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Glossary

Generalized gradients and subgradients These terms refer to various set-
valued replacements for the usual derivative which are used in developing
differential calculus for functions which are not differentiable in the classi-
cal sense. The subject itself is known as nonsmooth analysis. One of the
best-known theories of this type is that of generalized gradients. Another
basic construct is the subgradient, of which there are several variants. The
approach also features generalized tangent and normal vectors which apply
to sets which are not classical manifolds. A short summary of the essential
definitions is given in §III.
Pontryagin Maximum Principle The main theorem on necessary conditions
in optimal control was developed in the 1950s by the Russian mathemati-
cian L. Pontryagin and his associates. The Maximum Principle unifies and
extends to the control setting the classical necessary conditions of Euler and
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Weierstrass from the calculus of variations, as well as the transversality con-
ditions. There have been numerous extensions since then, as the need to
consider new types of problems continues to arise, and as discussed in §IV.

Verification functions In attempting to prove that a certain control is
indeed the solution to a given optimal control problem, one important ap-
proach hinges upon exhibiting a function having certain properties implying
the optimality of the given control. Such a function is termed a verification
function (see §V). The approach becomes widely applicable if one allows
nonsmooth verification functions.

Dynamic programming A well-known technique in dynamic problems of
optimization is to solve (in a discrete context) a backwards recursion for a
certain value function related to the problem. This technique, which was
developed notably by Bellman, can be applied in particular to optimal con-
trol problems. In the continuous setting, the recursion corresponds to the
Hamilton-Jacobi equation. This partial differential equation does not gener-
ally admit smooth classical solutions. The theory of viscosity solutions uses
subgradients to define generalized solutions, and obtains their existence and
uniqueness (see §VI).

Lyapunov function In the classical theory of ordinary differential equations,
global asymptotic stability is most often verified by exhibiting a Lyapunov
function, a function which decreases along trajectories. In that setting, the
existence of a smooth Lyapunov function is both necessary and sufficient
for stability. The Lyapunov function concept can be extended to control
systems, but in that case it turns out that nonsmooth functions are essential.
These generalized control Lyapunov functions play an important role in
designing optimal or stabilizing feedback (see §§VII,VIII).

I. Definition of the Subject and Its Importance

The term nonsmooth analysis refers to the body of theory which develops
differential calculus for functions which are not differentiable in the usual
sense, and for sets which are not classical smooth manifolds. There are
several different (but related) approaches to doing this. Among the better-
known constructs of the theory are the following: generalized gradients and
Jacobians, proximal subgradients, subdifferentials, generalized directional
(or Dini) derivates, together with various associated tangent and normal
cones. Nonsmooth analysis is a subject in itself, within the larger mathe-
matical field of differential (variational) analysis or functional analysis, but
it has also played an increasingly important role in several areas of applica-
tion, notably in optimization, calculus of variations, differential equations,
mechanics, and control theory. Among those who have participated in its
development (in addition to the author) are J. Borwein, A. D. Ioffe, B.
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Mordukhovich, R. T. Rockafellar, and R. B. Vinter, but many more have
contributed as well.

In the case of control theory, the need for nonsmooth analysis first came
to light in connection with finding proofs of necessary conditions for opti-
mal control, notably in connection with the Pontryagin Maximum Princi-
ple. This necessity holds even for problems which are expressed entirely in
terms of smooth data. Subsequently, it became clear that problems with
intrinsically nonsmooth data arise naturally in a variety of optimal control
settings. Generally, nonsmooth analysis enters the picture as soon as we
consider problems which are truly nonlinear or nonlinearizable, whether for
deriving or expressing necessary conditions, in applying sufficient conditions,
or in studying the sensitivity of the problem.

The need to consider nonsmoothness in the case of stabilizing (as opposed
to optimal) control has come to light more recently. It appears in particular
that in the analysis of truly nonlinear control systems, the consideration of
nonsmooth Lyapunov functions and discontinuous feedbacks becomes un-
avoidable.

II. Introduction

The basic object in the control theory of ordinary differential equations is
the system

ẋ(t) = f(x(t), u(t)) a.e., 0 ≤ t ≤ T, (1)

where the (measurable) control function u(·) is chosen subject to the con-
straint

u(t) ∈ U a.e. (2)

(In this article, U is a given set in a Euclidean space.) The ensuing state x(·)
(a function with values in Rn) is subject to certain conditions, including most
often an initial one of the form x(0) = x0, and perhaps other constraints,
either throughout the interval (pointwise) or at the terminal time. A control
function u(·) of this type is referred to as an open loop control. This indirect
control of x(·) via the choice of u(·) is to be exercised for a purpose, of which
there are two principal sorts:

• positional : x(t) is to remain in a given set in Rn, or approach that set;

• optimal : x(·), together with u(·), is to minimize a given functional.

The second of these criteria follows directly in the tradition of the calculus
of variations, and gives rise to the subject of optimal control, in which the
dominant issues are those of optimization: necessary conditions for optimal-
ity, sufficient conditions, regularity of the optimal control, sensitivity. We
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shall discuss the role of nonsmooth analysis in optimal control in Sections
III and IV; this was the setting of many of the earliest applications.

In contrast, a prototypical control problem of purely positional sort would
be the following:

Find a control u(·) such that x(·) goes to 0.

This rather vaguely worded goal is often more precisely expressed as that of
finding a stabilizing feedback control k(x); that is, a function k with values
in U (this is referred to as a closed-loop control) such that, for any initial
condition α, all solutions of the differential equation

ẋ(t) = f
(
x(t), k

(
x(t)

))
, x(0) = α (3)

converge to 0 in a suitable sense.

The most common approach to designing the required stabilizing feedback
uses the technique that is central to most of applied mathematics: lineariza-
tion. In this case, one examines the linearized system

ẋ(t) = Ax(t) +Bu(t)

where
A := fx(0, 0), B := fu(0, 0).

If the linearized system satisfies certain controllability properties, then clas-
sical linear systems theory provides well-known and powerful tools for de-
signing (linear) feedbacks that stabilize the linearized system. Under further
mild hypotheses, this yields a feedback that stabilizes the original nonlinear
system (1) locally ; that is, for initial values x(0) sufficiently near 0.

This approach has been feasible in a large number of cases, and in fact it
underlies the very successful role that control theory has played in a great
variety of applications. Still, linearization does require that a certain number
of conditions be met:

• The function f must be smooth (differentiable) so that the linear sys-
tem can be constructed;

• The linear system must be a ‘nondegenerate’ approximation of the
nonlinear one (that is, it must be controllable);

• The control set U must contain a neighborhood of 0, so that near 0 the
choice of controls is unconstrained, and all state values near 0 must be
acceptable (no state constraints);

• Both x and u must remain small so that the linear approximation
remains relevant (in dealing with errors or perturbations, the feedback
is operative only when they are sufficiently small).
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It is not hard to envisage situations in which the last two conditions fail,
and indeed such challenging problems are beginning to arise increasingly
often. The first condition fails for simple problems involving electrical cir-
cuits in which a diode is present, for example (see [14]). A famous (smooth)
mechanical system for which the second condition fails is the nonholonomic
integrator, a term which refers to the following system, which is linear (sep-
arately) in the state and in the control variables:

ẋ1 = u1

ẋ2 = u2

ẋ3 = x1u2 − x2u1

‖(u1, u2)‖ ≤ 1.

