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Abstract

This monograph derives necessary conditions of optimality for a general
control problem formulated in terms of a differential inclusion. These con-
ditions constitute a new state of the art, subsuming, unifying, and substan-
tially extending the results in the literature. The Euler, Weierstrass and
transversality conditions are expressed in their sharpest known forms. No
assumptions of boundedness or convexity are made, no constraint qualifi-
cations imposed, and only weak pseudo-Lipschitz behavior is postulated on
the underlying multifunction. The conditions also incorporate a ‘stratified’
feature of a novel nature, in which both the hypotheses and the conclu-
sion are formulated relative to a given radius function. When specialized
to the calculus of variations, the results yield necessary conditions and reg-
ularity theorems that go significantly beyond the previous standard. They
also apply to parametrized control systems, giving rise to new and stronger
maximum principles of Pontryagin type. The final chapter is devoted to a
different issue, that of the Hamiltonian necessary condition. It is obtained
here, for the first time, in the case of nonconvex values and in the absence of
any constraint qualification; this has been a longstanding open question in
the subject. Apart from the final chapter, the treatment is self-contained,
and calls upon only standard results in functional and nonsmooth analysis.
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Chapter 1

Introduction

1.1 Classical necessary conditions

The subject of this article has its origins in the following basic problem in
the calculus of variations: to minimize the integral functional

b
/a Aol (t), &(t)) dt

over a class of functions « on the interval [a, b], where the function A;(z,v)
(the Lagrangian ) is given. The fundamental necessary condition of Euler
(1744) asserts that a smooth solution z. of this problem must satisfy the
following differential equation:

% DyAi(2.(t), 2.(t)) = DuA(2(t), 2.(2)).

To accommodate the need to treat nonsmooth solutions, the class of admis-
sible # was later extended to that of piecewise smooth functions. In that
setting, the Euler equation continues to hold except at finitely many points,
but additional information is required in order to give uniqueness. This was
provided by the first Erdmann condition: the function

t s DyAgla(t), i4(t))

must have removable discontinuities. In 1879 du Bois-Raymond introduced
a strengthened (integral) form of the Euler equation; it affirms the existence
of an absolutely continuous function p satisfying

(j)(t),p(t)) = Dx,vAt(x*(t)v x*(t)) a.e. (5)

1



2 CHAPTER 1. INTRODUCTION

Note that both the Euler equation and the Erdmann condition are subsumed
by this formulation. (In mechanics, p is the generalized momentum; in
control theory it corresponds to the adjoint variable.)

Concurrently with these later developments, Weierstrass established the
other fundamental necessary condition in the subject: it can be phrased as
asserting for every t the global inequality

At(x*(t)v U) - At(x*(t)v x*(t)) > <p(t), U= x*(t)> Vo. (W)

Of course, in the classical smooth setting, the p(¢) in this inequality can be
nothing else than DyA¢(z.(t), #4(t)), the same p(t) that occurs in (£).

The central question of this monograph is the following: In more gen-
eral settings than that of the basic problem, in what form and under what
hypotheses do these necessary conditions continue to hold? As we see from
the above, the question was already a central one even for the classical basic
problem itself. In fact, it is relatively complex even in that setting. For ex-
ample, Tonelli’s pioneering work (1915) demonstrated that in order to have
access to an existence theory for the basic problem, we should treat it within
the class of absolutely continuous (rather than piecewise smooth) functions.
But when the solution z, lies in this more general class, the (strengthened)
Euler equation is no longer a valid necessary condition (there may not exist
p satisfying (€)). It would be possible to affirm (&) if we knew a priori
that x, has essentially bounded derivative (that is, if . were known to be
Lipschitz). This leads to the question of the regularity of the solution, which
has grown into a central theme in the calculus of variations.

As the theory of existence and regularity was evolving, parallel devel-
opments were taking place in the formulation of more general variational
problems, and their attendant necessary conditions. The initial impetus
was due to Bolza (1913), who formulated a generalization of the basic prob-
lem that incorporates more general endpoint behavior as well as pointwise
constraints of the form ¢ (z(t),2(t)) = 0 (for example). When a cost term
of the form ¢(z(a), z(b)) (depending on the endpoints of z) is added to the
integral functional of the basic problem, it was shown that the function p
referred to above must satisfy the transversality conditions

(p(a)v —p(b)) = Df(x*(a)7 x*(b))

As regards the pointwise constraint, interest turned towards proving a com-
plete multiplier rule. This refers to an application of the Lagrange multiplier
idea to deduce that for a certain function A(¢), the augmented Lagrangian
A + (X, 9) satisfies the necessary conditions for the basic problem. Among



1.1. CLASSICAL NECESSARY CONDITIONS 3

these should figure the Euler equation, of course, but preferably the other
necessary conditions as well (the Weierstrass condition turned out to be
particularly difficult to establish.) A satisfying theorem of this kind became
the Holy Grail of the subject for some decades.!

As this quest was coming to a close, another paradigm was developing
that would subsume the basic variational problem in a different way, one
which proved more suitable for applications. This used the model of a
controlled differential equation

(1) = di(z(1), u(t)),

where the control function « is constrained to take its values in a prescribed
set, U. Subject to this, the goal is to minimize a cost involving an integral
functional

b
/a Aoz (1), u(t)) dt.

We recover the basic variational problem as a special case of the above by
taking ¢;(z, u) = w and U to be the whole space; the control is then identified
with Z, unconstrained. The celebrated Maximum Principle of Pontryagin
(1959) establishes a set of necessary conditions for the optimal control prob-
lem which can be viewed as (substantial) extensions of the classical results
of Euler, du Bois-Raymond, Erdmann and Weierstrass, incorporating both
transversality and a form of the multiplier rule.

We have said that the central question of this monograph concerns the
form and the validity of the necessary conditions; we shall address this issue
both for problems stemming from the calculus of variations and for problems
of optimal control more general than the standard Pontryagin formulation
mentioned above. It is convenient to single out three paradigms for dynamic
optimization.

The first, commonly referred to now as the generalized problem of Bolza,
is defined very succinctly: to minimize the integral functional

b
(z(a), z(b)) + /a Ae(2(t),2(t)) dt

over the class of absolutely continuous functions # : [a,b] — R” (we refer
to such functions as arcs). It is important to note that ¢ and A will in
general be extended-valued (that is, permitted to assume the value +00).

'The Chicago school of Bliss led this project, which culminated in the work of McShane
[48] and Hestenes [37].
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This allows constraints to be present implicitly. For example, if we wish
to minimize merely the integral term in the cost, subject to the endpoint
constraints (z(a),z(b)) € S (where S is a given set), we can formulate this
as a generalized problem of Bolza by defining £ to be the indicator of S: the
function which takes the value 0 on S and 400 elsewhere.

The second paradigm we refer to as the differential inclusion problem. It
consists of minimizing ¢(x(a), z(b)) over the arcs x that satisfy the boundary
constraints (z(a),z(b)) € S and the differential inclusion

i(t) € Fi(z(t)) ae.,

where for each t, F} is a given mapping from R"™ to its subsets. We take £ to
be locally Lipschitz in this case, so that all the constraints on = have been
rendered as explicit as possible, in total contrast to the generalized problem
of Bolza, where all constraints have been made implicit.

Our third paradigm is the optimal control of parametrized families of
vector fields. Given a family F of vector fields f(¢,z), we wish to find among
the arcs & which satisfy & = f(¢,2) for some f € F one which minimizes
((x(a), 2 (b)), subject again to the constraint (x(a), (b)) € S. This extension
of the standard Pontryagin model is sometimes referred to as a generalized
control system.

Of course these three paradigms are not mutually exclusive; specific
problems can very well fit into more than one of them. And each paradigm
has certain advantages. But from the technical point of view, we believe
that it is the differential inclusion problem (which is the least interesting
historically) that is most convenient. It also lends itself well to taking a first
look at the new results obtained in this monograph. Let us discuss it now
in some detail.

1.2 Differential inclusions

We study the optimal control of a system governed by the differential inclu-
sion

i(t) € Fy(z(t)) a.e., t € [a,b],

or more precisely, the derivation of necessary conditions for optimality. Here
[a,b] is a given interval in R and /' a multifunction (for each ¢, I is a map
from R™ to the subsets of R™). A trajectory of F is an arc? satisfying the dif-
ferential inclusion. A typical optimization problem P involving trajectories

*Recall that an absolutely contimuous function @ : [a, b] — R™ is referred to as an arc.



1.2. DIFFERENTIAL INCLUSIONS 5

is the following:
P : to minimize {(xz(a),z(D)): &(t) € Fi(x(t)) a.e., (x(a),z(b)) € S,

where £ : R® x R® — R is locally Lipschitz and S is a closed subset of
R™xR". (When we treat this problem in Chapter 3, an additional ‘stratified’
constraint will be admitted.)

The interest of such differential inclusions stems in part from the fact
that, at least formally, a number of different problems can be reformulated in
such terms. We examine now two important instances of this fact. Consider
first the basic problem in the calculus of variations defined above:

b
minimize /At(x(t),ab(t))dt

subject to given boundary constraints on z(a) and z(b). If we introduce an
auxiliary variable y and define a multifunction F via

FtA(x,y) = {(v, Ay(z,v)) : v € R"},

then the calculus of variations problem is easily seen to be formally equiv-
alent to the problem of minimizing y(b) over the trajectories (z,y) of F*A
which satisfy y(a) = 0 together with the given boundary constraints on z.
This has the form of the problem P above.

Next, consider the basic problem in optimal control . Here we consider
the arcs  which satisfy a system of ordinary differential equations

() = oi(x(t), u(t)) ae., t € la,bl,

where the function ¢ is given, and where u(-) is a control: a measurable

function from [a,b] to R™ taking values in a given subset U. The goal is to

choose the control u and the associated state x so as to respect the boundary

constraints (z(a),z(b)) € S, and so as to minimize {(z(a), z(b)). This is the

Mayer form of the standard Pontryagin formulation for optimal control,

which has been widely adopted in a large number of modeling applications.
If now a multifunction F? is defined as follows:

Ffs(x) = ¢z, U),

then under very mild assumptions on ¢, the problem under consideration is
equivalent to the resulting instance of problem 7. This assertion amounts to
a measurable selection theorem; it is well-known since the pioneering work
of Filippov (concerning primarily existence theory) in the 1960s.
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Thus differential inclusions can potentially serve as a unified setting for
considering a variety of problems in dynamic optimization; two other con-
texts giving rise to differential inclusions include that of differential inequal-
ities, and cases in which control sets depend upon the state. But of course
this potential is realizable only to the extent that we are able to treat the
multifunctions that arise. For example, the multifunction F'* defined above
in connection with the calculus of variations has unbounded sets as values,
so if we are to use it, then unbounded multifunctions must be admissible in
the theory. This is but one example of the importance of being able to treat
differential inclusions in as broad a setting as possible, which is one of our
goals.

It is not evident how to even express the necessary conditions of optimal-
ity for the differential inclusion problem; we address that question now as
regards the Euler equation (£). The key is to reformulate the problem to give
it the appearance of a classical basic problem in the calculus of variations,
and then let history (and notation) be our guide. Accordingly we define
Az, v) to be the function which equals 0 when v belongs to F(z) and +oo
otherwise. Then the differential inclusion problem amounts to minimizing
the Bolza functional

b
E(ac(a),x(b))—l—/a Aol (t), (1)) dt

(subject to the endpoint constraints). Note that here A; is the indicator of
the graph of the multifunction Fj}; that is, the set

Gt) =grFy={(z,v) e R" xR" :v € Fy(z)}.
If A were smooth we would proceed to write the Euler equation (£):

(P(t), p(t) = DepAi(2x(t), 2£(t)) ae.

Since this is not the case, we are led to considering generalizations of deriva-
tives that could be applied to such nonsmooth functions as indicators. This
is the subject of nonsmooth analysis, which offers several such constructs,
notably in terms of (multivalued) subdifferentials.

Without being specific for the moment, suppose that we dispose of such
a subdifferential dA;. Then the Euler equation could perhaps be expressed
as an inclusion:

(P(t),p(t) € 0N (24(t), 24(1)) ace.

It is a metatheorem in nonsmooth analysis that subdifferentials of indicator
functions coincide with the set (cone) of normal vectors to the underlying
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set. Then, when A, is taken to be the indicator of G/(t), the Euler equation
may be expressed in the following form:

(j)(t),p(t)) € NG(t)(x*(t)vi*(t)) a.e.,

where, in generic notation, Ng(v) denotes the normal cone to a set G at a
point v € G. We conclude that the analogue of the FEuler equation for the
differential inclusion problem may be a geometrical assertion of this general
type. It may seem surprising that an inclusion of such a seemingly abstract
nature can yield the sharpest results in such different contexts as the calculus
of variations and optimal control theory, but this will be seen to be the case.

The early attempts to develop necessary conditions for differential inclu-
sions date from around 1970, and are characterized by strong hypotheses of
smoothness or convexity on the graph of the multifunction; this is to be ex-
pected, since a calculus of normal vectors (for example) had been developed
only in those contexts. Such hypotheses allow the consideration of only very
special cases. The underlying methodologies (based for example on convex
analysis) do not extend to more realistic situations, which are inherently
nonsmooth and nonconvex.

In 1973 and subsequently, Clarke considered such problems in the ab-
sence of smoothness or convexity hypotheses, under the assumption that the
multifunction is bounded-valued and satisfies locally a Lipschitz condition
in z of the type®

Fy(2") C Fy(2') + k(t) |2 = 2'|) B.

It was shown (under various sets of hypotheses, and in terms of a new
nonsmooth calculus) that if the arc ., solves P, then there is an arc p for
which we have the following necessary condition, an Fuler inclusion:

(j)(t),p(t)) € Ng(t)(x*(t)vx*(t)) a.e. (50)

The notation N¢ refers to the normal cone used by Clarke. (We review some
basic concepts of nonsmooth analysis in the next section.) This work intro-
duced penalization and distance function methods in conjunction with Eke-
land’s variational principle, an approach that has since been widely adopted
in the subject.

Considerable progress has been made in recent years on extending the
theory in a variety of ways, by such authors as Loewen and Rockafellar, loffe,

®The notation || refers to the Fuclidean norm on R™; B refers to the closed unit ball,
and B to its interior; rB is also written as B(0,r).
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Vinter, Mordukhovic, Kaskosz and Lojasiewicz, Milyutin, Smirnov, Zheng,
Zhu, and others. We proceed now to discuss briefly the principal issues that
have arisen in connection with these developments.

Refined necessary conditions. Due in large part to the work of Rock-
afellar, it has become clear that a more refined Euler inclusion £ can be
used in the theory:

p@)ECO{w;(meo)eAguﬂxgoﬁm@»} ace., (L)

where N* refers to the limiting normal (or L-normal) cone.* Because the C-
normal cone N is the closed convex hull of the limiting one, it is clear that
&1 implies E¢ ; the reverse is false in general. We may say that &, involves
only a ‘partial’ convexification. Another, earlier refinement in the same vein,
due to Mordukhovich, involves the use of L-normals and subgradients in the
transversality conditions.

A different question involves the possibility of affirming that the arc
p appearing in the Euler inclusion simultaneously satisfies the Weierstrass
condition:

(p(t),v—&,(t)) <0 Vo€ Fiz,(t)), t €[a,b] ae.,

an important point in deriving, for example, maximum principles of Pontrya-
gin type.®> The necessary conditions established in this report incorporate all
of these refinements. They also have a novel ‘stratified” nature that breaks
new ground; we describe it presently.

Convexity and boundedness of the values. The analysis of the differ-
ential inclusion is considerably simplified when F' is assumed to be convex-
valued (this is also known as the ‘relaxed’ case). For example, the issue of the
simultaneous Weierstrass condition does not even arise, for in the presence
of convex values it is a simple consequence of the Euler inclusion. At a tech-
nical level, such techniques as penalization and localization are much easier
to implement. Consideration of the nonconvex case is particularly challeng-
ing when the Lipschitz hypothesis on the multifunction is weakened, since
relaxation theorems generally require the strong Lipschitz property. Similar
considerations make it simpler to consider multifunctions whose values are

4€; is introduced in Smirnov [61].
5Note that this is in fact what the classical Weierstrass condition (W) becomes when

Ay is the indicator of G(t).
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bounded sets, another hypothesis which restricts applicability. In this arti-
cle we treat the nonconvex unbounded case. Convexity is thereby seen to
be a superfluous hypothesis which simply gives rise to certain refinements
when it happens to be present.

The Lipschitz condition. Motivated by the need to consider multifunc-
tions I’ with unbounded values, where the Lipschitz hypothesis can be too
strong, certain types of pseudo-Lipschitz behavior near the given trajectory
have been introduced by Loewen and Rockafellar, and subsequently by loffe
and by Vinter. Typical conditions of this nature require the following to
hold for certain values of R, and for all points 2’, 2" in a neighborhood of
T, (t):
Fy(2") N B(i.(t), R) C Fi(a") + k |2" — 2'| B.

The results of this article are obtained under a weak pseudo-Lipschitz con-
dition of this type.

Constraint qualifications. A constraint qualification is a hypothesis con-
cerning the nature of the boundary constraints or the behavior of the prob-
lem with respect to perturbations. Absence or nondegeneracy of endpoint
constraints, normality, calmness, regularity, and relaxed solvability have all
figured in this connection. We impose no such requirements in this article.

Type of local minimum. The arc z, provides a strong local minimum
if, for some € > 0, it is optimal relative to other feasible arcs z satisfying
|z — 24|, <e. A weak local minimum is obtained if the optimality is lim-
ited to those z satisfying both ||z — z.||., < and || — &.||., < e. These are
classically familiar notions. A more modern (and in general different) type of
local minimum is that obtained by considering as always ||z — z.|| ., < &, but
now together with ||& — @.||; < e. This has been referred to as a W! local
minimum, and has featured prominently in recent work. We consider local
minima of this type. At the same time, however, our results are applicable
to the case of a weak local minimum as well, because of the ‘stratified’ con-
straint that we admit to the problem formulation (see below). Furthermore,
we obtain the necessary conditions in the case of ‘boundary trajectories’, a
setting more general than that of optimality.

A new stratified framework. We now explain the new ‘stratified’ nature
of our necessary conditions. Consider first the case of a weak local minimum,
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so that z,. is optimal only with respect to arcs « for which ||z — z.|| < ¢
and

() — 3. (1) < £ ae.

This is the same as z, being a strong local minimum for the problem in
which the multifunction F is replaced by the ‘localized’ multifunction F*
defined by

Fi(z) := Fi(x) N B(d.(t),¢).

Ideally, we would hope to be able to write the Euler inclusion and the
Weierstrass condition for F*, the latter being given by

(p(t),v — i (1)) <O Yo € Fy(e.(t)) N B(iu(t),2), t € [a,b] ace.

The Euler inclusion for F* is the same as for F, since the two graphs in
question are locally the same near (z.(t),%.(¢)). The difficulty with this
ideal picture is that even if F} is Lipschitz, F}* will not be well-behaved in
general (not even continuous). Thus the possibility of deriving necessary
conditions for F* is problematic. Nonetheless, our results do in effect just
that, and under the following type of pseudo-Lipschitz hypothesis: for 2/, "
near x,(t), we have

Fy(2") N B(iw(t),2) C Fy(a') + k [2" — 2’| B.

Note that both the hypotheses and the conclusion are now adapted to the
radius of the weak local minimum: we can assert the Weierstrass condition to
precisely the extent that the optimality and the pseudo-Lipschitz condition
hold; this degree of coherence is a new factor.

More generally, we consider the problem P under an additional con-
straint distinct from that giving rise to the word ‘local’, and distinct from
the differential inclusion, a constraint of the form

|2(t) = #.(t)] < R(t) a.e.,

where R : [a,b] = (0,+0o0] is a given ‘radius function’. As above, the case
R = ¢ allows one to treat a weak local minimum (for the first time in
this general context), but we also allow R = 400, thereby subsuming what
has been the usual case, in which the additional constraint is absent. The
(possibly extended-valued) radius function is assumed only to be positive
and measurable. The nature of the conclusion in the general case preserves
the symmetry between hypotheses and conclusion: if F is ‘pseudo-Lipschitz



1.2. DIFFERENTIAL INCLUSIONS 11

of radius R’ near ., then we obtain along with the Fuler inclusion the
‘Weierstrass condition of radius R’:

(p(t),v— i (1)) <O Yo € Fy(e.(t) N B(a.(t), R(t)), t € [a,0] ae.

Further, if this should hold for a sequence of radius functions going to infin-
ity, then we obtain the usual (global) Weierstrass condition . In particular,
we obtain the new (and natural) result that if the multifunction is pseudo-
Lipschitz of radius R (for some kg) for every R > 0, then the global necessary
conditions hold. The fact that the hypotheses and the conclusion can hold
for different radius functions, and even in the case of a fixed radius function
for radii that depend on ¢, motivates our use of the word ‘stratified’ for this
new type of result.

In summary, our results subsume and substantially extend all the current
ones of this nature for the standard formulation of the differential inclusion
problem under consideration, as well as for the two other paradigms that
we have defined above: the problem of Bolza in the calculus of variations,
and optimal control systems. We believe that the theory now exhibits a
completeness and unity that were missing previously. We do not study
here certain of the (many) variants such as free-time or state-constrained
problems, but we expect our methods to carry over.

Plan of the monograph

The next two chapters constitute the technical core of this work. Chapter
2 first proves a preparation theorem that bears upon a bounded, Lipschitz
multifunction. Despite its subsidiary role, the theorem is of independent
interest due to the weak nature of the weighted local minimum that it pos-
tulates, and for its new and efficient method of proof, which is based in part
on a ‘decoupling’ technique introduced by the author in [24]. The other
part of Chapter 2 is devoted to Theorem 2.3.3, which applies to boundary
trajectories in a very general context.

The chapters that follow treat in turn the three paradigms we have de-
fined above. Chapter 3 examines the differential inclusion problem. Chapter
4 studies the Bolza problem in the calculus of variations; it presents new
state-of-the-art necessary conditions and regularity criteria which signifi-
cantly extend those available previously (even for smooth Lagrangians). In
Chapter 5 we extend the maximum principle (including its more modern
and stronger versions) in several ways; we obtain in particular a new and
versatile ‘hybrid maximum principle’. The final chapter discusses the Hamil-
tonian inclusion in generalized gradient form, and establishes this necessary
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condition for the first time in the case of nonconvex values and in the absence
of any constraint qualification . This settles a longstanding open question
in the subject.

We remark that the monograph is self-contained to an extent that is
unusual in this area. We use no prior results in the subject, except in the
final section, which stands apart from the rest. We do require facts from
proximal nonsmooth analysis in infinite-dimensional Hilbert space. Notable
among these are the variational principle of Borwein and Preiss [7, 8], and
the mean value inequality of Clarke and Ledyaev [28]. These theorems
are proven from first principles, along with all the results of nonsmooth
analysis used here, in [29], whose notation and terminology we adopt. For
the convenience of the reader, however, we briefly summarize in the next
section the principal constructs and results from nonsmooth analysis that
we shall call upon.

