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Abstract: This tutorial paper is devoted to the controllability and stability of control systems
that are nonlinear, and for which, for whatever reason, linearization fails. We begin by
motivating the need for two seemingly exotic tools: nonsmooth control-Lyapunov functions,
and discontinuous feedbacks. Then, after a (very) short course on nonsmooth analysis, we build
a theory around these tools. We proceed to apply it in various contexts, focusing principally on
the design of discontinuous stabilizing feedbacks.
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1. INTRODUCTION

Our interest centers throughout on the standard control
system

x
�(t) = f

�
x(t), u(t)

�
a.e., u(t) ∈ U a.e., (∗)

where the dynamics function f : Rn × Rm → Rn and the
control set U ⊂ Rm are given, and ‘a.e.’ is the abbreviation
of ‘almost everywhere’. A control on some interval [a, b]
of interest refers to a measurable function u(·) defined
on [a, b] and having values in U . By a trajectory of the
system (∗) we mean (as usual) an absolutely continuous
state function x : [a, b] → Rn corresponding to some choice
of control u(·).

Standing hypotheses. It is assumed throughout that f is
continuous, U is compact, and f is locally Lipschitz with
respect to the state variable in the following sense: for
every bounded subset S ⊂ Rn, there exists K = Kf (S)
such that
��f(x, u)− f(y, u)

�� ≤ Kf

��x− y
�� ∀x, y ∈ S, u ∈ U. (1)

We remark that this Lipschitz behavior is automatically
present if f is continuously differentiable, but differentia-
bility of f is irrelevant to our discussion. Much more to the
point are the assumptions that are not being made: f is
not linear, U is not simply ‘large enough’ to be effectively
ignored.

The central issue under discussion will be the convergence
of state trajectories x(t) to an equilibrium, which we take
to be the origin: stability, controllability, and feedback
stabilization. Stabilization to the origin is a simple rep-
resentative of various other objectives that can be treated
by the techniques that we shall describe. (Stabilization to
other target sets will also be involved later.)

One way to steer trajectories to zero is to invent a cost
whose minimization will have that effect. (Indeed, in a
certain sense, this is rather close to being the only effective
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strategy that we know.) The positive features of such an
approach, as well as certain inherent difficulties which arise
when we employ it, are well illustrated by what is called
the dynamic programming technique in optimal control. It
will furnish us with valuable insight into our stabilization
problem, and provide guidance about the mathematical
tools needed.

Dynamic programming and minimal time

The minimal-time problem refers to finding a trajectory
of (∗) that reaches the origin as quickly as possible from
a given initial point α. Thus we seek the least T ≥ 0
admitting a control function u(·) on [0, T ] having the
property that the resulting trajectory x with x(0) = α
satisfies x(T ) = 0. The dynamic programming approach
centers upon the minimal-time function T (·), defined on
Rn as follows: T (α) is the least time T defined above.

The principle of optimality makes two observations about
T (·). The first of these is that, for any trajectory x(·)
beginning at α, for any two times s, t with 0 ≤ s < t,

we have
T
�
x(s)

�
≤ T

�
x(t)

�
+ t− s. (2)

This reflects the fact that, starting at the point x(s),
we may choose the two-step strategy of following the
trajectory x until time t, and then proceeding optimally
from the point x(t) to the origin. The time required for this
two-step strategy is the right side of (2); the inequality
holds because there may be a better strategy beginning
from x(s).

The second observation is that equality holds in (2) if x
is a trajectory that joins α to the origin in minimal time;
that is, if x(T ) = 0 for T = T (α). This reflects the fact
that when x is a minimal-time trajectory, there is no better
strategy than the two-step one described above.

Combining these two observations, we find that, for any
trajectory x(·), the function t �→ T

�
x(t)

�
+t is nondecreas-

ing; it is constant when x is a minimal-time trajectory.
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Since t �→ T
�
x(t)

�
+ t is nondecreasing, we expect to have

�
∇T

�
x(t)

�
, x

�(t)
�
+ 1 ≥ 0,

with equality when x(·) is an optimal trajectory. The
possible values of x�(t) for a trajectory being precisely the
elements of the set f

�
x(t), U

�
, we arrive at

min
u∈U

�
∇T (x), f(x, u)

�
+ 1 = 0. (3)

We define the (lower) Hamiltonian function h as follows:

h(x, p) := min
u∈U

�p, f(x, u)�. (4)

In terms of h, the partial differential equation (3) above
reads

h
�
x,∇T (x)

�
+ 1 = 0, (5)

a special case of the Hamilton–Jacobi equation.

We have now reached the first stage in the dynamic pro-
gramming approach: solve the Hamilton–Jacobi equation
(5), together with the boundary condition T (0) = 0, to find
T (·). How will this help us find minimal-time trajectories?

To answer this question, we recall that an optimal trajec-
tory is such that equality holds in (3). This suggests the
following procedure: For each x, let k(x) be a point in U

satisfying

min
u∈U

�
∇T (x), f(x, u)

�
=

�
∇T (x), f

�
x, k(x)

��
= −1. (6)

Then, if we construct x(·) via the initial-value problem

x
�(t) = f

�
x(t), k

�
x(t)

��
, x(0) = α, (7)

we obtain a minimum-time trajectory (from α).

Let us see why this so: If x(·) satisfies (7), then, in light of
(6), we have

(d/dt)T
�
x(t)

�
=

�
∇T

�
x(t)

�
, x

�(t)
�

=
�
∇T

�
x(t)

�
, f

�
x(t), k

�
x(t)

���
= −1.

Integrating, we find

T
�
x(t)

�
= T (α)− t,

which implies that at τ = T (α), we have T
�
x(τ)

�
= 0,

whence x(τ) = 0 (since T is zero only at the origin).
Therefore x(·) is a minimal-time trajectory.

This second stage of the dynamic programming approach
has provided a feedback k(·) which, from any initial
value α, generates via (7) a minimal-time trajectory; k

constitutes what can be considered the ultimate solution
to our problem: an optimal feedback synthesis.

We remark that the Hamilton-Jacobi equation (5) has an-
other use, when we know that it has a unique solution T (·)
satisfying T (0) = 0 (namely, the minimal-time function).
We refer to the verification method in optimal control
(see for example Clarke (1989)). It would work here as
follows: Suppose we have formulated a conjecture that,
for each α, a certain trajectory xα is a minimal-time one
from the initial condition α. We proceed to calculate T (α)
(provisionally) based on this conjecture; that is, by setting
T (α) equal to the time required for xα to join α to 0. Then,
if the resulting function T satisfies (5), our conjecture is

verified (since, by uniqueness, T must then coincide with
the minimal-time function). If T fails to satisfy (5), then
our conjecture is certainly false (and the way in which (5)
fails may help us amend it).

We now rain on this parade by pointing out that there
are serious obstacles to rigorously justifying the route that
we have just outlined. There is, to begin with, the issue
of controllability : Is it always possible to steer α to 0 in
finite time? And if this holds, do minimal-time trajectories
exist? Even if this is true, how do we know that T (·) is
differentiable? If this fails to be the case, then we shall
need to replace the gradient ∇T used above by some
suitably generalized derivative. Next, we would have to
examine anew the argument that led to the Hamilton–
Jacobi equation (5), which itself will require reformulation
in some way that allows for nonsmooth solutions. Will the
Hamilton–Jacobi equation generalized in such a way admit
T as the unique solution?

Assuming that all this can be done, the second stage above
offers fresh difficulties of its own. Even if T is smooth, there
is in general no continuous function k(·) satisfying (6) for
each x. When k is discontinuous, the classical concept of
‘solution’ to (7) is inappropriate; what solution concept
should we use instead? Would optimal trajectories still
result?

That these difficulties are real, and indeed that they
arise in the simplest problems, can be illustrated by the
following example, familiar from any introductory text in
optimal control.

The double integrator. This refers to the system x
�� = u,

or, in terms of the standard formulation (∗):

x
�(t) = y(t), y�(t) = u(t), u(t) ∈ [−1,+1]. (8)

Thus n = 2,m = 1, and the dynamics are linear. It is not
difficult to show that all initial points (x(0), y(0)) = (α,β)
are controllable to the origin in finite time; existence
theory tells us that minimal-time trajectories exist. The
Maximum Principle (see Section 2) helps us to identify
them: they turn out to be bang-bang with at most one
switch between +1 and −1. We can then calculate the
minimal-time function T (·):

T (α,β) =






−β +
�

2β2 − 4α when (α,β) is left of S

+β +
�

2β2 + 4α when (α,β) is right of S

where the switching curve S in the x-y plane is given by
y
2 = 2|x|; see Fig. 1. The resulting function T (·) is seen

to be continuous, but it fails to be differentiable or even
locally Lipschitz along the switching curve. The optimal
feedback synthesis consists of taking k = −1 to the right
or on the upper branch) of S, and k = +1 otherwise.

We see therefore that our doubts correspond to real diffi-
culties, and they explain why the dynamic programming
approach to optimal control, very prominent in the 1950s
and 60s, is now frequently ignored in engineering texts, or
else relegated to a heuristic role, perhaps in exercises. In
fact, however, the difficulties have now been successfully
and rigorously resolved, through the use of nonsmooth
analysis, viscosity solutions, and discontinuous feedbacks.
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Fig. 1. The double integrator: switching curve
and optimal synthesis

These very same tools will play a central role in the
stabilization issue, which we turn to now.

Controllability and stabilization

We consider anew the system (∗). We still wish to guide
the state x to the origin, but there is no particular desire
to minimize the time required to do so, nor any other
criterion; a ‘reasonable’ stabilization method suffices. It is
natural to hope that the technical difficulties encountered
above can be avoided, since optimality is not an issue.

The key to driving the state to the origin resides in the
design of a suitable feedback k, by which we mean simply
a function on Rn having values in U . Our goal is the
following: to find a feedback k for which the resulting
ordinary differential equation

x
� = g(x) := f

�
x, k(x)

�
(9)

is asymptotically stable. Precise definitions will be given
later; for now let us just say that stability implies that
solutions x(·) of (9) converge to 0 as t → +∞.

There is on hand a tool for analyzing this property
introduced by Lyapunov over a century ago, and well-
known to engineers. It involves the existence of a (smooth)
function V : Rn → R, now known as a Lyapunov function,
having certain properties:

Positive definiteness: V (0) = 0 and V (x) > 0 ∀x �= 0.

Properness: The level sets {x : V (x) ≤ c} are compact
for every c ; equivalently, V is radially unbounded :

V (x) → +∞ as |x| → +∞.

Infinitesimal decrease:
�
∇V (x), g(x)

�
< 0 ∀x �= 0. (10)

The celebrated theorem of Lyapunov states that if such a
function V exists, then the differential equation x

� = g(x)
is stable.

Later, in the classical works of Massera, Barbashin and
Krasovskii, and Kurzweil, this sufficient condition for
stability was also shown to be necessary (under various
sets of hypotheses). Such results are known as converse
Lyapunov theorems. Thus, if the differential equation x

� =
g(x) is stable, then there exists a Lyapunov function V

associated with g.

The application of these classical results to control systems
would work as follows. Suppose first that we have found
a feedback k so that the resulting differential equation (9)
is stable. Then a classical Lyapunov function V exists for
g, and it follows that the system (∗) admits a control-
Lyapunov function: a (smooth) positive definite, proper
function V satisfying:

h
�
x,∇V (x)

�
= min

u∈U

�
∇V (x), f(x, u)

�
< 0 ∀x �= 0, (11)

where h is defined as before by (4).

Conversely, if we have a function V satisfying (11), then
V leads to a suitable feedback: simply define k(x), for any
x �= 0, to be any point u in U for which

�
∇V (x), f(x, u)

�
< 0.

Then V is a classical Lyapunov function for (9); by
Lyapunov’s criterion, we deduce that (9) is asymptotically
stable.

These arguments, which may be found as given above
in certain recent engineering texts, seem to establish two
things: first, that the possibility of stabilizing the system
by some feedback k is equivalent to the existence of a
control-Lyapunov function V ; secondly, that a stabilizing
feedback can be designed on the basis of such a function,
in the manner indicated above.

Note the analogy with the two stages of the dynamic
programming approach described earlier (compare for ex-
ample (3) and (11)): finding a control-Lyapunov function
V is analogous to identifying the minimal-time function
T (·), and in each case the function is used to construct
an appropriate feedback k. Unfortunately, the analogy is a
very good one: it goes further, in that the obstacles to the
dynamic programming approach (based upon regularity
considerations for T and k) carry over with full force to
the stabilization context.

This may be surprising, for three reasons. First, as men-
tioned above, stability and the existence of a smooth
Lyapunov function are indeed equivalent in the case of
a single (uncontrolled) ordinary differential equation. Sec-
ond, further circumstantial evidence of a positive nature
is provided by the case of linear systems with uncon-
strained controls (see below), in which controllability and
feedback stabilizability are virtually synonyms. Third, al-
though minimal-time functions are nonsmooth, we now
seek merely a ‘reasonable’ convergence to 0; this would
appear to be much less demanding, and our intuition
may tell us that a smooth Lyapunov function should exist
(assuming of course that the system is controllable).

It turns out that both the positive evidence and our
intuition are quite misleading. As we shall see, the stability
of nonlinear systems cannot be reduced to continuous
feedbacks and smooth control-Lyapunov functions.

As regards the feedback definition aspect, the basic diffi-
culty is the same: we cannot in general make a continuous
selection of a function k satisfying

�
∇V (x), f

�
x, k(x)

��
< 0,

even if a smooth control-Lyapunov function V is available.
This is quite clear in general: just consider the case in
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which U consists of finitely many points (even for a linear
system). But the impossibility also manifests itself even
when U = Rm.

As regards the existence of a smooth V , the issue is more
subtle. The argument given above does establish that when
a continuous stabilizing feedback k exists, then it induces a
smooth control-Lyapunov function. But such a continuous
k may not exist; many (including the author) believe
that this is typically the case for controllable nonlinear
systems. And when a continuous k fails to exist, then the
system may or may not admit a smooth control-Lyapunov
function (as we shall see).

As in the case of dynamic programming, these regularity
difficulties are fundamental, real, and widespread (in the
nonlinear setting, or when control values are constrained).
Unless control-Lyapunov functions are to be relegated to
merely heuristic status (as happened to dynamic pro-
gramming), an underlying theory that allows a rigorous
treatment of these regularity issues must be developed.

The linear case, linearization

The classical and most familiar context in which engineers
encounter system (∗) occurs in linear systems theory, the
special case of (∗) in which

f(x, u) = Ax+Bu, U = Rm
. (12)

(Alternatively, U is taken to be a ‘sufficiently large’ neigh-
borhood of 0, for local analysis.) In this setting, controlla-
bility is equivalent to the existence of a smooth (in fact, lin-
ear) stabilizing feedback, and a smooth (in fact, quadratic)
Lyapunov function is available. Despite the central role
of such systems in the literature, very few systems of
real interest are in fact linear; yet, linear systems theory
accounts for the vast majority of the many spectacular
contributions to our technology made by control engineers.
The explanation of this apparent paradox lies in the use
of the principal tool of classical applied mathematics:
linearization.

In order to study the nonlinear system (∗) in a neigh-
borhood of the equilibrium (x, u) = (0, 0) (say), we use
the linearized system (12) in which A := Dxf(0, 0) and
B := Duf(0, 0) are the usual Jacobian matrices. Then,
under suitable conditions, since f(x, u) ∼= Ax + Bu for
small (x, u), we may reasonably expect the local system
properties and feedbacks of the linearized system to carry
over to the original one; classical tools such as the implicit
function theorem are used in the analysis.