(Thus n = 3 here, and U is the closed unit ball in R2.) Here the linearized
system is degenerate, since its third component is ẋ3 = 0. As discussed in
Section VIII, there is in fact no continuous feeback law u = k(x) which will
stabilize this system (even locally about the origin), but certain discontinu-
ous stabilizing feedbacks do exist.

This illustrates the moral that when linearization is not applicable to a given
nonlinear system (for whatever reason), nonsmoothness generally arises.
(This has been observed in other contexts in recent decades: catastrophes,
chaos, fractals.) Consider for example the issue of whether a (control) Lya-
punov function exists. This refers to a pair (V,W ) of positive definite func-
tions satisfying notably the following Infinitesimal Decrease condition:

inf
u∈U

〈∇V (x), f(x, u)〉 ≤ −W (x) x 6= 0.

The existence of such (smooth) functions implies that the underlying control
system is globally asymptotically controllable (GAC), which is a necessary
condition for the existence of a stabilizing feedback (and also sufficient, as
recently proved [21]). In fact, exhibiting a Lyapunov function is the principal
technique for proving that a given system is GAC; the function V in question
then goes on to play a role in designing the stabilizing feedback.

It turns out, however, that even smooth systems that are GAC need not
admit a smooth Lyapunov function. (The nonholonomic integrator is an
example of this phenomenon.) But if one extends in a suitable way the
concept of Lyapunov function to nonsmooth functions, then the existence of
a Lyapunov function becomes a necessary and sufficient condition for a given
system to be GAC. One such extension involves replacing the gradient that
appears in the Infinitesimal Decrease condition above by elements of the
proximal subdifferential (see below). How to use such extended Lyapunov
functions to design a stabilizing feedback is a nontrivial topic that has only
recently been successfully addressed, and one that we discuss in Section
VIII.
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In the next section we define a few basic constructs of nonsmooth analysis;
knowledge of these is sufficient for interpreting the statements of the results
discussed in this article.

III. Elements of Nonsmooth Analysis

This section summarizes some basic notions in nonsmooth analysis, in fact
a minimum so that the statements of the results to come can be under-
stood. This minimum corresponds to three types of set-valued generalized
derivative (generalized gradients, proximal subgradients, limiting subgradi-
ents), together with a notion of normal vector applicable to any closed (not
necessarily smooth or convex) set. (See [24] for a thorough treatment and
detailed references.)

Generalized gradients. For smooth real-valued functions f on Rn we
have a well-known formula linking the usual directional derivative to the
gradient:

f ′(x; v) := lim
t↓0

f(x+ tv)− f(x)
t

= 〈∇f(x), v〉 .

We can extend this pattern to Lipschitz functions: f is said to be Lipschitz
on a set S if there is a constant K such that |f(y) − f(z)| ≤ K‖y − z‖
whenever y and z belong to S. A function f that is Lipschitz in a neighbor-
hood of a point x is not necessarily differentiable at x, but we can define a
generalized directional derivative as follows:

f◦(x; v) := lim sup
y→x, t↓0

f(y + tv)− f(y)
t

.

Having done so, we proceed to define the generalized gradient :

∂Cf(x) := {ζ ∈ Rn : f◦(x; v) ≥ 〈ζ, v〉 ∀ v ∈ X}.

It turns out that ∂Cf(x) is a compact convex nonempty set that has a
calculus reminiscent of the usual differential calculus; for example, we have
∂(−f)(x) = −∂f(x). We also have ∂(f + g)(x) ⊂ ∂f(x) + ∂g(x); note that
(as is often the case) this is an inclusion, not an equation. There is also
a useful analogue of the Mean Value Theorem, and other familiar results.
In addition, though, there are new formulas having no smooth counterpart,
such as one for the generalized gradient of the pointwise maximum of locally
Lipschitz functions (∂{max1≤i≤n fi(x)} ⊂ . . . ).

A very useful fact for actually calculating ∂Cf(x) is the following Gradient
Formula:

∂Cf(x) = co
{

lim
i→∞

∇f(xi) : xi → x, xi /∈ Γ
}
,
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where Γ is any set of measure zero containing the local points of nondiffer-
entiability of f . Thus the generalized gradient is ‘blind to sets of measure
zero’.
Generalized gradients and their calculus were defined by Clarke [12] in 1973.
The theory can be developed on any Banach space; the infinite-dimensional
context is essential in certain control applications, but for our present pur-
poses it suffices to limit attention to functions defined on Rn. There is in
addition a corresponding theory of tangent and normal vectors to arbitrary
closed sets; we give some elements of this below.

Proximal subgradients. We now present a different approach to devel-
oping nonsmooth calculus, one that uses the notion of proximal subgradient.
Let f : Rn → (−∞,∞] be a given function (note that the value +∞ is
admitted here), and let x be a point where f(x) is finite. A vector ζ in Rn

is said to be a proximal subgradient of f at x provided that there exist a
neighborhood Ω of x and a number σ ≥ 0 such that

f(y) ≥ f(x) + 〈ζ, y − x〉 − σ‖y − x‖2 ∀ y ∈ Ω.

Thus the existence of a proximal subgradient ζ at x corresponds to the
possibility of approximating f from below (thus in a one-sided manner) by
a function whose graph is a parabola. The point

(
x, f(x)

)
is a contact point

between the graph of f and the parabola, and ζ is the slope of the parabola
at that point. Compare this with the usual derivative, in which the graph
of f is approximated (in a two-sided way) by an affine function.
The set of proximal subgradients at x (which may be empty, and which is not
necessarily closed, open, or bounded but which is convex) is denoted ∂P f(x),
and is referred to as the proximal subdifferential. If f is differentiable at x,
then we have ∂P f(x) ⊂ {f ′(x)}; equality holds if f is of class C2 at x.
As a guide to understanding, the reader may wish to carry out the following
exercise (in dimension n = 1): the proximal subdifferential at 0 of the
function f1(x) := −|x| is empty, while that of f2(x) := |x| is the interval
[−1, 1].
The proximal density theorem asserts that ∂P f(x) is nonempty for all x in
a dense subset of

dom f := {x : f(x) <∞}.
Although it can be empty at many points, the proximal subgradient admits
a very complete calculus for the class of lower semicontinuous functions:
all the usual calculus rules that the reader knows (and more) have their
counterpart in terms of ∂P f . Let us quote for example Ioffe’s fuzzy sum
rule: if ζ ∈ ∂P (f + g)(x), then for any ε > 0 there exist x′ and x′′ within ε
of x, together with points ζ ′ ∈ ∂P f(x′) and ζ ′′ ∈ ∂P g(x′′) such that

ζ ∈ ζ ′ + ζ ′′ + εB.
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The limiting subdifferential. A sequential closure operation applied to
∂P f gives rise to the limiting subdifferential, useful for stating results:

∂Lf(x) := {lim ζi : ζi ∈ ∂P f(xi), xi → x, f(xi) → f(x)} .