Detailed references, comparisons with the literature, and other comments
are provided in the Notes which conclude each chapter. The symbol W
indicates the end of a proof, and ¢ the end of a theorem statement.

1.3 Nonsmooth analysis

It has been a lesson of the past few decades that many different topics in
mathematics and its applications require to some extent a calculus for non-
differentiable functions and nonsmooth sets, one that (unlike distributions)
considers the pointwise nature of the nondifferentiability. Optimization and
feedback control design (see [26]) are two examples of this, and nonlinear
partial differential equations provides another with the celebrated method of
viscosity solutions, which is closely related to optimal control. The present
topic, necessary conditions in dynamic optimization, is another in which the
best results necessitate nonsmooth analysis for their derivation, even when
the underlying problem exhibits smooth data.

Although the literature of nonsmooth analysis is dauntingly large at this
point, a relatively compact knowledge set suffices for many purposes. We
present here some aspects of the branch of the subject known as proximal
analysis, in the setting of a Hilbert space X.

Basic definitions. Given a nonempty closed subset S of X and a point
z in 9, we say that ¢ € X is a prozimal normal (vector) to S at x if there
exists ¢ > 0 such that

(¢,2' —a) <o’ —a|* ¥a'eSs.
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(This is the prozimal normal inequality.) The set (convex cone) of such ¢,
which always contains 0, is denoted Ng(x) and referred to as the proximal
normal cone.

Given a lower semicontinuous function f: X — RU {400} and a point
x in the effective domain of f, that is, the set

dom f:= {2’ € X : f(a') < +o0},

we say that ( is a prozimal subgradient of f at x if there exists ¢ > 0 such
that
/ / 2 /
J@) = J@) +olle’ = 2] 2 (¢ 2"~ x)

for all 2’ in a neighborhood of 2. The set of such ¢, which may be empty,
is denoted dpf(z) and referred to as the proximal subdifferential. The
Proximal Density Theorem asserts that dpf(z) # 0 for all  in a dense
subset of dom f.

The limiting normal cone Ng(x) to S at x is obtained by applying a
sequential closure operation to Ng:

NE(@) = {lim¢ : ¢ € NE(2)), 2 — 2,2, € S}.
A similar procedure defines the limiting subdifferential:

O f(x) == {lim G = G € Op f(wi), wi = @, f(2i) = f(2)}.

It can be shown that ¢ belongs to dp f(z) iff the vector (¢, —1) belongs to
NEP. (z, f(z)), where epi f, the epigraph of f, is the set

epi f
epi f:={(z,r) € X xR: f(z) <r}.

A similar characterization holds for Jr, f(z).

Some calculus. Let us cite a few examples of calculus rules associated
with the above constructs. If Is denotes the indicator function of S, then

dpls(z) = NE(2), 0pls(x) = NE(2).
If the set .S admits a representation of the form

S={a": f(a") <0},

where f is locally Lipschitz, and if z is a point such that f(z) = 0, 0
Orf(z), then any vector in N¥(z) is of the form A( for some scalar A >
and some element ¢ € Jr, f(z).

¢
0
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Proximal characterizations of many functional properties can be proven.
For example, the function f satisfies a Lipschitz condition with Lipschitz
constant K on an open convex set €2 iff whenever a point z € € admits an
element ¢ € dp f(z), then [|(|| < K.

If g is a locally Lipschitz function, then we have the limiting sum rule:

IL(f+9)(x) CILf(x) +Irg(w),

with equality if ¢ is C2. Now let f,¢g: X — RU {400} be lower semicontin-
uous functions having z in their effective domains, and for simplicity, take
X to be finite dimensional. Suppose that ¢ belongs to dp(f + ¢g)(x). Then
for any € > 0 there exist 2’, 2" in B(z,¢) with

[f(@) = f@)] < [g(a") —g(z)| <&
together with ¢’ € dp f(2') and ¢” € dpg(z") such that
e +(¢"+eB.

(This is loffe’s fuzzy sum rule.)

A smooth variational principle. Now assume that the lower semicon-
tinuous function f: X — RU {400} is bounded below, and that the point
2o satisfies

fwo) < inf f(x) +e

for some ¢ > 0. The Borwein-Preiss variational principle [7] asserts the
existence, for any A > 0, of points y and z in X with

[z = oll <A, lly = 2ll <A, fly) < fl=o)
and having the property that the function
€
v @)+ o e =

has a unique minimum at z = y.

A multidirectional mean value theorem. We take X finite-dimensional
for simplicity. Let Y be a compact, convex subset of X and f : X —
R U {400} a lower semicontinuous function. Let any 2 € dom f be given,
as well as € > 0. Consider any real number r no greater than the quantity
miny f — f(z) (which may equal +00). The mean value inequality (Clarke
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and Ledyaev [28]) asserts the existence of a point z in the e-neighborhood
of the set

[z,Y]:=co [Y U{z}]

together with an element ¢ € dp f(z) such that

r<{Cy—z)4+e YyeyY, f(z)< [iné]f—l—|r|—|—5.

Singular subgradients. The vector { is said to be a singular limiting
subgradient of f at 2 € dom f if (¢, 0) belongs to Né)if(ac, f(z)). The set of
such elements is the singular limiting subdifferential 99 f(x). It is useful on

occasion to employ the alternative notation 9} f(z) for 9z, f(z).

The generalized gradient. One can develop nonsmooth calculus in an
arbitrary Banach space via the theory of generalized gradients (see Chapter
2 of [29]). In the case of a Hilbert space X and alocally Lipschitz real-valued
function f on X, the generalized gradient d¢ f(z) coincides with codz, f(z);
further, the associated normal cone N§ (z) to a set S at a point  coincides
with clco NE(z).

1.4 Notes

81.1 Basic references for the calculus of variations include the classical
books of Bliss [5], Morrey [54], Cesari [11], and Tonelli [63]; we also refer
the reader to Buttazzo et al. [10], Giaquinta et al. [34], Goldstine [35], and
loffe and Tikhomirov [40]. The article [22] gives a more thorough account
of the existence and regularity issues than we have given here; see also [23].

The book of Hestenes [37] systematically develops the multiplier rule
approach, while that of Young [67] connects the calculus of variations to
optimal control. For the latter, Lee and Marcus [43], Pontryagin et al. [55],
and Warga [66] are standard references. The books of Clarke [20][23] and of
Clarke et al. [29] foreshadow in certain respects many of the developments in
this monograph, and give examples and applications in nonsmooth analysis.

81.2 Early approaches to developing necessary conditions for differential
inclusions (under smoothness or convexity hypotheses) are due to Blago-
datskih [4] , Boltianski [6], Fedorenko [31], Halkin [36] and Rockafellar [56].
Recent work is discussed in the Notes to Chapter 3.
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81.3 Presentations of nonsmooth analysis may be found in the books of
Clarke and Clarke et al. cited above, and also in those of Loewen [44], Rock-
afellar and Wets [60], and Vinter [64]; see also the survey article by Borwein
and Zhu [8]. For viscosity solutions, see Bardi and Capuzzo-Dolcetta [2].



Chapter 2

Boundary Trajectories

There are two principal results in this chapter. We begin by deriving some
necessary conditions for optimality in the special context of a Lipschitz dif-
ferential inclusion with bounded values (Theorem 2.1.1). This in turn is
used as one of the building blocks for the main result, Theorem 2.3.3. We
conclude the chapter with some variants of that theorem.

2.1 A preparation theorem

Statement of the problem. We are given a multifunction F mapping
[a,b] x R™ to the subsets of R” (as in the Introduction, §1.2), together with
two real-valued functions £y and £;. We also have a trajectory z,. of I’ on
the interval [a,b] such that z.(a) belongs to a given set C'. Finally, there
are specified a positive summable function € on [a, b], and numbers p € [1, 2]
and £ > 0. It is assumed that z. solves the following problem: to minimize

G2 (b)) + Lo(z(a))

over the trajectories @ of F' on [a, b] which satisfy
b
z(a) € C, / |&(t) — @. ()" 0(t) dt < e, ||z — x|, <e.

Hypotheses on the data. The set ' is assumed to be closed, and the
functions £y and ¢y locally Lipschitz. Regarding F, we posit the basic
hypotheses that are always in force: the map (¢t,2) — Fi(z) is £ x B-

17
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measurable!, and the graph of F}, the set G(t) := gr F;(+), is closed for each
t. We also require in this section that F' be integrably bounded and Lips-
chitz near z.: there exists a (nonnegative) summable function k such that
for almost every t € [a, b] we have

z € E(ac*(t),e),_v € Fi(z) = |v] <k(b); B
z,2' € B(a.(t),s) = F/(2) C F,(2') +k(t) |2' — 2| B.

Finally, we postulate that £°6 is summable.

2.1.1 Theorem There exists an arc p satisfying the transversality condi-
tions

—p(b) € dpli(2.(b)), pla) € Dplo(x.(a)) + Ni(z.(a)),
the Euler inclusion
Pt) € co {w: (w,pl(t) € N (aa(t), () |, t € [a,] ae,
and the Weierstrass condition

(p(t),v—&()) <0 Yo € Fy(z.(t), t € [a,b] a.e. ¢

Proof of Theorem 2.1.1

Some reductions

It is clear that we can take [a,b] = [0,1], 2. = 0 and k(t) > 1 a.e. In fact,
we can suppose that k(t) = 1 a.e. For let us induce a change of time scale
via s = 7(t), where

and where transformed arcs y correspond to original ones z via y(s) = z(t) =

z(771(s)). This defines a one-to-one correspondence between arcs z on [0, 1]
and arcs y on [0, T], where T := fol k(t) dt. We have

1 T
/0 ()7 (1) di = / 3())" () ds,

'This refers to the smallest o-field containing the products of Lebesgue measurable
subsets of [a,b] and Borel measurable subsets of R™. See for example [29] for the basic
theory of measurable multifunctions.
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where )

0(s) := k(17 ()" 10(r 7 (s))
is a function which lies in L! (by the change of variables formula). Further,
x is an F trajectory iff y is a trajectory of the multifunction F’ defined by

Fuly) = ﬁFt(y), p——

It follows that the arc y. = 0 corresponding to z, = 0 is a local mini-
mum for the transformed problem (with F') in the same sense that z, is for
the original one. But the multifunction F is bounded and Lipschitz with
function k(s) =1 a.e.

It is a simple exercise in nonsmooth analysis to show that if an arc ¢
satisfies the set of necessary conditions for the transformed problem, then
the arc p(t) := ¢(7(t)) satisfies them for the original problem. Therefore
we can (and do) suppose from the outset that k =1 a.e. We may also take
6> 1.

There is no loss of generality in supposing that I;(z) is defined for all
in R", and that the bound on F and the Lipschitz condition hold globally
on R"™, by the following device: for a suitable choice of §, and for |z| > 4,
we set Fy(z) := Fy(rz), where 7 is the projection of x on B(0,d). Finally,
we note that there is no loss of generality in assuming that £y and ¢, are
globally defined and Lipschitz and bounded below, and that C' is compact.

An infimal convolution approximation

Quadratic infimal convolution is a basic mollifying tool in nonsmooth anal-
ysis. We apply it here to the function £;. For any positive number 7, we

define
O (z) = ngﬁé}z {Kl(z) +ile — z|2} .
Then (see [29]) ¢} is Lipschitz with the same constant as (1, and there exists
for each ¢ a positive number §; such that
O (x) = 8 < li(z) < fy(z) Vo eRY, lim 6; = 0.

Let z be a point where the minimum defining ¢} (z) is attained. Then we
have

¢ =2i(z — z) € Iply (),
and ( satisfies

0 (2" §€i($)—|—<§,$’—x>—|—i‘$’—x‘2 Va' e R™ (2.1)
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A penalization result

We denote by L? the Hilbert space of all measurable functions f : [0, 1] = R"”
such that

1
[ 1P <+,
0

with inner product and norm defined by

1 1 , 1/2

o= [ @a@0wd W= { [ roR o0 @}
We now consider the minimization of
' 1
Ele) + (e 0) + i [ [u(t) — (0 dr,
0

where z(t) := ¢+ fg v(s) ds, and where the minimization is taken over the
points ¢ = 2(0) € C' and the functions v and v in L7 satisfying

(u(t),v(t)) € G(t) a.e.,/o lv(s)]” 6(s)ds < %, || —I—/O lv(t)] dt < (2.2)

N | ™

It is easy to see that these conditions define a closed subset of the Hilbert
space X := R™ x L? x L. For given ¢, let [; denote the infimum in the
problem just described. A feasible triple for this problem is ¢ = 0,4 = v = 0,
and the corresponding cost is £} (0) + £o(0), whence I; < €4 (0) + (5(0). We
now prove that this triple is ‘nearly optimal’ for ¢ large; that is, we claim
that

lim {I; — €{(0) — (o(0)} = 0.

11— 00

For suppose the contrary. Then there exist A > 0 and sequences ¢; =
2;(0) € C, u; and v; in L? satisfying (2.2) such that

. 1 .
G1(i(1)) + Lo(2:(0)) +i/ Jui(t) = 2:(8)* dt < ((0) + (o (0) = A.
0
It follows that ||z;||., < /2 and that

/01 lui (t) — @ (t)|* dt — 0.
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Then we calculate, using the Lipschitz condition (d stands for Euclidean
distance)

/0 A1), Fi(es(0) dt < / {d(a(t), Fius(0))) + luslt) — wa()]} dt

0+ [/01|ui(t) — z;()|* dt Y — 0.

IN

We invoke the well-known approximation theorem of Filippov? to deduce
the existence, for all 7 sufficiently large, of a trajectory y; of I such that

y:(0) = 2;(0), /0 lg:(t) — a&;(t)|” 0(t) dt — 0.

Then for 7 large we have

Il <= [ P o) < <
and
Cu(yi(1) 4 Lo(y:(0)) < La(2:(1)) + Lo(2:(0)) + K |y; (1) — 2:(1)]
(where K is a Lipschitz constant for {o + (1)

< 1)+ 6+ holai(0) + K is(0) — )]

' 1 1/p
<L(0)+6o(0) — A+ 6+ K [/0 lg:(t) — &:(¢)|” 6(t) dt

(recall that 6 > 1)

< L1(0) + £o(0) < 1(0) + (o(0)

for ¢ sufficiently large, which contradicts the optimality of z, = 0 and proves
the claim.

It follows from the Borwein-Preiss variational principle (applied in X; see
§1.3) that there exist a sequence ¢; tending to 0, points ¢;, ¢; € C'N B(0, &)

2Actually, a simple variant that builds directly upon the usual proof to account for p
and 6. For example, in the context of [64], it suffices to use (2.18) in conjunction with
(2.19) and the fact that k78 (here reduced to 6) is summable.
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and functions u;, u}, v;, v} in L% all of whose norm in that space is less than
g; such that the solution to the problem of minimizing

fﬂfﬂﬁ+¢d£@ﬁ+@ﬂf@%—df+il |u(t) =« ()] dt

—I—&'/0 |u(t) —u§(t)\29(t) dt—l—&'/o |o(t) _Uz/'(t)‘20(t) il

over the elements ¢ = z(0) € C and u,v € L? satisfying (2.2) is given by
2(0) = ¢;,u = u;, v = v;. Since u; goes to 0 in L7, it goes to 0 in L} (that
is, u;0 goes to 0 in L'). Thus by taking subsequences if necessary we can
assume that u;0, and hence u;, converges almost everywhere to 0. Analogous
arguments allow us to suppose that all four function sequences u;, v, u’, v}
converge in L} and almost everywhere to 0.

Variational analysis

Because ¢; — 0 and

1
/ o ()7 0(t) dt < £ — 0,
0

the two integral constraints in (2.2) become inactive at v; for ¢ sufficiently
large (the fact that p < 2 is essential here). Fix such a value of 7.

We shall now express the necessary conditions corresponding to the so-
lution of this problem, in terms of the arc p; defined by

pit) = 2i(zi(t) — ui(1)), pi(1) = =G,

(note that p; does lie in L') where ; = 2i(x;(1) — z), and where z; is a
point at which the minimum defining ¢ (2;(1)) is attained. (Of course, z;
signifies here the arc with initial value ¢; and derivative v;.) Then we have

—pi(l) € 8pf1($¢(1)) (2.3)

by construction. We note the identity

il —al® = ifui — @il = (ryu = wi) + (i v — wi) + il (@ =20 = (u—w)) |,
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which, together with (2.1), implies that, subject to (2.2), the minimum of
(=pi(1), 2(1) + i e (1) = 2i(1)]* + Lo((0)) + =4 [ (0) — ¢
/ {hi(0), (1)) = (i(e), (e} o

" 21/0 {|u<>—uz<>|2+|x<t>—wi<t>|2}dt

gi/o ‘u(t)—ug(t)‘ze(t)dt—l—gi/o () — ol (1)] 6(t) dt

is attained at wu;, x;.
We use integration by parts to rewrite the cost functional as

(=pi(0), 2 (0)) + 7 2 (1) — oD + Lo(0)) + &1 |(0) —
/{ —pilt), o(t)) — Ge(t), ut))} dt

" 21/0 {|u<>—uz<>|2+|x<t>—xi<t>|2} it

gi/o ‘u(t)—ug(t)‘QO(t)dt—l—gi/o () — ol(1)]? 6(t) dt

a functional that we shall label ®(c,u,v), where we continue to identify ¢
with 2(0).

Let us now fix the values u = u;, v = v; in ®. Then a local minimum of
O (-, uiyv;) over C'is attained at ¢ = ¢;, whence

pi(0) — 2¢;(24(0) — C;) € dp{lo+ Ic} (2:(0)), (2.4)

where I is the indicator function of C. The transversality information is
contained in (2.3) and (2.4).

We turn now to the Weierstrass condition, which will follow from the
existence of a minimum of ® with respect to the v variable. We claim that
for almost each ¢ € [0, 1], one has

(pi(t), v = vi(t)) + & i (t) — vi(1)| 6(2)
<elv—ol@) 0(t) Yo e Fi(uit)),

which implies the approximate Weierstrass condition

(pi(t), v — v;(1)) < 82,0() Vv € Fylui(t)). (2.5)
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Suppose the contrary. Then there is a measurable selection © of Fy(u;(t)),
a subset S of [0, 1] of positive measure, and a positive number 7 such that,
for all tin S,

(pi(0), 0(t) = vi(t)) + =i v () = VIO 6(0) = n + i [o(t) = ()] 6(0).

Then for each A > 0 sufficiently small, let S be a subset of S having measure
A, and define a function vy (t) to be equal to v(t) when ¢ lies in Sy, and equal
to v;(t) otherwise. It follows that if x ) signifies the arc corresponding to vy
(with initial condition ¢;), we have

e (t) — 2:(t)] < 27

For X small enough, vy belongs to the set relative to which ®(¢;, u;, ) attains
a minimum at v;, whence

1
Her() = O+ [ il ea(0) de
0
1 1 )
+2¢/ () — @i () di + 52./ loa () — ol(1)] 6(t) dt
0 0
1 1 )
> / (—=pi(t),vi(t)) dt + gi/ i (t) — vi(t)|” 6(t) dt.
0 0
Together these imply 12iA? > nA for all A > 0 sufficiently small, the required
contradiction.

There remains the Euler inclusion to extract. To this end, fix ¢ = ¢; in
¢ and consider ®(c;, -, ). The terms

1
(1) = i [ fate) = a0)
0
are both majorized by
1
| o - a,
0

so it follows that the minimum of the expression

1

/0 ((=pi(t), o(t)) — Ge(t), u(t))} dt
1
431 [ {lul0) - wF + 1o - o) i
0

+ &'/0 ‘U(t)—ui'(t)fo(t) dt—l—&'/o ‘”(t)—vf(t)\ze(t) il
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over the v and v in LZ such that

(u(t),v(t)) € G(¥) a.e.,/o lo(t)]” 0(t) dt % |CZ|—|—/ lo(t)| dt <

is attained at w = u;, v = v;. Because the integral constraints are slack at
v;, it follows from an elementary measurable selection argument® that for
almost each ¢, the integrand is minimized over G(t) at u = w;(t),v = v;(¢).
This implies that for almost all £,

(Bi(6), i(t)) € Ny (wi(t), vi(1))
+220() (ui(t) — wit), vilt) — vi(1))-
The relations (2.3)(2.4)(2.5)(2.6) will yield the conclusions of the theorem

in the limit.
Because F; is Lipschitz with constant 1, it follows from (2.6) that

w|m

(2.6)

D ()] < [pi(0)] + 22:0(t) {[ua(t) — wi(t)] + |vi(t) — Vi ()|} ae.

Together with (2.3), this implies via Gronwall’s Lemma that for a subse-
quence (we do not relabel) we have that p; converges uniformly to a limiting
arc p and p; converges weakly to p. It is easy to see that p satisfies the
transversality and Weierstrass conditions in the limit.

There remains the Euler inclusion to verify. It follows from a fundamen-

tal stability property of the inclusion with respect to the type of conver-
gence present here. We record for later reference a more general result than
is needed at the moment, one which concludes the proof of the theorem.
The following is a direct consequence of the theorems of Carathéodory and
Mazur.*
2.1.2 Proposition Let F satisfy the basic hypotheses, and let p; be a se-
quence of arcs on [0, 1] converging uniformly to an arc p, where p; converges
weakly in L' to p. Suppose that for each index i, p; satisfies the following
(approximate) Euler inclusion at (u;,v;) on a subset €; of [0, 1]:

Pi(t) + ailt) € co {w: (w,pilt) + Bift)) € N (wilt), vi(t) }, £ € 2,

where the measurable functions (u;, v;) converge almost everwhere to a limit
function (ug, vo), the measurable functions (a;, ;) converge in L' to (0,0),

®Details of the measurable selection argument are given in [24].
*The argument is given in [64], pp. 250-1; alternatively, one can argue as in Theorem
3.1.7 of [20].
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and where the measure of ; converges to 1. Then p satisfies the Euler
inclusion at (ug, vg):

p(t) € clco {w D (w,p(t)) € Né(t)(uo(t),vo(t))} , 1 €]0,1] ae. ¢

Note that the closure operation in the limiting FEuler inclusion of Propo-
sition 2.1.2 is superfluous when Fj is Lipschitz (or later, pseudo-Lipschitz),
because in that case the set to which it is applied is already closed. This
follows from the elementary fact that any limiting normal vector («a, ) to
G/ (t) must satisfy |a| < k(2) |5].

The theorem now follows upon applying the proposition to the conver-
gent sequence p; above, in view of (2.6), and because the proximal normal
cone is contained in the limiting one. |

2.1.3 Remark (a) The restriction p < 2 in the theorem is nec-
essary for technical reasons in the proof, but we do not know if
it reflects a fundamental limit to the validity of the Weierstrass
condition.

(b) Passing to the limit in (2.4) yields a somewhat sharper trans-
versality condition at @ than the one given in the statement of
the theorem:

pla) € I {lo + Ic} (2«(a)).