The requirements of this approach include the following:

• The function f must be differentiable, in order that A

and B exist.

• The linear system must be controllable, so that the
linearization is useful.

• (x, u) must remain close to (0, 0), so that the degree of
approximation is adequate.

• U must contain a neighborhood of 0.

• All values of x near 0 must be admissible.

These elements are often present, of course, but not al-
ways. There are interesting systems in which f is non-
differentiable, for example when friction, diodes, or other
directional phenomena are present (see for example Clarke
(1983), Brogliato (1999), and Orlov (2009)). The linear
approximation of a real mechanical system can fail to
be controllable (as in the nonholonomic integrator, see
below). Disturbances may be too large for (x, u) to remain
suitably close to (0, 0). In certain problems, the control set
does not contain a neighborhood of 0, and there may be
constraints on the state from the underlying model (for
example, that x(t) must remain in the positive orthant).

Our interest lies in nonlinear systems for which, for what-
ever reason, linearization is inappropriate. We turn now to
a review of some results on that topic.

Strongly stable systems and Lyapunov functions

There are two natural ways to extend to control systems
the concept of asymptotic stability of an ordinary differ-
ential equation (ode). They involve either requiring that
all, or else some trajectories are attracted to the origin.

We consider now the first alternative, by defining strong
Lyapunov stability at the origin as follows: given any � > 0,
there exists δ > 0 such that, for every trajectory x(·)
having x(0) ∈ B(0, δ), we have x(t) ∈ B(0, �) ∀ t ≥ 0. The
system (∗) is said to be strongly asymptotically stable if it
satisfies strong Lyapunov stability at the origin together
with the following property: every trajectory x(·) is defined
on [0,+∞) and satisfies x(t) → 0 as t → +∞.

The natural context for the next result is that of a
differential inclusion (see Section 2):

x
�(t) ∈ F

�
x(t)

�
a.e., (13)

which is more general than the system (∗) (just take
F (x) := f(x, U)). Notice that the definition of strong
asymptotic stability given above applies to a differential
inclusion without any changes (since only trajectory prop-
erties are involved).

The property of strong asymptotic stability of differential
inclusions, or of control systems like (∗), is in fact charac-
terized by the existence of a smooth Lyapunov function,
as the following result shows. It includes as a special case
that of an ode x

� = g(x) in which g is merely continuous
(by taking F (x) = {g(x)}). For this reason, it unifies and
extends the classical converse Lyapunov theorems (notably
that of Massera and Kurzweil).

Theorem 1. (Clarke, Ledyaev, Stern 1998). Let the multi-
function F have compact convex values and closed graph.
Then (13) is strongly asymptotically stable if and only if
there exists a C

∞ function V : Rn → R which is positive
definite and proper and satisfies

max
v∈F (x)

�∇V (x), v� < 0 ∀x �= 0.

We refer to such a function V as a strong control-Lyapunov
function for the system; note that ‘max’ has replaced
‘min’ in (11). In this result, the system multifunction F

itself need not even be continuous, yet strong stability is
equivalent to the existence of a smooth Lyapunov function:
this is a surprising aspect of the theorem. It stands in
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sharp contrast to the case of weak stability (or control-
lability), where even under much stronger hypotheses on
the underlying system, Lyapunov functions will need to be
nondifferentiable.

While strong stability has several uses (as in analyzing
perturbations of ode’s or stability of Filippov solutions),
it it weak stability, better known as controllability, that is
the relevant concept for our purposes; it is our next topic.

Controllable systems and Lyapunov functions

The following definitions extend in a natural way to control
systems the familiar concept of uniform asymptotic stabil-
ity of ordinary differential equations, with a controllability
component.

The system (∗) is said to satisfy weak Lyapunov stability
at the origin provided that, given any � > 0, there exists
δ > 0 such that, for every α ∈ B(0, δ), there is a control
u(·) and a corresponding trajectory x(·) defined on [0,+∞)
having x(0) = α and satisfying x(t) ∈ B(0, �) ∀ t ≥ 0.

The system (∗) is said to be asymptotically controllable (to
the origin) if it satisfies local Lyapunov stability together
with the following property: every α ∈ Rn admits a
control u(·) and corresponding trajectory x(·) defined on
[0,+∞) having x(0) = α and such that x(t) → 0 as
t → +∞. (To contrast with strong stability, this could be
called weak stability ; we adhere, however, to the standard
terminology.)

The appropriate definition of Lyapunov function corre-
sponding to this concept is referred to as a (smooth)
control-Lyapunov function (clf) for the system (∗): a con-
tinuously differentiable, positive definite, proper function
V that satisfies (11). Notice that ‘min’ has replaced the
‘max’ of Theorem 1 in the weaker form of the infinitesimal
decrease condition that figures here.

It is a fact that if the system admits a smooth clf, then
it is asymptotically controllable. We now pose the evident
question: Is there always a smooth clf to confirm asymp-
totic controllability? That is, do the familiar converse
Lyapunov theorems of Massera and Kurzweil extend to the
controllability setting? The answer is decidedly negative.
Let us establish this with the help of the following result,
in which ‘co’ refers to ‘convex hull’: coS is the smallest
convex set containing S.
Theorem 2. (Clarke, Ledyaev, Stern 1998). Let the sys-
tem (∗) admit a smooth control-Lyapunov function. Then
for every δ > 0, the following set is a neighborhood of 0:

�
v ∈ cof(x, U) : x ∈ B(0, δ)

�
.

The covering condition that appears in the theorem is
therefore a necessary condition for the existence of a clf;
note that the sufficiency is not asserted. The theorem
allows us to conclude that when the covering condition
fails, then no clf exists; the following is an illustration.

The nonholonomic integrator. This term refers to the
following well-known system:

x
�
1 = u1, x

�
2 = u2, x

�
3 = x1u2 − x2u1, (14)

for which n = 3 and m = 2; U is taken to be the closed
unit ball in R2. It is the simplest representative of a certain

class of systems arising in mechanics (see for example the
discussion in Sontag (1999)). It would seem to be as well-
structured a system as could be hoped for, within the
class of regrettably nonlinear ones: it is linear (separately)
in the state and in the control variables, and the control
set is ample. We remark that the system is easily seen to
be asymptotically controllable. Observe, however, that the
covering condition of the theorem fails: for no x is there
a point in cof(x, U) = f(x, U) of the form (0, 0, γ) where
γ �= 0. It follows from the theorem that this system does
not admit a smooth control-Lyapunov function.

Control-Lyapunov functions in the Dini sense

In order to address the evident gap between asymptotic
controllability and the existence of a clf, we can try to
weaken the concept of clf so that it remains sufficient
for asymptotic controllability, while also being necessary.
A seminal result due to Sontag does just that, using a
classical notion introduced by Dini in the 19th century.

Given a function φ : Rn → R, the notation dφ(x; v) refers
to the (lower) Dini derivate at x in the direction v:

dφ(x; v) := lim inf
t↓0,w→v

φ(x+ tw)− φ(x)

t
.

We remark that if φ is Lipschitz in a neighborhood of x,
then dφ(x; v) coincides with the simpler expression

lim inf
t↓0

φ(x+ tv)− φ(x)

t
.

If φ is continuously differentiable near x, then

dφ(x; v) =
�
∇φ(x), v

�
= φ�(x; v),

where φ�(x; v) is the usual directional derivative.

A control-Lyapunov function in the Dini sense (Dini clf) is
a continuous function V satisfying properness and positive
definiteness, as well as the following derivate variant of
infinitesimal decrease (cf. (11)):

min
u∈U

dV
�
x; f(x, u)

�
< −W (x) ∀x �= 0. (15)

(The minimum is attained because the function v �→
dV (x; v) is lower semicontinuous.)

Here, W : Rn\{0} → (0,+∞) is a rate function, which
simply means that W is bounded away from 0 on any
compact subset of Rn\{0}. When V is a C

1 clf, it is
easy to see that the existence of such a rate function W

is automatic (whereas it must be postulated for a Dini
clf). Thus a smooth clf in the earlier sense is also a Dini
clf. And of course a Dini clf which is also continuously
differentiable is a smooth clf. We remark that without loss
of generality, and in contrast to V , the rate function W

can always be assumed to be continuously differentiable
on Rn\{0} if desired (Clarke et al., 1998, p. 211).

Extended to nonsmooth functions in this way, clf’s now
characterize asymptotic controllability:

Theorem 3. (Sontag 1983). The system (∗) is asymptot-
ically controllable if and only if there exists a control-
Lyapunov function in the Dini sense.
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Stabilizing feedbacks

We turn now to the feedback stabilization issue. If there
exists a continuous feedback k(x) such that the ensuing
differential equation

x
�(t) = g

�
x(t)

�
, where g(x) := f

�
x, k(x)

�

is asymptotically stable, then it is easy to see that the
system is asymptotically controllable. (The open-loop con-
trol u(t) := k

�
x(t)

�
drives x to 0.) A central question in

the subject has long been the converse: If the system is
asymptotically controllable to the origin, is there a feed-
back k such that the resulting g exhibits global asymptotic
stability?

It is of course quite possible for a system featuring a
finite discrete control set to be asymptotically controllable:
consider, for example, the double integrator of Section
1, with U redefined to be {−1,+1}. For such a system,
the only continuous feedbacks are constant. Thus, in
full generality, it is clear that not every asymptotically
controllable system will admit a continuous stabilizing
feedback. The question of the converse, then, is to be
interpreted as bearing upon certain classes of ‘reasonable’
or ‘nice’ systems, which is usually interpreted to mean
systems which are affine in the control and have a control
set which is a neighborhood of 0.

There is a natural preference for continuous feedbacks k,
for several reasons. The most basic one stems from the
desire that the resulting function g(x) := f

�
x, k(x)

�
be

continuous, for this is the minimal requirement of the
classical theory of ordinary differential equations. In its
absence, we would not even have a clear idea of what a
solution of x� = g(x) is supposed to mean. (Another reason
for favoring continuous feedback arises from robustness
considerations, which we discuss later.)

The following celebrated result will shed some light on the
question:

Theorem 4. (Brockett 1983). If the system (∗) admits a
continuous stabilizing feedback, then it has the following
covering property: for every δ > 0, the set f(B(0, δ), U) is
a neighborhood of 0.

As we have seen, the nonholonomic integrator fails to
satisfy the covering condition of Theorem 2, which is
equivalent in this case to that of Theorem 4. It follows,
then, that no continuous feedback stabilizes it. As in the
case of Theorem 2, we stress that the covering condition
is a necessary condition for the existence of a continuous
stabilizing feedback, not a sufficient one; this is illustrated
by the following example.

Artstein’s circles. We consider the following system, in
which n = 2 and m = 1:

x
�
1 =

�
x
2
1 − x

2
2

�
u, x

�
2 = 2x1x2u, u ∈ [−1,+1]. (16)

For any point x �= 0 ∈ R2, the available velocity vectors
x
� are all tangent to the unique circle in the plane passing

through both x and the origin, and centered on the x2-axis
(see Fig. 2). The case in which x lies on the x1-axis may be
thought of as corresponding to such a circle having infinite
radius: the x1-axis itself.

The circle in question is therefore a strongly invariant
set (see Theorem 9 below): a trajectory originating on a
circle must remain upon it. The direction of movement
(clockwise or counterclockwise) depends on the sign of u. It
is easy to see that the system is asymptotically stable, and
that it satisfies the covering condition of Theorems 2 and 4.

x1

x2

Fig. 2. Artstein’s circles

We claim that it admits no
stabilizer k which is con-
tinuous on Rn\{0}, which
we prove by contradiction.
First, we observe that k(x) �=
0 for all x �= 0, for other-
wise x is a nonzero equilib-
rium of the stabilized sys-
tem, which cannot be. Next,
we observe that k must be
negative on the positive x1-
axis: if it were positive at a
point in that set, movement

to the right (away from the origin) would always prevail
(since k cannot be 0), and the trajectory would not ap-
proach the origin. Similarly, k must be positive on the
negative x1-axis. Now consider any circle in the plane
centered at the origin. By continuity, it follows that k

vanishes somewhere on the circle. But then the stabilized
system has nonzero equilibria: contradiction.

This system also provides an example showing that the
covering condition is not sufficient in the context of The-
orem 2. For suppose that a smooth clf V did exist, and
consider any one of the invariant circles C. Then V admits
a maximum relative to the compact set C at some point x,
and x is necessarily nonzero since V is positive definite. We
have∇V (x) normal to C at x, in view of the maximization.
But then ∇V (x) is orthogonal to all available velocities at
x, and infinitesimal decrease cannot be satisfied at x.

A further lesson can be drawn from this example: the
nonexistence of a continuous stabilizer cannot be ‘approx-
imated away’. That is, even if we were willing to settle for
a continuous feedback k that stabilizes (for example) the
ball B(0, R) to the ball B(0, r), for r > 0, the analysis
shows that such a k does not exist.

It is possible for the system (∗) to be asymptotically stable
and admit a smooth clf, yet fail to admit a continuous
stabilizer, as we now see.

Example. (Ledyaev and Sontag 1997). Consider the system

x
�
1 = u2u3, x

�
2 = u1u3, x

�
3 = u1u2,

��(u1, u2, u3)
�� ≤ 1. (17)

One may easily check that the function V = |x|2 is a
smooth clf. The covering condition of Theorem 4 fails to
hold, however, since no velocity has the form (0, γ,κ) for
γ �= 0, κ �= 0. It follows that no continuous stabilizer exists.

A system which is asymptotically stable can admit both a
smooth clf and a continuous stabilizer, or neither, or else
a smooth clf but no continuous stabilizer, as we have seen.
Thus the two issues are rather decoupled in general. But
for certain systems they are equivalent:

Theorem 5. (Artstein 1983). Suppose that the system is
affine with respect to u, and that U is a compact convex
set. Then the system admits a continuous stabilizing feed-
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back if and only if it admits a smooth control-Lyapunov
function.

The principal lesson of this rather long introduction is
that, in a nonlinear setting, stabilization cannot be re-
duced to smooth clf’s and continuous feedbacks. The re-
cent results in the subject, which have had a somewhat
more positive nature than the largely negative ones de-
scribed above, require much the same tools that success-
fully resolved the difficulties of the dynamic programming
method. These tools are introduced in the following sec-
tion. Following that, we develop an approach to stabi-
lization which builds upon (and extends) earlier results
by Clarke, Ledyaev, Rifford, Sontag, Stern, Subbotin,
and Vinter. There is an extensive literature related to
the issues discussed here, with important contributions
by Ancona, Artstein, Bressan, Brockett, Coron, Freeman,
Kellett, Kokotovic, Praly, Prieur, Rosier, Ryan, Sontag,
Sussmann, Teel, among many others; we make no pretense
to a complete bibliography on the subject.

2. GENERALIZATIONS OF ODE’S

Classical solutions. The usual notion of solution of an ode
x
� = g(x), where g is continuous, is of course simply that

of a differentiable function x which satisfies, at all points
t of the underlying interval [a, b], the condition x

�(t) =
g
�
x(t)

�
. This pointwise criterion actually implies that any

such solution x is in fact continuously differentiable (C1).
When g has measurable t-dependence (while remaining
continuous in x), the classical solution concept for the ode
x
� = g(t, x) is extended in the manner of Carathéodory:

we require that x be absolutely continuous and that the
pointwise equality x

�(t) = g
�
t, x(t)

�
hold for almost all t

in [a, b].