If f is Lipschitz near x, then ∂Lf(x) is nonempty, and (for any lower semi-
continuous g finite at x) we have

∂L(f + g)(x) ⊂ ∂Lf(x) + ∂Lg(x).

When the function f is Lipschitz near x, then both the approaches given
above (generalized gradients, proximal subdifferential) apply, and the corre-
sponding constructs are related as follows:

∂Cf(x) = co ∂Lf(x).

Normal vectors. Given a nonempty closed subset S of Rn and a point x
in S, we say that ζ ∈ X is a proximal normal (vector) to S at x if there
exists σ ≥ 0 such that〈

ζ, x′ − x
〉
≤ σ

∥∥x′ − x
∥∥2 ∀x′ ∈ S.

(This is the proximal normal inequality.) The set (convex cone) of such ζ,
which always contains 0, is denoted NP

S (x) and referred to as the proximal
normal cone. We apply to NP

S (x) a sequential closure operation in order to
obtain the limiting normal cone:

NL
S (x) :=

{
lim ζi : ζi ∈ NP

S (xi), xi → x, xi ∈ S
}
.

These geometric notions are consistent with the analytical ones, as illus-
trated by the formulas

∂P IS(x) = NP
S (x), ∂LIS(x) = NL

S (x),

where IS denotes the indicator of the set S: the function which equals 0 on
S and +∞ elsewhere. They are also consistent with the more traditional
ones: When S is either a convex set, a smooth manifold, or a manifold
with boundary, then both NP

S (x) and NL
S (x) coincide with the usual normal

vectors (a cone, space, or half-space respectively).

Viscosity subdifferentials. We remark that the viscosity subdifferential
of f at x (commonly employed in pde’s, but not used in this article) corre-
sponds to the set of ζ for which we have

f(y) ≥ f(x) + 〈ζ, y − x〉+ θ(|y − x|),
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where θ is a function such that limt↓0 θ(t)/t = 0. This gives a potentially
larger set than ∂P f(x); however, the viscosity subdifferential satisfies the
same (fuzzy) calculus rules as does ∂P f . In addition, the sequential closure
operation described above gives rise to the same limiting subdifferential
∂Lf(x) (see [24]). In most cases, therefore, it is equivalent to work with
viscosity or proximal subgradients.

IV. Necessary Conditions in Optimal Control

The central theorem on necessary conditions for optimal control is the Pon-
tryagin Maximum Principle. (The literature on necessary conditions in op-
timal control is now very extensive; we cite some standard references in the
bibliography.) Even in the somewhat special (by current standards) smooth
context in which it was first proved [47], an element of generalized differen-
tiability was required. With the subsequent increase in both the generality
of the model and weakening of the hypotheses (all driven by real applica-
tions), the need for nonsmooth analysis is all the greater, even for the very
statement of the result.

We give here just one example, a broadly applicable hybrid maximum prin-
ciple taken from [11], in order to highlight the essential role played by non-
smooth analysis as well as the resulting versatility of the results obtained.

The problem and basic hypotheses. We consider the minimization of
the functional

`(x(a), x(b)) +
∫ b

a
F (t, x(t), u(t)) dt

subject to the boundary conditions (x(a), x(b)) ∈ S and the standard control
dynamics

ẋ(t) = f(t, x(t), u(t)) a.e.

The minimization takes place with respect to (absolutely continuous) state
arcs x and measurable control functions u : [a, b] → Rm. Note that no
explicit constraints are placed upon u(t); if such constraints exist, they are
accounted for by assigning to the extended-valued integrand F the value
+∞ whenever the constraints are violated. It is part of our intention here
to demonstrate the utility of indirectly taking account of constraints in this
way.

As basic hypotheses, we assume that F is measurable and lower semicontin-
uous in (x, u); ` is taken to be locally Lipschitz and S closed. In the theorem
below, we suppose that f is measurable in t and continuously differentiable
in (x, u) (but see the remarks for a weakening of the smoothness).
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The growth conditions. The remaining hypothesis (the main one) is
that f and F satisfy the following: for every bounded subset X of Rn, there
exist a constant c and a summable function d such that, for almost every t,
for every (x, u) ∈ domF (t, ·, ·) with x ∈ X, we have

‖Dxf(t, x, u)‖ ≤ c {|f(t, x, u)|+ F (t, x, u)}+ d(t),

and for all (ζ, ψ) in ∂PF (t, x, u) (if any) we have

|ζ| (1 + ‖Duf(t, x, u)‖)
1 + |ψ|

≤ c {|f(t, x, u)|+ F (t, x, u)}+ d(t).

In the following, (∗) denotes evaluation at (x∗(t), u∗(t)).

Theorem 1 Let the control function u∗ give rise to an arc x∗ which is a
local minimum for the problem above. Then there exist an arc p on [a, b]
such that the following transversality condition holds

(p(a),−p(b)) ∈ ∂L`(x∗(a), x∗(b)) +NL
S (x∗(a), x∗(b)),

and such that p satisfies the adjoint inclusion: ṗ(t) belongs almost every-
where to the set

co
{
ω : (ω +Dxf(t, ∗)T p(t), Duf(t, ∗)T p(t)) ∈ ∂LF (t, ∗)

}
,

as well as the maximum condition: for almost every t, for every u in
domF (t, x∗(t), ·), one has

〈p(t), f(t, x∗(t), u)〉 − F (t, x∗(t), u) ≤ 〈p(t), f(t, ∗)〉 − F (t, ∗). �

We proceed to make a few remarks on this theorem, beginning with the
fact that it can fail in the absence of the growth condition, even for smooth
problems of standard type [30]. The statement of the theorem is not com-
plete, since in general the necessary conditions may hold only in abnormal
form; we do not discuss this technical point here for reasons of economy.
The phrase ‘local minimum’ (which we have also not defined) can be inter-
preted very generally, see [11]. The ‘maximum condition’ above is of course
responsible for the name ‘maximum principle’, while the exotic-looking ad-
joint inclusion reduces to more familiar conditions in a variety of special
cases (see below). The transversality condition illustrates well the utility of
framing the conclusion in nonsmooth analysis terms, since the given form
encapsulates simultaneously a wide variety of conclusions obtainable in spe-
cial cases. To give but one example, consider an optimal control problem in
which x(a) is prescribed, x(b) does not appear in the cost, but is subject to
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an inequality constraint g(x(b)) ≤ 0 for a certain smooth scalar function g.
Then the transversality condition of the theorem (interpreted via standard
facts in nonsmooth analysis) asserts that p(b) is of the form λ∇g(x∗(b)) for
some nonpositive number λ (a Lagrange multiplier).

To illustrate the versatility of the theorem, we look at some special cases.

The standard problem. The first case we examine is that in which for
each t,

F (t, x, u) = IU(t)(u),

the indicator function which takes the value 0 when u ∈ U(t) and +∞
otherwise. This simply corresponds to imposing the condition u(t) ∈ U(t)
on the admissible controls u; this is the Mayer form of the problem (no
integral term in the cost, obtained by reformulation if necessary). Note that
in this case the second growth condition is trivially satisfied (since ζ = 0).
The first growth condition is active only on U(t), and certainly holds if
f is smooth in (t, x, u) and U(t) is uniformly bounded. As regards the
conclusions, the hybrid adjoint inclusion immediately implies the standard
adjoint equation

−ṗ(t) = Dxf(t, x∗(t), u∗(t))T p(t),

and we recover the classical Maximum Principle of Pontryagin. (An exten-
sion is obtained when U(t) not bounded, see [10].) When f is not assumed
to be differentiable, but merely locally Lipschitz with respect to x, there is a
variant of the theorem in which the adjoint inclusion is expressed as follows:

−ṗ(t) ∈ ∂C 〈 p(t), f(t, ·, u∗(t))〉 (x∗(t)),

where the generalized gradient ∂C (see §III) is taken with respect to the x
variable (note the connection to the standard adjoint equation above). This
is an early form of the nonsmooth maximum principle [13].

The calculus of variations. When we take f(t, x, u) = u, the prob-
lem reduces to the problem of Bolza in the calculus of variations. The first
growth condition is trivially satisfied, and the second coincides with the gen-
eralized Tonelli-Morrey growth condition introduced in [11]; in this way we
recover the state-of-the-art necessary conditions for the generalized problem
of Bolza, which include as a special case the multiplier rule for problems
with pointwise and/or isoperimetric constraints.

Differential inclusions. When we specialize further by taking F (t, ·) to
be the indicator of the graph of a multifunction M(t, ·), we obtain the prin-
cipal necessary conditions for the differential inclusion problem. These in
turn lead to necessary conditions for generalized control systems [11].
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Mixed constraints. Consider again the optimal control problem in Mayer
form (no integral term in the cost), but now in the presence of mixed
state/control pointwise constraints of the form (x(t), u(t)) ∈ Ω a.e. for a
given closed set Ω. Obtaining general necessary conditions for such prob-
lems is a well-known challenge in the subject; see [33, 34, 46]. We treat
this case by taking F (t, ·) = IΩ(·). Then the second growth condition re-
duces to the following geometric assumption: for every (x, u) ∈ Ω, for every
(ζ, ψ) ∈ NP

Ω (x, u), one has

|ζ| (1 + ‖Duf(t, x, u)‖)
|ψ|

≤ c |f(t, x, u)|+ d(t).

By taking a suitable representation for Ω in terms of functional equalities
and/or inequalities, sufficient conditions in terms of rank can be adduced
which imply this property, leading to explicit multiplier rules (see [10] for
details). With an appropriate ‘transversal intersection’ condition, we can
also treat the case in which both the constraints (x(t), u(t)) ∈ Ω and u(t) ∈
U(t) are present.

Sensitivity. The multiplier functions p that appear in necessary condi-
tions such as the ones above play a central role in analyzing the sensitivity
of optimal control problems that depend on parameters. To take but one
example, consider the presence of a perturbation α(·) in the dynamics of the
problem:

ẋ(t) = f(t, x(t), u(t)) + α(t) a.e.

Clearly the minimum in the problem depends upon α; we denote it V (α).
The function V is an example of what is referred to as a value function.
Knowledge of the derivative of V would be highly relevant in studying the
sensitivity of the problem to perturbations (errors) in the dynamics. Gen-
erally, however, value functions are not differentiable, so instead one uses
nonsmooth analysis; the multipliers p give rise to estimates for the general-
ized gradient of V . We refer to [15, 16] for examples and references.

V. Verification Functions

We consider now a special case of the problem considered in the preceding
section: to minimize the integral cost functional

J(x, u) :=
∫ b

a
F (t, x(t), u(t)) dt

subject to the prescribed boundary conditions

x(a) = A, x(b) = B
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and the standard control dynamics

ẋ(t) = f(t, x(t), u(t)) a.e., u(t) ∈ U(t) a.e.

Suppose now that a candidate (x∗, u∗) has been identified as a possible
solution to this problem (perhaps through a partial analysis of the necessary
conditions, or otherwise). An elementary yet powerful way (traceable to
Legendre) to prove that (x∗, u∗) actually does solve the problem is to exhibit
a function φ(t, x) such that:

F (t, x, u) ≥ φt(t, x) + 〈φx(t, x), f(t, x, u)〉 ∀t ∈ [a, b], (x, u) ∈ Rn × U(t),

with equality along (t, x∗(t), u∗(t)).

The mere existence of such a function verifies that (x∗, u∗) is optimal, as we
now show. For any admissible state/control pair (x, u), we have

F (t, x(t), u(t)) ≥ φt(t, x(t)) + 〈φx(t, x(t)), ẋ(t)〉
= d/dt {φ(t, x(t))}

⇒ J(x, u) :=
∫ b

a
F (t, x(t), u(t)) dt ≥ φ(t, x(t))

∣∣t=b

t=a

= φ(b, B)− φ(a,A).

But this lower bound on J holds with equality when (x, u) = (x∗, u∗), which
proves that (x∗, u∗) is optimal.

In this argument, we have implicitly supposed that the verification func-
tion φ is smooth. It is a fact that if we limit ourselves to smooth verification
functions, then there may not exist such a φ (even when the problem itself
has smooth data). However, if we admit nonsmooth (locally Lipschitz) ver-
ification functions, then (under mild hypotheses on the data) the existence
of a verification function φ becomes necessary and sufficient for (x∗, u∗) to
be optimal.

An appropriate way to extend the smooth inequality above uses the gener-
alized gradient ∂Cφ of φ as follows:

F (t, x, u) ≥ θ + 〈ζ, f(t, x, u)〉 ∀ (θ, ζ) ∈ ∂Cφ(t, x),

together with the requirement

J(x∗, u∗) = φ(b, B)− φ(a,A).

It is a feature of this approach to proving optimality that it extends read-
ily to more general problems, for example those involving unilateral state
constraints, boundary costs, or isoperimetric conditions. It can also be in-
terpreted in terms of duality theory, as shown notably by Vinter. We refer
to [16, 26] for details.
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The basic inequality that lies at the heart of this approach is of Hamilton–
Jacobi type, and the fact that we are led to consider nonsmooth verification
functions is related to the phenomenon that Hamilton–Jacobi equations may
not admit smooth solutions. This is one of the main themes of the next
section.

VI. Dynamic Programming and Viscosity Solutions

The Minimal Time problem. By a trajectory of the standard control
system

ẋ(t) = f(x(t), u(t)) a.e., u(t) ∈ U a.e.

we mean a state function x(·) corresponding to some choice of admissible
control function u(·). The minimal time problem refers to finding a trajec-
tory that reaches the origin as quickly as possible from a given point. Thus
we seek the least T ≥ 0 admitting a control function u(·) on [0, T ] having the
property that the resulting trajectory x begins at the prescribed point and
satisfies x(T ) = 0. We proceed now to describe the well-known dynamic
programming approach to solving the problem.

We begin by introducing the minimal time function T (·), defined on Rn as
follows: T (α) is the least time T ≥ 0 such that some trajectory x(·) satisfies

x(0) = α, x(T ) = 0.

An issue of controllability arises here: Is it always possible to steer α to 0
in finite time? When such is not the case, then in accord with the usual
convention we set T (α) = +∞.

The principle of optimality is the dual observation that if x(·) is any trajec-
tory, then we have, for s < t,

T
(
x(t)

)
− T

(
x(s)

)
≥ s− t

(that is, the function t 7→ T
(
x(t)

)
+ t is increasing), while if x is optimal,

then equality holds (that is, the same function is constant).

Let us explain this in other terms (for s = 0): if x(·) is an optimal trajectory
joining α to 0, then

T
(
x(t)

)
= T (α)− t for 0 ≤ t ≤ T (α),

since an optimal trajectory from the point x(t) is furnished by the truncation
of x(·) to the interval

[
t, T (α)

]
. If x(·) is any trajectory, then the inequality

T
(
x(t)

)
≥ T (α)− t
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is a reflection of the fact that in going to the point x(t) from α (in time
t), we may have acted optimally (in which case equality holds) or not (then
inequality holds).

Since t 7→ T
(
x(t)

)
+ t is increasing, we expect to have〈

∇T
(
x(t)

)
, ẋ(t)

〉
+ 1 ≥ 0,

with equality when x(·) is an optimal trajectory. The possible values of ẋ(t)
for a trajectory being precisely the elements of the set f

(
x(t), U

)
, we arrive

at
min
u∈U

〈
∇T (x), f(x(t), u)

〉
+ 1 = 0. (4)

We define the (lower) Hamiltonian function h as follows:

h(x, p) := min
u∈U

〈p, f(x, u)〉.

In terms of h, the partial differential equation obtained above reads

h
(
x,∇T (x)

)
+ 1 = 0, (5)

a special case of the Hamilton–Jacobi equation.

Here is the first step in the dynamic programming heuristic: use the Hamilton–
Jacobi equation (5), together with the boundary condition T (0) = 0, to find
T (·). How will this help us find the optimal trajectory?

To answer this question, we recall that an optimal trajectory is such that
equality holds in (4). This suggests the following procedure: for each x, let
k(x) be a point in U satisfying

min
u∈U

〈
∇T (x), f(x, u)

〉
=

〈
∇T (x), f(x, k(x))

〉
= −1. (6)

Then, if we construct x(·) via the initial-value problem

ẋ(t) = f
(
x(t), k

(
x(t)

)
), x(0) = α, (7)

we will have a trajectory that is optimal (from α)!

Here is why: Let x(·) satisfy (7); then x(·) is a trajectory, and

d

dt
T

(
x(t)

)
=

〈
∇T

(
x(t)

)
, ẋ(t)

〉
=

〈
∇T

(
x(t)

)
, f

(
x(t), k

(
x(t)

))〉
= −1.

Integrating, we find
T

(
x(t)

)
= T (α)− t,

which implies that at t = T (α), we have T (x(t)) = 0, whence x(t) = 0.
Therefore x(·) is an optimal trajectory.
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Let us stress the important point that k(·) generates the optimal trajectory
from any initial value α (via (7)), and so constitutes what can be considered
the ultimate solution for this problem: an optimal feedback synthesis. There
can be no more satisfying answer to the problem: If you find yourself at x,
just choose the control value k(x) to approach the origin as fast as possible.
This goes well beyond finding a single open-loop optimal control.

Unfortunately, there are serious obstacles to following the route that we have
just outlined, beginning with the fact that T is nondifferentiable, as simple
examples show, even when it is finite everywhere (which it generally fails to
be).

We will therefore have to examine anew the argument that led to the
Hamilton–Jacobi equation (5), which, in any case, will have to be recast
in some way to accommodate nonsmooth solutions. Having done so, will
the generalized Hamilton–Jacobi equation admit T as the unique solution?

The next step (after characterizing T ) offers fresh difficulties of its own.
Even if T were smooth, there would be in general no continuous function
k(·) satisfying (6) for each x. The meaning and existence of a trajectory x(·)
generated by k(·) via the differential equation (7), in which the right-hand
side is discontinuous in the state variable, is therefore problematic in itself.

The intrinsic difficulties of this approach to the minimal-time problem have
made it a historical focal point of activity in differential equations and con-
trol, and it is only recently that fully satisfying answers to all the questions
raised above have been found. We begin with generalized solutions of the
Hamilton-Jacobi equation.

Subdifferentials and viscosity solutions. We shall say that φ is a prox-
imal solution of the Hamilton–Jacobi equation (5) provided that

h(x, ∂Pφ(x)) = −1 ∀x ∈ Rn, (8)

a ‘multivalued equation’ which means that for all x, for all ζ ∈ ∂Pφ(x) (if
any), we have h(x, ζ) = −1. (Recall that the proximal subdifferential ∂Pφ
was defined in §III.)
Note that the equation holds automatically at a point x for which ∂Pφ(x)
is empty; such points play an important role, in fact, as we now illustrate.
Consider the case in which f(x, U) is equal to the unit ball for all x, in
dimension n = 1. Then h(x, p) ≡ −|p| (and the equation is of eikonal
type). Let us examine the functions φ1(x) := −|x| and φ2(x) := |x|; they
both satisfy h(x,∇φ(x)) = −1 at all points x 6= 0, since (for each of these
functions) the proximal subdifferential at points different from 0 reduces to
the singleton consisting of the derivative. However, we have (see the exercise
in §III)

∂Pφ1(0) = ∅, ∂Pφ2(0) = [−1, 1],
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and it follows that φ1 is (but φ2 is not) a proximal solution of the Hamilton-
Jacobi equation (8).

A lesson to be drawn from this example is that in defining generalized so-
lutions we need to look closely at the differential behavior at specific and
individual points; we cannot argue in an ‘almost everywhere’ fashion, or by
‘smearing’ via integration (as is done for linear partial differential equations
via distributional derivatives).

Proximal solutions are just one of the ways to define generalized solutions
of certain partial differential equations, a topic of considerable interest and
activity, and one which seems to have begun with the Hamilton-Jacobi equa-
tion in every case. The first ‘subdifferential type’ of definition was given by
the author in the 1970s, using generalized gradients and for locally Lipschitz
solutions. While no uniqueness theorem holds for that solution concept, it
was shown that the value function of the associated optimal control problem
is a solution (hence existence holds), and is indeed a special solution: it is
the maximal one. In 1980 A.I. Subbotin defined his ‘minimax solutions’,
which are couched in terms of Dini derivates rather than subdifferentials,
and which introduced the important feature of being ‘two-sided’. This work
featured existence and uniqueness in the class of Lipschitz functions, the
solution being characterized as the value of a differential game. Subse-
quently, M. Crandall and P.-L. Lions incorporated both subdifferentials and
two-sidedness in their viscosity solutions, a theory which they developed
for merely continuous functions. In the current context, and under mild hy-
potheses on the data, it can be shown that minimax, viscosity, and proximal
solutions all coincide [19, 24].

Recall that our goal (within the dynamic programming approach) is to char-
acterize the minimal time function. This is now attained, as shown by the
following (we omit the hypotheses; see [63], and also the extensive discussion
in Bardi and Capuzzo-Dolcetta [4]):

Theorem 2 There exists a unique lower semicontinuous function φ : Rn →
(−∞,+∞] bounded below on Rn and satisfying the following:

[HJ equation] h(x, ∂Pφ(x)) = −1 ∀x 6= 0;

[Boundary condition] φ(0) = 0 and h(0, ∂Pφ(0)) ≥ −1.

That unique function is T (·). �

The proof of this theorem is based upon proximal characterizations of
certain monotonicity properties of trajectories related to the inequality forms
of the Hamilton–Jacobi equation (see Section 4.7 of [24]). The fact that
monotonicity is closely related to the solution of the minimal time problem is
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already evident in the following elementary assertion: a trajectory x joining
α to 0 is optimal iff the rate of change of the function t 7→ T (x(t)) is −1 a.e.
The characterization of T given by the theorem can be applied to verify
the validity of a general conjecture regarding the time-optimal trajectories
from arbitrary initial values. This works as follows: we use the conjecture
to calculate the supposedly optimal time T (α) from any initial value α, and
then we see whether or not the function T constructed in this way satisfies
the conditions of the theorem. If so, then (by uniqueness) T is indeed the
minimal time function and the conjecture is verified (the same reasoning as
in the preceding section is in fact involved here). Otherwise, the conjecture
is necessarily incorrect (but the way in which it fails can provide information
on how it needs to be modified; this is another story).
Another way in which the reasoning above is exploited is to discretize the
underlying problem as well as the Hamilton–Jacobi equation for T . This
gives rise to the backwards recursion numerical method developed and pop-
ularized by Bellman under the name of dynamic programming ; of course,
the approach applies to problems other than minimal time.
With respect to the goal of finding an optimal feedback synthesis for our
problem, we have reached the following point in our quest: given that T
satisfies the proximal Hamilton–Jacobi equation h(x, ∂PT (x)) = −1, which
can be written in the form

min
u∈U

〈
ζ, f(x(t), u)

〉
= −1 ∀ ζ ∈ ∂PT (x), ∀x 6= 0, (9)

how does one proceed to construct a feedback k(x) having the property that
any trajectory x generated by it via (7) is such that t 7→ T (x(t)) decreases
at a unit rate? There will also arise the issue of defining the very sense of
(7) when k(·) is discontinuous, as it must be in general.
This is a rather complex question to answer, and it turns out to be a special
case of the issue of designing stabilizing feedback (where, instead of T , we
employ a Lyapunov function). We shall address this in §VIII, and return
there to the minimal time synthesis, which will be revealed to be a special
case of the procedure. We need first to examine the concept of Lyapunov
function.

VII. Lyapunov Functions

In this section we consider the standard control system

ẋ(t) = f(x(t), u(t)) a.e., u(t) ∈ U a.e.,

under a mild local Lipschitz hypothesis: for every bounded set S in Rn there
exists a constant K = K(S) such that

|f(x, u)− f(x′, u)| ≤ K|x− x′| ∀x, x′ ∈ S, u ∈ U.
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We also suppose that f(0, U) is bounded.

A point α is asymptotically guidable to the origin if there is a trajectory
x satisfying x(0) = α and limt→∞ x(t) = 0. When every point has this
property, and when additionally the origin has the familiar local stability
property known as Lyapunov stability, it is said in the literature to be GAC:
(open loop) globally asymptotically controllable (to 0). A well-known suffi-
cient condition for this property is the existence of a smooth (C1, say) pair
of functions

V : Rn → R, W : Rn\{0} → R

satisfying the following conditions:

1. Positive Definiteness:

V (x) > 0 andW (x) > 0 ∀x 6= 0, and V (0) ≥ 0.

2. Properness: The sublevel sets {x : V (x) ≤ c} are bounded ∀c.

3. Weak Infinitesimal Decrease:

inf
u∈U

〈∇V (x), f(x, u)〉 ≤ −W (x) x 6= 0.

The last condition asserts that V decreases in some available direction. We
refer to V as a (weak) Lyapunov function; it is also referred to in the
literature as a control Lyapunov function.

It is a fact, as demonstrated by simple examples (see [17] or [57]), that
the existence of a smooth function V with the above properties fails to
be a necessary condition for global asymptotic controllability; that is, the
familiar converse Lyapunov theorems of Massera, Barbashin and Krasovskii,
and Kurzweil (in the setting of a differential equation with no control) do
not extend to this weak controllability setting, at least not in smooth terms.
This may be a rather general phenomenon, in view of the following result
[22], which holds under the additional hypothesis that the sets f(x,U) are
closed and convex:

Theorem 3 If the system admits a C1 weak Lyapunov function, then it
has the following surjectivity property: for every ε > 0, there exists δ > 0
such that f(B(0, ε), U) ⊃ B(0, δ). �

It is not difficult to check that the nonholonomic integrator system (see
§II) is GAC. Since it fails to have the surjectivity property described in the
theorem, it cannot admit a smooth Lyapunov function.
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It is natural therefore to seek to weaken the smoothness requirement on V
so as to obtain a necessary (and still sufficient) condition for a system to
be GAC. This necessitates the use of some construct of nonsmooth analysis
to replace the gradient of V that appears in the infinitesimal decrease con-
dition. In this connection we use the proximal subgradient (§III) ∂PV (x),
which requires only that the (extended-valued) function V be lower semi-
continuous. In proximal terms, the Weak Infinitesimal Decrease condition
becomes

sup
ζ∈∂P V (x)

inf
u∈U

〈ζ, f(x, u)〉 ≤ −W (x) x 6= 0.

Note that this last condition is trivially satisfied when x is such that ∂PV (x)
is empty, in particular when V (x) = +∞. (The supremum over the empty
set is −∞.) A general Lyapunov pair (V,W ) refers to extended-valued lower
semicontinuous functions V : Rn → R∪{+∞} and W : Rn\{0} → R∪{+∞}
satisfying the positive definiteness and properness conditions above, together
with proximal weak infinitesimal decrease.

The following is proved in [24].

Theorem 4 Let (V,W ) be a general Lyapunov pair for the system. Then
any α ∈ domV is asymptotically guidable to 0. �

It follows from the theorem that the existence of a lower semicontinuous
Lyapunov pair (V,W ) with V everywhere finite-valued implies the global
asymptotic guidability to 0 of the system. When V is not continuous, this
does not imply Lyapunov stability at the origin, however, so it cannot char-
acterize global asymptotic controllability. An early and seminal result due
to Sontag [56] considers continuous functions V , with the infinitesimal de-
crease condition expressed in terms of Dini derivates. Here is a version of
that result in proximal subdifferential terms:

Theorem 5 The system is GAC if and only if there exists a continuous
Lyapunov pair (V,W ). �

There is an advantage to being able to replace continuity in such a result
by a stronger regularity property (particularly in connection with using V
to design a stabilizing feedback, as we shall see). Of course, we cannot assert
smoothness, as pointed out above. In [20] it was shown that certain locally
Lipschitz value functions give rise to practical Lyapunov functions, that is,
assuring stable controllability to arbitrary neighborhoods of 0. Building
upon this, L. Rifford [49] was able to combine a countable family of such
functions in order to construct a global locally Lipschitz Lyapunov function.
This answered a long-standing open question in the subject. Rifford [51]
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also went on to show the existence of a semiconcave Lyapunov function, a
stronger property (familiar in pde’s) whose relevance to feedback construc-
tion will be seen in the next section.

The role of Lyapunov functions in characterizing various types of conver-
gence to 0 (including guidability in finite time) is discussed in detail in [18].

VIII. Stabilizing Feedback

We now address the issue of finding a stabilizing feedback control k(x); that
is, a function k with values in U such that all solutions of the differential
equation

ẋ = g(x), x(0) = α, where g(x) := f(x, k(x)) (10)

converge to 0 (for all values of α) in a suitable sense. When this is possible,
the system is termed stabilizable. Here, the origin is supposed to be an
equilibrium of the system; to be precise, we take 0 ∈ U and f(0, 0) = 0.

A necessary condition for the system to be stabilizable is that it be GAC.
A central question in the subject has been whether this is sufficient as well.
An early observation of Sontag and Sussmann [58] showed that the answer is
negative if one requires the feedback k to be continuous, which provides the
easiest (classical) context in which to interpret the differential equation that
appears in (10). Later, Brockett showed that the nonholonomic integrator
fails to admit a continuous stabilizing feedback.

One is therefore led to consider the use of discontinuous feedback, together
with the attendant need to define an appropriate solution concept for a
differential equation in which the dynamics fail to be continuous in the
state. The best-known solution concept in this regard is that of Filippov;
it turns out, however, that the nonholonomic integrator fails to admit a
(discontinuous) feedback which stabilizes it in the Filippov sense [32, 55].
Clarke, Ledyaev, Sontag and Subbotin [21] gave a positive answer when
the (discontinuous) feedbacks are implemented in the closed-loop system
sampling sense (also referred to as sample-and-hold). We proceed now to
describe the sample-and-hold implementation of a feedback.

Let π = {ti}i≥0 be a partition of [0,∞), by which we mean a countable,
strictly increasing sequence ti with t0 = 0 such that ti → +∞ as i → ∞.
The diameter of π, denoted diam (π), is defined as sup i≥0(ti+1 − ti). Given
an initial condition x0, the π-trajectory x(·) corresponding to π and an
arbitrary feedback law k : Rn → U is defined in a step-by-step fashion
as follows. Between t0 and t1, x is a classical solution of the differential
equation

ẋ(t) = f(x(t), k(x0)), x(0) = x0, t0 ≤ t ≤ t1.
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(In the present context we have existence and uniqueness of x, and blow-up
cannot occur.) We then set x1 := x(t1) and restart the system at t = t1
with control value k(x1):

ẋ(t) = f(x(t), k(x1)), x(t1) = x1, t1 ≤ t ≤ t2,

and so on in this fashion. The trajectory x that results from this procedure
is an actual state trajectory corresponding to a piecewise constant open-loop
control; thus it is a physically meaningful one. When results are couched in
terms of π-trajectories, the issue of defining a solution concept for discontin-
uous differential equations is effectively sidestepped. Making the diameter
of the partition smaller corresponds to increasing the sampling rate in the
implementation.

We remark that the use of possibly discontinuous feedback has arisen in
other contexts. In linear time-optimal control, one can find discontinuous
feedback syntheses as far back as the classical book of Pontryagin et alii
[47]; in these cases the feedback is invariably piecewise constant relative to
certain partitions of state space, and solutions either follow the switching
surfaces or cross them transversally, so the issue of defining the solution
in other than a classical sense does not arise. Somewhat related to this
is the approach that defines a multivalued feedback law [6]. In stochastic
control, discontinuous feedbacks are the norm, with the solution understood
in terms of stochastic differential equations. In a similar vein, in the control
of certain linear partial differential equations, discontinuous feedbacks can
be interpreted in a distributional sense. These cases are all unrelated to
the one under discussion. We remark too that the use of discontinuous
pursuit strategies in differential games [41] is well-known, together with
examples to show that, in general, it is not possible to achieve the result
of a discontinuous optimal strategy to within any tolerance by means of a
continuous stategy (thus there can be a positive unbridgeable gap between
the performance of continuous and discontinuous feedbacks).

It is natural to say that a feedback k(x) (continuous or not) stabilizes the
system in the sample-and-hold sense provided that for every initial value x0,
for all ε > 0, there exists δ > 0 and T > 0 such that whenever the diameter
of the partition π is less than δ, then the corresponding π-trajectory x
beginning at x0 satisfies

‖x(t)‖ ≤ ε ∀ t ≥ T.

The following theorem is proven in [21].

Theorem 6 The system is open loop globally asymptotically controllable
if and only if there exists a (possibly discontinuous) feedback k : Rn → U
which stabilizes it in the sample-and-hold sense. �
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The proof of the theorem used the method of proximal aiming, which can
be viewed as a geometric version of the Lyapunov technique. We now discuss
how to define stabilizing feedbacks if one has in hand a sufficiently regular
Lyapunov function.

The smooth case. We begin with the case in which a C1 smooth Lya-
punov function exists, where a very natural approach can be used. For
x 6= 0, we simply define k(x) to be any element u ∈ U satisfying

〈∇V (x), f(x, u)〉 ≤ −W (x)/2.

Note that at least one such u does exist, in light of the Infinitesimal Decrease
condition. It is then elementary to prove [18] that the pointwise feedback k
described above stabilizes the system in the sample-and-hold sense.
We remark that Rifford [50] has shown that the existence of a smooth Lya-
punov pair is equivalent to the existence of a locally Lipschitz one satisfying
Infinitesimal Decrease in the sense of generalized gradients (that is, with
∂PV replaced by ∂CV ), and that this in turn is equivalent to the existence
of a stabilizing feedback in the Filippov (as well as sample-and-hold) sense.

Semiconcavity. We have seen that a smooth Lyapunov function generates
a stabilizing feedback in a simple and natural way. But since a smooth
Lyapunov function does not necessarily exist, we still require a way to handle
the general case. It turns out that the smooth and the general case can be
treated in a unified fashion through the notion of semiconcavity, which is a
certain regularity property (not implying smoothness). Rifford has proven
that any GAC system admits a semiconcave Lyapunov function; we shall see
that this property permits a natural extension of the pointwise definition of
a stabilizing feedback that was used in the smooth case.
A function φ : Rn → R is said to be (globally) semiconcave provided that
for every ball B(0, r) there exists γ = γ(r) ≥ 0 such that the function x 7→
φ(x)−γ|x|2 is (finite and) concave on B(0, r). (Hence φ is locally the sum of
a concave function and a quadratic one.) Observe that any function of class
C2 is semiconcave; also, any semiconcave function is locally Lipschitz, since
both concave functions and smooth functions have that property. (There is
a local definition of semiconcavity that we omit for present purposes.)
Semiconcavity is an important regularity property in partial differential
equations (see for example [9]). The fact that the semiconcavity of a Lya-
punov function V turns out to be useful in stabilization is a new observation,
and may be counterintuitive: V often has an interpretation in terms of en-
ergy, and it may seem more appropriate to seek a convex Lyapunov function
V . We proceed now to explain why semiconcavity is a highly desirable prop-
erty, and why a convex V would be of less interest (unless it were smooth,
but then it would be semiconcave too).
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Recall the ideal case discussed above, in which (for a smooth V ) we select a
function k(x) such that

〈∇V (x), f(x, k(x))〉 ≤ −W (x)/2.

How might this appealing idea be adapted to the case in which V is nons-
mooth? We cannot use the proximal subdifferential ∂PV (x) directly, since
it may be empty for some values of x. We are led to consider the limiting
subdifferential ∂LV (x) (see §III), which is nonempty when V is locally Lip-
schitz. By passing to the limit, the Weak Infinitesimal Decrease Condition
for proximal subgradients implies the following:

inf
u∈U

〈f(x, u), ζ〉 ≤ −W (x) ∀ζ ∈ ∂LV (x),∀x 6= 0.

Accordingly, let us consider the following idea: For each x 6= 0, choose some
element ζ ∈ ∂LV (x), then choose k(x) ∈ U such that

〈f(x, k(x)), ζ〉 ≤ −W (x)/2.

Does this lead to a stabilizing feedback, when (of course) the discontinuous
differential equation is interpreted in the sample-and-hold sense? When V is
smooth, the answer is ‘yes’, as we have seen. But when V is merely locally
Lipschitz, a certain ‘dithering’ phenomenon may arise to prevent k from
being stabilizing. However, if V is semiconcave (locally on Rn\{0}), this
does not occur, and stabilization is guaranteed. This explains the interest
in finding a semiconcave Lyapunov function.

When V is a locally Lipschitz Lyapunov function with no additional regu-
larity (neither smooth nor semiconcave), then it can still be used for defin-
ing stabilizing feedback, but less directly. It is possible to regularize V :
to approximate it by a semiconcave function through the process of inf-
convolution (see [24]). This leads to practical semiglobal stabilizing feed-
backs; that is, for any 0 < r < R, we derive a feedback which stabilizes all
initial values in B(0, R) to B(0, r) [20].

Optimal feedback. The strategy described above for defining stabilizing
feedbacks via Lyapunov functions can also be applied to construct (nearly)
optimal feedbacks as well as stabilizing ones. The key is to use an appro-
priate value function instead of an arbitrary Lyapunov function. We obtain
in this way a unification of optimal control and feedback control, at least at
the mathematical level, and as regards feedback design.

To illustrate, consider again the Minimal Time problem, at the point at
which we had left it at the end of §VII (thus, unresolved as regards the
time-optimal feedback synthesis). As pointed out there, T satisfies the
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Hamilton–Jacobi equation: this yields Infinitesimal Decrease in subgradi-
ent terms. Consequently, if the Minimal Time function T happens to be
finite everywhere as well as smooth or semiconcave, then we can use the
same direct definition as above to design a feedback which (in the limit-
ing sample-and-hold sense) produces trajectories along which T decreases
at rate 1; that is, which are time-optimal. This of course yields the fastest
possible stabilization (and in finite time). In general, however, T may lack
such regularity, or (when the controllability to the origin is only asymptotic)
not even be finite everywhere. Then it is necessary to apply an approxima-
tion (regularization) procedure in order to obtain a variant of T , and use
that instead. When T is finite, we can obtain in this way an approximate
time-optimal synthesis (to any given tolerance).

The whole approach described here can be carried out for a variety of op-
timal control contexts [45, 27], and also for finding optimal strategies in
differential games [25]. It also carries over to problems in which unilat-
eral state constraints are imposed: x(t) ∈ X, where X is a given closed
set [27, 28, 29]. The issue of robustness, not discussed here, is particularly
important in the presence of discontinuity; see [42, 57, 18].

IX. Future Directions

A lesson of the past appears to be that nonsmooth analysis is likely to be
required whenever linearization is not adequate or is inapplicable. It seems
likely therefore to accompany the subject of control theory as it sets out to
conquer new nonlinear horizons, in ways that cannot be fully anticipated.
Let us nonetheless identify a few directions for future work.

The extensions of most of the results cited above to problems on manifolds,
or of tracking, or with partial information (as in adaptive control) remain to
be carried out to a great extent. There are a number of currently evolving
contexts not discussed above in which nonsmooth analysis is highly likely to
play a role, notably hybrid control ; an example here is provided by multipro-
cesses [31, 8]. Distributed control (of pde’s) is another area which requires
development. There is also considerable work to be done on numerical im-
plementation; in this connection see [36, 37].
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[48] C. Prieur and E. Trélat. Robust optimal stabilization of the Brock-
ett integrator via a hybrid feedback. Math. Control Signals Systems,
17:201–216, 2005.

[49] L. Rifford. Existence of Lipschitz and semiconcave control-Lyapunov
functions. SIAM J. Control Optim, 39:1043–1064, 2000.

[50] L. Rifford. On the existence of nonsmooth control-Lyapunov functions
in the sense of generalized gradients. ESAIM Control Optim. Calc.
Var., 6:539–611, 2001.

[51] L. Rifford. Semiconcave control-Lyapunov functions and stabilizing
feedbacks. SIAM J. Control Optim, 41:659–681, 2002.

[52] L. Rifford. Singularities of viscosity solutions and the stabilization prob-
lem in the plane. Indiana Univ. Math. J., 52:1373–1396, 2003.

[53] R. T. Rockafellar and R. Wets. Variational Analysis. Springer-Verlag,
New York, 1998.
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