2.2 An integral cost functional

Consider now the variant of the problem in which there is an explicit integral
term in the cost functional: . minimizes locally (in the same sense as before)
the cost functional

b
() + olela) + [ Adito) dr,

the other data of the problem being unchanged. We assume that A is £ x B
measurable, and bounded and Lipschitz as follows: there exists a constant
ka such that, for almost every ¢, we have

x € B(z.(t),¢), v € Fi(z) = |Ai(v)] < ka;
z,7" € B(z.(l),2), v € Fy(z)+ B, v' € Fy(a') + B
= |Ae(v) = A¢(v)| < ke |0" = o).
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2.2.1 Corollary There is an arc p which satisfies the transversality condi-
tions

—p(b) € Ipli(2.(b)), pla) € Dplo(r.(a)) + NE(24(a)),

the Euler inclusion: almost everywhere, p(t) belongs to the set

co {w: (w,p(t)) € N (oa(t), (1)) + {0} x O A ((6)) }
and the Weierstrass condition

A(v) = Ay(@2 (1)) = (p(t), v — 3.(t)) Yo € Fylau(t)), ae.tela,b]. &

Proof. The added integral cost can be absorbed into the differential in-
clusion by the familiar device of state augmentation: we introduce an ad-
ditional one-dimensional state variable y satisfying y(a) = 0 together with
the following augmented dynamics:

(#,9) € {(v,w) s v e Fy(x), Ay(v) S w < ka+ 1}
The problem now amounts to minimizing
G2 () + bo(z(a) + y(b)

subject to this augmented inclusion. This has the form of the problem
treated by the theorem, all of whose hypotheses are easily verified. Its ap-
plication then leads to an arc (p, ¢) for which ¢ is identically —1. The aug-
mented Euler inclusion therefore involves a relation of the type (we suppress
the ¢ variable)

(w.p,—1) € NB(QL‘, v, Av)),

where
D:={(@" v, r) v e F(a'), A(v) <v' <hkn+1}.

This condition is equivalent to
(w7p7 _1) € N£($7 v, A(U))7
where
E = {0, r) v € Fa'), A(v) <0}

But F is the intersection of the two sets F{ := G X R and Fy := R™ X Gy,
where (G signifies the epigraph of A. Because A is Lipschitz, the proximal
sum rule for normal cones (see [29], 1.8.4) implies (in the limit) that an
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clement of Nf(z,v, A(v)) is the sum of one in Nf (,v,A(v)) and one in
NE (x,v,A(v)). This leads to

(w,p) € NE(z,v) + {0} x OA(v).

It follows now that the augmented Fuler inclusion implies the desired one,
and the other conclusions of the corollary follow immediately.

2.3 A general theorem on boundary trajectories

As before, F'is a multifunction from [a, b] X R to R” and C' a closed subset
of R™. The permanent basic hypotheses require that F' be £ x B-measurable
and that for each ¢, F;(-) have closed graph. Let the arc z, be a trajectory
of F on [a,b] having z.(a) € C'.

We are given a measurable function R : [a,b] — (0, +o00] which we refer
to as the radius function, or simply radius. We stress that R is extended-
valued; below, the choice R = 400 is admissible.

Given £ > 0, we consider the set 7 = T (a,, R,e,C, F) of trajectories
of F' on [a, b] which satisfy the constraints

v(a) € C, |i(t) — i.(1)] < R(t) ae.

and which are e-close to 2, in the following W sense:

b
[ 10 - ld < e -l <=

Let @ : R” — R™ be a given locally Lipschitz function. We say that z, is a
local boundary trajectory if, for some ¢ > 0, ®(z.(b)) is a boundary point of
the set

O :={P(z(b):xeT}.

We proceed to define two properties constituting the principal hypotheses
that will be made in the theorem.

2.3.1 Definition £ is said to satisfy a pseudo-Lipschitz condi-
tion of radius R near z,. if there exist ¢ > 0 and a summable
function k such that, for almost all t € [a, b], for every x and a’
in B(z.(t),e), one has

Fy(a') N B(.(t), R(t)) C Fi(z) + k(t) |2’ — 2| B.
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When R is identically 400, the above reduces to a (true) Lipschitz con-
dition.

2.3.2 Definition F is said to satisfy the tempered growth con-
dition for radius R near z, if there exist ¢ > 0, A € (0,1), and

a summable function rg such that for almost every t € [a, b] we
have 0 < ro(t) < AR(t) and

o — 2.(t)] < £ = Fy(2) 0 B(is(t), ro(t)) # 0.

Note that by taking the minimum of the three parameters £ mentioned
above, we may assume that the ¢ defining the local minimum is the same as
that of both the pseudo-Lipschitz and the tempered growth conditions.

2.3.3 Theorem Suppose that z, is alocal boundary trajectoryin the above
sense where, for radius R, F satisfies the pseudo-Lipschitz and tempered
growth conditions near z.. Then there exist an arc p on [a,b] and a unit
vector v in R™ such that the following transversality conditions hold

—p(b) € Or {7, ®) (2.(b)), p(a) € N&(2.(a)),

and such that p satisfies the Euler inclusion:

B(t) € co {w (@, p(t) € Nk (a(t), a’c*(t))} ae. t € [a,b],

as well as the Weierstrass condition of radius R: for almost every ¢ in [a, b]
we have

(p(t),v) < (p(t), #.(t)) Yo € Fy(.(t)) 0V B(d.(1), R(1)). ¢

2.4 Proof of the theorem

Some reductions

There is no loss of generality in taking the £ of the pseudo-Lipschitz condi-
tion, that of the tempered growth condition, and that of the local boundary
trajectory all equal, and in supposing z, = 0, which we do henceforth. We
also take [a,b] = [0,1]. Let us induce a change of time scale via s = 7(¢),
where
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and where transformed arcs y correspond to original ones z via y(s) = z(t) =
z(771(s)). This defines a one-to-one correspondence between arcs z on [0, 1]
and arcs y on [0,7], where T := 7(1), and « is an F' trajectory iff y is a
trajectory of the multifunction £ defined by

Fu(y) = %

It follows that the arc y. = 0 corresponding to z, = 0is a local boundary
trajectory for the transformed problem (with F') in the same sense that z.

Fi(y), t= T_l(s).

is for the original one, and for the radius function

: k(1) -

R(s) := , (t=1""(9)).
(@)= i (=)
Furthermore, the multifunction F satisfies the tempered growth condition
with 7o := 1 (and the same A), and its pseudo-Lipschitz function is

; k(1) -

k(s) := t=71""(s)),

@)= o (=770

which is summable over [0, T']. Since the conclusions of the theorem for the

transformed data are easily seen to imply those for the original data, we
conclude that without loss of generality we may take rg to be constant.

An auxiliary multifunction

Let us now proceed to select some parameters that will be used in the proof.
First, fix any N > rg and set
Ry (t) := min [N, R()].
We shall work below with the bounded radius function Ry. Next we select
any Ag € (0,1) and n € (0,1) such that
ro < (Ao —2n) ess inf {Rn(t) : t € [0, 1]}.

In the final stage of the proof, we let Ag and 1 converge to 1 and 0 respec-
tively, and let NV go to +oc.

The proof of the theorem will employ the multifunction I' defined as
follows: for (¢,z) € [0, 1] x B(0,¢) we set

Fi(e) :={(Af;A) A €[0,1], f € Fi(2), [f] < (1 = An) By (1)}

(note that there exist points A and f as described, in view of (2.3.2)). Then
I' satisfies the basic hypotheses, and is uniformly bounded. Furthermore, I'
is integrably Lipschitz near 0:
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Lemma 1 For almost all ¢t € [0,1], for all = and 2’ in B(0,¢),
one has

(24 By (1) k(1)
nRn(t)
To see this, fix ¢ such that the Lipschitz hypothesis on F' holds, and let

(Af,A) be any point in I';(z). We shall exhibit a point (X f/, ') in [';(z')
such that

[i(z) C Ty(a’) + |2’ — 2| B.

(2+ By (1)k(t) o af
nRy(t) '

Set ¢ := |2’ — z|. Consider first the case in which A < 8k(t)/(nRn(t)). Then
the choice X' = 0 is suitable (with any f’ € Fy(2') satisfying | f'| < ro, say).
Suppose then that A > 8k(t)/(nRn(t)). By assumption we have

‘(A/f/7 A/) - (Af7 A)‘ S

F € Fy(x) N B0, (1 — Ap)Rn(t)) C Fy(x) 0 B(0, R(t)).

Apply the pseudo-Lipschitz property to deduce the existence of f' € Fy(a')
such that |f' — f| < 0k(t). Note that |f'| < Rn(t). If |f'| < |f], the choice
A= X leads to the required element of I';(z'). So let us suppose |f’| > |f].
In this case we set

N

kN (t)
It follows that (A'f’, \') is the required element of I';(z’), and the lemma is
proven.

M=

An auxiliary problem

Let us define a function ¢, : [0, 4+00) — [0, +00) as follows:

su(r) o2 2ol = o= 2n) Ry (1))}
T T N+ 2 RE ()

where [s]; signifies max(s,0). This smooth nondecreasing function is picked
so as to satisfy the following conditions, invoked later on:

r €0, (Ao —2n)RNn(t)] = ¢(r) =0 (2.7)
[0, By(t)] = @) < —20 < 20 < a2 (2.9)

B QRN(t) - 27‘07
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Since ®(0) = ®(z.(b)) is a boundary point of the set ®7, there exists a
sequence of points y; not lying in ®7 and converging to ®(0).
We consider the problem of minimizing

i — ()] — y(1) /¢t|x

over the arcs (z,y) on [0, 1] satisfying
(&,9) € I't(z) ae., 2(0) € C, y(0)=0 (2.10)
and

12(0)] < £/2, /01|5c|dt§5/2. (2.11)

We view this problem as one in which the choice variables are @,y € L?, and
z(0) € R". Any feasible (z,y) has

1
foll.. <o [ leolar<e.
0

The infimum in the problem is no less than —1, and the arc (0,¢), which
is feasible, provides the value ¢; — 1 to the cost, where ¢; := |u; — ®(0)] > 0.
(Note that ¢; goes to 0 as ¢ goes to +00.) We invoke the Borwein-Preiss
variational principle on L? x L? x R" to deduce the existence of ! (also
going to 0), functions v;, v!, A;; A\ in L% with

Hvin < 5;'7 H/\Z - 1H2 < 5;'7 HUZ/HQ < 5;'7 H/\; - 1H2 < 5;'7
as well as points z;, z/ in R” with
|Zi| < 8;7 ‘Zz/‘ < 5;’

such that the arc

(i) i0) = s+ | s, [ a6 i)

solves the problem of minimizing

i = (@ (b)) = y(1) + ! |2(0) - =4°

/qﬁt | (1) dt—l—e/ ‘x—v‘ dt—l—e/ ‘y /\" dt

over the arcs (z,y) satisfying (2.10) and (2.11). It follows that (z;,y;) con-
verges uniformly to (0,¢), and we may suppose that (v;, v/, A;, A}) converges
almost everywhere to (0,0,1,1). We may write #;(¢) in the form X;(¢) f;(¢),
where f;(t) € Fy(z;(t)), and where f; converges almost everywhere to 0.
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Necessary conditions for the auxiliary problem

For 7 large enough, the constraints in (2.11) are slack at z;, and the neces-
sary conditions of Corollary 2.2.1 apply (we take § = 1,p = 1). Fix such
an 7. If (p,q) is the arc corresponding to (z;,y;) in those necessary condi-
tions, it follows that ¢ is identically 1. Using the limiting chain rule, the
transversality at ¢ = 1 may then be written as follows:

—p(1) € 9L (v, @) (2:(1)), (2.12)
where « is a vector of length not exceeding 1. At 0 we have
p(0) — 2<(2;(0) — 21) € NE(2:(0)). (2.13)
The Weierstrass condition affirms that almost everywhere, the expression
(PN + A= ulIM1) = b A =i = =[x = X
is maximized relative to
feFi(zit), A€ [0, 1, [f] < (1= An)En(1)

by the choice A = A;(¢), f = fi(t). Finally, the Euler inclusion affirms that
for almost all ¢, p(¢) belongs to the convex hull of the set of w satisfying

(@, p(t) = $i(t). 1 = Gi(1)) € N (zi(t), Ai(t) Si(1), Xi(1)),
where D(t) signifies the graph of I';(+), and where

? (2.14)

Balt) = 251 (04(0) — v1(0) + AL (D))

Gi(t) = 2e3(A(t) = Ai(t)).
Note that 1; and (; are essentially bounded (independently of ¢) and go to
0 almost everywhere. The Lipschitz condition satisfied by I' implies

(2+ N)k(t)

o {p®O+ [0+ GO+ 1} ae.t€[0,1]. (2.15)

()] <

The following simple fact, whose proof we omit, relates the Euler inclu-
sion above (in the case of the proximal normal cone) to that for F.
Lemma 2 Let a point (&, p, ) lie in Ng(t)(f, A f, ), where ‘ﬂ <
(1 — Ap)Rn(t). Then we have

(‘EvXﬁ) € Ng(t)(fvf)
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Because the limiting normal cone is generated by proximal normals, it follows
that we have

(1) € co {w s (@, M) (1) — i(1))) € Ny (wi0), 1i(1))} aet € D,

where Q; is the set of points at which |f;(¢)] is strictly less than (1 —
Ai()n)Ry(t). Since f; and A; converge in L? to 0 and 1 respectively, it
follows that the measure of €2; goes to 1 as ¢ goes to infinity.

Convergence

The arc p obtained above depends of course on 7, so let us now denote it
pi. Similarly, we write v; for the vector that appears in (2.12). By tak-
ing a subsequence if necessary (we do not relabel), we may suppose that
v; converges to a limit v. In the presence of (2.15), and because p;(1) is
bounded as a consequence of (2.12), a conventional argument in conjunc-
tion with Proposition 2.1.2 shows that, by passing again to a subsequence if
necessary, it may be supposed that p; converges uniformly to a limiting arc
p which satisfies

—p(1) € 9z {,®) (0), p(0) € N&(0)

and
p(t) € co {w tw, p(t)) € Ngj(t)(O, 0)} a.e.t €[0,1]. (2.16)

We claim that we also obtain, for almost every ¢,

(p(t), f) <0 V fe F(0)nB(0, (A — 2n7)Ry(t)). (2.17)

To see this, fix a value of ¢ for which all the convergences hold, as well
as the pseudo-Lipschitz condition, and for which the Weierstrass condition
(2.14) holds for every index ¢ (almost all ¢ satisfy these conditions). Choose
f € Fi(0) N B(0, (Ao — 2n)Rn(t)). By the pseudo-Lipschitz property there
is a point w; € Fi(x;(t)) satisfying |w; — f| < k(t) |2;(t)|. Note that w;
converges to f. From the Weierstrass condition (the maximization of (2.14))
we deduce, for ¢ large enough so that w; < (1 — X;(t)n)Rn(t), and taking
A= A1),

(pi(), Xi(0)ws) < Sel|Xi(ywil) + <F [vie) = oh()]”

In the limit we derive (p(t), f) < 0 as required, since ¢;(|f|) = 0. Note that
the theorem asserts the inequality (2.17) on a bigger set, namely F;(0) N
B(0, R(t)); we return to this point later.
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Nontriviality

The issue we address now is that of nontriviality of (p,v); that is, we claim
that v and p are not both zero. If for an infinite number of indices z it is
the case that u; # ®(z;(1)), then, for each such index, +; is a unit vector,
so that the limit + is a unit vector too, and nontriviality follows.

Let us examine the other case in which we have yu; = ®(z;(1)) for all
but finitely many 7. It follows that for all 7 sufficiently large, A;(¢) must be
strictly less than 1 on a set of positive measure, for otherwise z; would be
a trajectory for F, in fact, an element of 7, and hence p; would belong to
® 7, a contradiction. We shall prove that in this case we have

S 1=2 Ao, Aon?
N .
1Pl = min (N—I—T‘o7 2N 8N (1 — Ao+ 27) -0

(2.18)

One of the following cases must occur infinitely often on a set of positive
measure (depending on ¢):

1. /\Z(t) < Ao;
2. Ao < /\Z(t) < 1 and |f2(t)| < (1 — /\i(t)n)RN(t)§
3. Mo < Ailt) < Land [£:(0)] = (1= Xi(6)n) R(2).

We shall examine the Weierstrass condition corresponding to (2.14) to reach
the desired conclusion.

In Case 1, fix a suitable index ¢ and consider the Weierstrass inequality
with A = L and any f € Fy(2;(t))NB(0, 7o) (such an f exists by the tempered
growth hypothesis, and the choice is admissible because ro < (1 —7)Rn(1)).
Since ¢;(|f|) = 0, we derive that on a set of positive measure we have

(pi(), () f:(t) = f) > 1= Xg — (1 + 4N?).

Because |A;(¢) fi(t) — f] is bounded above by Ry (t) + ro, this implies (2.18)
(via the first term in the minimum).

In Case 2, we set f = f;(t) in the Weierstrass expression (2.14); the
corresponding function of A attains a local maximum at A;(¢). Expressing
that the derivative is zero leads to

(pi(t), fi(1)y < =14 S (N() 1 £ () | fi(t)] 4 2241 4 2N?).

Invoking (2.9), we derive from this in turn

i, MO J0) < -2+ 251 4 27,
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This leads again to (2.18) (via the second term in the minimum).
There remains Case 3. From |f;(¢)] = (1 — A;(t)n) Rn(t) we derive

A@) ;O] = (ho —n) B (1),

With this in mind we put A = 1 and f € F(t,2;(t)) N B(0,ro) in the
Weierstrass condition and deduce

(i), () fi(t) = [) + (1 +4N?) > ¢((Xo — ) Bn(1)).

Again this leads to (2.18), in view of (2.8).

End of the proof

We now complete the proof of the theorem. We showed above that there
exist p and v (not both 0) satisfying the transversality and Euler conditions,
and the Weierstrass condition of radius (Ao — 217) Rn(t). We may normalize
(p,7) as follows:

1Pl + 17 = 1. (2.19)

We pause to observe a simple geometrical consequence® of the pseudo-
Lipschitz property (we suppress ¢ in the following, whose proof is omitted).

Lemma 3 Let (zg,v9) be a point in G, and suppose that F
satisfies a pseudo-Lipschitz condition as follows: for some R > 0
and k > 0, for all z, 2’ near zy, we have

F(z') 0 B(vo, R) C F(z) 4+ k|2' — x| B.
Then, for any (q,p) € N&(zo,v0), we have |q| < k|p|.

It follows from this that as a consequence of the Euler inclusion (2.16),
p satisfies
B < k() O] ae.t € 0,1], (2.20)

a condition which is independent of the parameters Ag, 7 and N. Now let us
consider that such an arc p; has been obtained for a sequence of parameter
values /\é,nj,Nj converging to 1,0 and +oo respectively. Then, invoking
(2.19) (2.20) and the usual convergence arguments, there is a subsequence
such that the p; converge uniformly to an arc p (and the associated ~; to
a limit ) such that p and ~ satisfy all the desired properties listed in the

5This fact explains why in writing the Euler inclusion we do not have to take the closed
convex hull.
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theorem, including the Weierstrass condition relative to the full radius R,
except that v may not be a unit vector.

The limiting p and v continue to satisfy (2.19) and (2.20). We claim
that v is necessarily nonzero. To see this, suppose the contrary. Then, in
view of transversality at ¢ = 1 we have p(1) = 0. But then (2.20) implies
that p is identically zero, a contradiction which proves the claim. Since «
is nonzero, we can normalize to make it a unit vector as stipulated in the
statement of the theorem. This completes the proof. |

2.4.1 Remark The proofs of Theorems 2.1.1 and 2.3.3 can be
adapted to the case in which the integral constraint is replaced
by one of the following more general type:

b
/ el (t) — da(B)) dt < )

provided that the functional

b
UH/ G(o(0)]) dt

is continuous at 0 relative to the L? norm. We shall consider such
a local minimum in Chapter 4, in a variational setting that will
allow us to dispense with this continuity restriction. Another
generalization that can be made is to admit a weight function 6
in Theorem 2.3.3, as in Theorem 2.1.1.

2.5 Two variants of the theorem

The tempered growth condition 2.3.2 amounts to a mild semicontinuity hy-
pothesis on F. It is easy to see that when the pseudo-Lipschitz condition
2.3.1 holds, it is automatically satisfied when the function & belongs to L™
and R is essentially bounded away from 0. As we now see, this criterion can
be generalized.

2.5.1 Proposition Let F' be pseudo-Lipschitz of radius R near z,, and
suppose that in addition we have

ess inf {% te [a,b]} > 0.

Then F satisfies the tempered growth condition for radius R near z,. ¢
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Proof. We may assume that k is positive-valued. Let us define § > 0 to
be the essential lower bound in the statement of the proposition. Set

g0 1= min{e, 6/2}, ro(t) = eok(t),

where the ¢ is that of the pseudo-Lipschitz condition. Then, by taking
2’ = z.(t) in that condition, we deduce that for z € B(z.(t),20), we have

Fy(2) N B(@x(1),ro(1)) # 0.
Since R(t)/ro(t) > 2, the tempered growth condition is satisfied. [ |

We remark that the proposition covers the standard case in which the
radius function is identically +oo and F is pseudo-Lipschitz of infinite radius
(that is, actually Lipschitz). Let us record the consequence of the proposi-
tion:

2.5.2 Corollary Theorem 2.3.3 remains valid if the tempered growth con-
dition is replaced by the following (stronger) hypothesis:

essinf{%:te[a7b]}>0. ¢

A global version of the theorem
The standard sequential compactness arguments used in the proof of the

theorem lead to the following;:

2.5.3 Corollary Suppose that the hypotheses of the theorem are satisfied
for a sequence of radius functions R; (and with all other parameters possibly
depending on i) for which

liminf R;(t) = 400 a.e.

11— 00

Then the conclusions of the theorem hold for an arc p which satisfies the
global Weierstrass condition:

(p(1), v) < (p(1), iu(t)) Yo € Fy(wu(t)), ace.t € [a,b]. ¢
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Proof. Applying the theorem for each ¢ yields a corresponding arc p; and
vector v; that can be normalized to satisfy |p;(1)| 4 |v:| = 1. By Gronwall’s
Lemma and the standard sequential compactness argument, we may suppose
(by passing to a subsequence) that 7; converges to v and that p; converges
uniformly to an arc p which satisfies the Euler inclusion (see Proposition
2.1.2) and such that (p,~) satisfies the transversality conditions. It follows
that v is nonzero, so we can renormalize to make it a unit vector. It suffices
now to verify the global Weierstrass condition for the unrenormalized p.
Take any value of ¢ such that for each ¢ the Weierstrass condition of radius
R;(t) holds for p;(t), and such that liminf; .., R;(t) = oo (almost all ¢
have this property). Fix any v € Fi(2.(t)). Then for all 7 sufficiently large
we have |v — &,(t)| < R;(t), so that by the Weierstrass condition of radius
R; (for p;) we have

(pi(t), v) < (pi(t), (1)) -

Passing to the limit, we confirm the global Weierstrass condition.

2.5.4 Remark When R = 400 is a suitable radius function,
then in order to assert the global conclusion above, it suffices
that, for some € > 0, z, be a boundary trajectory with respect
to the constraints

b
a’c—ab*ELoo,x(a)eC,/ () — i (1) dt < e, |Jo — 24| < e

for we can then apply the theorem with the sequence of radius
functions R; := ¢. Thus comparison need only be made with arcs
having W1 difference from x,. The same conclusion obtains if
there is a sequence of suitable radius functions R; for which

lim {ess inf R;(¢) : t € [a,b]} = +oo.
T—> 00

2.6 Notes

8§2.1 Theorem 2.1.1 incorporates a novel type of weighted constraint and
is unusual in considering a W'# local minimum for p € (1,2]. But these
elements aside, and given that the underlying multifunction is integrably
bounded and Lipschitz, the set of necessary conditions that it obtains is
essentially known, corresponding as it does to refinements by Mordukhovic
(for the transversality conditions) and loffe, Loewen, and Rockafellar (for
the Euler inclusion) of the necessary conditions initially proven by Clarke.
The method of proof, however, is new and unusually direct, and allows this
monograph to be self-contained.
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8§2.2 In contrast, Theorem 2.3.3 is fundamentally new because of its strat-
ified nature with respect to both hypotheses and conclusions, and the level
of generality of its hypotheses. The consideration of boundary trajectories
rather than optimality has a long tradition in the subject of optimal con-
trol. It existed well before Clarke’s early work in the 1970s, but the new
approach to boundary trajectories introduced in that work (based in part
on the variational principle of Ekeland) has been widely adopted since.

Boundary trajectories for differential inclusions have been studied re-
cently by Mordukhovic [53], Zhu [70] and Kaskosz and Lojasiewicz [42], the
latter in a vector field formulation (see Chapter 5). But the hypotheses are
much stronger than those of Theorem 2.3.3. The recent results that most
invite comparison are framed in optimality terms, so we discuss them in the
notes following the next chapter.



Chapter 3

Differential Inclusions

We begin the chapter by deriving necessary optimality conditions for a con-
trol problem phrased in terms of a differential inclusion. These are a rather
direct consequence of the boundary trajectory case treated in Theorem 2.3.3.
In §3.2 we look more closely at the tempered growth condition; certain crite-
ria implying it are developed, and its necessity as a hypothesis is illustrated.
The following section considers the case of a weak local minimum. In §3.4
we prove that when the underlying system is autonomous, an extra assertion
can be added to the set of necessary conditions. This is an analogue of the
classical second Erdmann condition, which corresponds to conservation of
energy (or constancy of the Hamiltonian) in mechanics .

The final section of the chapter obtains differential (or rather, proximal)
criteria for the multifunction F which imply the pseudo-Lipschitz property
that is the main hypothesis of our results; we refer to such criteria as bounded
slope conditions. In particular, we exhibit a simple condition of this type,
unrelated to any particular arc, that implies that the pseudo-Lipschitz con-
dition always holds near any trajectory.

3.1 Stratified necessary conditions

It is a well-known technique in optimal control theory to derive necessary
conditions for optimality from conditions that must be satisfied in the more
general setting of boundary arcs (see for example [20] or [66]). The idea
is to reformulate the optimality in boundary terms to be able to apply the
boundary results, the details depending upon the specific way in which the
boundary constraints and cost are expressed.

We are given a multifunction F as in the previous chapter. We con-

41
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sider the problem P of minimizing ((z(a), (b)) over the trajectories z of F
satisfying the boundary constraints (z(a),z(b)) € S.

As before, let R be a measurable function on [a, b] with values in (0, +o0]
(the radius function). We are given an arc z. feasible for P which is a local
WHl minimum of radius R in the following sense: for some ¢ > 0, for every
other feasible arc z satisfying

b
i (1) — #.(1)] < R(t) ae., / () — i (1) dt < e, ||x — 24| < e,

one has ((z(a),z (b)) > l(z.(a), z.(b)).
It is assumed that ¢ is locally Lipschitz and that S is closed. The usual
basic hypotheses of measurability of I’ and graph-closedness of F; are made.

3.1.1 Theorem Suppose that, for the radius R, F satisfies the pseudo-
Lipschitz and tempered growth conditions near z, (Definitions 2.3.1 and
2.3.2). Then there exist an arc p and a number Ag in {0, 1} satisfying the
nontriviality condition

(Ao, p(t)) #0 Vi € [a,b]
and the transversality condition:
(p(a), =p(b)) € Aol (wx(a), 2<(b)) + N (2«(a), 2.(b)),

and such that p satisfies the Euler inclusion:

plt) € co {w: (@, p(t) € Ny (2(),5-(1) b ace.t € [a,1]
as well as the Weierstrass condition of radius R:
(p(t),v) < (p(t),&.(t)) Yo € Fi(z.(t)) N B(3.(t), R(t)), a.e.t € [a,b].

If the above holds for a sequence of radius functions R; (with all parameters
possibly depending on ¢) for which

liminf R;(t) = 400 a.e.

11— 00

then the conclusions hold for an arc p which satisfies the global Weierstrass
condition:

(p(1), v) < (p(1), iu(t)) Yo € Fy(wu(t)), ace.t € [a,b]. ¢
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Proof

We sketch the derivation from the corresponding boundary trajectory re-
sult (Theorem 2.3.3), following a well-known procedure. Consider first the
following special case of the problem P:

Py : to minimize ((z(b)): &(t) € Fi(x(t)) a.e., z(a) =0, x(b) € S,

where £ is locally Lipschitz and § is closed.
To express this optimization problem in boundary terms we introduce
two additional state variables y € R™ and z € R, and we define

S(z,y,z) = [lz)—Ll(z(b))+ z,2 — Y]
C = {0} x5 x][0,00)
Uy(z,y,2) = Fy(z)x{0}x {0}.

If (z,y, ) is a trajectory of [ with initial condition in C', and if z(b) —y(b) =
0, then z is a trajectory of F’ which is feasible for the optimal control problem
Py. If z is also close to z, in the given sense (relative to € and R), then it fol-
lows from the optimality of . that the first component of ®(z(b),y(b), z(b))
must be nonnegative. It follows therefore, in the terminology of Theorem
2.3.3, that the point [0, 0] (corresponding to the arc (z.(t),z.(b),0)) lies in
the boundary of ®. If I' satisfies the conditions of that theorem (or ei-
ther of its corollaries), then we can deduce the existence of an extended arc
(p,q,7r) and a unit vector v = (Ao, A1) satisfying certain conditions that we
can then relate back to the data of the optimal control problem.

The Euler inclusion for the extended arc is easily seen to imply that p
satisfies the desired one for x., and that ¢ and r are constant. The transver-
sality conditions assert

(=p(b), =q, =r) € I {Aol(z) + Aoz + (A1, & = 1)} (2(b), 2(D), 0)),

as well as
g € N§(2.(b)), r € Nfj 1) (0).

Together these give
—p(b) € ApNol(zx(b)) + A1, g = A1 € NE(.(b)), r= =20 <0,

which yield the appropriate transversality condition for Py. If Ag > 0, then
p and ¢ can be normalized to achieve A\g = 1. If Ay = 0, then (since v is a
unit vector), we have A; # 0, from which it follows that p(b) # 0. But the
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Euler inclusion implies |p(t)| < k() |p(t)|, so that p(¢) is never 0 (otherwise
it must be identically 0). This gives the required nontriviality condition.
Finally, the Weierstrass condition of radius R follows from that for I', and
the theorem is proved (in the case of Py, and for a given radius function).

Although P appears to be more general than Py, it is in fact possible to
reduce it by means of purely notational devices' to the form of P;, and so
to derive the general case of the theorem; we omit these details.

As for the limiting case of the theorem, it follows from the now familiar
sequential compactness argument as in the proof of Corollary 2.5.3; it is
helpful for this to first normalize the multiplier (p;, Ag;) obtained for each
radius R; so as to satisfy

|pilloo + Ao, = L.

After the limiting argument, one renormalizes at the end to get the limiting
Ao equal to 0 or 1. |

3.1.2 Remark (a) When a suitable sequence R; of radius func-
tions exists such that

lim {ess inf R;(t) : t € [a,b]} = +oo.

11— 00
(in particular when R = 400 is a suitable radius function), then
it suffices that, for some ¢ > 0, z, provide a minimum with
respect to the constraints

b
G-, € L™, / (1) — 3. (1) dt < e, ||x — 24|, < e
a

The restriction & — &, € L°, which is an outgrowth of the strat-
ified nature of the necessary conditions, may be relevant in con-
nection with the Lavrentiev phenomenon (see Chapter 4).

(b) As pointed out in Remark 2.4.1, the norm (and corresponding
balls) used to localize the hypotheses and the conclusions of the
theorem can be taken to be any norm equivalent to the Euclidean
one.

(c) Another paradigm for the optimal control of differential in-
clusions is the following:

Py : to minimize f(x(a),x(b)) : &(t) € Fi(x(t)) a.e.,

'See for example [20], pages 149 and 169.
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where now, instead of being locally Lipschitz, £ : R™ x R* —
(—o0,+00] is merely lower semicontinuous and allowed to be
extended-valued (so as to incorporate simultaneously both the
cost and the boundary constraints). This can easily be recast in
the form of P by introducing an auxiliary variable, which leads
to a theorem for Py that is identical to Theorem 3.1.1, except
for the form of the transversality condition, which becomes:

(p(a), =p(b), =Ao) € Nepig(ws(a), 2.(b), U(zs(a), 2.(b))).

This can also be expressed in the notation of singular subdiffer-
entials:

(p(a), =p(b)) € 07° L (a), 2.(D)).

When we now return to the case of the problem P treated by
the theorem (by taking ¢ = (4 Ig) , we get the transversality
condition

(p(a), =p(b)) € 07° (L + Is)((a), 2.(D)).

This implies the one in the statement of the theorem (by the
limiting sum rule). Thus, at the cost of additional notational
complexity, we have deduced a potentially sharper transversality
condition.

3.2 On the tempered growth condition

The tempered growth condition holds automatically (in the presence of the
pseudo-Lipschitz condition) when the radius R is sufficiently large relative
to the pseudo-Lipschitz function &, as pointed out in Proposition 2.5.1. This
leads to:

3.2.1 Corollary Theorem 3.1.1 remains valid if the tempered growth hy-
pothesis is replaced by the following essential infimum condition:

ess inf{%:te [a,b]} > 0.

A structured pseudo-Lipschitz hypothesis

An alternative to postulating the tempered growth hypothesis of Theorem
3.1.1 is to require the existence of a pseudo-Lipschitz function kp for each
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constant R, together with additional assumptions concerning the nature of
its dependence on R. Here is a sample result of this type that will facilitate
comparison with the literature; we continue to consider the problem P de-
fined above, but we assume now that z, is a solution of the problem relative
to all feasible arcs x that satisfy

b
[ 10 -0l <z o - ol <

(that is, a local minimum in the W1 sense). Thus no radius function R is
specified: the result is not stratified.

3.2.2 Corollary Suppose that I is pseudo-Lipschitz near z, in the follow-
ing structured sense: for some € > 0 and « > 0, for some pair of nonnega-
tive functions ko and 3 for which kg and ki are summable, for almost all
t € [a,b], for all z,2" € B(z.(t),), one has, for all R > 0,

Fy(2) 0 B(ia(t), R) C Fo(2') + [ko(t) + B(t)R*] |« — x| B. (3.1)

Then there exist an arc p and a number Ag satisfying the nontriviality,
transversality and Euler conditions of Theorem 3.1.1 as well as the global
form of the Welerstrass condition. ¢

Proof. There is no loss of generality in assuming that kg is positive-valued.
Taking 2 = 2.(t) and R = 0 in the pseudo-Lipschitz condition shows that
for almost every ¢, for every @’ € B(x.(t),c), we have

Fy(2') N B(a.(), ko(t)) # 0.

This verifies the tempered growth condition 2.3.2 with rq := kg, for the
radius Rn(t) := Nko(t). Further, substituting R = Ry shows that F' is
pseudo-Lipschitz of radius Ry near z, with the (integrable) pseudo-Lipschitz
function ky = ko+ Bk N®. Now Theorem 3.1.1 applies for each N, but also
in the global case, since lim inf, ., Ry (t) = 400 a.e.. The result follows. B

Example: tempered growth is needed

It is well known even in the bounded case that some type of Lipschitz prop-
erty is required for the necessary conditions to hold; mere continuity, for
example, does not suffice. The tempered growth condition is new, however,
and one could ask whether it is essential. We present a simple example
which shows that the tempered growth condition cannot be deleted from
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the hypotheses of Theorem 3.1.1, and which sheds some light on its role:
it guarantees that there are sufficiently many trajectory alternatives within
the specified radius to make optimality meaningful.

Take n = 1, [a,b] = [0,1], and let k be a positive-valued summable
function on [0, 1] which is unbounded on any open interval. Set Fy(z) :=
(—oo, —k(t) ||]. Then, for any trajectory z of F' and any choice of radius
function R, the multifunction is pseudo-Lipschitz (in fact, Lipschitz) around
x with pseudo-Lipschitz function k. Now take for R any positive-valued
essentially bounded function.

Claim: The only trajectory z satisfying |&(t)| < R(t) a.e.is 2, = 0.
A trajectory @ necessarily satisfies @(¢) < —k(¢t) |=(t)], whence

k(t) [x(t)] < 2(0)] < R(1).
But this implies that z is identically 0, as claimed.

Consider now the minimization of z(1) over the trajectories of F' satis-
fying 2(0) = 0 and |2(¢)| < R(t) a.e. In view of the claim, z, = 0 solves this
problem. If the conclusions of Theorem 3.1.1 hold, then Ag = 1 necessarily,
for otherwise transversality gives p(1) = 0, violating nontriviality. It follows
that p(1) = —1. But the Weierstrass condition implies that p is nonnegative,
a contradiction.

Thus the conclusions of Theorem 3.1.1 fail to hold. We observe that
the tempered growth condition fails too: if rg satisfies the nonemptiness
property of 2.3.2, then rg cannot be essentially bounded, and so cannot be
majorized by R.

3.3 The case of a weak local minimum

We suppose now that =z, is a classical weak local minimum for P: for some
€ > 0, z, is optimal relative to feasible arcs satisfying

|2(t) — .(t)| < e aee., ||z — 2., <e.

This postulates a weaker type of local minimum than in the preceding re-
sults.

3.3.1 Theorem Let z, provide a weak local minimum for problem P,
where F' is pseudo-Lipschitz near x,. Further, let there exist § > 0 and
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a continuous increasing function r : [0,6] — [0,00) having r(0) = 0 such
that for almost all ¢ € [a, b] we have

|z — 2.(t)] < 0= min{|v— &.(t)] : v € Fi(a)} < r(lz — z.(t)]).

Then there exist an arc p and a number Ag satisfying the nontriviality,
transversality and Euler conditions of Theorem 3.1.1. If in addition F is
convex-valued, then p satisfies as well the global form of the Weierstrass
condition. ¢

Proof

There exist £ > 0 and a summable function k such that for almost all ¢, for
all z,2" € B(xz4(t),2), one has

Fy(2") N B(&.(t),8) C Fi(x) + k(t) |2 — 2| B.
Choose £¢ > 0 such that r(gg) < min{e, £} =: R, and set

ro(t) :== r‘(e())%]%‘
Then the tempered growth condition holds for this choice of data. Apply-
ing Theorem 3.1.1 yields the Euler inclusion, transversality, nontriviality,
and a ‘small” Weierstrass condition of radius R. When in addition F is
convex-valued, then it is well-known (and elementary to show) that the Eu-
ler inclusion implies the global Weierstrass condition. |

3.3.2 Remark (a) Note that alocal minimum in the W1 sense,

that is, relative to

b
[ 10 - oF <o - ol <
a

for any p > 1, always provides a weak local minimum, so that
the Euler condition holds in these cases too.

(b) The existence of the function r postulated in the theorem
follows automatically if the pseudo-Lipschitz function k is es-
sentially bounded. In the general case, rather than postulate
the existence of the function r, it suffices instead to require the
existence of positive constants § and ro < min {¢,£} such that
almost everywhere

|t — 2.(t)] <6 = Fy(z) N B(&.(t),ro) # 0.
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3.4 The second Erdmann condition
We continue to consider the optimal control problem P :
P : to minimize £(z(a),z (b))
over the arcs z satisfying the differential inclusion and boundary constraints
i(t) € Fz(t)) ae., (2(a),2(b)) €5,

but note that now the multifunction F is autonomous; that is, has no de-
pendence on t.

We continue to take £ locally Lipschitz and .S closed; the usual basic hy-
potheses of measurability and closedness are made on F. As before, let R be
a measurable function on [a, b] with values in (0, +o00] (the radius function).
We are given an arc z,. feasible for P which is a strong local minimum for
the problem: for some &,, for every other feasible arc z satisfying

[ = @l oo < e

one has {(z(a),z(b)) > l(z.(a), z.(b)).

3.4.1 Theorem Suppose that F is autonomous and satisfies, for some ra-
dius function R, the pseudo-Lipschitz and tempered growth conditions near
z«. Then there exist an arc p and a number Ay in {0, 1} satisfying the same
conditions as in Theorem 3.1.1 together with an additional conclusion: there
is a constant h such that

<p(t)7 $*(t)> =h a.e.

If the hypotheses hold for a sequence of radius functions R; (with all pa-
rameters possibly depending on ¢) for which

liminf R;(t) = 400 a.e.,

11— 00

then all the conclusions above hold for an arc p which satisfies the global
Weierstrass condition:

(p(£), 0) < (p(1), iu(t)) Yo € F(a.(t)), ace.t € [a,b]. ¢
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Proof. We shall extend the problem to one involving both arcs y with
values in R™ as well as real-valued arcs z. We begin by choosing éy € (0, 1)
so that any scalar arc z satisfying 2(0) = 0 and [2(¢) — 1] < &y a.e. must
also satisfy

VAQ—xA[HQM<%%tEM&]

Next we choose, for almost each ¢, a number ¢, € (0, dp), and set

R(t) == (1= 6)R(t) — & | (1)

We choose §; small enough so that

o ] RO
ess inf {ro(t) (te [a,b]} > 1.

We may assume that the mapping ¢t — 4; is measurable. The multifunction
F of the extended problem is given as follows:

Fly,z) ={(Av,\) v e F(y),|A = 1] < 4}

The extended problem consists of minimizing £(y(a), y(b)) over the trajec-
tories (y, z) of F' on [a, b] satisfying

(y(a),y(0)) € S, 2(a) = a, 2(b) = b, [ly — 2l < eu/2.

We claim that (2.(t),t) (which is evidently feasible for the problem) is a
solution.

Let us prove this claim by contradiction. Suppose that the feasible arc
(y,z) is better than (z.(t),t). We proceed to define an arc z via

o(t) = y(="1(1)).

It follows readily that z is a trajectory for F. Furthermore, we have

|2 (t) = 2.(8)] = [y(271(8) — 2. (1))
<y @) — e TN+ o7 E) — 2 (0)]
<24 6,/2 =&y,

(by hypothesis for the first term, by choice of §; for the second) whence z
lies within the uniform e.—neighborhood of z,. But then x is feasible for the
original problem and strictly better than z., a contradiction which proves
the claim.
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We wish to apply Theorem 3.1.1 to the solution (z.(t),t) of the extended
problem, with radius function R. We pause to verify the required pseudo-
Lipschitz condition. Thus let y;, y2 be points appropriately near z.(¢) and
let (A1v1, A1) be an element of

F(yr,z1) 0 B((.(1), 1), k(1))

Then we have

3.(t) = Aror] < R(D),

which implies |#.(t) — vi| < R(t). This allows us to apply the pseudo-
Lipschitz hypothesis for F'; we deduce the existence of vy € F(y2) such
that

[(A1va, Ar) — (A, A) | S ME®) [y — y2] < (14 8)k() [y1 — vl -

The required pseudo-Lipschitz condition for F' now ensues, with

k() = (14 8)k(t).

We see that the hypotheses of Theorem 3.1.1 hold for the new problem
data. Applying the theorem leads to an arc p and a constant (arc) ¢ such
that, almost everywhere, p(t) belongs to the set

co {w: (@, plt), 9) € Ny ((8), 2-(0), 1) }

where

D(t) .= {(y, Ao, \) : (y,v) € G(t), |A = 1] < 4}

A straightforward analysis of this inclusion (via the proximal normal in-
equality) shows that p satisfies the desired Euler inclusion, and that we
have

(p(t),2«(t))+ ¢ =0 ae.

This completes the proof for a given radius.

The proof of the limiting case follows the standard line: one applies
Gronwall’s Lemma and the sequential compactness argument after normal-
izing via

Aog + [P =1,

observing that the associated constants h; are necessarily bounded. |
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3.5 Proximal criteria for pseudo-Lipschitzness

Thus far in the chapter we have directly postulated pseudo-Lipschitz behav-
ior of the multifunction F' in a neighborhood of the local solution z,. It is
of interest to be able to verify this property a priori by pointwise conditions
restricted to the graph of I, and if possible independently of the particular
trajectory z,.. A most relevant analogy here is the fact that a differentiable
function is (locally) Lipschitz iff its derivative is (locally) bounded, or the
analogous fact for lower semicontinuous functions and proximal subgradi-
ents (see [29]). In this section we develop such criteria in geometric terms
via normal vectors; in the following chapter we examine their functional
counterparts.

We phrase the results in generic terms for their intrinsic interest. In
this section, I’ is a multifunction from R™ to R™ having closed graph G.
The pseudo-Lipschitz property is linked to the following type of condition
bearing upon the proximal normals to the graph.

3.5.1 Definition Let v, be a point in I'(z.). The multifunction
I' is said to satisfy the bounded slope condition near (z., v.)
(with parameters £, R and k) if

x € Bz, e),v € B(vs, R), (a, 3) € NE(z,v) = |a| < k|5].

We remark that an equivalent definition is obtained if one replaces the prox-
imal normal cone by the limiting one. We have mentioned earlier that if I’
satisfies a pseudo-Lipschitz condition near (z.,v.) with pseudo-Lipschitz
constant k, then the inequality |a| < k|8| holds for all elements (e, 3) of
NE(z,v), for all (x,v) near (z.,v.). Our interest in this section lies in the
considerably more delicate converse.

3.5.2 Theorem Let I' satisfy the bounded slope condition 3.5.1 near the
point (z.,v.) in G. Then for any n € (0,1), I' is pseudo-Lipschitz on
B(z.,e,), with pseudo-Lipschitz constant & and radius (1 — n)R, where

e, :=min {e, nR/(3k)}. ¢

More explicitly, the conclusion is that for 21,29 € B(z.,<,), we have

['(z1) N B(v., (1 = n)R) C T'(x2) + k|22 — 21| B.
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Proof. Let 1 and 22 in B(x.,e,) be given, together with vy € I'(z1) N
B(v., (1 — n)R). We must prove the existence of vy € I'(z3) such that
|vg — v1] < k|ag — 21| To do so, we shall apply the Mean Value Inequality

(see §1.3) with the following data:
flz,v) = Ig(x,v), Y :i={xs} x B(v,k|zy — 21]).

We take the base point (z1,v1), and a tolerance € small enough in a sense
to be specified presently. If GNY is nonempty, the existence of the required
point vy follows. Therefore we suppose that GNY is empty, and we proceed
to get a contradiction.

Since (under the emptiness assumption) miny f = 400, the Mean Value
Inequality asserts that for any r > 0 we may write

r<{Cyxy—x1)+ (p,v—v1)+¢

for all v € B(vy, k|zy — 21|), where (¢, %) belongs to dp f(z,w), and where
(z,w) is a point within distance £ of the set co [Y U {(zy,v1)}]. For £ small
enough, the point z certainly lies in B(xz,,¢). As for w, we have

[0 = vul < 10— v1] + [t — o]
<klzg—z1|++ (1 =n)R
< ke, +E+(1— )R
<2qR/3+ 6+ (1-n)R < R,

for £ sufficiently small. Thus the point (z,w) lies in the open set where
the bounded slope condition is valid. Also, we know that ({,1) belongs
to NL(z,w) = dpf(z,w). The bounded slope condition together with the
preceding inequality gives

r < |[(||re —x1| = [l kv — 2[4 £
< (I¢] =k ap]) Jwg — 21|+ € < &

Since we arrive at this for any r > 0, we have the desired contradiction. W

The reader will have guessed our intention of applying the criterion
proven above to optimal control problems such as P, for which we require
pseudo-Lipschitz behavior of Fi(-) for almost every ¢, near (z.(t), Z.(¢)). In
this setting, we obtain from the above a pseudo-Lipschitz condition for x
within a distance of z.(t) which is proportional to R(t)/k(t). Since a uni-
form neighborhood of x, is required in order to invoke Theorem 3.1.1, this
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suggests that we postulate the essential infimum condition of Corollary 3.2.1
(a different approach will be given later). The immediate consequence is the
following:

3.5.3 Corollary Suppose that in Theorem 3.1.1 the pseudo-Lipschitz hy-
pothesis is replaced by the following bounded slope condition: for almost
every t, for every (z,v) € G(t) with @ € B(z.(t),¢) and v € B(@.(t), R(t)),
for all (o, ) € Ng(t)(x,v), one has |a| < k(t)|5]|. Suppose also that the
tempered growth condition is strengthened to

k(1)

ess inf{W (te [a,b]} > 0.

Then the necessary conditions of the theorem hold as stated, for the same

radius R. ¢

Proof. Foreachn € (0,1), Theorem 3.5.2implies that F satisfies a pseudo-
Lipschitz condition of radius (1 — 7)R in a uniform neighborhood of z, of

radius "
t
£, 1= ess inf{min [5, gk((t))] it e [a,b]} > 0.

This permits the application of Corollary 3.2.1, the result of which is an arc

py, satisfying the required conclusions, except that the Weierstrass condition
is of radius (1 — n) R rather than R. We let 1 decrease to 0 and apply the
now familiar sequential compactness argument to the associated arcs p, to
arrive at the stated result. |

A global criterion

The solution z, to P is not generally known in advance; in particular we
may not know a priori whether or not its derivative is essentially bounded.
As is well known in the setting of the calculus of variations, such a property
is central in being able to apply necessary conditions. For this purpose it is
useful to have a structural criterion assuring that F is pseudo-Lipschitz of
arbitrarily large radius around any arc z,. The following gives a bounded
slope condition having this effect; we return to the generic notation.

3.5.4 Theorem Let X be an open subset of R™. Suppose that there exist
positive constants ¢, d such that

v € X,ve (), (@ 8) € Nf(z,0) = |a] < {e[o| + d} ]3]
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Let any z. € X and v. € ['(x,) be given, together with £ > 0 such that
B(z.,e) C X. Set

Oy := mi _
« = min 1 €, 35(1+20) )

Then for any N > 1, the multifunction I' is pseudo-Lipschitz of radius
Ry = (c|vd| + d)N near (x,,v.) as follows: for any z,2’ € B(a.,d.) we
have

I'(2") N B(vs, Ry) C T'(2) + kn |2’ — 2| B,
where ky = (c|vi| + d)(1 + 2¢N). ¢

Proof. Fix N > 1, and consider any point (z,v) € G with & € B(a,,¢)
and v € B(v.,2Ry), and for such a point any element («,8) € NE(z,v).
Then by hypothesis we have

lal < {efol +d} 5] < el +2¢Ry +d} 5] = kn [5].

Applying Theorem 3.5.2 with n = 1/2, we deduce that I' is pseudo-Lipschitz
with constant kn and of radius Ry for

|z — 2. < minqe By =minqe __N_
i " 3kn | " 3(1+2¢eN) [

Since N > 1, this last expression is no less than ., which completes the
proof. |

Global necessary conditions

When we apply the global criterion developed above to the issue of deriving
necessary conditions, we obtain a new result that is notable for the sim-
plicity of its statement, and in particular for the absence of any hypotheses
explicitly related to the solution:

3.5.5 Corollary Suppose that for every bounded set X in R"™ there exist
a constant ¢ and a summable function d such that for almost every ¢, for
all (z,v) € G(t) with 2 € X, for all (a, ) € Ng(t)(x,v), one has |a| <
(clv| 4+ d(t)) |8]. Then for any local W'l minimum =z. for P, the global
conclusions of Theorem 3.1.1 hold. ¢
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Proof. We may choose an open bounded set X and £ > 0 such that
B(z.(t),e) C X for each t. Let ¢ and d be the corresponding bounded slope
parameters for X. Fix N > 1 and define

R(t) = (clao(t)] + d())N, k(1) = (e[ (0)] + (1)) (1 + 2¢N).

In view of Theorem 3.5.4, there is a constant 4, > 0 such that, for almost
each t, the multifunction F} is pseudo-Lipschitz of radius Ry (f) with con-
stant kn(t) for € B(z.(t),0s). Note that ky is summable, and that we

have Ra(t) .
t
inf My bl p = ———=> 0.
ess in {kN(t) € la, ]} 2N >

We may therefore invoke Corollary 3.2.1 in the global case (we may suppose
d(t) > 1, which implies liminfy_,. Ry (t) = 400 a.e. as required), which
completes the proof. |

A refined criterion for pseudo-Lipschitzness

We develop now another proximal criterion for pseudo-Lipschitz behavior.
The distinction with Theorem 3.5.2 is that we avoid shrinking the neighbor-
hood around z, to a possibly troublesome extent by invoking a tempered
growth condition and making fuller use of the Mean Value Inequality.

3.5.6 Theorem Let v, be a point in ['(z.), and let I" satisfy the following
tempered growth condition near (z.,v.):

|z — .|| < g0 = [(2) N B(vs,70) # 0

for positive parameters g and rg. Suppose that for some R > rg, I satisfies

the bounded slope condition 3.5.1. Set £’ := min {e,5¢} and choose any
R € (0,(R —1rg)/2). Then T is pseudo-Lipschitz of radius R’ on B(z.,¢’)
with pseudo-Lipschitz constant k. ¢

Proof. Let z; and zy in B(z.,¢’) be given, together with vy € I'(zq1) N
B(v., R"). We must prove the existence of vy € I'(z3) such that |vy — vy| <
k|xe — 21|. To do so, we shall apply the Mean Value Inequality with the
following data:

flz,v) = Ig(x,v) + v —v], Y = {22} x B(vy,max[ro + R, k|22 — 21]]).

We take the base point (z1,v1), and a tolerance € small enough in a sense
to be specified presently.
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In view of the tempered growth condition, there is a point vy € ['(z2) N
B(vs,10). This implies |vg — v1] < rg 4+ R'. As a consequence we deduce
that r := miny f <rg+ R'. The Mean Value Inequality (with this choice of
r) implies that we may write

r < <C7$2 _$1>+<¢7U_ U1>+év Vuve E(U17k|$2 _$1|)7 (32)

where (¢, 1) belongs to dp f(z, w), and where (z, w) is a point within distance
¢ of the set co [Y U{(z1,v1)}]. For & small enough, the point z certainly
lies in B(2.,<). We now claim that we also have |w — v.| < R (for £ small
enough).

The conclusion of the Mean Value Inequality includes an upper bound
implying

lw—uv| = flz,w) < f(z,m)+r+E=r+¢<.
This yields
|lw— v <r+é+ R <rg+2R +£ <R,

proving the claim.

Thus the point (z, w) lies in the open set where the bounded slope con-

dition is valid. Returning now to (3.2), we have (from the limiting sum
rule)

(€, ¥) = (@, 3) 4+ (0,6),

where (a, 3) belongs to NL(z,w) and |#] < 1. Since the bounded slope
condition continues to hold for the limiting normal cone, we derive from
(3.2) the following estimates:

r<lalleg — x| — |+ 0| ke — x|+ 2
< (lal = k8] |v2 — 21| + [0 k lvg — 1| + €
§k|$2—$1|—|—é.

Since £ is as small as desired, this gives
reo=min f < klzy — 4],
Y
which implies the existence of the point vy that we seek. |

We obtain as a consequence the following conditions under which the
Euler inclusion holds.
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3.5.7 Corollary Let z, be a W1 local minimum for P, and let there ex-
ist a positive constant £, a positive-valued summable function rg, and a
summable function k& such that for almost every ¢, the following two condi-
tions are satisfied:

1. 2 € B(a.(t),8) = Fy(x) N B(a.(t),r0(t)) # 0;

2. for all (z,v) € G(t) with z € B(z.(t),2) and v € B(@.(t),4ro(t)), for
all (a, ) € Ng(t)(x,v), one has |a| < k(%) |5].

Then there exists an arc p and a scalar Ag € {0, 1} satisfying the nontriviality
and transversality conditions as well as the Euler inclusion. ¢

Proof. We apply Theorem 3.5.6 with R(t) := 4ro(t) to deduce that F;
is pseudo-Lipschitz of radius R'(t) := 5ro(t)/4 near (z.(t),Z.(t)) for 2 €
B(z.(t),¢’). The result then follows from an appeal to Theorem 3.1.1. W

We remark that the proof also gives rise to a local Weierstrass condition;
as usual, if I is convex-valued, it follows that the global Weierstrass con-
dition holds. The example of Section 3.2 shows that the tempered growth
condition is essential.

Note the distinction between this result and Corollary 3.5.3: now we
require that the pseudo-Lipschitz radius (4rg) be larger than the radius rq of
tempered growth, in contrast to Corollary 3.5.3, where the pseudo-Lipschitz
radius R had to be large relative to the pseudo-Lipschitz function k.

3.6 Notes

83.1-3.2 The results of these sections subsume and extend in a variety of
ways (see the Introduction) the necessary conditions for P in the literature,
notably those obtained by Clarke [12, 18], Loewen and Rockafellar [46], Toffe
[38], Mordukhovich [53], Smirnov [61], and Vinter [64]; they also answer in
the affirmative some questions raised by loffe in [38]. We proceed to make
some detailed comments about the most closely-related literature.

Mordukhovich [53] obtains the Euler inclusion for optimal arcs (as well
as for a boundary trajectory in a less general sense), but does not assert
any Weierstrass condition. Although the underlying multifunction is not
assumed convex-valued, it is uniformly bounded and Lipschitz, and certain
extra hypotheses restrict the t-dependence. The underlying methodology
rests on discrete approximations, a subject of independent interest.
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The unbounded and nonconvex-valued case is treated by loffe (Theorem
1 of [38]) and Vinter (Theorem 7.4.1 of [64]), who obtain the Euler inclu-
sion and the global Weierstrass condition in a standard unstratified context.
They postulate pseudo-Lipschitzness with respect to every constant radius
R and linear growth of the corresponding pseudo-Lipschitz function k as a
function of R:

Fy(z) N B(é.(t), R) C Fi(2') + [ko(t) + BR] |’ — «| B.

We recover this result with Corollary 3.2.2 by taking o = 1, 5§ = constant.

In the convex-valued case, both loffe (Theorem 2 of [38]) and Vinter
(Theorem 7.5.1 of [64]) reduce the pseudo-Lipschitz hypothesis to a local
one, and postulate additional growth conditions that are easily seen to imply
the tempered growth condition. Since in the convex-valued case the global
Weierstrass condition is equivalent to its local version, these results are
subsumed by Theorem 3.1.1.

Loewen and Rockafellar (Theorem 4.3 of [46]) consider the (unstrati-
fied) differential inclusion problem, in the convex-valued case. They posit
a pseudo-Lipschitz condition in which k(¢)/R(t) is essentially bounded. We
recover this result with Corollary 3.2.1. They also extend their result to
the case in which unilateral state constraints are imposed, a situation not
discussed in the present work. Going further, Vinter and Zheng [65] have
treated the state constrained case in the absence of the convexity hypothesis.

83.3 This appears to be the first result that obtains the Euler necessary
condition as a consequence of a weak local minimum, even in the case of
convex values. Corollary 7.4 of [53] claims to do this, but the proof is based
on the false premise that the multifunction Fy(x) N B(&.(t),¢) is Lipschitz
when F} is Lipschitz.

83.4 Note that in deriving the second Erdmann condition, z, has been
assumed to be a strong local minimum, in contrast to Theorem 3.1.1. How-
ever, a more complicated version of the underlying transformation device
used in the proof can be used to obtain the same conclusion in the presence
of a local minimum of W' type.? It is also possible to extend the theorem
to more general kinds of time dependence. In every case one transforms
the new problem to the type for which the previously-obtained necessary

?Loewen and Wolenski have devised an example showing that a weak local minimum
does not suffice, however.
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conditions can be applied. These reformulations are described in Chapter 8
of Vinter’s book [64].

83.5 In an article that we shall cite again in connection with Chapter 4,
Loewen and Rockafellar (Theorem 4.3 of [47]) develop bounded slope crite-
ria for the pseudo-Lipschitz property, based on the results of [58]. These are
subsumed and improved by Theorem 3.5.2; in particular, our sharper esti-
mates allow us to obtain the full radius R in the (very natural) conclusions
of Corollary 3.5.3. We remark that differential characterizations of pseudo-
Lipschitzness have been used in connection with optimality or ‘solvability’
issues; see for example Section 3.3 of [29] and Mordukhovic [52].

When the underlying multifunction is autonomous and has convex val-
ues, it is possible to derive necessary conditions under the following weaker
bounded slope condition® applied to points (e, 3) € N& (2, v):

| < R(L+ [0 (IB] + (B, v)])-

Details are given in [27]. The extension of several results of this chapter to
the free-time context is carried out in Bousquet [9].

*This condition corresponds to F' being ‘cosmically Lipschitz’, in the terminology of
Galbraith [33], who has introduced this property in connection with Hamilton-Jacobi
inequalities.



Chapter 4

The Calculus of Variations

In this chapter we study problems that lie within the framework of the cal-
culus of variations. While these problems resemble notationally the classical
basic problem, the Lagrangians that we admit are much less regular, in fact
generally extended-valued.

The first section deals with a stratified context in which local pseudo-
Lipschitz behavior near the given arc is either an explicit hypothesis (Theo-
rem 4.1.1) or furnished by a local bounded slope condition (Theorem 4.1.3).
The second section illustrates the use of such results in deriving multiplier
rules of classical type for variational problems of Lagrange. In §4.3 we define
a new general class of Lagrangians for which pseudo-Lipschitz behavior of
arbitrarily large radius will automatically hold around any locally minimiz-
ing arc z,; this allows us to dispense with hypotheses explicitly related to
a particular arc 2., and leads to the global (that is, infinite radius) form of
the necessary conditions. The fourth section of the chapter obtains certain
refinements in the case in which the Lagrangian is assumed to be locally
finite-valued near the solution, and obtains a new state of the art for that
context. The fifth and final section is devoted to deriving new criteria im-
plying the Lipschitz regularity of solutions.

4.1 Stratified necessary conditions

The problem P, and the basic hypotheses. We consider the following
problem P, in the calculus of variations: to minimize the functional

b
J(z) = K(x(a),x(b))—l—/a Ay(z(t),2(t)) dt

61



62 CHAPTER 4. THE CALCULUS OF VARIATIONS

subject to the boundary conditions
(z(a), (b)) € 5,

where £ is locally Lipschitz and .5 is closed. The other basic hypotheses
in force throughout include the £ x B measurability of the Lagrangian A
with respect to t and (z,v), and the lower semicontinuity of the function
(z,v) — Ay(z,v) for each t. An arc 2 is said to be admissible for the problem
if it satisfies the endpoint constraints, and if the integral over [a,b] of the
function ¢ — A¢(x(t), £(t)) is well-defined (possibly as +oo or —o0).

Let R be a measurable function on [a,b] with values in (0,+4oc] (the
radius function). We are given an arc z, admissible for Py which is a local
Wbl minimum of radius R in the following sense: .J(z.) is finite, and for
some € > 0, for every other admissible arc z satisfying

@(t) — a.(8)] < R(t) ace.

and which is W1 close to z, as follows:

b
[ 10 - a0ld < e -l <=
a

one has J(z) > J(z.).

If we proceed to define a multifunction via
Fi(e.y) = Fu(a) = epi Ag(e,-) = {(v, A(a,v) +8) s v € R7,6 > 0)

(where y is scalar valued) and define

f($,y7$/7y/) = f($,$/) + y/7 S = {(xvvalvy/) : (wvxl) € Svy = 0}7

and if we set

then it follows that the arc (2.,y.) is a local minimum for the resulting
differential inclusion problem P in the sense of Theorem 3.1.1. The data
also satisfy the basic hypotheses. (If we had defined F;(z) to be the graph
of Ay(z,-) rather than the epigraph, then F, would not necessarily have
closed graph as required by the basic hypotheses.)
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The normal and abnormal cases

Theorem 4.1.1 below is an immediate consequence of interpreting Theorem
3.1.1 for the data we have just defined. We refer to the case in which Ap = 1
as the normal case. When Ag = 1, the Euler inclusion has the form

p(t) € co{w : (w,p(t)) € OLA(zi(t), 2.(t))} a.e.t €a,b].

The abnormal case Ag = 0 (also termed ‘singular’ or ‘degenerate’) can arise
even in problems stemming from classical smooth settings, when differen-
tial constraints and endpoint constraints combine to be ‘overly tight’. The
normal case necessarily holds in the theorem if for all ¢ in a set of positive
measure, the function A;(x.(t),-) is continuous at &.(t) (this follows easily
from the Weierstrass condition). Another case in which Ag must equal 1 is
that in which 2(b) is free (that is, .S imposes locally no restriction on z(b)).

In the statement below, recall (§1.3) that d? A refers to the singular lim-
iting subdifferential, while 9} is identified with the usual limiting subdiffer-
ential 0r,. Recall also that dom f is the set of points @ for which f(z) < +o0.
The notation A;(*) is shorthand for Ay(z.(t), #.(¢)).

4.1.1 Theorem Suppose that A is pseudo-Lipschitz of radius R near z, in
the following sense: there exists a summable function k such that, for almost
all t € [a,b], for every 2 and 2’ in B(z.(t),¢), for every v € B(d.(t), R(t))
satisfying

A(2',v) < Ay(*) + R(1),

there exists w such that
lw— v <k(t) 2" —a|, Az, w) < A2, 0) + k() |2" — 2.

In addition, let A satisfy the following tempered growth condition of radius R
near z.: For some positive-valued summable function ro and A € (0, 1) with
0 < ro(t) < AR(t) a.e. we have, for almost every ¢, for all z € B(z.(t),¢),
the existence of v € B(#.(t), ro(t)) such that

Ay(z,0) < A(*) + ro(t).

Then there exist an arc p and a number Ag in {0, 1} satisfying the nontrivi-
ality condition

(Ao, p(1)) # 0 Vi € [a,0]

and the transversality condition:

(p(a), —p(b)) € IpAol(.(a), 2.(0)) + N (2.(a), 2.()),
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and such that p satisfies the (possibly abnormal) Euler inclusion:

B(t) € co {w (W, p(t)) € 870 Ay(a (1), yb*(t))} a.e. t € [a,b]
as well as the Weierstrass condition of radius R: for almost every ¢ we have
(p(t); v — &x(1)) < AoAs(2u(t),v) = AoAe(x) Vv € dom Ay(a.(2),-) N VR(1),
where
Vr(t) := {v € B(@.(t), R(t)) : Ae(2.(t),v) < Ay(x) + R(D)} -

If the above holds for a sequence of radius functions R; (with possibly dif-
ferent pseudo-Lipschitz and tempered growth parameters depending on i)
for which

liminf R;(t) = 400 a.e.

11— 00

then the conclusions hold for an arc p which satisfies the global Weierstrass
condition: for almost each ¢,

(p(t), v — 2. (t)) < AoAg(2(t),v) — AoAs(%) Vv € domAy(zs(t), ). @

4.1.2 Remark (a) As in the previous chapter, the tempered
growth condition is automatically satisfied if the ratio R(t)/k(t)
is essentially bounded away from 0.

(b) To obtain the conclusions of the theorem, it suffices that z.
be a local minimum in a weaker sense than stated above; that
is, relative to not only the stated constraints but also

Aoz (), 2(t)) < Ag(x) + R(t) ace.

and

b
/ [Ai(z(t), 2(t))) — Ae(x)] . dt <e.

While the theorem’s hypotheses may seem difficult to verify in practice,
it encompasses a number of special cases in which verifiable criteria can
be formulated. We proceed to illustrate this in various contexts, now and
in the following sections, in which the advantages of both stratified neces-
sary conditions and proximal criteria for pseudo-Lipschitz behavior become
apparent.
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4.1.3 Theorem Suppose that in Theorem 4.1.1 we replace the pseudo-
Lipschitz and tempered growth conditions by the following bounded slope
postulate: there exists a summable function k& with

essinf{%:te[a,b]}>0

such that for almost all ¢ € [a,b], for every z in B(z.(t),e) and v in
B(i.(t), R(t)), for every (¢, ) € dpAi(z,v), one has

L < k@ {1+ 141}

Then the conclusions of Theorem 4.1.1 are valid. ¢

Proof. We wish to invoke Corollary 3.5.3, whose bounded slope condi-
tion we proceed now to verify. Accordingly, let (a, 3, —v) be an element of
Ng(t)(x,v,At(x,v) + 0), where € B(z.(t),e), v € B(i.(t), R(t)). (Note:
since Fi(x,y) does not depend on y, our notation suppresses the correspond-
ing component of G(t).)

Consider first the case v > 0. It follows then (see 1.2.1 of [29]) that
§ =0, whence

(04/77 ﬁ/7) € 8PAL‘($7 U)v
so that by hypothesis

/7| < k@ +19/7]).