We recall that an absolutely continuous function x may
be characterized as a continuous function which admits a
representation of the form

x(t) = x(a) +

� t

a
v(s) ds

for some v ∈ L
1(a, b); in this case we have x�(t) = v(t) a.e.

It is equivalent to define a Carathéodory solution to be a
continuous function x satisfying

x(t) = x(a) +

� t

a
g
�
s, x(s)

�
ds, t ∈ [a, b].

The restriction to the class of absolutely continuous func-
tions serves to avoid so-called singular functions x which
(for example) can be continuous and strictly increasing,
differentiable almost everywhere, but with x

�(t) = 0 for
almost all t. Evidently, functions such as these are not
faithfully reflected by their derivatives, and do not lend
themselves to the theory of ode’s.

In considering the ode x� = g(x) with g discontinuous, the
first thought that comes to mind is to retain the pointwise
criterion; that is, to define a solution to be an absolutely
continuous function x such that x�(t) = g

�
x(t)

�
for almost

all t. This is unsatisfactory, for the simple reason that
solutions in this sense generally fail to exist, as we now
illustrate.

Example. Consider in one dimension the ode x
� = g(x)

with initial value x(0) = 0, where

g(x) =

�
−1 if x > 0
+1 if x ≤ 0.

(18)

It is easy to see that no function x satisfies the pointwise
condition x

�(t) = g
�
x(t)

�
a.e. Yet, intuitively, a considera-

tion of the underlying flow leads us to regard the function
x ≡ 0 as the ‘physically natural’ solution. Another ap-
proach must be found (we return to this example later).

Differential inclusions. A differential inclusion refers to a
multi-valued differential equation of the form

x
�(t) ∈ F

�
x(t)

�
, (19)

where F is a function on Rn whose values are subsets of Rn.
A solution or trajectory of such a differential inclusion on
an interval [a, b] refers to an absolutely continuous function
x : [a, b] → Rn whose derivative x

�(t) (which exists almost
everywhere, in the sense of Lebesgue measure) belongs for
almost t ∈ [a, b] to the set F

�
x(t)

�
. The graph of F is the

set
{(x, v) : v ∈ F (x)}.

It is a fact that (under our standing hypotheses), the
standard control system (∗) is equivalent to the differential
inclusion (19) when F is defined by F (x) := f(x, U), in the
sense that (∗) and (19) admit the same trajectories (this
is known as Filippov’s Lemma). This fact is useful when
we wish to focus upon the trajectories of the system and
not the controls that generate them. An example of such
a concern is relaxation.

Relaxation, linear growth. The relaxation of the system (∗)
refers to the differential inclusion

x
�(t) ∈ cof(x(t), U).

(Thus we avoid speaking of relaxed controls, which are
generally taken to be measure-valued.) A relaxed trajectory
of (∗) means a trajectory of this differential inclusion. We
shall say that the system (∗) is relaxed if, for every x, the
set f(x, U) is convex. For the differential inclusion (19),
this means that F is convex-valued.

For purposes of stabilization, it is essentially the same to
consider either the original (unrelaxed) system or its relax-
ation. The reason for this is that (see for example (Clarke,
1983, Chap. 3)) any trajectory y of the relaxation can be
uniformly approximated (on any bounded interval) to any
given tolerance by a trajectory of the unrelaxed system
having the same initial value (the Lipschitz behavior in
our basic hypotheses is needed here). For this reason it is
tempting to consider only relaxed systems, for they have
certain features that are convenient, for example as regards
existence of solutions to optimal control problems. But we
have resisted that temptation.

Another familiar property that plays a role in existence is
linear growth: there exist constants c, k such that

v ∈ F (x) =⇒ |v| ≤ c|x|+ k.

This condition serves to preclude finite blow-up of trajec-
tories (via an estimate obtained by Gronwall’s Lemma). It
is often superfluous in the context of stabilization, notably
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when the state is guaranteed to remain bounded because
it evolves in a level set of a Lyapunov function.

Filippov solutions. The best known solution concept for
the ode x

� = g(x) when g is discontinuous is that of
Filippov. An absolutely continuous function x is said to
be a Filippov solution of x�(t) = g(x(t)) provided that it
satisfies the differential inclusion

x
�(t) ∈ G

�
x(t)

�
a.e.,

where the multivalued function G is defined by

G(x) :=
�

δ>0

�

meas Ω=0

co g
�
B(x, δ)\Ω

�
.

The second intersection is taken over all sets Ω of measure
0; its purpose is to take into account only ‘essential’ values
of g. It is easy to see that G(x) reduces to {g(x)} if g is
continuous at x.

Let us illustrate this in the case of example (18). We
calculate

G(x) =






{−1} if x > 0
[−1,+1] if x = 0
{+1} if x < 0.

(20)

It follows that the unique Filippov solution of the initial-
value problem x

� = g(x), x(0) = 0, is the natural one:
x ≡ 0.

This example provides insight into the reason behind the
presence of the convex hull operation in the Filippov
definition: it is there to provide existence of a solution.
The resulting solution concept has several other positive
features. It can lead, however, to ‘too many solutions’, a
fact that we proceed to illustrate.

Example. A discontinuous vector field in the x-y plane
having only three different values is implicitly defined by
Fig. 3. (At points of discontinuity, one of the ‘nearby’
arrows may be assigned, in any desired fashion.) It is
clear that, from the initial condition (0, 0), there are two
natural solutions, both moving to the right: one along the
line y = x, the other along y = −x. But if we apply
the Filippov definition, then (because of the convex hull
operation) we find many other solutions; for example, one
that moves to the right along the positive x-axis.

x

y

Fig. 3. A vector field

It is the existence of such
superfluous trajectories that
explains why Filippov solu-
tions are inappropriate for
feedback stabilization, as we
shall see in Section 7.

We turn now to a solution
concept that is better suited
to our purposes, and we limit
attention to the case that re-
ally concerns us: the imple-
mentation in the system (∗)
of a possibly discontinuous feedback k.

Sample-and-hold solutions. This solution concept begins
with a partition π = {ti}i≥0 of [0,∞), by which we mean
a countable, strictly increasing sequence ti with t0 = 0

such that ti → +∞ as i → ∞. The diameter of π, denoted
diam (π), is defined as supi≥0(ti+1 − ti).

Now let there be given an initial condition x0, a feedback
k, and a partition π. A corresponding π-trajectory refers
to an absolutely continuous function x : [0,+∞) → Rn

such that, for each i ≥ 0, we have

x
�(t) = f

�
x(t), k(xi)

�
, x(ti) = xi, ti ≤ t ≤ ti+1,

where xi := x(ti) are the so-called nodes of x.

Less formally, this corresponds to constructing x in step-
by-step fashion as follows: Between t0 and t1, we consider
a classical solution x of the ode

x
�(t) = f

�
x(t), k(x0)

�
, x(0) = x0, t0 ≤ t ≤ t1.

At most one such solution can exist, since f is locally
Lipschitz in x. Later, finite-time blow-up will be precluded
because x(t) remains in a bounded level set of a clf. The
consequence of these observations is that a unique solution
x exists. We then set x1 := x(t1), and we consider the
following ode on the next partition interval [t1, t2]:

x
�(t) = f

�
x(t), k(x1)

�
, x(t1) = x1, t1 ≤ t ≤ t2,

in which the constant control value has been updated to
k(x1). And so on in this fashion. We sometimes write xπ

for x, since the (real) trajectory obtained above evidently
depends on the partition π. Note that no regularity is
asked here of k; it suffices that it be defined.

A limiting sample-and-hold trajectory (for the given feed-
back) refers to any function x which, on any bounded in-
terval, is obtainable as the uniform limit of a sequence xπj

of such π-trajectories for which the underlying partitions
πj satisfy diamπj → 0. When linear growth is imposed
(we shall not do so), it follows that the set of limiting
sample-and-hold trajectories from a given initial condition
is nonempty. When the system (∗) is relaxed, any such x

is an actual trajectory of (∗).
It is not hard to see that in the example (18), as well as in
that of Fig. 3, the limiting sample-and-hold solutions for
the given initial conditions are precisely the natural ones.

3. NONSMOOTH ANALYSIS

We now present a few basic definitions and facts in
nonsmooth analysis. A complete treatment is given in
the book Clarke et al. (1998) (which has been accused
of readability).

Generalized gradients

A function f : Rn → R is said to be Lipschitz on a set
S ⊂ Rn if there exists K ≥ 0 such that, for all x, y ∈ S,

��f(y)− f(x)
�� ≤ K

��y − x
��. (21)

We say that f is locally Lipschitz on S if each point z ∈ S

admits a radius r > 0 and a constant K (both depending
on z) such that the Lipschitz condition (21) holds for all
x, y ∈ B(z, r). This is equivalent to requiring that the
Lipschitz condition hold on any bounded subset S

� of S
(for some K depending on S

�).
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The Lipschitz property is closed under many operations,
such as sums, lower or upper envelopes, compositions, etc.
It is a fundamental result in analysis that a function which
is Lipschitz on an open set in Rn is differentiable almost
everywhere in the set (Rademacher’s Theorem).

When f is Lipschitz at a point x (that is, on a neighbor-
hood of x), the generalized gradient ∂Cf(x) of f at x is
given by

∂Cf(x) = co
�
lim
i→∞

∇f(xi) : xi → x, xi /∈ Ω
�
. (22)

Here ‘co’ denotes ‘convex hull’, Ω is any set of measure
zero, and xi is any sequence converging to x while avoiding
Ω, and along which ∇f(xi) exists and converges. Because
f is differentiable almost everywhere near x, there exist
many such sequences.

It is a fact that ∂Cf(x) is a compact convex set which is
independent of the choice of Ω. Clearly, we have

∂Cf(x) = {∇f(x)}

if f is continuously differentiable in a neighborhood of x.

We proceed to list a few facts in the calculus of generalized
gradients. Recall that for a convex function f , the subdif-
ferential in the sense of convex analysis, denoted ∂f(x), is
defined as follows:

ζ ∈ ∂f(x) ⇐⇒ f(y)− f(x) ≥
�
ζ, y − x

�
∀ y.

Theorem 6. (Properties of generalized gradients).

1. If f is convex, then ∂Cf(x) = ∂f(x).

2. If {fi} is a finite collection of functions each of which
is C1 near x, and if f := maxi fi is the upper envelope of
the family, then

∂Cf(x) = co
�
∇fi(x) : i ∈ I(x)

�
,

where I(x) is the set of indices i for which f(x) = fi(x).

3. If f and g are Lipschitz at x, then

∂C
�
f + g

�
(x) ⊂ ∂Cf(x) + ∂Cg(x).

4. If f is Lipschitz at x, if ζi ∈ ∂Cf(xi), where ζi → ζ and
xi → x, then ζ ∈ ∂Cf(x).

Other calculus facts (such as the chain rule, product rule,
mean value theorem, Lagrange multiplier rule) also play a
role in calculating and using generalized gradients, whose
theory also includes geometrical constructs (tangent and
normal vectors), as well as an extension to vector-valued
functions (and corresponding nonsmooth versions of the
implicit and inverse function theorems).

Example. We define a Lipschitz function f on R2 by

f(x, y) = max
�
min

�
x,−y

�
, y − x

�
.

Then

f(x, y) =






x if x ∈ A

− y if x ∈ B

y − x if x ∈ C

where the regions A,B,C are as indicated in Fig. 4.

x

y

f(x, y) = x

f(x, y) = y − x

f(x, y) = −y

A

B

C

y = −x

y = x/2

y = 2x

y

x

Fig. 4. A function f and its generalized gradient at 0

We calculate ∂Cf(0, 0) via (22), ignoring the points that
lie in the boundaries of A, B, or C (these form a set of
zero measure). Then the gradient values (1, 0), (0,−1),
and (−1, 1) are involved, and we find

∂Cf(0, 0) = co
�
(1, 0), (0,−1), (−1, 1)

�
.

The maximum principle

The earliest use of generalized gradients in control oc-
curred in the formulation and proof of general (and in
particular, nonsmooth) versions of the Pontryagin Maxi-
mum Principle; see Clarke (1983). This is a set of necessary
conditions which must be satisfied by optimal controls and
trajectories, and which helps to identify them.

Let us illustrate this in the context of minimizing the cost

J(x, u) :=

� T

0
L
�
x(t), u(t)

�
dt

relative to the controls u and corresponding trajectories x
satisfying (∗) together with an initial condition x(0) = x0.
Here L is taken to be locally Lipschitz.

The Pontryagin Hamiltonian H is defined as follows:

H(x, p, u) :=
�
p, f(x, u)

�
− L(x, u).

Theorem 7. If (x, u) solves this problem, then there exists
an absolutely continuous function p such that p(T ) = 0
and, for almost all t ∈ [0, T ],

−p
�(t) ∈ ∂C

�
H
�
·, p(t), u(t)

���
x(t)

�
,

u(t) ∈ argmax u∈UH
�
x(t), p(t), u

�
.

(Notation: argmax v∈V g(v) is the set of points in V at
which g attains a maximum.)

In the above, T can be either prescribed, or else free to
vary under some constraints; in the latter case, further
conclusions bearing upon T and p(T ) are asserted.

There exist many types of problems involving additional
dynamic or boundary constraints: see Clarke (2005), Vin-
ter (2000), and the references therein. The maximum prin-
ciple has also been extended to hybrid optimal control
problems: see Clarke and Vinter (1989).

Proximal subgradients

We turn now to a different (but related) type of generalized
derivative.

9



An extended-valued function φ : Rn → R+∞ := R∪{+∞}

is one which can take the value +∞ at some points. The
effective domain of φ, denoted domφ, refers to the set of
points x for which φ(x) < ∞. The function is said to be
lower semicontinuous if, at each x, for any sequence xi

converging to x for which limi φ(xi) exists (finite or not),
we have φ(x) ≤ limi φ(xi). This class of functions is the
natural context for the theory of proximal subgradients,
which we proceed to describe briefly.

A vector ζ ∈ Rn is said to be a proximal subgradient of
φ at x ∈ domφ provided that, for some σ ≥ 0 and some
neighborhood Nx of x, we have

φ(y)− φ(x) + σ|y − x|
2 ≥

�
ζ, y − x

�
∀ y ∈ Nx. (23)

The set of such ζ is called the proximal subdifferential of
φ at x, denoted ∂Pφ(x).

In contrast to the generalized gradient, the proximal sub-
differential can be empty at certain (even many) points, a
feature which, perversely, turns out to be one of its charms.

If φ is differentiable at x, then ∂Pφ(x) is either the
singleton set {Dφ(x)} or else the empty set. If φ is C

2

in a neighborhood of x, then ∂Pφ(x) = {Dφ(x)}. When φ
is convex, then ∂Pφ(x) coincides with the subdifferential
of convex analysis.

The geometric content of (23) is that f admits a parabola
which contacts the graph of f at the point

�
x, f(x)

�
while

remaining below the graph locally. Then the slope of the
parabola at x defines a proximal subgradient.

Fig. 5. Many supporting
parabolas, and none

There may be many such
‘contact parabolas’, or none.
If the function is sufficiently
smooth, all contact parabo-
las will have the same slope
at x; this will then define
the unique proximal subgra-
dient. In Fig. 5 we see a func-
tion which has a ‘convex cor-

ner’ at a point x, and another function having a ‘concave
corner’ at x. The proximal subdifferentials at x are, re-
spectively, [−2, 1] (say) and the empty set.

The calculus of proximal subgradients is complete but
‘fuzzy’. To give but one example, consider the sum rule.
There is no hope for a general formula such as

∂P (φ1 + φ2)(x) =
�
or ⊂

�
∂Pφ1(x) + ∂Pφ2(x).

Instead, it takes the following form: if ζ ∈ ∂P
�
φ1+φ2

�
(x),

then for any � > 0 there exist x1, x2 ∈ B(x, �) such that

ζ ∈ ∂Pφ1(x1) + ∂Pφ2(x2) +B(0, �).

Proximal calculus includes useful geometrical constructs.
Given a nonempty closed subset S of Rn and a point x in
S, we say that ζ ∈ Rn is a proximal normal (vector) to S

at x if there exists σ = σ(x, ζ) ≥ 0 such that
�
ζ, y − x

�
≤ σ

��y − x
��2 ∀ y ∈ S.

This is the proximal normal inequality. The set of such ζ,
which is a convex cone containing 0, is denoted N

P
S (x),

and is referred to as the proximal normal cone.

For a given set S, the notation IS refers to the indicator
function of S: the function whose value on S is 0 and whose
value is +∞ elsewhere. Then, for any x ∈ S, we have

∂P IS(x) = N
P
S (x). (24)

The limiting normal cone N
L
S (x) to S at x is obtained by

applying a sequential closure operation to N
P
S :

N
L
S (x) :=

�
lim ζi : ζi ∈ N

P
S (xi), xi → x, xi ∈ S

�
.

If the set S is convex, the two normal cones defined above
coincide with the familiar normal cone of convex analysis,
in which ζ is normal to S at x iff

�
ζ, x� − x

�
≤ 0 ∀x� ∈ S.

If S is a smooth manifold, or manifold with boundary, they
coincide with the classical normal space, or half-space.

A similar limiting procedure defines the limiting subdiffer-
ential :

∂Lφ(x) =
�
lim ζi : ζi ∈ ∂Pφ(xi), xi → x, φ(xi) → φ(x)

�
.

When φ is locally Lipschitz, we have

∂Cφ(x) = co ∂Lφ(x).

As an exercise, we invite the reader to show that for n = 1
and φ(x) = −|x|, we have

∂Pφ(0) = ∅, ∂Lφ(0) = {−1,+1}, ∂Cφ(0) = [−1,+1].

Monotonicity along trajectories

We now discuss the use of proximal calculus in connection
with certain important monotonicity properties. We do
this in the framework of a control system defined by a
differential inclusion (19), together with a function φ which
is lower semicontinuous and extended-valued.

We say that the pair
�
φ, F

�
is weakly decreasing if, for

every α ∈ domφ, there exist a trajectory x for F and
� > 0 such that

x(0) = α, φ
�
x(t)

�
≤ φ(α) ∀ t ∈ [0, �].

(φ, F ) is said to be strongly increasing if, for any trajectory
x, the function t �→ φ(x(t)) is increasing, in the nonstrict
sense of the word: s < t =⇒ φ

�
x(s)

�
≤ φ

�
x(t)

�
.

Similarly, (φ, F ) is strongly decreasing if, for any trajectory
x, the function t �→ φ(x(t)) is decreasing (in the nonstrict
sense).

The lower Hamiltonian h corresponding to F is defined as

h(x, p) := min{�p, v� : v ∈ F (x)}. (25)

Note that this yields the same function as (4) when F (x) =
f(x, U). The upper Hamiltonian H for F is defined by

H(x, p) := max{�p, v� : v ∈ F (x)}.

In the following results, we assume that F has compact
convex values, and is locally Lipschitz: for every bounded
subset S, there exists K = K(S) such that

x, y ∈ S =⇒ F (x) ⊂ F (y) +K|x− y|.

The monotonicity properties introduced above are charac-
terized by Hamilton-Jacobi inequalities in proximal terms:
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Theorem 8.
�
φ, F

�
is weakly decreasing if and only if

h(x, ζ) ≤ 0 ∀ ζ ∈ ∂Pφ(x), ∀x ∈ domφ,

strongly increasing if and only if

h(x, ζ) ≥ 0 ∀ ζ ∈ ∂Pφ(x), ∀x ∈ domφ,

and strongly decreasing if and only if

H(x, ζ) ≤ 0 ∀ ζ ∈ ∂Pφ(x), ∀x ∈ domφ.

(The inequalities are understood to hold automatically at
points x for which ∂Pφ(x) is empty.)

Invariance

As a first illustration of the use of the theorem above,
we deduce a useful characterization of sets having certain
invariance properties relative to trajectories.

Let S be a nonempty closed subset of Rn. We say that the
pair

�
S, F

�
is weakly invariant if, for every α ∈ S, there

exists a trajectory x for F and � > 0 such that

x(0) = α, x(t) ∈ S ∀ t ∈ [0, �].
�
S, F

�
is strongly invariant if, for any trajectory x,

x(0) ∈ S =⇒ x(t) ∈ S ∀ t ≥ 0.

Theorem 9.
�
S, F

�
is weakly invariant if and only if

h(x, ζ) ≤ 0 ∀ ζ ∈ N
P
S (x), ∀x ∈ S,

and strongly invariant if and only if

H(x, ζ) ≤ 0 ∀ ζ ∈ N
P
S (x), ∀x ∈ S.

Proof. This follows directly from Theorem 8 and from
(24), upon noting that (S, F ) is weakly invariant if and
only if (IS , F ) is weakly decreasing, and similarly for
strong invariance and strong decrease.

Remark: the property of weak invariance is sometimes
called viability.

Viscosity solutions

In the next result, which illustrates the use of monotonicity
in the theory of viscosity solutions, the multifunction F is
assumed to have linear growth.

Theorem 10. Let φ be a continuous positive-definite func-
tion which satisfies

h(x, ζ) = −1 ∀ ζ ∈ ∂Pφ(x), ∀x �= 0,

where h is given by (25). Then φ is the minimal-time
function T (·) for the system.

(Remark: The value of the minimal-time function T is +∞
at points which are not controllable to 0 in finite time.
Note that in the above, it is not assumed a priori that the
system is controllable, yet one obtains that T (·) is finite-
valued.)

Proof. (Sketch) According to Theorem 8, or, more pre-
cisely, a certain domain-restricted version of it, the func-
tion

(x, y) �→ φ(x) + y

is both strongly increasing and weakly decreasing on the
domain Rn\{0} for the augmented system F (x)×{1}. Fix
any α �= 0. For any trajectory x joining α to 0 in time τ ,
we have, by strong increase,

τ = φ
�
x(τ)

�
+ τ ≥ φ

�
x(0)

�
+ 0 = φ(α).

It follows that T (α) ≥ φ(α). By weak decrease, there exists
a trajectory x with x(0) = α such that

φ
�
x(t)

�
+ t ≡ φ(α) ∀ t ≥ 0.

(This is where linear growth is used, to preclude blow-
up.) Then, at t = φ(α), we must have x = 0. This yields
T (α) ≤ φ(α), and completes the proof. �

Example. We show that the minimal-time function T pro-
posed for the double integrator (8) satisfies the Hamilton-
Jacobi equation of Theorem 10, which confirms that it is
the minimal-time function of the system.

At points (x, y) �= 0 not lying on the switching curve S,
T is locally C

2, so this can be done by calculating the
derivative and substituting.

Suppose now that (x, y) lies on the lower branch of S, and
let (p, q) ∈ ∂PT (x, y). The proximal inequality then says
that relative to nearby points to the right of S (thus, for
y
2 ≤ 2x), the function (x�

, y
�) �→

y
� +

�
2(y�)2 + 4x� − px

� − qy
� + σ{|x� − x|

2 + |y
� − y|

2
}

attains a minimum at (x, y). Applying the classical La-
grange multiplier rule gives, for some λ ≥ 0:

p = −4λ− 1/y, q = 4λy ≤ 0.

It follows that

h(x, y, p, q) = py − |q| = −1,

which is the desired conclusion. A similar argument applies
on the upper branch of S.

4. PROXIMAL CLF’S

In Section 1 we recalled the concept of control-Lyapunov
function in the classical smooth (C1) sense, and we also
encountered an extension of the concept to merely con-
tinuous functions, by means of the Dini derivate. It turns
out that for certain purposes (such as feedback design), we
require an extension in proximal terms.

A control-Lyapunov function V in the proximal sense
(proximal clf) for the system (∗) refers to a continuous
function V : Rn → [0,+∞) which is positive definite
and proper and satisfies the following proximal version of
infinitesimal decrease:

sup
ζ ∈ ∂PV (x)

min
u∈U

�
ζ, f(x, u)

�
< −W (x) ∀x �= 0 (26)

for some rate function W (as defined earlier). This in-
equality holds automatically when ∂PV (x) is empty (by
convention, and in accord with the usual interpretation of
the supremum over the empty set as −∞.)

A C
1 clf is necessarily a proximal clf, since, when ∇V (x)

exists, we have ∂PV (x) ⊂ {∇V (x)}. As regards the
relationship with Dini clf’s, we have:
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Proposition 11. A Dini clf is also a proximal clf. If the
system is relaxed, the converse holds as well.

Proof. (Sketch) Let V be a Dini clf, and let ζ ∈ ∂PV (x).
Then, directly from the definition of proximal subgradient,
we derive

dV (x; v) ≥
�
ζ, v

�
∀ v ∈ Rn

.

It follows from this that V is a proximal clf. As for the
converse, see (Clarke et al., 1998, p. 210). �

As a corollary of the proof, we note the following hybrid
criterion that is useful in confirming that a given function
is a proximal clf:

Corollary 12. Let V be continuous, proper, and positive
definite, and suppose that for some rate function W we
have, at each point x �= 0, either

sup
ζ ∈ ∂PV (x)

min
u∈U

�
ζ, f(x, u)

�
< −W (x)

(which is the case if ∂PV (x) is empty), or

min
u∈U

dV
�
x; f(x, u)

�
< −W (x).

Then V is a control-Lyapunov function in the proximal
sense.

The following result implies that the existence of a clf
in any of the three senses we have seen (smooth, Dini,
or proximal) implies the asymptotic controllability of the
system, since the proximal sense is the weakest of the
three.

Theorem 13. If the system admits a control-Lyapunov
function in the proximal sense, then it is asymptotically
controllable.

Proof. (Sketch) It suffices to prove the theorem when the
system is relaxed. This is done by observing that (26)
is precisely the Hamiltonian condition characterizing the
weak decrease property (see Theorem 8) for the function
(x, y) �→ V (x) + y relative to the augmented system
x
� = f(x, u), y� = W (x) (where the rate function W has

been chosen to be suitably regular). It follows that from
any initial point α there is a trajectory x beginning at α
such that

V
�
x(t)

�
+

� t

0
W

�
x(τ)

�
dτ ≤ V (α) ∀ t ≥ 0.

One then shows that this implies x(t) → 0, whence
V
�
x(t)

�
→ 0 by continuity. Asymptotic controllability

follows from this; see (Clarke et al., 1998, pp. 213-214)
for details. �

Example. We show that the following function V1 is a
proximal clf for the nonholonomic integrator (14):

V1(x1, x2, x3) :=

��
x
2
1 + x

2
2 − |x3|

�2

+ x
2
3

= x
2
1 + x

2
2 + 2x2

3 − 2|x3|

�
x
2
1 + x

2
2. (27)

Proof. We omit the proof that V1 is positive definite and
proper. We set

σ :=
�
x
2
1 + x

2
2

for notational convenience.

We consider first the points x for which σ �= 0 and x3 �= 0.
At such points, we have ∂PV1(x) = ∇V1(x), since V1 is
locally C

2. It follows that verifying infinitesimal decrease
at such points in either the proximal, Dini, or smooth sense
amounts to the same thing. We calculate ∇V1(x):
�
2x1 − 2|x3|x1/σ, 2x2 − 2|x3|x2/σ, 4x3 − 2σ sgn(x3)

�
,

where sgn(y) := y/|y| is the usual signum function.
Let u1 = x1/σ and u2 = x2/σ. Then the admissible
control values ± (u1, u2) ∈ U give rise to an inner product�
∇V1(x), f(x, u)

�
equal to ± 2

�
σ − |x3|

�
.

Now take v1 = x2/σ and v2 = −x1/σ. Then the admissible
control values ± (v1, v2) ∈ U give rise to corresponding
inner products ± 2σ

�
σ sgn(x3)− 2x3

�
. It follows that

min
u∈U

�
∇V1(x), f(x, u)

�
≤ −W (x),

where W (x) is defined to be

2max
���σ − |x3|

��, σ
��σ sgn(x3)− 2x3

���.

The required conclusion now follows from the fact that W
is a rate function: W is positive and bounded away from
0 on any compact subset of Rn\{0}.

There remain the other (nonzero) points to consider. If
x3 = 0, then σ �= 0, and if σ = 0, then x3 �= 0. In
either case, we see directly from the last term in (27) that
∂PV1(x) = ∅, so that the first criterion in Corollary 12 is
satisfied, which concludes the proof. �

5. REGULARITY OF CLF’S

As we have seen, asymptotic controllability cannot be
characterized by smooth clf’s. The alternative so far has
been to introduce Dini and proximal clf’s, which are
merely continuous. This raises a natural question: given
an asymptotically controllable system, what is the greatest
degree of regularity which is always attainable by some clf
for the system? Clearly, the answer lies somewhere between
continuous and C

1, while being strictly less than the latter.

A longstanding conjecture in the subject has been that a
locally Lipschitz clf V is always available. This was proved
in 2000 by L. Rifford, who went on to prove more: there
is always a clf which is semiconcave on Rn\{0}. This is
a useful and much-studied property in pde’s and optimal
control (see Cannarsa and Sinestrari (2004)).

We give in this section a relatively brief and self-contained
treatment of the topic based on the generalized gradient,
and tuned to our specific purposes. The utility of knowing
that a clf is locally Lipschitz or semiconcave will be
clarified later in connection with feedback design.

Definition. Let φ : Rn → R be a function and x ∈ Rn a
given point. We say that φ has property SC at x provided
that there exist positive constants r, L,σ, η such that φ is
Lipschitz of rank L on B(x, r):

|φ(y)− φ(z)| ≤ L|y − z| ∀ y, z ∈ B(x, r), (SC1)

and such that, for almost all y, z ∈ B
◦(x, r), we have

φ(y)− φ(z)− �∇φ(z), y − z� ≤ σ|y − z|
1+η

. (SC2)
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When (SC1) holds, then φ is differentiable almost every-
where in B(x, r) by Rademacher’s Theorem, so that the
condition (SC2) makes sense. If it is desired to take note of
the parameters involved, then we say that φ has property
SC with constants (r, L,σ, η).

It turns out that the generalized gradient ∂Cφ of Section
3 is useful in characterizing such functions, in analyzing
their properties, and in establishing how SC is preserved
by such operations as sums, compositions and products.
Recall that a function h is said to be Hölder continuous
on a set S if there exist K,α > 0 such that

|h(x)− h(y)| ≤ K|x− y|
α ∀x, y ∈ S.

We list some basic facts regarding the property SC.

Theorem 14.

1. φ has property SC at x with constants (r, L,σ, η) iff
(SC1) holds together with

φ(y)− φ(z)− �ζ, y − z� ≤ σ|y − z|
1+η

∀ y, z ∈ B
◦(x, r), ζ ∈ ∂Cφ(z).

2. If φ satisfies SC at each point x of an open set Ω, with
constants that may depend on x, then for any compact
subset X of Ω there exist positive constants L,σ, η and ρ
such that φ is Lipschitz of rank L on X and

y, z ∈ X, |y − z| < ρ, ζ ∈ ∂Cφ(z)

=⇒ φ(y)− φ(z)− �ζ, y − z� ≤ σ|y − z|
1+η

.

3. If φ is differentiable near x and ∇φ is Hölder continuous
near x, then φ satisfies SC at x. This holds in particular
when φ is C2 near x.

4. If φ coincides near x with a function which is concave,
then φ satisfies SC at x, with σ = 0.

5. The positive linear combination (and in particular, the
sum) of a finite number of functions each of which satisfies
SC at x also satisfies SC at x.

6. If φ = g ◦ h, where h : Rn → Rm is differentiable
near x and Dh is Hölder continuous near x, and where
g : Rm → R is concave, then φ satisfies SC at x.

7. If φ = g ◦ h, where h : Rn → R is concave, and where
g : R → R is differentiable near h(x) and Dg is Hölder
continuous near h(x), then φ satisfies SC at x.

8. If φ = gh, where h coincides near x with a function
which is convex, and where g : Rn → (−∞, 0 ] is differen-
tiable near x and Dg is Hölder continuous near x, then φ
satisfies SC at x.

9. If φ = gh, where g is differentiable near x and Dg is
Hölder continuous near x, with g(x) > 0, and where h is
concave, then φ satisfies SC at x.

10. If φ = minφi, where {φi} is a finite family of functions
each of which satisfies (∗) at x, then φ satisfies SC at x.

11. If φ = infα∈A φα is finite (A countable), where each φα

satisfies SC at x with the same constants (r, L,σ, η), then
φ also satisfies SC at x with those constants.

12. If φ satisfies SC at x with constants (r, L,σ, 2), then
there is a concave function g : B(x, r) → R with Lipschitz
constantKg := L+2σr such that φ(y) = g(y)+σ|y−x|2 for

y ∈ B(x, r). Conversely, if φ admits such a representation,
where g has Lipschitz constant Kg, then φ satisfies SC at
x with constants (r, L,σ, 2), where L := Kg + 2σr.

13. If φ satisfies SC at x, then the directional derivative
φ�(x; v) exists for each v, and one has

dφ(x; v) = φ�(x; v) = min
ζ∈∂Cφ(x)

�ζ, v� ∀ v ∈ Rn
.

We omit the proof, which is largely routine. We comment,
however, that Part (11) follows from (Clarke, 1983, The-
orem 2.8.6), and that the function g in Part (12) is given
by

g(y) := minφ(z) + �ζ, y − z�+ σ �z − x, z + x− 2y� ,

where the minimum is taken over z ∈ B
◦(x, r), ζ ∈ ∂Cφ(z).

The penultimate item above shows that property SC is at
heart a type of semiconcavity, and explains (perhaps) the
origin of this terminology. We shall say for simplicity that
a clf is semiconcave if it satisfies property SC on Rn\{0}.

In the presence of property SC, Dini and proximal clf’s
coincide:

Proposition 15. If V satisfies property SC on Rn\{0}, then
V is a proximal clf if and only if it is a Dini clf.

Proof. (Sketch) We already know that a Dini clf is a
proximal clf, by Prop. 11. Let V be a proximal clf. Then,
for every x �= 0, we have (by an evident limiting argument)

max
ζ∈∂LV (x)

min
u∈U

�
ζ, f(x, u)

�
≤ −W (x).

Then, by Part (13) of Theorem 14, we have

min
u∈U

dV
�
x; f(x, u)

�
= min

u∈U
min

ζ∈∂CV (x)

�
ζ, f(x, u)

�

= min
u∈U

min
ζ∈∂LV (x)

�
ζ, f(x, u)

�

= min
ζ∈∂LV (x)

min
u∈U

�
ζ, f(x, u)

�
≤ −W (x),

which confirms that V is a Dini clf. �

Example. We showed above that the function V1 of (27)
is a proximal clf for the nonholonomic integrator (14). We
now show that it is semiconcave (that is, that it satisfies
property SC at nonzero points).

Proof. At a point x where (x1, x2) �= 0, the final term
in the expression (27) satisfies property SC by Part (9)
of Theorem 14. At a point x where (x1, x2) = 0, x3 �= 0,
the same term satisfies property SC by Part (8) of the
theorem. Since all the other terms in (27) are C

2, it now
follows from Parts (3) and (5) of the theorem that V1 has
property SC at all nonzero points. �

Example. Another locally Lipschitz Lyapunov function in
the Dini sense for the nonholonomic integrator (14) is the
following:

V2(x) := max

��
x
2
1 + x

2
2, |x3|−

�
x
2
1 + x

2
2

�
. (28)

(This can be shown by the same proof technique used for
V1.) We claim that V2 fails to satisfy SC at certain points.
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Proof. At the point x := (1, 0, 2), ∂CV2(x) is given by
the segment with endpoints (1, 0, 0) and (−1, 0, 1), by Part
(2) of Theorem 6. If SC holds at x, then, by Part (1) of
Theorem 14, taking z := x and ζ = (−1, 0, 1), we would
have locally
�
y
2
1 + y

2
2 ≤ V2(y) ≤ V2(x) +

�
ζ, y − x

�
+ σ|y − x|

1+η
.

Taking y = (1, 0, 2 − �) for all suitably small � > 0, this
reduces to 1 ≤ σ�η, which is absurd. �

In Section 8 we explain why the facts proven above imply
that V1 is a ‘better’ clf than V2.

6. CONVERSE THEOREMS

A ‘converse theorem’ is a result stating that an asymptot-
ically controllable system must admit a clf (of some type).
As (Sontag, 1990, p. 259) puts it:

“In any case, all converse Lyapunov functions are purely
existential, and are of no use in guiding the search for
a Lyapunov function. The search for such functions is
more of an art than a science, and good physical insight
into a given system plus a good amount of trial and
error is typically the only way to proceed. There are,
however, many heuristics that help...another possibility
is to build control-Lyapunov functions recursively, via
‘backstepping’...”

It turns out, however, that the techniques by which con-
verse Lyapunov theorems have been proved, which tend
to lead to nonsmooth functions, do offer some guidance
when we work in a nonsmooth setting. We shall describe
two such approaches.

The value function technique

Suppose that system (∗) is asymptotically controllable. Fix
r > 0, and, for a given rate function W , define

φ(α) := min

� T

0
W

�
x(t)

�
dt, (29)

where the minimum is taken over all trajectories x of the
system satisfying x(0) = α and x(T ) ∈ B(0, r), and where
T is free. (Thus, when W is identically 1, the function φ
is the minimal-time function for the target B(0, r).) Note
that the asymptotic controllability guarantees that there
are admissible trajectories for the optimal control problem
in question. Under certain familiar hypotheses (notably
that the system is relaxed), an optimal trajectory then
exists.

The function φ is an example of a value function: at α, its
value coincides with the value (that is, the minimum) of
a certain optimization problem in which α is a parameter.
Such functions play a central role in pde’s, optimization,
and differential games. We claim that φ is rather close
to being a control-Lyapunov function for the system. But
in which sense? Certainly not the C

1 sense, for value
functions are notoriously nonsmooth.

Let us show that φ is (almost) a proximal clf. Under mild
conditions on W , we can arrange for φ to be proper as well

as positive definite relative to the ball B(0, r) (rather than
the origin). We claim that the function

(x, y) �→ V (x) + y

is weakly decreasing (see Section 3) relative to the aug-
mented system x

� = f(x, u), y
� = W (x). To see this

(directly from the definition), let (α,β) be a given initial
condition for the augmented state. Let x be a trajectory
attaining the minimum in the definition of φ(α). Then,
by the reasoning known as the Principle of Optimality, we
have

φ
�
x(t)

�
=

� T

t
W

�
x(τ)

�
dτ, ∀ t ∈ [0, T ].

If we define

y(t) := β +

� t

0
W

�
x(τ)

�
dτ,

then (x, y) is an augmented trajectory satisfying
�
x(0), y(0)

�
= (α,β),

and the preceding equality implies

φ
�
x(t)

�
+ y(t) = φ(α) + β, ∀ t ∈ [0, T ],

which confirms weak decrease, as claimed. Observing that

∂P
�
V (x) + y

�
= ∂PV (x)× {1},

we deduce from Theorem 8 that

sup
ζ ∈ ∂PV (x)

min
u∈U

�
ζ, f(x, u)

�
+W (x) ≤ 0 ∀x /∈ B(0, r).

If W has been chosen to be a rate function (relative to the
target B(0, r)), we obtain strict inequality by replacing W

by W/2 (say).

It follows that φ is a proximal clf for the system, when the
equilibrium 0 is replaced by the set B(0, r).

Replacing B(0, r) by {0}, so as to get a precise converse
theorem, requires more work. One route is described
in Sontag (1983), and another proceeds as follows: In
Clarke et al. (2000) it was shown that certain value
functions along the lines of the ones described above give
rise to practical Lyapunov functions (that is, assuring
controllability to arbitrary small balls B(0, r)); the system
was modified in order to make these value functions locally
Lipschitz. Building upon this, L. Rifford was able to
combine a countable family of such functions in order to
construct a true locally Lipschitz clf for the origin (in the
proximal sense), and even a semiconcave one.

We remark that value functions such as φ underlie the phi-
losophy of themodel-predictive (or receding horizon) meth-
ods for numerical stabilization (see for example Fontes and
Magni (2003)). The possible semiconcavity of such func-
tions has been extensively studied (because of its impor-
tance in viscosity solutions; see Cannarsa and Sinestrari
(2004)). One hypothesis required in these results is that
the target set satisfy the ‘inner ball condition’. This holds
when the target is B(0, r), but not when the target is a
single point. The need for this hypothesis is illustrated by
the minimal-time function T (·) associated with the double
integrator (8), which is not semiconcave (as evidenced

14 



by the fact that it fails to be locally Lipschitz along the
switching curve).

Practical semiglobal controllability

The discussion above indicates why it is technically simpler
to find clf’s for a neighborhood of 0 rather than to 0 itself.
In a similar vein, it will simplify matters considerably later
on to seek feedbacks that achieve ‘practical semiglobal’
stabilization (from a given ball B(0, R) to a prescribed
ball B(0, r)) rather than asymptotically to the origin from
any initial condition. In reality, the stabilization will take
place not between balls, but between level sets of a given
clf. For the time being, let us merely note the following
practical semiglobal version of Theorem 13:

Theorem 16. Let V be a continuous function such that the
level set {x : V (x) ≤ E} is compact, and suppose that for
some e < E and ω > 0, there is a neighborhood Ω of the
set

{x : e ≤ V (x) ≤ E}

such that

x ∈ Ω, ζ ∈ ∂PV (x) =⇒ min
u∈U

�
ζ, f(x, u)

�
≤ −ω.

Then, for any α ∈ {x : V (x) ≤ E}, and for any � > 0, there
is a trajectory x having x(0) = α such that, for some T

satisfying

0 ≤ T ≤
�
V (α)− e

�
/ω ≤ (E − e)/ω,

we have V
�
x(T )

�
≤ e+ �.

Proof. (Sketch) Because relaxed trajectories are uni-
formly approximated by original ones with the same initial
value, it suffices to prove the theorem for relaxed trajec-
tories, with � = 0. Theorem 8 (or its domain-restricted
version) implies the existence of a relaxed trajectory x

beginning at α for which

V
�
x(t)

�
+ ωt ≤ V (α) ∀ t ≥ 0,

up to the first time T for which V (x(t)) ≤ e (blow-up is
precluded by the boundedness of the level set {V ≤ E}).
This yields the desired conclusion. �

The field of trajectories technique

The minimal-time function is constructed by following
time-optimal trajectories. However, it is possible to con-
struct Lyapunov functions by other than time-optimal
ones, as we now describe in an apparently new formalism.

Let T be a given target: a nonempty closed subset of Rn.
We say that a family {xα} is a field of trajectories (for T )
if:

• For every α ∈ Rn\T , xα is a trajectory on an interval
[0, Tα] with xα(0) = α, and Tα ∈ (0,+∞) is the first time
t for which xα(t) ∈ T ;

• For some δα > 0, xα is differentiable on (0, δα);

• The family is consistent: for s > 0, the trajectory x(·)
associated to the point xα(s) is x(t) = xα(t+ s), t ≥ 0;

• The function α �→ Tα is continuous on R
n\T , and

Tα → 0 as α → T .

This is not a field in the classical sense of the calculus
of variations, since we do not impose one-to-one covering
of a region by the trajectories. However, it follows that
V (α) := Tα has the essential features of a clf (relative
to the target T ), when we define V to be 0 on the set T

itself. Evidently, V is then continuous and positive definite
relative to T . The following confirms infinitesimal decrease
in the Dini sense on Rn\T :

Proposition 17. For every x ∈ Rn\T , we have

min
u∈U

dV
�
x; f(x, u)

�
≤ −1.

Proof. Fix any α /∈ T . Let ti be a positive sequence
decreasing to 0. It follows from the mean value theorem
(and the basic hypotheses) that, for some subsequence (we
do not relabel), for some u ∈ U , the points

wi := (xα(ti)− xα(0))/ti

converge to f(α, u). We observe that (for all i sufficiently
large)
�
V (α+ tiwi)− V (α)

�
/ti =

�
V (xα(ti))− V (α)

�
/ti

=
�
Tα − ti − Tα

�
/ti = −1.

The result follows. �

Of course the very fact that we may exhibit such a field
confirms in itself that we have controllability to T . It
may seem that a clf is hardly necessary after that. But
confirming controllability is not our sole aim: Lyapunov
functions play a role in designing stabilizing feedback. We
shall see later how to use V in order to do so.

Example. We consider the following system:

x
� = uy, y

� = v (30)

(u, v) ∈ U :=
�
(0, 1), (0,−1), (1, 0), (−1, 0)

�
,

in which n = 2, m = 2. We are interested in controllability
to the unit ball B(0, 1).

We proceed to find a clf for the system by the field of
trajectories method, relative to the target

T :=
�
(0, 1), (0,−1)

�
⊂ B(0, 1).

x

y

1

0

−1

Fig. 6. A vector field

We define the following
strategy for reaching T

in finite time from an
initial state (α,β) /∈ T

(see Fig. 6): First, take
(u, v) = ± (0, 1) until
|y| = 1 is attained; time
required:

��|β| − 1
��. Then

take (u, v) = ± (1, 0) un-
til x = 0; time required:
|α|.

The resulting function V

is given explicitly by

V (α,β) =
��|β|− 1

��+ |α|.

This defines a Dini clf relative to T . (In more complex
examples V may be implicitly defined.) We return to this
example later.
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Finite-time controllability

So far we have been concerned with possibly asymptotic
approach to the origin. There is interest in being able to
assert that the origin can be reached in finite time. If such
is the case from any initial condition, then we say that the
system is controllable in finite time (to 0).

There is a well-studied local version of this property that
bears the name small-time local controllability (STLC for
short). A number of verifiable criteria exist which imply
that the system has property STLC, which is stronger than
local Lyapunov stability; see Bardi and Capuzzo-Dolcetta
(1997).

Theorem 18. Let the system (∗) be relaxed and have linear
growth, as well as property STLC. Then it is controllable
in finite time if and only if there exists a proximal control-
Lyapunov function V having rate function W ≡ 1.

Proof. (Sketch) The proof of the theorem is centered
upon the minimal time function T (·), which is known to be
continuous when STLC holds. If the system is controllable
in finite time, then T is the required clf: weak infinitesimal
decrease follows from the fact that T satisfies the proximal
Hamilton-Jacobi equation. The sufficiency follows much as
in the proof of Theorem 13: we deduce the existence of
a trajectory x for which V

�
x(t)

�
+ t is nonincreasing as

long as x(t) �= 0; this implies that x(τ) equals 0 for some
τ ≤ V

�
x(0)

�
. �

7. DISCONTINUOUS STABILIZERS

We have seen earlier that even when the system (∗)
is asymptotically controllable, it may fail to admit a
continuous feedback k which stabilizes it. It is natural
therefore to consider discontinuous feedbacks. This raises
the issue of giving a meaning to the differential equation
x
� = f

�
x, k(x)

�
when the right side is not a continuous

function of x.

The Filippov solution concept for differential equations
x
� = g(x), where g is discontinuous, was reviewed in

Section 2. As explained there, Filippov solutions can
fail to reflect the dynamics by generating superfluous
trajectories that are not meaningful. The consequence of
this phenomenon for the stabilization issue is that Filippov
solutions are inappropriate as a means of interpreting
x
� = f(x, k(x)) when k is discontinuous.

As evidence of this, we remark that it has been shown that
Theorem 4 continues to hold for discontinuous feedbacks
when they are interpreted in the Filippov sense (Ryan
(1994); Coron and Rosier (1994)). Thus the nonholonomic
integrator, for example, fails to admit a feedback that
stabilizes the Filippov solutions.

The sample-and-hold implementation of a (possibly dis-
continuous) feedback was also described in Section 2. Be-
cause a π-trajectory x generated from the sample-and-hold
procedure is an actual state trajectory corresponding to
a piecewise constant open-loop control, it is a physically
meaningful one.

Definition. We say that a feedback k(x) (continuous or
not) stabilizes the system in the sample-and-hold sense

provided that, for every ball B(0, R) of initial values to
be stabilized, and for every target ball B(0, r) to be aimed
for, there exist positive numbers δ and T depending only
upon r and R, and a number C depending only on R, such
that, for any initial value x0 ∈ B(0, R), for any partition
π of diameter less than δ, the corresponding π-trajectory
x beginning at x0 satisfies

|x(t)| ≤ C ∀ t ≥ 0, x(t) ∈ B(0, r) ∀ t ≥ T.

Note that the same feedback k is involved here, whatever
r and R are chosen. However, in order to attain the desired
stabilization, the partition diameter δ will have to shrink
as R increases and as r decreases. This simply reflects the
need to sample the state at a higher rate in such cases, a
natural and inevitable consideration.

If k is a continuous feedback that stabilizes the system
in the classical sense (that is, by making x

� = f
�
x, k(x)

�

asymptotically stable), then it also stabilizes the system
in the sample-and-hold sense, so we are dealing with a
faithful generalization of the classical notion.

The question of the equivalence between asymptotic con-
trollability and feedback stabilizability was settled in 1997
by Clarke, Ledyaev, Sontag, and Subbotin, in terms of
sample-and-hold:

Theorem 19. (Clarke et al. (1997)). The system is asymp-
totically controllable if and only if there exists a (possibly
discontinuous) feedback k which stabilizes it in the sample-
and-hold sense.

The proof of the theorem uses proximal aiming, a method
which is difficult to implement in practice. One of our
principal goals here is to show how stabilizing feedbacks
can be defined in a simpler way directly from a clf.

The use of possibly discontinuous feedback has arisen in
other control contexts besides the one considered here.
In linear time-optimal control, one can find discontinuous
feedback syntheses as far back as the classical book of
Pontryagin et al. (1962), as we have seen with the double
integrator. In these cases, the feedback is invariably piece-
wise constant relative to certain partitions of state space,
and solutions either follow the switching surfaces or cross
them transversally, so the issue of defining the solution in
other than a classical sense does not arise.

Somewhat related to this is the approach that defines
a multivalued feedback law (see for example Berkovitz
(1989)). In stochastic control, discontinuous feedbacks
are the norm, with the solution understood in terms of
stochastic differential equations. In a similar vein, in the
control of certain linear partial differential equations, dis-
continuous feedbacks can be interpreted in a distributional
sense. These cases are all unrelated to the one under
discussion.

In contrast, the sample-and-hold implementation of dis-
continuous strategies in differential games is well-known:
see Krasovskii and Subbotin (1988). We remark that in
games of pusuit and evasion (for example), it is known
that, in general, it is not possible to achieve the result of a
discontinuous optimal strategy to within any tolerance by
means of a continuous stategy (thus there can be a positive
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unbridgeable gap between the performance of continuous
and discontinuous feedbacks).

The thin set fallacy

The classical solution concept for the differential equa-
tion x

� = g(x), where g is continuous, automatically
incorporates a robustness to implementation and error.
As an illustration of this, recall that if we proceed to
calculate a solution using Euler’s method, for example,
then, for sufficiently fine partitions, we arrive at an answer
which approximates the exact solution to any specified
tolerance. This property, as well as other familiar ones
such as continuous dependence on the initial condition,
does not necessarily carry over to the case in which g is
discontinuous.

The consequence of this as regards system (∗) is that care
must be taken that the stabilizing feedbacks we define are
meaningful. This is a new type of consideration that we
proceed to illustrate.

Example. Let us consider a control system in the plane
having the property that the set of available velocities
always allows one to move along circles centered at the
origin, in either direction, at a constant rate. (We do not
define the system explicitly.) Suppose furthermore that,
for points on the positive x2-axis, movement along that
axis toward the origin is possible, at a constant rate.

We now consider the following feedback strategy as a
means of driving the state to the origin (see Fig. 7). From
any point (α,β) �= 0 in the plane, follow the circle centered
at 0 that is determined by (α,β), until the positive x2-
axis is reached, using clockwise movement if α < 0, and
counterclockwise if α ≥ 0. Then descend the x2-axis to the
origin. This field of trajectories (see Section 6) implicitly
defines the corresponding (discontinuous) feedback k.

The feedback appears to be effective as regards the differ-
ential equation: k is presumably piecewise smooth (with
at most one switch) along the resulting trajectories; these
are well-defined in the classical sense, and arrive at the
origin in finite time.

Note that, on the face of it, the feedback does not seem
very different in nature from the minimal-time synthesis
for the double integrator (see Fig. 1).

x1

x2

Fig. 7. A dubious
stabilization strategy

Yet to accept it as a sta-
bilizing feedback would be
absurd, we would argue.
The problem is that the
effect of the feedback de-
pends upon the state being
exactly on the x2-axis at
some point. This will essen-
tially never happen in any
numerical implementation
(since the axis has measure
0). The result of the slight-
est overshoot is that the
state trajectory, once it is
near the x2-axis, will dither around it, rather than con-
verge to the origin.

This illustrates the importance of avoiding what logicians
refer to as the ‘fallacy of misplaced concreteness’: we must
bear in mind that the symbolism x

� = f(x, k(x)) actually
refers to an implementation procedure for using k. When
k is continuous, this can be (and usually is) ignored, for
the reasons we have explained.

One of the principal virtues of the sample-and-hold ap-
proach is that it forces us to consider implementation, by
its very definition. We remark that the feedback in the
example does not stabilize the system in the sample-and-
hold sense. Thus, the natural feedback associated to a field
of trajectories is not necessarily a good one. Nonetheless,
as we shall see, the clf that it generates can be used in a
certain way to define a meaningful feedback.

The danger we have identified here, one to which the
literature is, alas, not immune, could be termed the thin
set fallacy : using a feedback whose global effect depends
on its values on some set of measure zero.

We summarize for now by saying that, in contrast to the
case of continuous feedbacks, some discontinuous feed-
backs will have robustness to error and implementation,
and others will not. The issue needs to be studied sepa-
rately, and the sample-and-hold approach leads to a rig-
orous analysis. We shall demonstrate this later in the case
of sliding-mode control, which is indeed based upon using
a discontinuous feedback to drive the state to a thin set.

8. FEEDBACK DESIGN

We base the design of stabilizing feedback upon a given
clf for the system. The specific method will vary according
to the regularity of the clf that we possess: smooth,
semiconcave, locally Lipschitz, or merely continuous. We
focus attention on practical semiglobal stabilization.

Smooth clf ’s

The case in which there exists a smooth clf is an important
one. Although, as we have seen, there may not exist a
continuous stabilizer even then, the steepest descent design
(see below) is appealing, and the proof that sample-and-
hold stabilization takes place is a template for other, less
evident cases.

Let V be a clf for the system (∗), where V is C
1 on the

set Rn\{0}. Thus V is continuous, proper, and positive
definite, and there exists a rate function W for V such
that the infinitesimal decrease condition holds:

inf
u∈U

�∇V (x), f(x, u)� < −W (x) x �= 0.

We recall that a rate function refers to a positive function
W on Rn\{0} which is bounded away from 0 on compact
subsets of Rn\{0}.

Notation: argmin v∈V g(v) refers to the set of points in V

at which g attains a minimum.

A natural way to define a feedback k is by steepest descent:
for each x �= 0, choose

k(x) ∈ argmin u∈U

�
∇V (x), f(x, u)

�
. (31)

It follows then that
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�
∇V (x), f

�
x, k(x)

��
< −W (x) ∀x �= 0. (32)

In what follows, it is actually this inequality that is used.
By extension, even if k is not chosen via (31), we shall refer
to a feedback k that satisfies the pointwise condition (32)
(for some rate function W ) as a steepest descent feedback
(induced by V ). The value of k(0) is irrelevant; we may
set it equal to any point in U .
Theorem 20. A steepest descent feedback k stabilizes the
system in the sample-and-hold sense.

Proof. For ease of exposition, we shall suppose that V (on
Rn) and ∇V (on Rn\{0}) are locally Lipschitz rather than
merely continuous (otherwise, the argument is carried out
with moduli of continuity). We also restrict attention to
uniform partitions.

Let B(0, R) and B(0, r) be the initial values and target
set under consideration. The properties of V imply the
existence of positive numbers e < E such that

{x : V (x) ≤ e} ⊂ B(0, r), {x : V (x) ≤ E} ⊃ B(0, R).

Fix E
�
> E. There exist positive constants K,L,M such

that, for all x, y in the compact set {x : V (x) ≤ E
�} and

u ∈ U , we have

|V (x)− V (y)| ≤ L|x− y|, |f(x, u)| ≤ M,

|f(x, u)− f(y, u)| ≤ K|x− y|. (33)

Now pick e
� and e

�� so that 0 < e
��
< e

�
< e, and set

X := {x : e�� ≤ V (x) ≤ E
�
}.

Then there exist constants N and ω > 0 such that

|∇V (x)−∇V (y)| ≤ N |x−y|, W (x) ≥ ω ∀x, y ∈ X. (34)

We now give ourselves any uniform partition π of diameter
δ ∈ (0, 1) such that

δLM < min{e− e
�
, e

� − e
��
, E

� − E},

δ(LK +MN)M < ω/2. (35)

The reasons for these choices will emerge clearly below.

Now let x0 be any point in B(0, R), and proceed to
implement the feedback k via the partition π. On the first
time interval [t0, t1] the trajectory xπ corresponding to
k (which we shall denote simply x) is generated by the
differential equation

x
�(t) = f

�
x(t), k(x0)

�
, x(t0) = x0, t0 ≤ t ≤ t1.

The solution to this differential equation exists on some
interval of positive length, and is unique because f is
locally Lipschitz in the state variable. If the solution
fails to exist on the entire interval, it is because blow-
up has occurred. Then there exists a first τ ∈ (t0, t1] for
which V (x(τ)) = E

�. On the interval [t0, τ), the Lipschitz
constant L of (33) is valid, as well as the boundM , whence

V (x(t)) ≤ V (x0) + L|x(t)− x0| ≤ E + δLM ∀ t ∈ [t0, τ).

But then

V (x(τ)) ≤ E + δLM < E
�

by (35), a contradiction. It follows that blow-up cannot
occur, and that the solution of the differential equation

exists on the entire interval [t0, t1] and satisfies V (x(t)) <
E

� on that interval.

Case 1. V (x0) ≤ e
�. It follows then from δLM < e − e

�

(see (35)) that we have V (x(t)) < e ∀ t ∈ [t0, t1].

Case 2. e
�
< V (x0). Now we have x0 ∈ X and

�∇V (x0), f(x0, k(x0)� < −ω

from (34), and from the way k(x0) is defined (see (32)).
Let t ∈ (t0, t1]; then, at least while x(t) remains in the set
X, we can argue as follows:

V (x(t))− V (x(t0)) = �∇V (x(t∗)), x�(t∗)� (t− t0)

(by the Mean Value Theorem, for some t
∗ ∈ (0, t))

= �∇V (x(t∗)), f(x(t∗), k(t0))� (t− t0)
= �∇V (x(t0)), f(x(t0), k(t0))� (t− t0)
+ �∇V (x(t0)), f(x(t

∗), k(t0))− f(x(t0), k(t0))�(t− t0)
+ �∇V (x(t∗))−∇V (x(t0)), f(x(t

∗), k(t0))� (t− t0)
≤ �∇V (x(t0)), f(x(t0), k(t0))� (t− t0)
+ LK|x(t∗)− x0|(t− t0) +NM |x(t∗)− x0|(t− t0)

(in view of (33) and (34))

≤ −ω(t− t0) + LKMδ(t− t0) +M
2
Nδ(t− t0)

(by the way k is defined)

= {−ω + δ (LK +MN)M} (t− t0)
≤ −(ω/2)(t− t0), by (35).

Thus the value of V has decreased. It follows from this
(together with the inequality δLM < e

� − e
�� provided by

(35)) that x(t) remains in X throughout [t0, t1], so that
the estimates above apply.

To summarize, we have in Case 2 the following decrease
property:

V
�
x(t)

�
− V

�
x(t0)

�
≤ −(ω/2)(t− t0) ∀ t ∈ [t0, t1].

It follows that, in either case, we have V (x(t)) ≤ E for
t ∈ [t0, t1], and in particular V (x1) ≤ E, where x1 := x(t1)
is the next node in the implementation scheme.

We now repeat the procedure on the next interval [t1, t2],
but using the constant control value k(x1). Precisely
the same arguments as above apply to this and to all
subsequent steps: either we are at a node xi for which
V (xi) ≤ e

� (Case 1), or else V (x(t)) continues to decrease
at a rate of at least ω/2 (Case 2).

Since V is nonnegative, the case of continued decrease
cannot persist indefinitely. Let xJ (J ≥ 0) be the first
node satisfying V (xJ) ≤ e

�. If J > 0, then

e
�
< V (xJ−1) ≤ V (x0)− (ω/2)(tJ−1 − t0)

= V (x0)− (ω/2)(J − 1)δ,

whence

(ω/2)(J − 1)δ < V (x0)− e
� ≤ E − e

�
,

and so

Jδ < 2(E − e
�)/ω + δ ≤ 2(E − e

�)/ω + 1 =: T,

which provides a uniform upper bound T independent
of δ for the time Jδ required to attain the condition
V (xJ) ≤ e

�. Once this condition is satisfied, the above
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analysis shows that for all t ≥ tJ , we have V (x(t) < e,
which implies x(t) ∈ B(0, r). Since for all t ≥ 0 the
trajectory x satisfies V (x(t)) ≤ E, and since

{x : V (x) ≤ E} ⊂ B(0, R),

there exists C depending only on R such that |x(t)| ≤
C ∀ t ≥ 0. This completes the proof that the required
stabilization takes place. �

Remark. It is clear that the proof essentially deals with the
stabilization of level sets of V , and could be framed locally
in these terms. Specifically, it shows that a steepest descent
feedback stabilizes the set {x : V (x) ≤ E} to the set
{x : V (x) ≤ e} under the following reduced requirements
on V (say): V is continuous and nonnegative; the level set
{x : V (x) ≤ E} is compact; V is smooth in a neighborhood
Ω of the set

{x : e ≤ V (x) ≤ E};

V satisfies infinitesimal decrease in Ω. Further, we observe
that the value of k(x) satisfying the decrease condition
(32) could, in principle, be calculated online, and that the
choice of such a value could be different in subsequent
evaluations of k(x).

Example. Let h : R → R be a locally Lipschitz function
satisfying xh(x) > 0 ∀x �= 0. We consider the system

x
� = y

y
� = u|y|− h(x), |u| ≤ 4.

We claim that the feedback k(x, y) = −4 sgn(y) (where
sgn(0) is taken to be any value in [−1,+1]) stabilizes the
system in the sample-and-hold sense.

Proof. Let H(x) :=
� x
0 h(t) dt. The function

V := 8x2+4xy+y
2+2H(x) = (2x+y)2+4x2+2H(x) (36)

is C1, positive definite and proper. The inner product
�
∇V (x, y), f(x, y, k(x, y))

�

is given by −4(y2+xh(x)), for whatever value we assign to
sgn(0). This establishes (32), for a suitable rate function
W . The claim now follows from Theorem 20. �

Semiconcave clf ’s

Let V be a Dini clf for the system (∗). Then, by definition,
there exists for each nonzero point x a value ux ∈ U such
that

dV
�
x; f(x, ux)

�
< −W (x).

It is tempting to define a feedback via k(x) := ux. One
might well expect (in view of the smooth case analyzed
above) that this feedback would lead to trajectories along
which V decreases. However, such is not the case in
general, as we now see.

Example. We take n = 2, and we assume that for all (x, y),
the set f(x, y, U) contains the four vectors

v1 = (1, 0), v2 = (−1, 0), v3 = (0, 1), v4 = (0,−1). (37)

We set
V (x, y) := |x− y|+ 2|y|,

a function which is locally Lipschitz, positive definite, and
proper.

Let (x, y) be any nonzero point. If x �= y, then one of
the unit vectors (admissible velocities) v2 = (−1, 0) or
v1 = (1, 0) (depending on whether x − y is positive or
negative respectively) will give dV (x, y; v) = −1. If x = y,
then the unit vector (0,−y/|y|) (that is, v3 or v4) has
the same effect. It follows that V is a Dini clf (with rate
function W ≡ 1), and that the system is asymptotically
controllable.

Now suppose we find ourselves at a point (x, y) with
x = y−� for a small positive �. A direction which decreases
V (at rate 1) is given by (1, 0); a small step in that direction
may bring us to the point (y + �, y) (say). From this new
point, a decrease direction is (−1, 0), and a small step
brings us back to the starting value (y− �, y). This can go
on indefinitely, so a pointwise choice of a decrease direction
(as in steepest descent) does not always succeed in driving
the state to 0, due to the possibility of dithering.

In this example, it is clear that a smooth CLF exists,
for example V (x, y) = (x2 + y

2)/2, with rate function
W (x, y) = max{|x|, |y|}. One can then consider the steep-
est descent feedback associated with this smooth V , which
is easily calculated:

k(x, y) =

�
− sgn(x) if |x| > |y|

− sgn(y) if |y| > |x|

(with either choice when |x| = |y|).

Then k stabilizes the system (by Theorem 20). But the
point being made here is that the design of k on the basis
of a nonsmooth V is a more subtle issue than merely using
steepest descent.

We shall present several methods that deal with the
problem: one requires that the clf be semiconcave (which
is not the case in the last example), another will work by
constructing a different clf through smoothing (when the
original one in locally Lipschitz), and a third is based on
selecting the descent direction in a more complex fashion
than steepest descent.

Let V be a semiconcave clf (that is, satisfying the property
SC of Section 5 on Rn\{0}). We say that a feedback k is
of steepest descent type (for V ) if, for some rate function
W , we have

dV
�
x; f(x, k(x))

�
= V

��
x; f(x, k(x))

�
< −W (x) ∀x �= 0.

By Part (13) of Theorem 14, this is equivalent to:

∀x �= 0, ∃ ζ ∈ ∂CV (x) such that�
ζ, f

�
x, k(x)

��
< −W (x). (38)

Theorem 21. If V is a semiconcave (proximal or Dini) clf,
and if k is a steepest descent feedback induced by V , then
k stabilizes the system in the sample-and-hold sense.

Proof. We proceed to sketch how to adapt the proof of
Theorem 20. Let e

�
< e and E

�
> E be such that V has

property SC on the set

X := {x : e� ≤ V (x) ≤ E
�
}.
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We find constants L,σ, η and ρ as in Part (2) of Theorem
14. Then K,L and M satisfying (33) continue to exist.
We maintain the choice of ω as in (34), but there is no N

as appears there, of course; the second inequality in (35)
needs to be replaced.

The essential step remains the comparison of the values
of V at successive nodes, but condition SC is invoked as
a substitute for the Mean Value Theorem. If δ ∈ (0, 1)
is sufficiently small (precisely: δM < ρ), successive nodes
will lie within ρ of one another. Let ζ0 ∈ ∂CV (x0) be such
that

V
��
x0; f(x0, k(x0))

�
=

�
ζ0, f

�
x0, k(x0)

��

(see (38)). Then, between the first two nodes, and in Case
2 of the previous proof, we have:

V
�
x(t))− V (x(t0)

�

≤ �ζ0, x(t)− x(t0)� (t− t0) + σ |x(t)− x(t0)|
1+η

(by Part (2) of Theorem 14; this is where SC is used)

=
�
ζ0, f

�
x(t∗), k(t0)

��
(t− t0) + σ |x(t)− x(t0)|

1+η

(for some t
∗ ∈ (t0, t), by the Mean Value Theorem)

≤
�
ζ0, f

�
x(t0), k(t0)

��
(t− t0)

+KL |x(t∗)− x(t0)| (t− t0) + σ[M(t− t0)]
1+η

≤ −ω(t− t0) +KLMδ(t− t0) + σM1+ηδη(t− t0)

(by the definition of k(x0) and choice of ζ0)

≤
�
−ω +KLMδ + σM1+ηδη

�
(t− t0)

≤ −(ω/2)(t− t0),

if KLMδ + σM1+ηδη < ω/2: this is the replacement for
the second part of (35). Thus a uniform decrease in the
value of V can be guaranteed by taking δ sufficiently small,
and the proof proceeds as before. �
Remark. The proof shows that a feedback k defined by
steepest descent stabilizes {V ≤ E} to {V ≤ e}, provided
that V is continuous and positive definite, the level set
{x : V (x) ≤ E} is compact, and V satisfies both property
SC and infinitesimal decrease on a neighborhood of the set
{x : e ≤ V (x) ≤ E}.

Example. We showed earlier that the function V1 given
by (27) is a (Dini or proximal) clf for the nonholonomic
integrator (14). In Section 5, we proved that V1 is semicon-
cave. In view of Theorem 21, any steepest descent feedback
k induced by it will stabilize the system in the sample-
and-hold sense; we proceed to calculate one explicitly. As
before, we set

σ :=
�

x
2
1 + x

2
2

W (x) := 2max
���σ − |x3|

��, σ
��σ sgn(x3)− 2x3

���,

where sgn(0) is taken to be 0.

Consider a point x = (x1, x2, x3) �= 0. When σ > 0 and
x3 �= 0, the calculations of Section 4 show that we may
achieve pointwise decrease of V1 at rate W (x) by taking

k(x) =






(x1, x2)/σ if |x3|− σ ≥ σ|σ sgn(x3)− 2x3|

−(x1, x2)/σ if σ − |x3| ≥ σ|σ sgn(x3)− 2x3|

(x2,−x1)/σ if σ
�
2x3 − σ sgn(x3)

�
> |σ − |x3||

−(x2,−x1)/σ if σ
�
σ sgn(x3)− 2x3

�
> |σ − |x3||.

When σ = 0, then x3 �= 0, and the choice k(x) = (1, 1)/
√
2

yields

dV1

�
x; f(x, k(x)

�
≤ −2|x3| ≤ −W (x).

When x3 = 0 (so σ �= 0), the choice k(x) = −(x1, x2)/σ
yields

dV1

�
x; f(x, k(x)

�
≤ −2σ ≤ −W (x).

Then k(x) has been defined for all x �= 0, and admits
the rate function W ; since V1 is semiconcave, Theorem 21
assures us that k stabilizes the system.

The function V2 of (28) is another clf for the nonholonomic
integrator. But since it is not semiconcave, it cannot serve
as above to define a stabilizer. The question of how to
design a stabilizing feedback if one has only a clf that fails
to satisfy SC is the next topic, first in the case in which
V is locally Lipschitz, and subsequently when V is merely
continuous.

Locally Lipschitz clf ’s

The purpose of this section is to show how practical
semiglobal stabilizing feedbacks can be constructed from
a Dini clf that is not known to be semiconcave, but is
locally Lipschitz. As noted earlier, the pointwise condition
dV

�
x; f(x, k(x))

�
< −W (x) does not guarantee stabiliza-

tion when V fails to be semiconcave (or smooth).

For a positive parameter λ, we define

Vλ(x) := min
z∈Rn

�
V (z) +

�
λ/2

���x− z
��2
�
. (39)

This is sometimes referred to as a quadratic inf-convolution
(of V ). Clearly, we have 0 ≤ Vλ ≤ V . It can be shown (see
Clarke et al. (1998)) that limλ→∞ Vλ(x) = V (x) for each
x. More precisely, one shows that given any compact set
X and positive �, there exists λ sufficiently large so that
|Vλ(x)− V (x)| < � ∀x ∈ X.

We see therefore that Vλ approximates V , in a way
that improves as λ is taken larger. The point of the
calculations below is to show that, for λ sufficiently large,
Vλ satisfies infinitesimal decrease as well as property SC
on a neighborhood of the set

S := {x : e ≤ V (x) ≤ E}.

This means that it can be used to define a steepest descent
feedback for practical semiglobal stabilization, as we did
earlier in the semiconcave case.

Note that the minimum defining Vλ(x) is always attained
by at least one point zx. By definition of Vλ, we have

V (zx) + λ|x− zx|
2
/2 ≤ V (x).

If x is restricted to a bounded set X, and if MV is an
upper bound for V on the set X, then, since V ≥ 0, this
inequality yields λ|x − zx|

2
/2 ≤ MV . It is a consequence
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of this observation that if µ > 0 is given, then, for all λ
sufficiently large, we have |x− zx| < µ ∀x ∈ X.

It now follows from this, together with Part (11) of
Theorem 14 (invoked locally on bounded sets), that Vλ

satisfies SC at each point of Rn. (In order to invoke the
theorem, we observe that the minimum defining Vλ is
equivalent to a countable infimum in which z is restricted
to having rational coordinates.)

With the above facts in mind, we now suppose that V

satisfies infinitesimal decrease (in the Dini sense) on a
neighborhood Ω of the closed set S := {x : e ≤ V (x) ≤ E},
which we assume compact. We proceed to show how to use
Vλ to define a feedback stabilizing the level set {V ≤ E}

to the level set {V ≤ e}.

Fix ω > 0 so that W (x) > ω ∀x ∈ Ω. Let Ω� be an open
set satisfying

S ⊂ Ω� ⊂ Ω� ⊂ Ω,

and fix e
� ∈ (0, e) so that {x : e� ≤ V (x) ≤ E} ⊂ Ω�. Then,

for λ sufficiently large, we have

{x : Vλ(x) ≤ e
�
} ⊂ {x : V (x) ≤ e},

{x : Vλ(x) ≤ E} ⊃ {x : V (x) ≤ E}. (40)

(The second inclusion here is in fact automatic, for any
λ.) We also have that, for any point x ∈ Ω�, any point zx
at which the minimum defining Vλ(x) is attained satisfies
zx ∈ Ω. For any such x and zx, the minimization implies

dV (zx; v) + λ �zx − x, v� ≥ 0 ∀ v ∈ Rn
. (41)

Now choose any ux ∈ U satisfying

dV (zx; f(zx, ux)) < −ω;

this is possible because V satisfies infinitesimal decrease
in Ω. Set fz := f(zx, ux) and f := f(x, ux).

Lemma. If λ is sufficiently large, we have

dV (zx; f) < −ω/2.

Proof. Let KV be a Lipschitz constant for V on the
relevant set. Let dV (zx; fz) be realized by the sequence
ti:

dV (zx; fz) = lim
i

V (zx + tifz)− V (zx)

ti
< −ω.

Then

dV (zx; f) ≤ lim inf
i

V (zx + tif)− V (zx)

ti

≤ lim sup
i

V (zx + tif)− V (zx + tifz)

ti

+ lim inf
i

V (zx + tifz)− V (zx)

ti

≤ KV |f − fz|+ dV (zx; fz) ≤ −ω/2,

if KV |f − fz| < ω/2. But this holds when λ is sufficiently
large, since |f − fz| ≤ Kf |x − zx|, where Kf is a suitable
Lipschitz constant for f . �

Now (41) and the lemma imply λ �x− zx, f� < −ω/2.
Then

Vλ(x+ tf)− Vλ(x)

t

≤ V (zx) + λ|x+ tf − zx|
2
/2− V (zx)− λ|x− zx|

2
/2

t

= λ �x− zx, f�+ λt|f |2/2,

whence dVλ(x; f) < −ω/2.

This shows that Vλ satisfies infinitesimal decrease on the
set Ω�. Since it also has property SC, Theorem 21 (see
the remark after the theorem) assures us that the steepest
descent feedback k (for Vλ) stabilizes {Vλ ≤ E} to {Vλ ≤
e
�}. By (40), this implies that the set {V ≤ E} is stabilized
to {V ≤ e}. We have proved:

Theorem 22. Let V be locally Lipschitz and nonnegative.
Suppose that the set {x : V (x) ≤ E} is compact, and
that V satisfies infinitesimal decrease (in the Dini sense,
for some rate function) on a neighborhood of the set

{x : e ≤ V (x) ≤ E}.

Then, for λ sufficiently large, a steepest descent feedback
induced by Vλ stabilizes {V ≤ E} to {V ≤ e}.

Note that in contrast to the smooth or semiconcave cases
examined previously, the stabilizing feedback is no longer
defined via V , but rather via Vλ. Furthermore, the λ must
be sufficiently large in a way that depends on r and R,
and hence on the desired degree of practical semiglobal
stabilization. Thus, in contrast to the earlier smooth and
semiconcave cases, we have not constructed here a single
feedback that stabilizes the system in the sample-and-hold
sense, although Theorem 19 assures us that one exists. (It
can be constructed only at the expense of considerably
more technical difficulty.)

Example. We return to the system (30). We had found a
function

V (x, y) =
��|y|− 1

��+ |x|

which is a clf with respect to a subset T of B(0, 1). It is
easy to see that V is locally Lipschitz, but that it does not
satisfy property SC on Rn\T . (Consider the point (0, 2),
for example, where V has a ‘convex corner’ and cannot
therefore be semiconcave.) This accounts for the fact that
the feedback associated to the field of trajectories that
generated V (see Fig. 6) fails to stabilize the system to
T in the sample-and-hold sense: dithering may occur at
points on the set |y| = 1, or at points on the y-axis.

To find a suitable feedback by Theorem 22, we are led to
calculate the function

Vλ(x, y) = min
α,β

|α|+
��|β|− 1

��+ (λ/2)
�
|x− α|2 + |y − β|2

�

together with its steepest descent feedback k. Restricting
attention to the first quadrant for ease of exposition,
we obtain different expressions for Vλ, corresponding to
whether x is to the left or right of λ−1, and depending also
upon where y is situated relative to 1 − λ−1 and 1 + λ−1

(thus, six different cases).

The corresponding values of the steepest descent feedback
induced by Vλ are then easily found. The resulting direc-
tions of movement are indicated on Fig. 8, except in the
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domain that contains the point (0, 1): Vλ does not satisfy
infinitesimal decrease there.

x

y

1

1 − λ−1

1 + λ−1

0 λ−1

?

Fig. 8. A stabilization strategy

Stabilization no longer
leads to the point (0, 1),
as the field of trajec-
tories does, but to a
neighborhood of that
point, one which can be
made arbitrarily small
by taking λ sufficiently
large.

We observe that, in
contrast to the initial
field of trajectories (see
Fig. 6), the feedback in-
duced by Vλ admits a
zone around y = 1 with
positive thickness in which the trajectories move to the
left. This feature, which is reminiscent of a technique
sometimes used in sliding-mode control to reduce dither,
is an automatic byproduct of our approach. In effect, it is
why sample-and-hold stabilization takes place.

Continuous clf ’s

Let V be a proximal clf that is merely continuous, without
any of the extra assumptions introduced above (smooth,
semiconcave, or locally Lipschitz). (This includes the case
of a merely continuous Dini clf, in view of Prop. 11.) We
now show how to use V to define stabilizing feedbacks for
practical semiglobal stabilization.

The definition of the feedback amounts to a conceptual
algorithm. We design the feedback kλ(x) as follows, for
any x:

Find a point zx minimizing z �→ V (z) + λ|x− z|2/2, then
select kλ(x) ∈ argmin u∈U �x− zx, f(zx, u)�.
Note that this definition requires more computation than
does a steepest descent feedback.

Theorem 23. Let {V ≤ E} and {V ≤ e} be given level sets
of a proximal clf, where 0 < e < E. Then, for λ sufficiently
large, the feedback kλ stabilizes {V ≤ E} to {V ≤ e}.

Proof. (Sketch) We define Vλ by (39) as before. Recall
that we can choose λ sufficiently large as in the proof
of Theorem 22 so that the level sets of V are closely
approximated by corresponding ones of Vλ, and so that
zx is µ-close to x for all x in a bounded set Ω containing
those level sets. By definition, we have

V (zλ) + λ|x− zx|
2
/2 ≤ V (x),

whence

λ|x− zx|
2 ≤ 2

�
V (x)− V (zλ)

�
≤ 2m(µ), (42)

where m is a modulus of continuity for V on Ω.

It follows from the definition of zx that

ζ := λ(x− zx) ∈ ∂PV (zx).

Because V is a proximal clf, we deduce that, for some
positive ω, and for all x ∈ Ω,

min
u∈U

�
ζ, f(zx, u)

�
< −ω.

Then, setting f := f
�
x, kλ(x)

�
, we have, by definition of

kλ, and by (42):
�
ζ, f

�
= min

u∈U

�
λ(x− zx), f(x, u)

�

≤ min
u∈U

�
λ(x− zx), f(zx, u)

�
+Kfλ|x− zx|

2

< −ω + 2Kfm(µ) < −2ω/3,

if µ has been chosen small enough. We now derive, as in
the proof of Theorem 22, the estimate

Vλ(x+ tf)− Vλ(x) ≤ tλ �x− zx, f�+ λt2|f |2/2
≤ −tω/3,

if t ≤ δ for a mesh size δ sufficiently small. As in previous
arguments, this provides the decrease between nodes that
guarantees the stabilization of level sets of Vλ (and hence
of V ). �

The minimal-time function T (·) found for the double
integrator (8) is an example of a merely continuous clf,
with none of the additional regularity used earlier. It
can be shown, however, by an ad hoc argument, that a
pointwise steepest descent feedback induced by T does
nonetheless stabilize the system in this case (in contrast
to the example (30), where this fails).

We remark that there also exists a smooth clf for the
double integrator (8). We prove this as follows. Define a
multifunction F (x, y) to equal {(y,−1)} to the right of the
switching curve S, {(y,+1)} to the left, and {y}× [−1, 1]
on S. Then we can show that the trajectories of F are
exactly the minimal-time ones, and so (x�

, y
�) ∈ F (x, y) is

strongly stable. Because F is relaxed and has closed graph,
it follows from Theorem 1 that F admits a smooth clf V in
the strong sense. Then V is a smooth clf for the system (8).
As a consequence of this, we also deduce (by Theorem 5)
that the system admits a continuous stabilizing feedback
(for which we have no explicit expression).

State constraints, optimal feedbacks

There are situations in which the state x is naturally
constrained to lie in a given closed set S, so that in steering
the state to the origin, we must respect the condition
x(t) ∈ S, referred to as a (unilateral) state constraint.
The same questions arise as in the unconstrained case:
is the possibility of doing this in the open-loop sense
characterized by some kind of Lyapunov function, and
would such a function lead to the design of a stabilizing
feedback that respects the state constraint? The more
challenging case is that in which the origin lies on the
boundary of S, but the case in which 0 lies in the interior of
S is also of interest, since it serves in particular to localize
around the origin the global, state-constraint-free situation
that has been the focus of this article.

An important consideration in dealing with state con-
straints is to identify a class of sets S for which meaningful
results can be obtained. In Clarke and Stern (2003, 2005),
the methods described above are extended to the case of
state constraints specified by a set S which is wedged (see
Clarke et al. (1998)). This rather large class of sets includes
smooth manifolds with boundaries and convex bodies (as
well as their closed complements).
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A further hypothesis is made regarding the consistency of
the state constraint with the dynamics of the system: for
every nonzero vector ζ in the normal cone coNL

S (x) to a
point x ∈ bdryS (see Section 3), there exists u ∈ U such
that �f(x, u), ζ� < 0. Thus an ‘inward-pointing’ velocity
vector is always available.

Under these conditions, and in terms of suitably-defined
extensions to the state-constrained case of the underlying
definitions, one can prove the equivalence between control-
lability, feedback stabilization, and the existence of (locally
Lipschitz or semiconcave) control-Lyapunov functions.

A different issue arises in optimal control: that of designing
feedbacks which generate optimal (or near-optimal) trajec-
tories. Results in this vein are described in Nobakhtian
and Stern (2000), and in Clarke et al. (2002) for the
case in which the optimal control problem features state
constraints. The methodology is much the same as that of
Theorem 23, but with the clf’s replaced by value functions.

Robustness

The use of sample-and-hold implementation allows a rig-
orous and detailed error analysis of the feedbacks designed
above, encompassing many possible types of error. We give
here only a brief introduction to the topic (but see also
Section 10). We refer to Clarke et al. (2000), Ledyaev and
Sontag (1999), and Sontag (1999) for details.

To illustrate, suppose that in applying the feedback k at
the node xi we have, on the partition interval [ti, ti+1], not
the ideal differential equation

x
�(t) = f

�
x(t), k(xi)

�

considered previously, but rather

x
�(t) = f

�
x(t) + e1, k(xi +m) + e2

�
+ e3,

where e1, e2, e3 reflect imprecision in applying (or model-
ing) f , and where m is measurement error in sampling the
state at the node xi. Then the fact that f is continuous
allows us to write

x
�(t) = f

�
x(t), k(xi +m)

�
+ a,

where a is small when e1, e2, e3 are small. We call a the
actuator error. Other types of imprecision can be reduced
to actuator error as well, such as delay in applying the
feedback. (This is discussed in Clarke and Vinter (2009).)

Note, however, that m cannot be reduced to a in this way,
since k is not continuous. In fact, measurement errorm and
actuator error a represent fundamentally different types of
error, leading to different robustness results.

Roughly speaking, sample-and-hold implementation of a
Lyapunov-based steepest descent feedback is always ro-
bust to actuator error, in the sense that the underlying
feedback still stabilizes the system, within a tolerance that
is proportional to the size of the error. Without going into
full detail, let us examine a typical argument leading to
such a conclusion (we take measurement error m = 0).

In the proof of Theorem 20, we wish to show that decrease
of V between nodes (that is, the calculation of Case 2)
continues to hold when f is replaced by f + a, provided

that |a| is sufficiently small. The initial estimate in the
original proof becomes

V (x(t))− V (x(t0)) = �∇V (x(t∗)), x�(t∗)� (t− t0)

(by the Mean Value Theorem, for some t
∗ ∈ (0, t))

= �∇V (x(t∗)), f(x(t∗), k(t0)) + a� (t− t0).

We observe that this last term is bounded above by

�∇V (x(t∗)), f(x(t∗), k(t0))� (t− t0) + N |a|(t− t0).

After the same series of estimates as before, we now obtain,
at the end, the following upper bound on the decrease
between nodes:

{−ω + δ (LK +MN)M +N |a|} (t− t0).

(Note the new term involving a.) Overall, this can still be
guaranteed to be negative (for δ sufficiently small), pro-
vided that |a| < ω/N . Thus, decrease of V between nodes
(and hence, stabilization) continues until the decrease rate
ω becomes too small to deal with the actuator error.

We summarize to this point by saying that actuator error
simply degrades performance proportionally to its size; we
retain a degree of practical stabilization.

Consider now the possibility of state measurement error in
implementing the feedback law: we are at x, but measure
the state as x+m, and therefore apply the control k(x+m)
instead of the correct value k(x). When k is continuous,
then small m leads to a small effect (which can be reduced
to actuator error, as above). In the case of discontinuous
feedback, the effect of measurement error is more subtle,
and generally harder to deal with.

It is a fact that the (generally discontinuous) feedback
laws constructed above do possess a relative robustness
property: if, in the sample-and-hold implementation, the
measurement error is at most of the same order of magni-
tude as the partition diameter, then practical stabilization
is obtained. To put this another way, the step size may
have to be big enough relative to the potential errors (to
avoid dithering, for example).

This is different from the preceding actuator error analysis,
where, once the size of the error is bounded, all sufficiently
fine partitions give rise to stabilization (up to a certain
point, depending on the bound). Now, the bound on the
measurement error is a function of the partition diameter.

There is another, stronger type of robustness (we call
it absolute robustness), in which the presence of small
measurement errors preserves practical stabilization inde-
pendently of the step size. Ledyaev and Sontag (1999) have
shown that there exists an absolutely robust stabilizing
feedback for the system if and only if it admits a smooth
clf. This, then, is an advantage that such systems have.

To illustrate, recall that the nonholonomic integrator (14)
and the system (17) both fail to be stabilizable by contin-
uous feedback; both admit discontinuous stabilizers. The
nonholonomic integrator does not admit a smooth clf,
and hence fails to admit an absolutely robust stabilizing
feedback. The system (17), on the other hand, does so. We
remark that to recover absolute robustness, one can turn
to dynamic feedback ; see Ledyaev and Vinter (2010).
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Regular and essentially stabilizing feedbacks

In view of the fact that an asymptotically controllable sys-
tem need not admit a continuous stabilizing feedback, the
question arises of the extent to which the discontinuities
of a stabilizer can be minimized. L. Rifford has shown
(nonconstructively) that, for systems affine in the control,
there exists a stabilizing feedback whose discontinuities
form a set of measure zero. Moreover, the discontinuity set
is repulsive for the trajectories generated by the feedback:
the trajectories lie in that set at most initially. In the
case of planar systems, Rifford has classified the types of
discontinuity that must occur in stabilizing feedbacks. He
has also proved that there exists a smooth feedback which
almost stabilizes the system (that is, from almost all initial
values).

We use the rest of our time together to consider two
settings in which discontinuous feedbacks play a central
role: feedback blending, and sliding modes.

9. FEEDBACK BLENDING

It may happen that we have two feedbacks on hand for the
system (∗), one that stabilizes effectively near the origin,
the other that drives distant points to a neighborhood of
0. This raises the issue of how to make the transition from
one to the other. If the two feedbacks are continuous, one
may want the new combined feedback to be continuous.
This is decidedly problematic.

In the context of sample-and-hold implementation of feed-
backs defined by means of a clf, however, continuity is
irrelevant, and certain natural constructions become pos-
sible.

Let V0 be a clf for the system (in the smooth, Dini,
or proximal sense) that drives all points in the level set
{x : V0(x) ≤ ∆0} to the origin, and let k0 be a stabilizing
feedback associated to it by one of the methods described
earlier.

Now let V1 be a clf inducing practical stabilization to the
target set {x : V1(x) ≤ δ1}, and k1 its associated feedback.
We wish to blend k0 and k1 into a single feedback k so
that k = k1 for large x, and so that k0 takes over near the
origin: k = k0 in a neighborhood of 0.

The motivation for this might be that k0 is a feedback
with desirable regularity properties, but which fails to
have values in the set U when x is large. For example,
k0(x) = Kx might be a linear feedback valid near the
origin, but which satisfies k0(x) ∈ U only when x is
sufficiently small (since U is compact). V1, for its part,
might be a clf giving only practical stabilization, perhaps
obtained by the methods of Section 6.

In order to hope to succeed in this endeavor, it is clear
that we must have at least

{x : V1(x) ≤ δ1} ⊂ {x : V0(x) ≤ ∆0}. (43)

We now describe two different approaches to the issue.

A hybrid transition

Let us suppose that (43) holds in a stronger sense, with
overlap: for some η > 0 we have

{x : V1(x) ≤ δ1 + η} ⊂ {x : V0(x) < ∆0}. (44)

Then we introduce a modified sample-and-hold implemen-
tation scheme as follows: from a given initial state value
x0, if V0(x0) < ∆0, the feedback k0 is used exclusively:
stabilization to the origin results. If V0(x0) ≥ ∆0, then
k1 is applied in the initial phase of sample-and-hold.
Subsequently, there must be a first node xi for which
V1(xi) < δ1 + η/2; thus V0(xi) < ∆0, in light of (44).
Starting at that node, we apply k0 thereafter.

All initial conditions x0 are stabilized to the origin in this
manner. Note, however, that there is a new hybrid element
to the stabilization scheme, since a switch of feedbacks
occurs along the way, and the values of V0 and V1 must
be monitored until the switch occurs. We describe now
another approach that brings us back to the case of a
steepest descent feedback induced by a single clf.

(Remark: in the first phase of this procedure, which aims
for the set {x : V (x) < δ1 + η/2}, the thin set fallacy is
avoided, since the (open) set in question is ‘fat’.)

A new clf

We assume that V0 is semiconcave, and satisfies infinites-
imal decrease (see (38)) on the set {x : V0(x) ≤ ∆0}.
Concerning V1, we assume that, on the complement of the
set {x : V1(x) ≤ δ1}, it satisfies infinitesimal decrease and
is semiconcave (that is, satisfies property SC of Section 5
at each point).

The hypothesis (43) is strengthened as follows: for some
positive δ0 < ∆0 and ∆1 > δ1, and for some sufficiently
small η > 0, the level sets are intertwined as follows:

{x : V1(x) ≤ δ1} ⊂ {x : V0(x) ≤ δ0} (45)
{x : V0(x) ≤ δ0}+B(0, η) ⊂ {x : V1(x) ≤ ