufficient condition
for stability was also shown to be necessary (under various sets of hypotheses).

In extending the technique of Lyapunov functions to control systems, a
number of new issues arise. To begin with, we can distinguish two cases: we
may require that all trajectories go to the origin (strong stability) or that (for
a suitable choice of the control function) some trajectory goes to zero (weak
stability, or controllability). In the latter case, unlike the former, it turns out
that characterizing stability in terms of smooth Lyapunov functions is not
possible; thus elements of nonsmooth analysis become essential. Finally, the
issue of stabilizing feedback design must be considered, for this is one of the
main reasons to introduce control Lyapunov functions. Here again regularity
intervenes: in general, such feedbacks must be discontinuous, so that a method
of implementing them must be devised, and new issues such as robustness
addressed.

While these issues have been considered for decades, they have only re-
cently been resolved in a unified and (we believe) satisfactory way. Several new
tools have contributed to the analysis, notably: proximal analysis and atten-
dant Hamilton-Jacobi characterizations of monotonicity properties of trajec-
tories, semiconcavity, and sample-and-hold implementation of discontinuous
feedbacks. The point of view in which the issues of guidability and stability
are decoupled is also very recent. Our purpose here is to sketch the complete
picture of these related developments for the first time, thereby synthesizing
a guide for their comprehension. The principal results being summarized here
appear in the half-dozen joint articles of Clarke, Ledyaev, Rifford and Stern
cited in the references, and in the several works by Rifford; the article [8]
of Clarke, Ledyaev, Sontag and Subbotin is also called upon. The necessary
background in nonsmooth analysis is provided by the monograph of Clarke,
Ledyaev, Stern and Wolenski [10].

Of course there is an extensive literature on the issues discussed here,
with contributions by Ancona, Artstein, Bressan, Brockett, Coron, Kellett,
Kokotovic, Praly, Rosier, Ryan, Sontag, Sussmann, Teel, and many others;
these are discussed and cited in the introductions of the articles mentioned
above. General references for Lyapunov functions in control include [2] and
[14].

2 Strong Stability

We shall say that the control system ẋ(t) ∈ F (x(t)) a.e. is strongly asymp-
totically stable if every trajectory x(t) is defined for all t ≥ 0 and satisfies
limt→+∞ x(t) = 0, and if in addition the origin has the familiar local property
known as ‘Lyapunov stability’. The following result, which unifies and extends
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several classical theorems dealing with the uncontrolled case, is due to Clarke,
Ledyaev and Stern [9]:

Theorem 1. Let F have compact convex nonempty values and closed graph.
Then the system is strongly asymptotically stable if and only if there exists a
pair of C∞ functions

V : IRn → IR, W : IRn\{0} → IR

satisfying the following conditions:

1. Positive Definiteness:

V (x) > 0 and W (x) > 0 ∀x 6= 0, and V (0) ≥ 0.

2. Properness: The sublevel sets {x : V (x) ≤ c} are bounded ∀c.
3. Strong Infinitesimal Decrease:

max
v∈F (x)

〈∇V (x), v〉 ≤ −W (x) x 6= 0.

We refer to the function (V,W ) as a strong Lyapunov function for the
system. Note that in this result, whose somewhat technical proof we shall
not revisit here, the system multifunction F itself need not even be continu-
ous, yet strong stability is equivalent to the existence of a smooth Lyapunov
function: this is a surprising aspect of these results. As we shall see, this is
in sharp contrast to the case of weak stability, where stronger hypotheses on
the underlying system are required. In fact, in addition to the hypotheses of
Theorem 1, we shall suppose henceforth that F is locally Lipschitz with linear
growth. Even so, Lyapunov functions will need to be nondifferentiable in the
controllability context.

Finally, we remark that in the positive definiteness condition, the inequal-
ity V (0) ≥ 0 is superfluous when V is continuous (which will not be the case
later); also, it could be replaced by the more traditional condition V (0) = 0
in the present context.

3 Guidability and Controllability

The Case for Less Regular Lyapunov Functions

Strong stability is most often of interest when F arises from a perturbation of
an ordinary (uncontrolled) differential equation. In most control settings, it is
weak (open loop) stability that is of interest: the possibility of guiding some
trajectory to 0 in a suitable fashion. It is possible to distinguish two distinct
aspects of the question: on the one hand, the possibility of guiding the state
from any prescribed initial condition to 0 (or to an arbitrary neighborhood of
0), and on the other hand, that of keeping the state close to 0 when the initial
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condition is already near 0. In a departure from the usual route, we choose
to decouple these two issues, introducing the term ‘guidability’ for the first.
We believe that in so doing, a new level of clarity emerges in connection with
Lyapunov theory.

A point α is asymptotically guidable to the origin if there is a trajectory
x satisfying x(0) = α and limt→∞ x(t) = 0. When every point has this prop-
erty, and when additionally the origin has the familiar local stability property
known as Lyapunov stability, it is said in the literature to be GAC: (open
loop) globally asymptotically controllable (to 0). A well-known sufficient con-
dition for this property is the existence of a smooth (C1, say) pair (V,W )
of functions satisfying the positive definiteness and properness conditions of
Theorem 1, together with weak infinitesimal decrease:

min
v∈F (x)

〈∇V (x), v〉 ≤ −W (x) x 6= 0.

Note the presence of a minimum in this expression rather than a maximum.
It is a fact, however, that as demonstrated by simple examples (see [6] or

[23]), the existence of a smooth function V with the above properties fails
to be a necessary condition for global asymptotic controllability; that is, the
familiar converse Lyapunov theorems of Massera, Barbashin and Krasovskii,
and Kurzweil do not extend to this weak controllability setting, at least not
in smooth terms.

It is natural therefore to seek to weaken the smoothness requirement on V
so as to obtain a necessary (and still sufficient) condition for a system to be
GAC. This necessitates the use of some construct of nonsmooth analysis to re-
place the gradient of V that appears in the infinitesimal decrease condition. In
this connection we use the proximal subgradient ∂P V (x), which requires only
that the (extended-valued) function V be lower semicontinuous. In proximal
terms, the weak infinitesimal decrease condition becomes

sup
ζ∈∂P V (x)

min
v∈F (x)

〈ζ, v〉 ≤ −W (x) x 6= 0.

Note that this last condition is trivially satisfied when x is such that ∂P V (x)
is empty, in particular when V (x) = +∞. (The supremum over the empty set
is −∞.) Henceforth, a general Lyapunov pair (V,W ) refers to extended-valued
lower semicontinuous functions V : IRn → IR ∪ {+∞} and W : IRn\{0} →
IR ∪ {+∞} satisfying the positive definiteness and properness conditions of
Theorem 1, together with proximal weak infinitesimal decrease.

The following is proved in [10]:

Theorem 2. Let (V,W ) be a general Lyapunov pair for the system. Then any
α ∈ dom V is asymptotically guidable to 0.

We proceed to make some comments on the proof. To show that any
initial condition can be steered towards zero (in the presence of a Lyapunov
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function), one can invoke the infinitesimal decrease condition to deduce that
the function V (x)+y is weakly decreasing for the augmented dynamics F (x)×
{W (x)} (see pp. 213-214 of [10] for details); this implies the existence of a
trajectory x such that the function

t 7→ V (x(t)) +
∫ t

0

W (x(τ)) dτ

is nonincreasing, which in turn implies that x(t) → 0. We remark that viability
theory can also be used in this type of argument; see for example [1].

It follows from the theorem that the existence of a lower semicontinu-
ous Lyapunov pair (V,W ) with V everywhere finite-valued implies the global
asymptotic guidability to 0 of the system. This does not imply Lyapunov
stability at the origin, however, so it cannot characterize global asymptotic
controllability. An early and seminal result due to Sontag [22] considers con-
tinuous functions V , with the infinitesimal decrease condition expressed in
terms of Dini derivates. Here is a version of it in proximal subdifferential
terms:

Theorem 3. The system is GAC if and only if there exists a continuous
Lyapunov pair (V,W ).

For the sufficiency, the requisite guidability evidently follows from the
previous theorem. The continuity of V provides the required local stability:
roughly speaking, once V (x(t)) is small, its value cannot take an upward jump,
so x(t) remains near 0.

The proof of the converse theorem (that a continuous Lyapunov function
must exist when the system is globally asymptotically controllable) is more
challenging. One route is as follows: In [7] it was shown that certain locally
Lipschitz value functions give rise to practical Lyapunov functions (that is,
assuring stable controllability to arbitrary neighborhoods of 0, as in Theorem
4 below). Building upon this, Rifford [18, 19] was able to combine a countable
family of such functions in order to construct a global locally Lipschitz Lya-
punov function. This answered a long-standing open question in the subject.
Rifford also went on to show the existence of a semiconcave Lyapunov func-
tion, a property whose relevance to feedback construction will be seen in the
following sections.

Finally, we remark that the equivalence of the Dini derivate and of the
proximal subdifferential forms of the infinitesimal decrease condition is a con-
sequence of Subbotin’s Theorem (see [10]).

Practical guidability.

The system is said to be (open-loop) globally practically guidable (to the origin)
if for each initial condition α and for every ε > 0 there exists a trajectory x
and a time T (both depending on α and ε) such that |x(T )| ≤ ε. We wish to
characterize this property in Lyapunov terms. For this purpose we need an
extension of the Lyapunov function concept.
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ε-Lyapunov functions.

An ε-Lyapunov pair for the system refers to lower semicontinuous functions
V : IRn → IR∪ {+∞} and W : IRn\B(0, ε) → IR∪ {+∞} satisfying the usual
properties of a Lyapunov pair, but with the role of the origin replaced by the
closed ball B(0, ε):

1. Positive Definiteness:

V (x) > 0 and W (x) > 0 ∀x /∈ B(0, ε), and V ≥ 0 on B(0, ε).

2. Properness: The sublevel sets {x : V (x) ≤ c} are bounded ∀c.
3. Weak Infinitesimal Decrease:

min
v∈F (x)

〈∇V (x), v〉 ≤ −W (x) x /∈ B(0, ε).

The results in [7] imply:

Theorem 4. The system is globally practically guidable to the origin if and
only if there exists a locally Lipschitz ε-Lyapunov function for each ε > 0.

We do not know whether global asymptotic guidability can be character-
ized in analogous terms, or whether practical guidability can be characterized
by means of a single Lyapunov function. However, it is possible to do so for
finite-time guidability (see Section 6 below).

4 Feedback

The Case for More Regular Lyapunov Functions

The need to consider discontinuous feedback in nonlinear control is now well
established, together with the attendant need to define an appropriate solution
concept for a differential equation in which the dynamics fail to be continuous
in the state. The best-known solution concept in this regard is that of Filippov.
For the stabilization issue, and using the standard formulation

ẋ(t) = f(x(t), u(t)) a.e., u(t) ∈ U a.e.

rather than the differential inclusion, the issue becomes that of finding a feed-
back control function k(x) (having values in U) such that the ensuing differ-
ential equation

ẋ = g(x), where g(x) := f(x, k(x))

has the required stability. The central question in the subject has long been:
If the system is open loop globally asymptotically controllable (to the origin),
is there a feedback k such that the resulting g exhibits global asymptotic
stability (of the origin)? It has long been known that continuous feedback
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laws cannot suffice for this to be the case; it also turns out that admitting
discontinuous feedbacks interpreted in the Filippov sense is also inadequate.

The question was settled by Clarke, Ledyaev, Sontag and Subbotin [8],
who used the proximal aiming method (see also [11]) to show that the answer
is positive if the (discontinuous) feedbacks are implemented in the closed-loop
system sampling sense (also referred to as sample-and-hold). We proceed now
to describe the sample-and-hold implementation of a feedback.

Let π = {ti}i≥0 be a partition of [0,∞), by which we mean a countable,
strictly increasing sequence ti with t0 = 0 such that ti → +∞ as i → ∞.
The diameter of π, denoted diam (π), is defined as supi≥0(ti+1− ti). Given an
initial condition x0, the π-trajectory x(·) corresponding to π and an arbitrary
feedback law k : IRn → U is defined in a step-by-step fashion as follows.
Between t0 and t1, x is a classical solution of the differential equation

ẋ(t) = f(x(t), k(x0)), x(0) = x0, t0 ≤ t ≤ t1.

(Of course in general we do not have uniqueness of the solution, nor is there
necessarily even one solution, although nonexistence can be ruled out when
blow-up of the solution in finite time cannot occur, as is the case in the
stabilization problem.) We then set x1 := x(t1) and restart the system at
t = t1 with control value k(x1):

ẋ(t) = f(x(t), k(x1)), x(t1) = x1, t1 ≤ t ≤ t2,

and so on in this fashion. The trajectory x that results from this procedure
is an actual state trajectory corresponding to a piecewise constant open-loop
control; thus it is a physically meaningful one. When results are couched in
terms of π-trajectories, the issue of defining a solution concept for discon-
tinuous differential equations is effectively sidestepped. Making the diameter
of the partition smaller corresponds to increasing the sampling rate in the
implementation.

We remark that the use of possibly discontinuous feedback has arisen in
other contexts. In linear time-optimal control, one can find discontinuous feed-
back syntheses as far back as the classical book of Pontryagin et al [17]; in
these cases the feedback is invariably piecewise constant relative to certain
partitions of state space, and solutions either follow the switching surfaces or
cross them transversally, so the issue of defining the solution in other than a
classical sense does not arise. Somewhat related to this is the approach that
defines a multivalued feedback law [4]. In stochastic control, discontinuous
feedbacks are the norm, with the solution understood in terms of stochas-
tic differential equations. In a similar vein, in the control of certain linear
partial differential equations, discontinuous feedbacks can be interpreted in a
distributional sense. These cases are all unrelated to the one under discussion.
We remark too that the use of discontinuous pursuit strategies in differential
games [15] is well-known, together with examples to show that, in general, it is
not possible to achieve the result of a discontinuous optimal strategy to within
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any tolerance by means of a continuous strategy (so there can be a positive
unbridgeable gap between the performance of continuous and discontinuous
feedbacks).

We can use the π-trajectory formulation to implement feedbacks for either
guidability or stabilization (see [12]); we limit attention here to the latter issue.

It is natural to say that a feedback k(x) (continuous or not) stabilizes the
system in the sample-and-hold sense provided that for every initial value x0,
for all ε > 0, there exists δ > 0 and T > 0 such that if the diameter of the
partition π is less than δ, then the corresponding π-trajectory x beginning at
x0 satisfies

‖x(t)‖ ≤ ε ∀ t ≥ T.

The following theorem is proven in [8]:

Theorem 5. The system is open loop globally asymptotically controllable if
and only if there exists a (possibly discontinuous) feedback k : IRn → U which
stabilizes it in the sample-and-hold sense.

The proof of the theorem actually yields precise estimates regarding how
small the step size diam (π) must be for a prescribed stabilization tolerance
to ensue, and of the resulting stabilization time, in terms of the given data.
These estimates are uniform on bounded sets of initial conditions, and are
a consequence of the method of proximal aiming. The latter, which can be
viewed as a geometric version of the Lyapunov technique, appears to be diffi-
cult to implement in practice, however. One of our principal goals is to show
how stabilizing feedbacks can be defined much more conveniently if one has
at hand a sufficiently regular Lyapunov function.

The Smooth Case

We begin with the case in which a C1 smooth Lyapunov function exists,
and show how the natural ‘pointwise feedback’ described below stabilizes the
system (in the sample-and-hold sense). For x 6= 0, we define k(x) to be any
element u ∈ U satisfying

〈∇V (x), f(x, u)〉 ≤ −W (x).

Note that at least one such u does exist, in light of the infinitesimal decrease
condition. We mention two more definitions that work: take u to be the ele-
ment minimizing the inner product above over U , or take any u ∈ U satisfying
〈∇V (x), f(x, u)〉 ≤ −W (x)/2.

Theorem 6. The pointwise feedback k described above stabilizes the system
in the sense of closed-loop system sampling.

We proceed to sketch the elementary proof of this theorem, which we deem
to be a basic result in the theory of control Lyapunov functions.
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We begin with a remark: for any R > 0, there exists δR > 0 such that for
all α ∈ B(0, R) and for all u ∈ U , any solution x of ẋ = f(x, u), x(0) = α
satisfies

|x(t)| ≤ R + 1 ∀t ∈ [0, δR]

(this is a simple consequence of the linear growth hypothesis and Gronwall’s
Lemma).

Now let positive numbers r and ε be given; we show that for any α ∈
B(0, r) there is a trajectory x beginning at α that enters the ball B(0, ε) in
finite time.

Let R ≥ r be chosen so that

V (x) ≤ max
B(0,r)

V =⇒ x ∈ B(0, R).

For simplicity, let us assume that ∇V is locally Lipschitz (as otherwise, the
argument is carried out with a modulus of continuity). We proceed to choose
K > 0 such that for every u ∈ U , the function

x 7→ 〈∇V (x), f(x, u)〉

is Lipschitz on B(0, R + 1) with constant K, together with positive numbers
M and m satisfying

|f(x, u)| ≤ M ∀x ∈ B(0, R + 1), ∀u ∈ U ,

and
W (x) ≥ m ∀x ∈ B(0, R + 1)\B(0, ε).

Now let π = {ti}0≤i≤N be a partition (taken to be uniform for simplicity)
of step size δ ≤ δR, of an interval [0, T ], where t0 = 0, tN = T, T = Nδ.
We apply the pointwise feedback k relative to this partition, and with initial
condition x(0) = x0 := α. We proceed to compare the values of V at the first
two nodes:

V (x(t1))− V (x(t0)) = 〈∇V (x(t∗)), ẋ(t∗)〉 (t1 − t0)

(by the mean value theorem, for some t∗ ∈ (0, δ))

= 〈∇V (x(t∗)), f(x(t∗), k(t0))〉 (t1 − t0)
≤ 〈∇V (x(t0)), f(x(t0), k(t0))〉 (t1 − t0)

+K |x(t∗)− x(t0)| (t1 − t0)

(by the Lipschitz condition)

≤ −W (x(t0))δ + KMδ2

(by the way k is defined)
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≤ −mδ + KMδ2.

Note that these estimates apply because x(t1) and x(t∗) remain in B(0, R +
1), and, in the case of the last step, provided that x0 does not lie in the
ball B(0, ε). Inspection of the final term above shows that if δ is taken less
than m/(2KM), then the value of V between the two nodes has decreased
by at least mδ/2. It follows from the definition of R that x(t1) ∈ B(0, R).
Consequently, the same argument as above can be applied to the next partition
subinterval, and so on. Iteration then yields:

V (x(Nδ))− V (x0) ≤ −mN/2.

This will contradict the nonnegativity of V when N exceeds 2V (x0)/m, so it
follows that the argument must fail at some point, which it can only do when
a node x(ti) lies in B(0, ε).

This proves that any sample-and-hold trajectory generated by the feedback
k enters B(0, ε) in a time that is bounded above in a way that depends only
upon ε and |α| (and V ), provided only that the step size is sufficiently small,
as measured in a way that depends only on |α|.

That k stabilizes the system in the sense of closed-loop system sampling
now follows.

Remark.

Rifford [20] has shown that the existence of a smooth Lyapunov pair is equiv-
alent to the existence of a locally Lipschitz one satisfying weak decrease in
the sense of generalized gradients (rather than proximal subgradients), which
in turn is equivalent to the existence of a stabilizing feedback in the Filippov
(rather than sample-and-hold) sense.

5 Semiconcavity

The ‘Right’ Regularity for Lyapunov Functions

We have seen that a smooth Lyapunov function generates a stabilizing feed-
back in a very simple and natural way. But since a smooth Lyapunov function
does not necessarily exist, we still require a way to handle the general case. It
turns out that the two issues can be reconciled through the notion of semicon-
cavity. This is a certain regularity property (not implying smoothness) which
can always be guaranteed to hold for some Lyapunov function (if the system is
globally asymptotically controllable, of course), and which permits a natural
extension of the pointwise definition of a stabilizing feedback.

A function φ : IRn → IR is said to be (globally) semiconcave provided
that for every ball B(0, r) there exists γ = γ(r) ≥ 0 such that the function
x 7→ φ(x) − γ|x|2 is (finite and) concave on B(0, r). (Hence φ is locally the
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sum of a concave function and a quadratic one.) Observe that any function of
class C2 is semiconcave; also, any semiconcave function is locally Lipschitz,
since both concave functions and smooth functions have that property. (There
is a local definition of semiconcavity that we omit for present purposes.)

Semiconcavity is an important regularity property in partial differential
equations; see for example [5]. The fact that the semiconcavity of a Lyapunov
function V turns out to be useful in stabilization is a new observation, and
may be counterintuitive: V often has an interpretation in terms of energy,
and it may seem more appropriate to seek a convex Lyapunov function V .
We proceed now to explain why semiconcavity is a highly desirable property,
and why a convex V would be of less interest (unless it were smooth, but then
it would be semiconcave too).

Recall the ideal case discussed above, in which (for a smooth V ) we select
a function k(x) such that

〈∇V (x), f(x, k(x))〉 ≤ −W (x).

How might this appealing idea be adapted to the case in which V is nons-
mooth? We cannot use the proximal subdifferential ∂P V (x) directly, since it
may be empty for ‘many’ x. We are led to consider the limiting subdifferen-
tial ∂LV (x), which, when V is continuous, is defined by applying a natural
limiting operation to ∂P V :

∂LV (x) :=
{

ζ = lim
i→∞

ζi : ζi ∈ ∂P V (xi), lim
i→∞

xi = x
}

.

It follows readily that, when V is locally Lipschitz, ∂LV (x) is nonempty for
all x. By passing to the limit, the weak infinitesimal decrease condition for
proximal subgradients implies the following:

min
u∈U

〈f(x, u), ζ〉 ≤ −W (x) ∀ζ ∈ ∂LV (x),∀x 6= 0.

Accordingly, let us consider the following idea: for each x 6= 0, choose some
element ζ ∈ ∂LV (x), then choose k(x) ∈ U such that

〈f(x, k(x)), ζ〉 ≤ −W (x).

Does this lead to a stabilizing feedback, when (of course) the discontinuous
differential equation is interpreted in the sample-and-hold sense? When V is
smooth, the answer is ‘yes’, as we have seen. But when V is merely locally
Lipschitz, a certain ‘dithering’ phenomenon may arise to prevent k from being
stabilizing. However, if V is semiconcave (on IRn\{0}), this does not occur,
and stabilization is guaranteed. This accounts in part for the desirability of a
semiconcave Lyapunov function, and the importance of knowing one always
exists.

The proof that the pointwise feedback defined above is stabilizing hinges
upon the following fact in nonsmooth analysis:
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Lemma.

Suppose that V (x) = g(x) + γ |x|2, where g is a concave function. Then for
any ζ ∈ ∂LV (x), we have

V (y)− V (x) ≤ 〈ζ, y − x〉+ γ |y − x|2 ∀ y.

The proof of Theorem 6 can be mimicked when V is semiconcave rather
than smooth, by invoking the ‘decrease property’ described in the lemma at
a certain point. The essential step remains the comparison of the values of V
at successive nodes; for the first two, for example, we have

V (x(t1))− V (x(t0)) ≤ 〈ζ, x(t1)− x(t0)〉 (t1 − t0) + γ |x(t1)− x(t0)|2

(where ζ ∈ ∂LV (x(t0), by the lemma)

= 〈ζ, f(x(t∗), k(t0))〉 (t1 − t0) + γ |x(t1)− x(t0)|2

(for some t∗ ∈ (t0, t1), by the mean value theorem)

≤ 〈ζ, f(x(t0), k(t0))〉 (t1 − t0)
+ KV Kf |x(t∗)− x(t0)| (t1 − t0) + γM2δ2

(where KV and Kf are suitable Lipschitz constants for V and f)

≤ −W (x(t0))δ + KV KfM(1 + γM)δ2,

by the way k is defined. Then, as before, a decrease in the value of V can be
guaranteed by taking δ sufficiently small, and the proof proceeds as before.
(The detailed argument must take account of the fact that V is only semicon-
cave away from the origin, and that a parameter γ as used above is available
only on bounded subsets of IRn\{0}.)

6 Finite-Time Guidability

So far we have been concerned with possibly asymptotic approach to the
origin. There is interest in being able to assert that the origin can be reached
in finite time. If such is the case from any initial condition, then we say that
the system is globally guidable in finite time (to 0). There is a well-studied local
version of this property that bears the name small-time local controllability
(STLC for short). A number of verifiable criteria exist which imply that the
system has property STLC, which is stronger than Lyapunov stability; see [3].

Theorem 7. The system is globally guidable in finite time if and only if there
exists a general Lyapunov pair (V,W ) with V finite-valued and W ≡ 1. If the
system has the property STLC, then it is globally guidable in finite time iff
there exists a Lyapunov pair (V,W ) with V continuous and W ≡ 1.
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The proof of the theorem revolves around the much-studied minimal time
function T (·). If the system is globally guidable in finite time, then (T, 1) is
the required Lyapunov pair: positive definiteness and properness are easily
checked, and weak infinitesimal decrease follows from the (now well-known)
fact that T satisfies the proximal Hamilton-Jacobi equation

h(x, ∂P T (x)) + 1 = 0, x 6= 0.

This is equivalent to the assertion that T is a viscosity solution of a related
equation; see [10].

The sufficiency in the first part of the theorem follows much as in the proof
of Theorem 2: we deduce the existence of a trajectory x for which V (x(t))+ t
is nonincreasing as long as x(t) 6= 0; this implies that x(τ) equals 0 for some
τ ≤ V (x(0)). As for the second part of the theorem, it follows from the fact
that, in the presence of STLC, the minimal time function is continuous.

7 An Equivalence Theorem

The following result combines and summarizes many of the ones given above
concerning the regularity of Lyapunov functions and the presence of certain
system properties.

Theorem 8. The following are equivalent:

1. The system is open-loop globally asymptotically controllable.
2. There exists a continuous Lyapunov pair (V,W ).
3. There exists a locally Lipschitz Lyapunov pair (V,W ) with V semiconcave

on IRn\{0}.
4. There exists a globally stabilizing sample-and-hold feedback.

If, a priori, the system has Lyapunov stability at 0, then the following item
may be added to the list:

5. There exists for each positive ε a locally Lipschitz ε-Lyapunov function.

If, a priori, the system has the property STLC, the following further item may
be added to the list:

6. There exists a continuous Lyapunov pair (V,W ) with W ≡ 1.

In this last case, the system is globally guidable in finite time.

8 Some Related Issues

Robustness.

It may be thought in view of the above that there is no advantage in having
a smooth Lyapunov function, except the greater ease of dealing with deriva-
tives rather than subdifferentials. In any case, stabilizing feedbacks will be
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discontinuous; and they can be conveniently defined in a pointwise fashion if
the Lyapunov function is semiconcave. In fact, however, there is a robustness
consequence to the existence of a smooth Lyapunov function.

The robustness of which we speak here is with respect to possible error e
in state measurement when the feedback law is implemented: we are at x, but
measure the state as x + e, and therefore apply the control k(x + e) instead
of the correct value k(x). When k is continuous, then for e small enough this
error will have only a small effect: the state may not approach the origin,
but will remain in a neighborhood of it, a neighborhood that shrinks to the
origin as e goes to zero; that is, we get practical stabilization. This feature
of continuous feedback laws is highly desirable,and in some sense essential,
since some imprecision seems inevitable in practice. One might worry that
a discontinuous feedback law might not have this robustness property, since
an arbitrarily small but nonzero e could cause k(x) and k(x + e) to differ
significantly.

It is a fact that the (generally discontinuous) feedback laws constructed
above do possess a relative robustness property: if, in the sample-and-hold
implementation, the measurement error is at most of the same order of mag-
nitude as the partition diameter, then practical stabilization is obtained. To
put this another way, the step size may have to be big enough relative to the
potential errors (to avoid dithering, for example). At the same time, the step
size must be sufficiently small for stabilization to take place, so there is here
a conflict that may or may not be reconcilable. It appears to us to be a great
virtue of the sample-and-hold method that it allows, apparently for the first
time, a precise error analysis of this type.

There is another, stronger type of robustness (called absolute robustness),
in which the presence of small errors preserves practical stabilization inde-
pendently of the step size. Ledyaev and Sontag [16] have shown that there
exists an absolutely robust stabilizing feedback if and only if there exists a
smooth Lyapunov pair. This, then, is an advantage that such systems have.
Recall that the nonholonomic integrator, though stabilizable, does not admit
a smooth Lyapunov function and hence fails to admit an absolutely robust
stabilizing feedback.

State constraints.

There are situations in which the state x is naturally constrained to lie in a
given closed set S, so that in steering the state to the origin, we must respect
the condition x(t) ∈ S. The same questions arise as in the unconstrained case:
is the possibility of doing this in the open-loop sense characterized by some
kind of Lyapunov function, and would such a function lead to the definition of
a stabilizing feedback that respects the state constraint? The more challenging
case is that in which the origin lies on the boundary of S, but the case in which
0 lies in the interior of S is also of interest, since it localizes around the origin
the global and constraint-free situation that has been the focus of this article.



Lyapunov Functions and Feedback in Nonlinear Control 15

An important consideration in dealing with state constraints is to identify
a class of sets S for which meaningful results can be obtained. Recently Clarke
and Stern [13, 12], for what appears to have been the first time, have extended
many of the Lyapunov and stabilization methods discussed above to the case
of state constraints specified by a set S which is wedged (see [10]). This rather
large class of sets includes smooth manifolds with boundaries and convex
bodies (as well as their closed complements). A set is wedged (or epi-Lipschitz)
when its (Clarke) tangent cone at each point has nonempty interior, which is
equivalent to the condition that locally (and after a change of coordinates), it
is the epigraph of a Lipschitz function.

A further hypothesis is made regarding the consistency of the state con-
straint with the dynamics of the system: for every nonzero vector ζ in the
(Clarke) normal cone to a point x ∈ bdryS, there exists u ∈ U such that
〈f(x, u), ζ〉 < 0. Thus an ‘inward-pointing’ velocity vector is always available.

Under these conditions, and in terms of suitably defined extensions to
the state-constrained case of the underlying definitions, one can prove an
equivalence between open-loop controllability, closed-loop stabilization, and
the existence of more or less regular (and in particular semiconcave) Lyapunov
functions.

Regular and essentially stabilizing feedbacks.

In view of the fact that a GAC system need not admit a continuous stabi-
lizing feedback, the question arises of the extent to which the discontinuities
can be minimized. Ludovic Rifford has exploited the existence of a semicon-
cave Lyapunov function, together with both proximal and generalized gra-
dient calculus, to show that when the system is affine in the control, there
exists a stabilizing feedback whose discontinuities form a set of measure zero.
Moreover, the discontinuity set is repulsive for the trajectories generated by
the feedback: the trajectories lie in that set at most initially. This means
that in applying the feedback, the solutions can be understood in the usual
Carathéodory sense; robustness ensues as well. In the case of planar systems,
Rifford has gone on to settle an open problem of Bressan by classifying the
types of discontinuity that must occur in stabilizing feedbacks.

More recently, Rifford [21] has introduced the concept of stratified semi-
concave Lyapunov functions, and has shown that every GAC system must
admit one. Building upon this, he proves that there then exists a smooth
feedback which almost stabilizes the system (that is, from almost all initial
values). This highly interesting result is presented in Rifford’s article in the
present collection.
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