This gives rise to

| < 2k@) [(%, 7)1,

which confirms the bounded slope condition.

Consider now the case ¥ = 0 = §. Then (by an approximation result
of Rockafellar; see 1.11.23 of [29]) there exist 7/ > 0, ¢/, 5, 2', v" arbitrarily
close to 0, a, 3, z, v respectively, with A;(z’, v') arbitrarily close to As(z,v),
such that

(O/v ﬁlv _7/) < Ncl;(t) (xlv Ulv A(xlv U/))'

Then we get the same bound as in the previous case for the perturbed data,
and hence for the original in the limit.
There remains the case ¥ = 0,8 > 0. In this case it follows (see 1.2.1 of
[29]) that we have
(v, 3,0) € Ng(t)(x,v,A(x,v)).
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Applying the previous case, we derive

|| < 2kRr(1) [(5,0)].

Thus we have verified the bounded slope condition of Corollary 3.5.5 in all
cases. Applying that result, we obtain the desired conclusions. |

4.2 A classical multiplier rule

We consider now the following problem: to minimize the functional J(z)
subject to, as in the previous section, the endpoint constraints (z(a), (b)) €
S, but subject as well to an additional pointwise constraint

be((t), 2(t)) = 0, 1 € [a, b],

where ¥ : [a,0] x R" x R* — R™ is a given function (m < n). This is
referred to classically as a problem of Lagrange, and in this section we shall
consider it only under classical hypotheses. We suppose that the Lagrangian
A and the function ) are continuously differentiable, and that a weak local
minimum 2, exists which is also of class C''. Our purpose is to illustrate
how naturally the stratified necessary conditions yield the classical multiplier
rules of the calculus of variations.

4.2.1 Theorem Suppose that D, (2.(t), £.(t)) has maximal rank for each
t. Then there exist a scalar Ag € {0, 1}, an arc p and a continuous function
At fa,b] - R™ with (A, p(t)) # 0 for each ¢ such that the transversality
condition holds:

(p(a), —p(b)) € IpAol(2x(a), 24(b)) + N§ (2x(a), (b)),

as well as the Euler equation:
(B(1), p(t)) = Dy [MoAs + (A(2), ¥)] (2<(1), 2x(1)), T € [a, 0] ¢

Proof. The hypotheses permit us to affirm the existence of positive con-
stants € and k such that for every ¢, for any = € B(z.(t),e) and v €
B(&.(t),e), the matrix D,(z,v) is of maximal rank and the inequality

[ D (A, e, 0))] < B [Dy (As (@, 0))]

holds for any vector A in R™. We may pick £ small enough so that z, is
a global minimum relative to the uniform neighborhood of radius € around
(@, T)
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Consider now the following multifunction:
Fi(z,y) == {(v,Ae(z,0) +8) : 6 > 0,v € R", ¢y(x,v) = 0},

which is easily seen to satisfy the basic hypotheses. As in the previous sec-
tion, we consider the minimization of £(x(a), z(b))+y(b) over the trajectories
(z,y) of F satisfying y(a) = 0 and (2(a), z(b)) € S. A weak local minimum
is furnished by the arc (z.,y.), where

With an eye to applying Corollary 3.5.3, we take R(t) = ¢ and k(t) = k.
The following fact will be needed. (We suppress the ¢ dependence to ease
the notation; GG signifies the graph of F}.)

Lemma Let (o, 3, —v) € Nk(z, v, A(z,v)+ §), where Dip(z,v)
has maximal rank. Then v > 0 and there exists A such that

(@, ) = Do [yA(z,v) + (A, )] (2, v).

The proof of the lemma follows familiar lines in proximal analysis (see
[29]): for the proximal normal cone, an inequality characterizes the normal
vector, and a Lagrange multiplier rule gives the stated formula; then the
result for limiting normals follows.

We now proceed to verify the bounded slope condition of Corollary
3.5.3. Since Fi(z,y) does not depend on y, our notation will suppress the
corresponding component of G(t). Accordingly, let («, 3, —7) belong to
NE(w,v,Alz,v) + §), where = and v lie within € of .(t) and @.(t) respec-
tively. According to the lemma we have

(oo = vyDyA(z,v), f— vyDyA(z,v)) = Dy oy (X, 00) (2, 0).
The choice of € and k£ then implies
|Oé - 7DxA($7 U)| < k |5 - 7DUA($7 U)| :

If M is a uniform bound on the operator norm of D, ,A over the relevant
(bounded) set of possible values of (z,v), we derive from this

la| < K [8]+ M(k+ 1)y,

which yields the required bounded slope condition |a| < K |(f3,7v)] for a
certain constant K.
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We now invoke Corollary 3.5.3 to deduce the existence of an arc having
the form (p, —A¢) satisfying the nontriviality and transversality conditions
together with the inclusion

p € co {w tw,p,—Ao) € Ngj(x*,ab*,At(*))}.

Applying the lemma, we deduce the existence of A (depending on t) such
that

(2, p) = Do [MoA + (A 00)] (24, 4.
By focusing on the second component of this equation, and bearing in mind

that Dyi¢(x.(t),4.(t)) has maximal rank, one deduces the continuity of

A(L). ]

4.2.2 Remark The proofis easily adaptable to the case of point-
wise inequality constraints, and solutions x, which are ‘piecewise
smooth’. Note that the proof also gives rise to a local Weierstrass
condition.

4.3 Generalized Tonelli-Morrey integrands

It is well-known that even in a classical smooth setting, a (non Lipschitz)
solution z, of the basic problem may not satisfy the Euler equation. This
is closely linked to a different pathology called the Lavrentiev phenomenon
(see for example Cesari [11]): the infimum of J(z) over smooth (or Lipschitz)
arcs may differ from that taken over all arcs.

In view of these facts, it is of evident interest to identify classes of La-
grangians for which a priori these two phenomena do not arise. In particular,
the conclusion that a solution z. is necessarily Lipschitz (or equivalently, has
essentially bounded derivative) is most desirable, for it precludes the Lavren-
tiev phenomenon, very often allows one to assert the necessary conditions,
and is generally the key to obtaining further regularity of . (smoothness).
We discuss regularity later in §4.5. In this section, we define a new class of
Lagrangians for which the necessary conditions can be asserted to hold.

4.3.1 Definition The Lagrangian A satisfies the generalized
Tonelli-Morrey growth condition if for every bounded sub-
set X of R™ there exist a constant ¢ and a summable function d
such that for almost every ¢, for every (z,v) € X xR, for every

(¢, 1) € dpAy(x,v), one has

¢l
1+ |9 < c{Ay(z,v) + [ol} +d(2).
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4.3.2 Theorem Let z, be a W! local minimum for Py, where A satisfies
the generalized Tonelli-Morrey growth condition. Then there exist an arc p
and a scalar A\g € {0,1} with

(p(t); Ao) # (0,0) Vt € [a, 0]

satisfying the transversality condition

(p(a), =p(b)) € NodLl(.(a), 2.(b)) + NF (2(a), 2.(b)),

the (possibly abnormal) Euler inclusion

B(t) € co {w (w, p(t)) € 82°At(x*(t),5c*(t))} ae.,

and the global Weierstrass condition: for almost all ¢ € [a,b] and for all
v € dom Ay(z.(t),), we have

Ao (2a(t), v) = NoAu(aa(0), () = (p(t), v — &.(0)) ’
Proof. We define the usual multifunction:
File,y) = {(0, A, 0) 4+ 8) 10 2 0,0 € R}

and consider the minimization of ¢(x(a),z(b)) + y(b) over the trajectories
(z,y) of I satisfying y(a) = 0 and (z(a), (b)) € S. A local minimum in the
Wt sense is furnished by the arc (., y.), where

We wish to invoke Corollary 3.5.5, whose bounded slope condition we pro-
ceed now to verify. Accordingly, for ¢ > 0, let X be an open bounded set
containing all the balls B(z.(t),¢),t € [a,b], and let ¢ and d be given as in
Definition 4.3.1. Now let (o, 3, —7) be an element of Ng(t)(x, v, Ay(z,v)+9),
where @ € B(z.(t),¢).

Consider first the case v > 0. It follows then (see 1.2.1 of [29]) that
§ =0, whence

(a/7,8/7) € dpAi(z,v),
so that (by 4.3.1)

||

v+ 18

< c{Ai(z,v) + |v]} +d(2).
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This gives rise to

ol < 2[e{Ad(z,v) + [v} + @5, )]

which confirms the bounded slope condition for this case. But the cases
v=0=2¢and vy=0,0 > 0 are reduced to the one just treated exactly as in
the proof of Theorem 4.1.3. This confirms the bounded slope condition of
Corollary 3.5.5. Applying that result, we obtain the desired conclusions.

4.3.3 Remark (a) The abnormal case A\g = 0 is excluded in
the theorem if for all ¢ in a set of positive measure the function
Ay(z.(t),-) is locally finite near #.(t).

(b) A weaker form of the generalized Tonelli-Morrey growth con-
dition is one in which the term A;(z, v) is replaced by its absolute
value. This weaker form suffices for the theorem if we postulate
the existence of a summable function 8 and a vector v such that

Ai(z,v) > 0(t) + (Y,v) Vi€ [a, b,z € B(x,(t),¢),veR",

as is frequently done in studying the problem of Bolza. For when
this holds, we can reduce to the case of a nonnegative Lagrangian
(for which the absolute value makes no difference) by considering
instead

Az, 0) := A, 0) = 0(1) = (¥, 0)
and appropriately modifying £.

An example

We discuss now a simple problem of dimension » = 1 which is beyond
the scope of previous necessary conditions in the literature. It involves the

minimization of
| VD=1 + i} a

subject to 2(0) = 0. Observe that the Lagrangian

Alz,v):==+/|le —v|+v

is neither locally Lipschitz in & nor convex in v. This is a special case of
problem Py with £ =0 and S := {0} x R. The issue we address is whether
the arc z, = 0 is a local minimum of some type.
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Claim 1. A satisfies the Tonelli-Morrey growth condition 4.3.1.
This is clear, with ¢ = 0,d = 1, at a point (2, v) for which z # v, since then
any (¢, ) in dpA(z, v) satisfies »+( = 1. But the same relationship between
¢ and % must hold when & = v, as follows from the defining inequality for a
proximal subgradient.

Claim 2. 2z, fails to be a local minimum in the W1 sense.
If z, is such a minimum, then there is an arc p satisfying the conclusions of
Theorem 4.3.2. The normal case A\g = 1 must hold. The Euler inclusion for
T, gives p+p = 1, and the transversality condition provides p(1) = 0; hence
p(t) =1 —e'~'. The (global) Weierstrass condition reads

VIvl+v > (p(t),v) VveR,

which cannot be.

Claim 3. If 2, is a local solution of radius R, then

R(t) < 271 ae.

If z, is a solution of radius R, then by Theorem 4.1.3 we have, for the same
p(t) as above, for almost every ¢, the inequality

VI 0> (b)) ¥o e [-R(), R(D)
It is easily seen that this inequality forces R(t) < (1 — p(t))~! = e2(t=1),
Claim 4. If R(t) < (=1 a.e., then z, is a local solution of radius R;
thus z. is a weak local minimum.
We prove this by an ad hoc argument.! First, observe that it suffices to
consider arcs z for which z(¢) < 0 and #(¢) < 0. For any such admissible

arc ¢ within radius R of z., we have | (¢)| < e2(!=1) which implies |2(t)] <
2= Tt follows that |z (t) — &(t)] < €2(*=V. In turn this gives

V@ =301+ (1) = le(t) - a(0)] " + (1)
> (alt) = (1) + (1) = - {2l (1 - =) )

Integrating both sides from 0 to 1, we get the desired conclusion.

"Whose inspiration stems from the verification function method; see [23] and [29].
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4.4 Finite Lagrangians

We consider the following version of the basic problem in the calculus of
variations:

b
minimize J(z) := €(x(a), 2(b)) + / Ai(z(t),2(t)) dt

subject to
t(t) € V; ae.

Hypotheses. We retain the basic hypotheses as regards the Lagrangian
A, but now require it to be finite-valued. We no longer require ¢ to be
locally Lipschitz; instead, ¢ is merely assumed to be lower semicontinuous,
possibly extended-valued. (This is why it is no longer necessary to make
explicit any endpoint constraint.) As for the multifunction V| it is taken to
be measurable and closed-valued. This setting allows certain refinements to
be made in weakening the hypotheses under which the necessary conditions
can be obtained, and will be useful later in proving regularity theorems.

We introduce a function v : [a,b] X [0,00) — [0,00) which is £ x B-
measurable, and such that for almost every ¢, the mapping r — ¥ (r) is
locally Lipschitz, nondecreasing, and 0 at 0. This function will play a role
in defining the generalized nature of the local minimum below, extending
the case ¢(r) = |r| that we have most often considered so far.

Let z, be an arc feasible for this problem such that the integral of A
along z, is well-defined and finite and such that {(z.(a), z.(b)) is finite, and
let R : [a,b] — (0, 00] be a given measurable function. We posit the existence
of a positive number £ and a summable function ¢ such that, for almost each
t € la,bl,

€ B(zy(t),e), v e Vs, Jv—a.(t)] < R(t) = Ae(z,v) > c(t).

We assume that z, is a local minimum of radius R for the problem in
the following general sense: for any arc & which satisfies the constraints

B(t) €V ace., |3(t) — #.()] < R() ace. (4.1)

and which is e-close to z, as follows:

b
o= el <o [ wulla0 - 0 di <=, (1.2)
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we have J(2) > J(z.). Note that in view of the hypotheses, the integral of
A along z is well-defined for any such z. In the following, the Euler inclusion
involves the indicator function Iy, of the set Vi, the function which is equal
to 0 on the set and +oo elsewhere.

4.4.1 Theorem Let there exist a summable function & such that, for almost
all ¢, for all v € V; with |v — @.(t)| < R(t) and for all z,2’ € B(z.(t),s) we
have

|A(a’,0) — Az, v)| < k(1) |2’ — 2]
Suppose as well that the set
Q= {t:a.(t) €int V;}

has positive measure. Then there exists an arc p which satisfies the transver-
sality condition

(p(a)v —p(b)) € 8L£($*(a)7 x*(b))v
the Euler inclusion

p(t) € co{w: (w,p(t)) € O [Ar + Iv;] (24(t), 24(1)) } a.e,

and the Weierstrass condition of radius R: for almost each ¢ € [a, b],
Ag(w(t),v) = M@ (8), 8(8)) 2 (p(t), v = (1))

Vo €V, B(i.(t), R(t)).

Now suppose that z, satisfies the above hypotheses for a sequence of radius
functions R; (with possibly different ¢, v, ¢, k depending on ) such that

lim ess inf {R;(t) : t € [¢,b]} = 400 a.e.

11— 00

and suppose that the following set has positive measure:
Q:={teQ:3r>0,0>03 A(2.(t),v) <o Yve B(a.(t),r)}.

Then there is an arc p satisfying all of the above as well as the global
Weierstrass condition: for almost every ¢, we have

Ae(22(t), v) = Ag(@ (1), 22(8)) > (p(t), v — #.(1)) Yov € Vi ¢
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Proof of the theorem. Without loss of generality we take z, = 0,
[a,b] = [0,1], and A(0,0) = 0 a.e. Fix any radius function R(-) for which
the hypotheses of the theorem hold. For ¢ in [0,1] and for (y,z,«,)) €
R” x R x R x R, we define Fy(y, z, o, 5) = F;(y) to be the set of all points
(w,r,0,6) in the same space such that

we VN B(0,R(t)), Ay, w) <7, 8 =(Jw]).
The multifunction F' satisfies the basic hypotheses. We consider the problem
of minimizing
z(1) + a(1)
over the trajectories (y, z, a, ) of I on [0, 1] satisfying
19l <€
and the boundary conditions

(y(0),y(1), (1)) € epi £, 2(0) =0, (0) =0, f(1) <e.

It is a simple exercise to verify that the arc (0,0, 0,0) solves this problem.
We claim that F; is Lipschitz on the set |y| < & with Lipschitz constant

k(t). For let y,y" be points in that set, and let (w,r,0,0) be any point in

Fy(y). Then w lies in V, N B(0, R(t)), 6 equals 1 (Jw|), and r is of the form

At(y7 w) + 5

for some & > 0. Set
r' = Ay, w) + 6.

Then the point (w,r’,0,8) belongs to Fy(y') and satisfies
‘(w,r',O,H) — (w,r,0,0)‘ = ‘r’ — r‘ = ‘At(y’,w) — At(y,w)‘ < k(t),

in light of the Lipschitz condition satisfied by A. This proves the claim.
We now apply Theorem 3.1.1 with radius function identically 400 . The
set S of that theorem is given by

{(9072070407507917217041751) : (907917041) cepil, 20=03=0, 1 < 5}-

It follows readily that we obtain an arc (p, —Ag, 0,0) and a number g equal
to 0 or 1 such that (p(t), Ao) is nonvanishing,

(p(0), —=p(1), —Ao) € Né;ié(ovovﬂ(ovo))v (4.3)
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and such that the Weierstrass condition for F' holds, which gives:
AoA (0, w) > (p(t),w) Yw e V,n B(0,R(t)), a.e.

Because the set €2 has nonempty interior on a set of positive measure, the
abnormal case is excluded by this conclusion, for if A\g = 0 then p(¢) must

vanish for some values of ¢, which contradicts the nonvanishing of (p(t), Ao).
Thus Ag = 1. Then (4.3) gives

(p(0), —p(1)) € ALL(0,0).

The Euler equation asserts that for almost every ¢, p(¢) belongs to the convex
hull of the set of points w such that

(w, p(1),—1,0) € N};,(0,0,0,0),
where D; is the set
Ly, w, Mely, w) + 8, ¢(|w])) : 6 2 0,w € ViV B(0, R(1)) } -
Proximal analysis shows that such an w satisfies
(w,p(1)) € O [A¢ + 1v;] (0,0)

(the Lipschitz condition on 1 figures here in applying the proximal sum
rule). Then p satisfies all the assertions of the theorem, which is therefore
proven for the case of a given radius function R(-).

There remains the final assertion of the theorem in the case in which the
hypotheses hold for the given sequence R; of radius functions. Each arc p;
obtained from applying the fixed radius case satisfies

1pi ()| < kq(t) ae.

as a consequence of the Euler inclusion, where kq is the Lipschitz function
for radius Ry. To apply the usual convergence arguments that will lead to
the required limiting arc that satisfies the Weierstrass condition globally, it
suffices to exhibit a uniform bound on

min {|p;(t)| : t € [0,1]}.

To obtain such a bound, we use the fact that the set Q' has positive measure
to deduce the existence of a subset X of €2, also of positive measure, together
with positive numbers r and ¢ such that

A(0,v) <o VveB(0,r)CV,, Vte.
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But then, for any index ¢ sufficiently large so that
ess inf {R;(t) : t € [a,b]} > r,
the Weierstrass condition implies that on a set of positive measure we have

()] < afr,
which completes the proof of the theorem. |

4.4.2 Remark (a) The set Q' will have positive measure as
required in the limiting case of the theorem if the hypothesis
Ay(z,v) > ¢(t) is strengthened to [A(z, v)| < ¢(t). Alternatively,
we can dispense with any hypothesis concerning Q' if ¢ is locally
Lipschitz in one of its arguments.

(b) As in Remark 3.1.2(a), it suffices in the limiting case that,
for some £ > 0, z, provide a minimum with respect to the con-
straints

b
G-, € L™, / Ge(|i(t) — i (D)) dt < e, v -zl < e

4.5 Three regularity theorems

There is a close link between necessary conditions and the regularity of the
solution: If we know the solution to be regular, then we can usually assert
the necessary conditions; conversely, if we can write the necessary conditions,
then we may be able to deduce regularity from them. In this section we use
the new necessary conditions to derive regularity consequences for solutions
of the problem Ps when the Lagrangian is finite-valued. The following
property will play a role.

4.5.1 Definition We say that the Lagrangian A is coercive
if for any bounded subset X of R" there exists a function @ :
[0, 00) — R satisfying

and such that

Ae(z,v) > 0(|v|) V(t,z,v) €la,b] x X xR
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We remark that coercivity is a familiar ingredient in the theory of ex-
istence of solutions (see for example Cesari [11]). The symbiosis between
necessary conditions and regularity is well illustrated by the following new
result.

4.5.2 Theorem Let 2, be a local minimum of Wh! type for Py, where A is
finite-valued and satisfies the generalized Tonelli-Morrey growth condition
4.3.1. Suppose in addition that A is coercive, and bounded above on bounded
sets. Then z. is Lipschitz. ¢

Proof. In view of Theorem 4.3.2, we know that an arc p exists which
satisfies the (normal) Weierstrass condition. Let M be an upper bound on

A, (x*(t)v %)

for t € [a,b], and let 8 be a coercivity function for A when z is restricted to
the bounded set consisting of the values of z. on [a,b]. Then, taking v :=
E«(t)/(14]2.(t)]) in the Weierstrass inequality leads to (almost everywhere)

O(|2(1)]) < Ar(@x(t), (1)) < M+ [p(t)| [2(8)] -

Since |p| is bounded and lim,_,, §(r)/r = 400, it follows from this that .
is essentially bounded. |

4.5.3 Remark The reasoning given in Remark 4.3.3 shows that
(in the presence of coercivity), the (apparently) weaker ‘absolute
value form’ of the Tonelli-Morrey growth condition 4.3.1 suffices.

Another regularity theorem

It is possible to formulate a purely local hypothesis (instead of global Tonelli-
Morrey growth) and still obtain conclusions in regard to necessary conditions
or regularity. We illustrate this now in a classical setting. We consider a
Lagrangian A;(z,v) which is continuously differentiable in (z,v) for each ¢
and satisfies: for some € > 0 and summable function k& we have

|DeAi(z, 2.(8))| < k(t), 2 € B(ai(t),e), t € [a,b] ae. (4.4)
Note that if z, satisfies the Euler equation

(P(t), p(t) = DrpAi(24(t), 2£(t)) a.e.,
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then |DyAy(24(t), #.(t))] must be summable. In this light, the condition
(4.4) may be thought of as being ‘close’ to necessary for the Euler equation
to hold. It turns out to be sufficient.

4.5.4 Theorem Let z, be a weak local minimum for P, which satisfies
condition (4.4). Then there exists an arc p satisfying (with Ay = 1) the
transversality condition and Euler equation. If in addition A is convex in
v, then the global Weierstrass condition holds. And if in addition to that
the Lagrangian is coercive and bounded above on bounded sets, then z, is
Lipschitz. ¢

Proof. For each ¢ such that (4.4) holds, for every € B(z.(t),¢), we have
Ae(z,8.(t)) > Ay(x) — k().
For every such ¢ there exists R(t) > 0 such that
|DaAs(z,v)| < k() + 1, 2 € B(ai(t),e),v € B(i(t), R(t))
and
Ae(z,0) > Ay(x) —ek(t) — 1, 2 € B(ay(t),e),v € B(@.(t), R(t)).

We may suppose R(-) measurable, and that z, is a solution relative to the
radius R. It follows that A possesses the properties that permit us to invoke
Theorem 4.4.1 (with V; = R™). This gives rise to the full set of necessary
conditions, with the Weierstrass condition being of radius R. The remaining
conclusions of the theorem follow now as in the proof of Theorem 4.5.2. W

Autonomous integrands

One of several principal threads running through the theory of Lipschitz
regularity involves conditions which limit the nature of the ¢ dependence of
the Lagrangian. It was proved by Clarke and Vinter [30] (see also Section
11.4 of [64]) in particular that when A is autonomous (has no explicit de-
pendence on the ¢ variable) and locally Lipschitz in (z,v), as well as convex
in v and coercive, then any strong local minimum for the basic problem has
essentially bounded derivative. We now show that it is possible to dispense
with the Lipschitzness and convexity hypotheses in that result.

4.5.5 Theorem Let A be autonomous and coercive, and bounded above
on bounded sets. If z, provides a strong local minimum for Py, then z, is
Lipschitz. ¢
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Proof. There is no loss of generality in assuming that A is nonnegative
in a strong neighborhood of z, (in view of coercivity, and by adding an
appropriate constant if necessary). We define a new Lagrangian L : [a, b] x
R — [0, +o0] as follows:

i (1)

L@wy:A(m@, >w+qm&@@¢

We consider the minimization of

b
[ wtegiey a
over the scalar arcs y on [a, b] satisfying y(a) = a, y(b) = b, as well as

ly(t) = tll., <o

Here, ¢ is a positive number picked so that for any t € [a, b], the inequality
ly —t| < 0 implies |2, (y) — 2«(t)| < £«, where €, is the radius of the uniform
neighborhood relative to which z, is optimal.

We claim that the arc y.(t) := ¢ solves this problem (for which it is
evidently feasible). For suppose there were a feasible arc y for the prob-
lem strictly better than y,. Then y is strictly increasing, and the arc
z(t) := x.(y~1(t)) is feasible for the original problem, and has the same
boundary values as z,. It also lies in the uniform e,-neighborhood about
z,. Furthermore we find (by the change of variables formula?)

b b
- /L(t,y’(t))dt</ L(t,y«(t)) dt

b
_ / Aa(t), &.(2)) dt,

which contradicts the optimality of z, for the original problem, proving the
claim.

Since L is independent of y, it evidently satisfies the generalized Tonelli-
Morrey condition 4.3.1. We may therefore invoke the necessary conditions
of Theorem 4.3.2 for the problem solved by y,, in the case of a strong local
minimum, with ¢ equal to the indicator of the singleton set (0,0), and with

2See for example Real Analysis (Second Ed.) by H.L. Royden.
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Ao = 1. The Euler and Weierstrass conditions assert that for some scalar p,
for almost all ¢, we have

0

A (x*(t), ) w—A(2.(t), &) > plw—1) Yw € [1/2,400).

Let M be an upper bound on

A (.r*(t)v %)

for t € [a,b], and let § be a coercivity function for A when z is restricted
to the bounded set consisting of the values of x, on [a,b]. Then, taking
w =14 |&.(t)| in the Welerstrass inequality leads to (almost everywhere)

Ol ()]) < Alwa(), &x(1)) < M1+ [24(0)]) + |pl|24(1)] -
Since lim, o 8(r)/r = +o0, this implies that &, is essentially bounded. W

4.5.6 Remark Note that no necessary condition of Euler type
for the solution of the original problem is asserted here (unsur-
prisingly, since no hypothesis is made with respect to the z de-
pendence, except for measurability). However, the proof yields
the existence of a scalar p satisfying

p € 0pL(t,1) ae.,

a condition which implies, when A is differentiable in v, the clas-
sically familiar second Erdmann condition:

Az, (t),3.(t)) — (@.(t), DyA(z (1), £(t))) = constant a.e.

4.6 Notes

84.1 Theorem 4.1.1 subsumes and greatly extends the early results on the
generalized problem of Bolza, such as those of Clarke [14][16]. Loewen and
Rockafellar [47], in an article already mentioned in the notes for Chapter 3,
prove necessary conditions for the (unstratified) problem of Bolza under the
convexity hypothesis; their result is subsumed by Theorem 4.1.3.

Another line of research in connection with the problem of Bolza seeks
to apply the Hamiltonian (rather than the Lagrangian) formulation of both
hypotheses and conclusions; see the notes for Chapter 6.
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84.2 Nowadays, differentially constrained problems are generally treated
in the context of optimal control, under much weaker hypotheses, as we do
in the next chapter. The books of Bliss [5] and Hestenes [37] are principal
references for the multiplier rule.

84.3 The class of Lagrangians satisfying what we have termed the gener-
alized Tonelli-Morrey growth condition appears here for the first time. For
smooth coercive Lagrangians, the condition may be written in the equivalent
form

[DeAl < e (Al + [DoA} + du (1) + {ea |[A] + da (1) } [ Do A

By taking ¢; = dy = 0, one obtains a class of Lagrangians that has been
considered before, notably by Clarke and Vinter [30] in connection with
regularity (see below).

The example given in this section is of interest partly because it fails to
be Lipschitz in the z variable. But Theorem 4.3.2 also extends the class of
smooth Lagrangians for which the necessary conditions can be asserted. A
simple example is provided (for n = 1) by

A¢(z,v) = exp { (L + 2 + *)v°} .

This Lagrangian satisfies the generalized Tonelli-Morrey growth conditions,
as well as the hypotheses of the classical Tonelli existence theorem. Thus
Theorem 4.3.2 (necessary conditions) and Theorem 4.5.2 (regularity) can be
applied to it. However, as for the previous example, it fails to be encom-
passed by any class of Lagrangians previously considered in the literature.

84.4 The necessary conditions of Theorem 4.4.1 appear to be the most
general on record for the well-studied case of a finite-valued Lagrangian,
one which is neither convex nor continuous in the velocity variable. In
particular, the results of Clarke [14] and loffe and Rockafellar [39] (see also
Vinter [64]) are subsumed by the theorem and extended in several ways.
A weaker notion of local minimum is used, and weaker boundedness and
reduced Lipschitz hypotheses imposed. In further contrast, the necessary
conditions are obtained in stratified form: for each radius R for which the
hypotheses are valid, and not just in the case where they hold for all R.
Finally, the presence of the velocity constraint set V; is admitted.

There exist other necessary conditions that are not subsumed by the
above, however. They are obtained by invoking a generalized version of the
maximum principle for optimal control problems (see Clarke [17]), and yield
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(together with the other necessary conditions) a separated form of the Euler
inclusion:

p(t) € do A (-, (1))} (24(2)), p(t) € Op {Ae(24(2), )} (#4(1)) ace.

This separated FEuler inclusion is different in general from the one given here,
and the resulting necessary condition is sometimes less, and sometimes more,
informative; examples appear in [39]. The maximum principles given in the
next chapter similarly yield such separated conclusions.

§4.5 The article [30] of Clarke and Vinter is a principal reference for the
issue of identifying structural hypotheses on the Lagrangian which give rise
to Lipschitz regularity of the solution; see also the book of Vinter [64]. In
regularity theory, it is the Lipschitz property that is the watershed: Once the
solution is known to be Lipschitz, it is relatively simple to deduce enhanced
regularity (for example, by assuming strict convexity of the Lagrangian: see
[30]). The fact that the solution can fail to be Lipschitz even when the
Lagrangian is a polynomial satisfying the hypotheses of Tonelli’s existence
theorem was proven by Ball and Mizel [1], who adapted a classical example
of Mania for this purpose.

The approach of Clarke and Vinter is based upon a generalization of
Tonelli’s theorem on regularity ‘in the small’, and gives rise to certain results
of a type not obtained here. Theorem 4.5.2 subsumes their Tonelli-Morrey
type result, however, which applies to Lagrangians satisfying a more restric-
tive growth condition (defined above in connection with §4.3) and which
are locally Lipschitz in (2,v) and convex in v. In a similar vein, Theo-
rem 4.5.5 extends their corresponding result by dispensing with these last
two hypotheses. In connection with an ‘indirect method’ of existence and
regularity, Clarke [25] had previously dispensed with Lipschitz behavior in
x.

Theorem 4.5.4 can also be derived as a consequence of the nonsmooth
maximum principle of Clarke [17]. An interesting open question is whether
its hypothesis (4.4) could be replaced by the lesser requirement that the
function

t e [ Do (a(t), 24(1))]

be integrable; if so, this would constitute a necessary and sufficient condition
for the Euler equation to hold.



Chapter 5

Optimal Control of Vector
Fields

The subject of necessary conditions in optimal control is dominated by the
maximum principle of Pontryagin. In this chapter we shall prove three
types of variants of this celebrated theorem. The first type (§5.1) exhibits
a new stratified nature; here, we directly postulate the required pseudo-
Lipschitz behavior of the data. Classical hypotheses of smoothness of the
data (and boundedness of the control) provide special cases in which this
behavior is guaranteed to be present, but in general it is of interest to have
weaker structural conditions guaranteeing a priori that it will occur near the
(possibly as yet unidentified) solution z,.. The two other types of maximum
principles proven here have that feature. In §5.2 we give differential growth
conditions having the desired effect. The third and final section is devoted
to a maximum principle (Theorem 5.3.1) having a novel hybrid nature that
admits unusually general cost integrands in the presence of fully nonlinear
(but smooth) dynamics.

5.1 A stratified maximum principle
Let there be given a parametrized family
F={fult,z):uecld}

of nonautonomous vector fields. An arc z is said to be a trajectory of F if,
for some u € U, one has

(t) = fult,z(t)) ae.t €[a,b].

83
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We study in this section an optimal control problem defined over the tra-
jectories of F, deferring for the moment the discussion of the more familiar
case of a standard control system.

The problem and basic hypotheses. We assume that each f € Fisa
Carathéodory function on [a,b] x R™, and that the family is decomposable
(or closed under switching): if fy € F and f; € F, and if Q is a measurable
subset of [a, b], then the field f coinciding with f; for ¢ € Q and with f; for
t in the complement of €2 also belongs to F.

The problem P¢ consists of minimizing ¢(z(a), 2(b)) over the trajectories
of F that satisfy the boundary constraint (z(a), (b)) € S. We assume that
£ is locally Lipschitz and .S is closed.

Now let there be given a measurable radius function R on [a,b] with
values in (0, 4oc], as well as an arc z,, a trajectory of F corresponding to
the vector field f, € F. We suppose that z, is a local W' minimum of
radius R in the following sense: for some ¢, > 0, for every trajectory z of F
that satisfies the boundary constraint and

b
i (1) — #.(1)] < R(t) ae., / () — i (1)] dt < es, |Jo — 2] < 2as

we have ((z(a), z(b)) > l(z.(a), ().

5.1.1 Theorem Suppose that each f € F admits a number ¢ > 0 and a
measurable function k (both possibly depending on f) such that, for almost
every ¢,

z,z' € B(z.(t),e), |f(t,z) — .(1)| < R(t)
= | f(t,2") — f(t,x)| < k(1) |2" — 2.

Suppose also that the function k.(-) corresponding to fi is summable, and
that we have

ess inf {li((?) (te [a,b]} > 0.

Then there exist an arc p on [a,b] and a number Ay € {0, 1} with

(p(t), Ao) #0 Yt € [a,b]

such that the following transversality condition holds

(p(a), =p(b)) € AodLl(wx(a), (b)) + N5 (2 (a), 2.(b)),
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and such that p satisfies the adjoint inclusion:

—j)(t) € dc <p(t), f*(tv )> (x*(t)) a.e.,

as well as the maximum condition of radius R: for every f € F, for almost
every ¢,

[f(t,24() = 2(O)] < B() = (p(), fult, 24())) Z (p(1), [ (T, 2(1))) -

Further, if z, satisfies the above for a sequence of radius functions R; such
that

liminf R;(t) = 400 a.e.

T—> 00
(with all associated parameters possibly depending on ¢), then there is an
arc p satisfying all the conditions above as well as the global maximum
condition:

(@), f(t, 2.()) = (p(1), [(t,24(1))) ae VfeF. ¢

We remark that the generalized gradient d- that appears in the adjoint
inclusion above was defined in §1.3.

It is useful to have differential criteria for the pseudo-Lipschitz hypothesis
of the theorem. The following is a straightforward consequence of Theorem
3.5.2. Recall that by Rademacher’s theorem, a locally Lipschitz mapping
from R™ to itself is differentiable almost everywhere.

5.1.2 Corollary Suppose that each f € F admits a number £ > 0 and a
measurable function k (both possibly depending on f) such that, for almost
every t, the function f(¢,-) is locally Lipschitz on the (open) set

[TV B(@L(t), R(1)] i= {a : |ia(t) — f(t,2)] < R(t)}
and satisfies
1D f(t, )] < (1) ace. o € 7 [Bla- (), RO

Suppose also that the function k.(-) corresponding to f, is summable, and
that we have

ess inf {li((?) (te [a,b]} > 0.

Then the conclusions of Theorem 5.1.1 hold.
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Standard control systems

Before proving the theorem, we pause to discuss the classical Pontryagin
formulation of the optimal control problem, which involves the system of
controlled differential equations

(1) = ¢e(a(t), u(t)), v € U(L),

where ¢; : R” x R™ — R"”, and where the control set multifunction U is
prescribed as well. Given a class C of functions mapping [a,b] to R™, an
admissible control u(-) is defined to be an element of C satisfying u(t) €
U(t) a.e. We refer to the triple (¢, U,C) as a standard control system.

Note that we may define a vector field f, for each admissible control u
as follows:

fult, ) == u(z, u(?)).

Taking as parameter set U the set of admissible controls, we obtain a
parametrized family F of vector fields. The most common choice for C
is the class of all measurable functions. Then, under the appropriate mild
assumptions on ¢ and U, F will satisfy the basic hypotheses of the theorem
(including decomposability). Other suitable choices for C include the class
of bounded (or integrable) measurable functions.

Denoting by u. the optimal control giving rise to z,, the adjoint equation
becomes:

—])(t) € dc <p(t)7 ¢t('7 u*(t))> (f*(t)) a.e.

and the Weierstrass condition (for a given radius R) implies (for almost
every t):

w € U(1), gn(aalt), u) — ()] < R(1) =
(1), el (0), 0a(6))) = (o), ol (1), w)

Proof of Theorem 5.1.1. There is no loss of generality in taking [a,b] =
[0,1] and z, = 0. The proof follows that of loffe [38] in general outline, but
relies upon Theorem 3.1.1. We fix a finite subfamily X of fields fy,..., fx
in F and some § > 0, and define Fi(z) as the union of f.(¢,2) and those
fi(t,z) in X for which

1

57

where k; is the pseudo-Lipschitz function corresponding to f;. Then F
satisfies the basic hypotheses of Chapter 3.

|filts ()] > 6, ki(t) <
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Let R be the radius function for which the hypotheses of the theorem
hold. It is easy to see (in light of the decomposability of F) that z, is a
local solution (in the same sense) to the version of the problem P studied in
Chapter 3 that corresponds to F' (with ¢ and S unchanged). Furthermore,
it follows readily that I is pseudo-Lipschitz of radius R near z.. We apply
Theorem 3.1.1 to deduce the existence of p, Ay as given there, normalizing
to get

Ao+ IIpll = 1,

so that Ag is no longer equal to 0 or 1 necessarily. Because &.(t) = 0 is an
isolated point of Fi(z.(t)), the Euler inclusion implies the adjoint equation
(this follows from the proximal normal inequality, and uses the fact that
the generalized gradient is convex). The Weierstrass condition of radius R
holds as follows: for almost every ¢, for any f; € 3 with index ¢ such that
ki(t) < 1/8, we have

(@), filt,2.(1))) <0 if & < [filt, 2.(t))] < R(?).

Now the adjoint equation implies [p(t)| < k«(¢) [p(t)[. A standard argument
involving Gronwall’s Lemma shows that the set () of (normalized) (p, Ao)
satisfying this relationship is compact. If we denote by M (4, Y) the set of
(p, Ao) satisfying the transversality condition, the normalization condition,
the adjoint equation, and the preceding Weierstrass condition for § and X,
then the sets M (9, X) are closed subsets of () having the finite intersection
property. Compactness implies the existence of a single (p, Ag) satisfying the
transversality condition, the normalization condition, the adjoint equation,
and the preceding Weierstrass condition for every ¢ > 0 and finite subfamily
of F. This implies the Weierstrass condition as affirmed by the theorem. If
Ao = 0, then (in view of the adjoint equation and Gronwall’s Lemma) p is
necessarily nonvanishing, whence nontriviality.

This completes the proof in the case of a fixed radius function R. If the
hypotheses hold for a sequence R; as described, the usual arguments allow us
to extract a suitably convergent subsequence from the ensuing (normalized)
(piy Ao;) whose limit gives the required conclusion. [ |

Boundary trajectories

Let us note for the record the more general version of Theorem 5.1.1 that
corresponds to boundary trajectories rather than optimal ones. For this
purpose we let C' be a closed subset of R™ and z, a trajectory of F on [a, b]
having z.(a) € C.



88 CHAPTER 5. OPTIMAL CONTROL OF VECTOR FIELDS

We consider (for a given radius function R as above) the set 7 =

T (24, R, e, C, F) of trajectories z of F on [a, b] which satisfy the constraints
z(a) € C, |&(t) — 2.(t)| < R(t) a.e.

and which are e,-close to . in the following W' sense:

b
[0 - a0l < e o - a <=
a

Let ® : R® —+ R™ be a given locally Lipschitz function. We assume below
that z is a local boundary trajectory in the sense that ®(z.(b)) is a boundary
point of the set

O :={P(z(b):xeT}.

5.1.3 Theorem Suppose that each f € F admits a number ¢ > 0 and a
measurable function k (both possibly depending on f) such that, for almost
every ¢,

z,z' € B(z.(t),e), |f(t,z) — .(1)| < R(t)
= | f(t,2") = f(t,x)| < k() |2 - =|.

Suppose also that the function k.(-) corresponding to fi is summable, and
that we have

ess inf {li((?) (te [a,b]} > 0.

Then there exist an arc p on [a,b] and a unit vector v in R™ such that the
following transversality conditions hold

—p(b) € Ir (7, @) (2(b)), pla) € NE(24(a)),

and such that p satisfies the adjoint equation:

—j)(t) € dc <p(t), f*(tv )> (x*(t)) a.e.,

as well as the maximum condition of radius R : for every f € F, for almost
every ¢,

[f(t,ea(1)) — 2. (0)] < B() = (p(1), [u(t, 2(8))) = (p(1), f(t; 24(1))) -

Further, if z, satisfies the above for a sequence of radius functions R; such
that
liminf R;(t) = 400 a.e.

11— 00
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(with all associated parameters possibly depending on ¢), then there is an
arc p satisfying all the conditions above as well as the global maximum
condition:

(), fults 22 (1)) = (p(1), F(L,24(1))) ae. Vf € F. ¢

We omit the proof, which is analogous to that of Theorem 5.1.1 but
based upon Theorem 2.3.3.

5.2 Indirect criteria for pseudo-Lipschitzness

In the previous section the pseudo-Lipschitz behavior of the system near
the optimal arc was a direct hypothesis. Now we wish to consider a priori
conditions on the system which, with minimal reference to a given arc,
guarantee that such pseudo-Lipschitz behavior will be present, and that
the full set of necessary conditions will hold in global form.

The following gives a verifiable criterion for this.

5.2.1 Theorem Let z, be a W' local minimum for Po. Suppose that
each vector field f € F admits positive constants £ and ¢ and a summable
function d (all possibly depending on f) such that, for almost every ¢, f(t,-)
is locally Lipschitz on B(z.(t),<) and satisfies

IDof(t,2)|| < c|f(t, )| +d(t), ae. z € B.(t),e).

Then the global conclusions of Theorem 5.1.1 hold. ¢

Proof. Thereis no loss of generality in taking [a, b] = [0, 1] and 2. = 0. Let
us relabel fy the vector field corresponding to z,. We fix a finite subfamily
of fields fi,..., fr in F and some § > 0, and define the multifunction F(z)
as the union of fy(t, ) and those f;(¢, z) for which

|fi(t, 2.(2))] > 6.

Then F satisfies the basic hypotheses. It is clear, as in the proof of Theorem
5.1.1, that in order to prove the present theorem, it suffices to prove the
existence of a (global) multiplier for I in the sense of Theorem 3.1.1. We
shall achieve this by an appeal to Corollary 3.5.3.

Let €;,¢; and d; be the parameters corresponding to f; (¢ = 0,...,k),
and set

£:= min g;, ¢:= max ¢;, d(t) = max d;(t).
0<i<k 0<i<k 0<i<k
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We define, for any positive integer N, the radius function
N (1) == {1 fo(t, 2()] + d} N.

Fix t € [a,b] and let 2 € B(z.(t),2) be given, together with a point v €
Fi(z) N B(i.(t), Ry(t)) and any element (a, ) of Ng(t)(x,v). Then v is
of the form f;(¢,z), and the proximal normal inequality implies that the
expression

- <057$/> - <ﬁ7f2(t7$/)> +o {‘wl - $‘2 + ‘fz(tvxl) - fz(t7$)‘2}
attains a local minimum at 2’ = x. This gives

—a € Jp <ﬁ7 fi(tv )> (x),

which, combined with the growth condition on f; leads to

o < {elfi(t, x)] +d(1) }Iﬂl

< {ellfo(t, za())| + Ry ()] + d(t) } 1]
=kn(t) 18],
where
kn(t) == e{|fo(t, z(t))] (L + N)+ d(t)N} + d(¢)

Since kpy is sulrlrnrnable7 this confirms the bounded slope condition of Corol-
lary 3.5.3; note also that the ratio Ry(t)/kn(t) is bounded away from zero.
We obtain therefore the conclusions of Theorem 3.1.1 for each N. Finally,
note that if we assume (as we may) that d(t) > 1, then Ry goes to infinity
with IV in the required sense, giving the required global conclusion. |

5.2.2 Remark When the family F of vector fields arises from a
standard control system (¢, U, C), diverse sets of conditions on ¢,
U and C can be formulated to give rise to the growth hypothesis
postulated in the theorem. The simplest case is to take for C
the class of all measurable functions, while assuming that ¢ is
smooth and U uniformly bounded. Another one, the classical
Pontryagin context, corresponds to taking C to be the class of
essentially bounded functions, with ¢ still smooth. To give but
one more example, the following extension of this last case will
also do: take C to be the class of essentially bounded functions,
and let ¢ be locally Lipschitz in = and satisfy

1Datele, w)l| < clér(a, )| +6(t,a,u) ae.a,

for some constant ¢ and continuous function 6.
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5.3 A hybrid maximum principle

The two preceding sections have both considered the Mayer form of the op-
timal control problem in which the cost is a function of the endpoint values
of the state . Many applications of standard control systems, however,
involve an integral cost functional A¢(z, u). When A satisfies the same hy-
potheses as the dynamics, it is a simple matter (as we have seen in Chapter
2) to absorb the integral cost into the dynamics by introducing an extra
state variable. In this section we study an optimal control problem in which
the cost integrand is allowed to be much less regular than the dynamics;
in fact, we allow it the fullest generality treated in the previous chapter.
On the other hand, we postulate smooth dynamics, in contrast to the pre-
vious sections. The new hybrid result so obtained encapsulates in a single
setting the necessary conditions of the classical calculus of variations, the
classical maximum principle of Pontryagin, Theorem 4.3.2 for the general-
ized problem of Bolza, and even multiplier rules for problems incorporating
mixed state/control constraints. It is notable for not requiring Lipschitz
hypotheses that refer explicitly to the optimal arc.

The problem and basic hypotheses. We consider the minimization of
the functional

b
(z(a), z(b)) + /a Ae(2(t),u(t)) dt

subject to the boundary conditions (z(a), (b)) € S and the standard control
dynamics

() = ou(x(t), u(t)) a.e.

The minimization takes place with respect to arcs x and measurable func-
tions u : [a,b] — R™. Note that no explicit constraints are placed upon
u(t); if such constraints exist, they are accounted for by assigning to the
extended-valued integrand A the value 400 whenever the constraints are
violated. We assume as in Chapter 4 that A is £ x B measurable and lower
semicontinuous in (z,u). As usual, { is taken to be locally Lipschitz and S
closed.

The growth conditions. We assume that the function ¢ is Lebesgue
measurable in ¢, continuously differentiable in (z, u), and that ¢ and A satisfy
the following: for every bounded subset X of R", there exist a constant ¢
and a summable function d such that, for almost every ¢, for every (z,u) €



92 CHAPTER 5. OPTIMAL CONTROL OF VECTOR FIELDS

dom Ay(-,-) with # € X, we have
1Dz ¢i(; u)|| < e{le(z, w)| + Ay, u)} + d(2),
and for all (¢,?) in dpAs(z,u) (if any) we have

€] (1 4 || Dyt (, w)]])
1+ 4]

In the following, (x) denotes evaluation at (2.(t), u.(t)).

< eflo (e, u) [+ Az, u) } 4 d(1)

5.3.1 Theorem Let the control function u, give rise to an arc z, which is
a Wh! local minimum for the problem above. Then there exist an arc p on
[a,b] and a number Ag € {0, 1} with

(p(t)’ /\0) 7£ 0 Vie [avb]
such that the following transversality condition holds
(p(a), —p(b)) € AodLl(2x(a), 24(b)) + N§(2x(a), (b)),

and such that p satisfies the hybrid adjoint inclusion: p(¢) belongs almost
everywhere to the set

co {w D(w+ DRo(x)p(t), Dudi(¥)p(t)) € 820At(*)}7

as well as the maximum condition: for almost every ¢, for every u in
dom Ay(z.(t),-), one has

<p(t)7 (bt(x*(t)? u) - ¢t(*)> < /\OAt(x*(t)v u) - /\OAL‘(*)‘ ‘

Proof. Our strategy is to appeal to Corollary 3.5.5, much as was done in
the proof of Theorem 4.3.2. Fix 6 € (0, 1), and take I’ to be the multifunc-
tion

File,y) = {(é1(a, u), Ay u) + 0| — wa(D)] + 8) 8 > 0,u € R™),
which satisfies the basic hypotheses. We consider the minimization of
((z(a), z(b)) + y(b)

over the trajectories (z,y) of F satisfying y(a) = 0 and (2(a),2(b)) € S. A
local minimum in the W1l sense is furnished by the arc (2., y), where

Y (1) ::/ Ag(zi(s),us(s)) ds.
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Lemma 1 The multifunction F satisfies the bounded slope con-
dition of Corollary 3.5.5.

Proof. Let X be an open bounded set containing the points z.(t),¢ €
[a,b], and let («a, 3, —7v) be an element of

Ng(t)(xv(bt(xvu)vAt(xvu) +0|u - u*(t)| ‘I'(S)v

where x € X. Just as in the proof of Theorem 4.3.2, only the casey > 0,6 =0
need be considered. The proximal subgradient inequality then asserts that
for some ¢ > 0, the following function of (2/, ') has a local minimum at

(x,u):
A o) 490 0 = (0)] = (B, 6 ) = (aa) +
o {\w’ — 2 4 [ou(a’ W) - ¢t($7u)‘2}
The first-order necessary conditions for this minimum yield
(a+ Dige(w, w)B, 70+ D7 dr(w, w)B) € Iy Ae(x, u),

for some g in the unit ball. In view of the second growth condition this gives
rise to

a4+ D3¢ (w, u) 8] <
c[{lee(z, )+ Asz, w)} + d(O)] [y + [0p + Didi(, w) 5]
L+ || Dy (x, |

When combined with the first growth condition, this leads to

o] <3led{lon(z, )|+ Ar(w, ) + 0 [u = u ()]} + (O] (5,7)],

which confirms the bounded slope condition of Corollary 3.5.5.
We now examine the limiting normal cone.

Lemma 2 For fixed ¢, let (w, p, —v) be an element of

Ny (1), @1 (t), ualt)), M@ (1), ua(t))).-

Then there exists u such that

e (t) = Gel(@(t), u), Ae(2:(1), w)+0 [u = un ()] < Ag(@(t), u(1)),
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and such that, for some p in the unit ball, the point

(w + Dide(wa(t), u)p, v0u+ Dide(2.(1), u)p, —7)
belongs to

Nepin (@x(8), uy Ay (1), ua(t)) = 0 [u = un(t)]).
Proof. By definition of the limiting normal cone, (w,p, —v) is a limit of
a sequence of points (w;, p;, —v;) belonging to

Ng(t)@n Ge(iy i), Ap(@g, wi) + 0 |u; — ua(t)| 4 65),
where &; > 0, ¢¢(@i, ui) = de(w«(t), ux(t)), and
Ag(@i, i) + 0 [up — ua ()] + 8 —= Ay (1), ua(t)).

As in earlier arguments, Rockafellar’s approximation theorem allows us to
take the v; strictly positive and é; = 0. Since A(z;, u;) is bounded below (in
view of the first growth condition), and since  is strictly positive, it follows
that the u; are bounded; we may suppose that w; converges to a limit u.
Then we have

e (t) = Ge(@(t), u)y Ag(2(t), u) + 0 u = ue(t)] < A(@(t), ua(t)),

by the continuity of ¢; and the lower semicontinuity of A;.
The analysis of the proximal normal cone carried out in the first lemma
shows that, for some element p; of the unit ball, the point

(wi + Do (4, ug)piy vibp: + Do (24, ui) piy, —7i)

belongs to NeLpiAt
limit.

Returning now to the proof of the theorem, we proceed to apply Corol-
lary 3.5.5, which yields the existence of an arc of the form (p, —Ag) which
satisfies (along with the other conditions) the Euler inclusion. The latter
implies that (for almost every ¢), p(¢) is a convex combination of points w(t)
such that (w(t),p(t), —Ao) has the form described in Lemma 2. If u(t) de-
notes the point that corresponds to w(t) as in the lemma, then it follows that
u(t) = u.(t) a.e. (for otherwise u(t) would be a control that also generates
the trajectory x,, but at strictly lower cost, contradicting the optimality of

(@, wiy Ag(x4, u;)). The result now follows by passing to the
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In view of the above, we deduce that p(t) belongs almost everywhere to
the set

co{w: @+ Disu(0)p(t), Didu(9)p(1), =) €
N (1), ua(t), () + {0} x 0B x {0} .

This would be precisely the desired inclusion if # were zero. The maximum
condition is similarly perturbed:

(p(1), Pe(@x(t); u) = de(#)) < AoAi (22 (1), 0) = AoAs(¥) + Ao |u — ua (1)

To eliminate the undesired terms, we consider a sequence #; decreasing
to 0, and we apply the now familiar sequential compactness arguments to
the resulting (p;, Ao,). The limiting arc obtained in this way satisfies the
required conclusions for 8 = 0. |

Examples

To illustrate the versatility of the theorem, we look at three special cases.

(a) The first case we examine is that in which for each ¢,

Ay, u) = Ty (u),

the function which takes the value 0 when » € U(t) and 400 otherwise. This
simply corresponds to imposing the condition u(t) € U(t) on the admissible
controls u. Note that in this case the second growth condition is trivially
satisfied (since ¢ = 0). The first growth condition is active only on U(t),
and certainly holds if ¢ is smooth in (¢, 2, ) and U(¢) is uniformly bounded.
The hybrid adjoint inclusion immediately implies

—j)(t) = D;(bt(x*(t)v u*(t))p(t)v

and we recover the conclusions of the classical maximum principle.

(b) When we take ¢¢(z,u) = u we reduce to the calculus of variations
problem. The first growth condition is trivially satisfied, and the second
coincides with the generalized Tonelli-Morrey growth condition 4.3.1. Thus
we recover the central Theorem 4.3.2 for the generalized problem of Bolza.
When we specialize further by taking A; to be the indicator of the graph
of a multifunction F;, we obtain precisely Corollary 3.5.5 for the differential
inclusion problem.
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(c¢) Consider the optimal control problem in Mayer form (no integral term
in the cost) in the presence of mixed state/control pointwise constraints
of the form (z(¢),u(t)) € Q a.e. for a given closed set 2. Obtaining gen-
eral necessary conditions for such problems is a well-known challenge in the
subject. We treat this case by taking A; = Ig. Then the second growth con-
dition reduces to the following geometric assumption: for every (z,u) € Q,
for every (¢,v) € N& (x,u), one has

[T+ [[Dude (2, w)])
]

By taking a suitable representation for €2 in terms of functional equalities
and /or inequalities, sufficient conditions in terms of rank can be adduced
which imply this property, leading to explicit multiplier rules (see §4.2).
With an appropriate ‘transversal intersection’ condition, we can also treat
the case in which both the constraints (a(t),u(t)) € Q and u(t) € U(t) are
present.

Let us make this precise in the simple context in which all data are
smooth and we have

< gz, u)| + d(?).

Q:={(z,u): g(z,u)=0}, U(t) =U :={u: h(u) <0} (compact),

for certain vector-valued functions g and h. Then the required growth con-
dition holds if the following linear independence property is satisfied: for
every u € U, (z,u) € Q, the relations

Y ANV (@ w) + Y VR (0) =0, 95 >0, (75,0 (u)) =0
4 J
only hold for A =~ =0.

5.4 Notes

85.1 A general nonsmooth maximum principle for standard control sys-
tems was first proved by Clarke [15, 17]. Theorem 5.1.1 subsumes that result
as well as the recent ones of loffe [38] and Vinter [64] (Theorem 6.2.1). For
the more general context of parametrized families of vector fields, we recover
the results of Kaskosz and Lojasiewicz [41, 42], who are responsible for some
of the early work on generalized control systems. All of the foregoing are
also extended to the new pseudo-Lipschitz and stratified setting. Note that,
as a corollary of the theorem, we obtain the adjoint equation (and a ‘small’
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maximum condition) when z. provides a classical weak local minimum for
the problem; this appears to be a new result at this level of generality (see
also [69]).

There is a voluminous literature associated to the maximum principle,
which has also been obtained in ‘axiomatic’ fashion, in which the existence
of certain approximations is postulated ( Dubovitskii and Milyutin, Halkin,
Neustadt, Sussmann, Warga) . These general approaches may be of use in
treating other types of nonstandard problems not discussed here, for exam-
ple: hybrid control, systems whose states lie in a Banach space, or problems
incorporating state constraints. We refer the reader to the discussion in
Vinter [64] (pp. 228-231) for further details.

885.2-5.3 We are not aware of precedents for the results of these sections,
and in particular for the hybrid maximum principle (Theorem 5.3.1).
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Chapter 6

The Hamiltonian inclusion

Let us return again to the classical setting of the basic problem in the cal-
culus of variations. The Legendre transform associates to the Lagrangian
Ay(z,v) a new conjugate function Hy(z, p) called the Hamiltonian, by means
of the following formula: we define

Ht(va) = <p7 U> - At(xv U)v
where v = v(t, z, p) is the solution of the equation
p= D,A¢(x,v).

Of course it is necessary to impose certain hypotheses for this transfomation
to make sense. For example, one may require that A be of class C?, and
that for some ¢ > 0, the matrix D,,A(2,v) — el be positive definite for all
(x,v). This special class covers many applications in mechanics.

There is a rich classical theory of Hamiltonian methods, in connection
with necessary conditions among other things. Of central importance in the
theory is the Hamiltonian system of differential equations:

(=p(t), £(t)) = DopHi(z (1), p(t))

which, for the special class alluded to above, is equivalent to the Euler
equation
(j)(t),p(t)) = Dx,vAt(x(t)v x(t))

Instead of defining the Hamiltonian as was done above, one can apply
to the Lagrangian the Fenchel-Moreau transform. It yields a Hamiltonian
defined by

Hi(z,p) = seuﬂé)n{@, v) — Ay(z,0)}.

99
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It is easy to check that for the special class defined above, the two Hamilto-
nians coincide.

The advantage of the new definition is that it can be applied to a much
larger class of functions, including nonsmooth and extended-valued ones.
For example, consider the case in which A; is the indicator function of G/(¢),
the graph of the multifunction F;. Then the Fenchel-Moreau formula leads
to the Hamiltonian naturally associated to the multifunction F:

Hy(z,p) :=sup{(p,v) : v € Fi(x)}.

For the purposes of deriving necessary conditions associated to the dif-
ferential inclusion problem, Clarke [12, 20] introduced an analogue of the
classical Hamiltonian system, the following Hamiltonian inclusion H¢ :

(=p(1),2(1)) € Do Hy(x(t),p(t)) ae.

where, as we have seen, d¢ refers to the generalized gradient of H (with
respect to (x, p)). It was proved that, under certain conditions, the existence
of an arc p satisfying H¢ is a necessary condition for optimality.

In parallel to the study of potentially more refined versions of the Euler
inclusion, there have been proposals to refine H¢. Rockafellar and others
[47, 59, 64] have studied the following relation Hy, :

—p(t) € co {w: (w,(t)) € IpH(x(t), p(t))} a.e.

It is easy to see that Hy implies H¢; the opposite is false. In a setting
more general than that of a differential inclusion, but under a convexity
hypothesis, loffe and Rockafellar have proved significant ‘dualization’ results:
conditions under which the Euler inclusion (in the sense of the previous
chapters) implies (or is equivalent to) the Hamiltonian inclusion Hp. (See
also Bessis, Ledyaev and Vinter [3] or Vinter [64] for a proof of such a result
based upon standard tools of proximal analysis.)

In the present context, the required convexity hypothesis is simply that
F be convex valued. It follows that generally speaking, whenever we can
assert the Euler inclusion (as in Theorem 3.1.1, say), and if I’ is convex-
valued, then the Hamiltonian inclusion H; holds as well.

In the general case, when F' may fail to have convex values, the situation
is not completely clear. It is easily shown that #; (or H¢c for that mat-
ter) implies the global Weierstrass condition, which we know under rather
general circumstances to be a necessary condition in tandem with the Euler
inclusion. But the necessity of the Hamiltonian inclusion itself, for example
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in connection with the optimal control problem P of Chapter 3, has been
established only in the presence of certain constraint qualifications bearing
upon the nature of the boundary constraints or the behavior of the problem
with respect to perturbations, and this only for multifunctions F' which are
bounded and Lipschitz. The question of whether the Hamiltonian inclusion
Hc is a necessary condition of optimality for a strong local minimum, when
F is bounded and Lipschitz but not convex-valued, and in the absence of
any constraint qualification, is a longstanding open one in the subject.

We settle this question affirmatively below. That of the necessity of Hr,
(in this same basic setting, and all the more for unbounded multifunctions,
and for weaker types of local minima) remains open, however.

6.1 Boundary trajectories

Let F' be a multifunction from [a,b] Xx R™ to R” and C' a closed subset of
R"™. We suppose as usual that Fis £ x B-measurable and that for each ¢,
Fy(+) has closed graph.

Now let the arc . be a trajectory of F' on [a,b] having z.(a) € C, and,
for a given ¢ > 0, consider the set 7 of trajectories z of I on [a,b] which
satisfy 2(a) € C' and which are uniformly e-close to z.: ||z — z.]|, < . Let
® : R™ — R™ be a given locally Lipschitz function. We shall assume that
z, is a local boundary trajectory in the sense that ®(x.(b)) is a boundary
point of the set

Q7 = {P(x(b) :x€T}.

6.1.1 Theorem Let I’ be integrably Lipschitz and bounded near z, as
follows: there exists a summable function & such that for almost every ¢ in
[a,b], we have

v € Bz.(t),e), v € F(z) = |v| <k(t);
z,2' € B(a.(t),e) = F/(2) C Fi(a') + k(t) |2’ — 2| B.
Then, if z, is a local boundary trajectory in the above sense, there exist an

arc pon [a,b] and a unit vector v in R™ such that the following transversality
conditions hold

—p(b) € Or {7, ®) (2.(b)), p(a) € NE(2.(a)),

and such that p satisfies the Hamiltonian inclusion
(=p(1), (1)) € OoHy(2x(t), p(t)) a.e.t € [a,b]
and the global Weierstrass condition. ¢
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Necessary conditions for optimality

Asin Chapter 3 the theorem leads to necessary conditions for the problem P
of minimizing ¢(x(a), 2(b)) over the trajectories of F' satisfying (z(a), (b)) €
S. We suppose as before that £ is locally Lipschitz and S is closed. Let . be
a strong local minimum for the problem, and assume that I’ has the same
Lipschitz and boundedness properties as in the theorem.

6.1.2 Corollary There exist an arc p and a number Ag in {0, 1} satisfying
the nontriviality condition

(Ao, p()) #0 V1 € [a,0]

and the transversality condition:

(p(a), —p(b)) € IpAol(2x(a), 24(b)) + N§ (2x(a), (b)),

as well as the global Weierstrass condition and the Hamiltonian inclusion
(=p(t), 2x(1)) € Do Hi(24(1), p(t)) a.e.t € [a,b]. 4

Proof of Theorem 6.1.1

We sketch the proof of the theorem, which uses the necessary conditions of
Chapter 2, but also a relaxation theorem, as well as a dualization theorem
of the type cited above.

By the same transformation device used at the beginning of the proof of
Theorem 2.1.1, we can suppose that k is identically 1. Again we take 2, =0
and [a,b] = [0, 1], and we suppose that Fi(z) is defined for all  in R", that
the bound on F and the Lipschitz condition hold globally on R"™, and that
C'is compact.

Since ®(0) is a boundary point of the set &, there exists a sequence of
points y; not lying in ®7 and converging to ®(0). We set

g; = |u; — ®(0)] > 0.
Consider now the problem of minimizing
! 2
s = dle®)|+ [ O d
0
over the arcs x on [0, 1] satisfying

i€ Fy(z) ae., z(0) € C. (6.1)
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We view this problem as one in which the choice variables are & € L? and
2(0) € R". The set of feasible &, 2(0) defined by (6.1) is closed and bounded
in L? x R™, and we may apply Stegall’s variational principle (see [29]) to
deduce the existence of elements a; € L? and 3; € R” with

levilly < eiy [8i] < &

such that the problem of minimizing

it — B (8))] + (B /|w|ﬁ+/<m@@@wt (6.2)

subject to (6.1) admits a solution z;. Since z. = 0 assigns the value ¢; to
the cost functional of this problem, we deduce

i = D (i (0)] + (B, /Wx |w+/<m@@w»ﬁ3w

It follows from this that fo |2 (¢ | dt converges to 0, so that for ¢ sufficiently
large we have ||z;||, < . In consequence, we have

i — ®(2i(b))[ # 0

for all large ¢ (since p; does not lie in ®7). By passing to a subsequence
if necessary, we can assume that z; converges uniformly (by Arzela-Ascoli),
&; converges weakly to a limit vg and 2;(0) converges to zo. If y is the arc
defined by y = vy, y(O) = xo, it follows that x; converges uniformly to y.
But the fact that fo | (¢ | dt converges to 0 forces y = 0, so in fact we
conclude that z; converges uniformly to 0 and z; weakly to 0. We may also
suppose that «; converges almost everywhere to 0.

Because F is uniformly bounded and Lipschitz, and because the only
term involving & in (6.2) is linear, and since there is no constraint on (1),
we can apply a standard relaxation theorem! to deduce that z; continues
to solve the problem if in (6.1) we replace F;(z) by its convex hull Fi(z) :=
co Fi(z).

The next step is to write necessary conditions of optimality for z; as
a solution of the relaxed problem. By the standard device of absorbing
the integral terms in the inclusion (state augmentation: see for example
the proof of Corollary 2.2.1), we obtain a problem to which Theorem 2.1.1
applies. The new multifunction is

Lie,y) = {0 (@i(t) o) + o) 10 € Fia) ).

!See for example Theorem 2 of [13], or [20] p.117.
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Since the problem is relaxed, the dualization theorem cited above allows us

to express the necessary conditions in Hamiltonian terms; the Hamiltonian
G corresponding to [ is given by

2

Gie(,y,p,q) := Hy(x, p+ qoi(t)) + qa]

9

and we may write the Hamiltonian inclusion with doG. Routine analysis of
the inclusion and the transversality conditions leads (for 7 sufficiently large)
to an arc p; satisfying

(—])Z' (t) + 2$i(t), xz(t)) € acHt(wi(t),pi(t) — Oéi(t)) a.e.

and
pi(0) = B; € NE(2:(0)), —pi(1) € Op, (7i, ®) (2:(1))

where ~; is a unit vector. We derive from this
p:(0)] < |pi(t) — i (D)),

which allows us to use standard limiting arguments to pass to the limit in the
two preceding relations. The theorem follows, since the global Weierstrass
condition is an easy consequence of the Hamiltonian inclusion. |

6.2 Notes

86.1 The results of this chapter fit into a longstanding and ongoing at-
tempt to develop a fully Hamiltonian theory of dynamic optimization, to
parallel the classical theory for the basic problem in the calculus of varia-
tions. (There is no classical Hamiltonian theory for constrained variational
problems.) The project can be viewed as originating with Rockafellar’s work
on the existence question [57] for the problem of Bolza. Another step was
the formulation of the Hamiltonian inclusion H¢ and the attendant neces-
sary conditions by Clarke [12][19][20][21]; there followed sufficient conditions
by Zeidan [68]. Further progress was made by Loewen and Rockafellar [45],
who derived under certain circumstances the existence of an arc p satis-
fying simultaneously the Euler and Hamiltonian inclusions, an issue later
clarified by the dualization theory cited earlier. We also refer the reader to
the article [47] of Loewen and Rockafellar for comments on the Hamiltonian
formulation of the pseudo-Lipschitz hypothesis.

The conditions under which the Hamiltonian inclusion were previously
known to be a necessary condition are discussed in [20]; see also Vinter [64]
(pp- 286-7), and loffe [38].
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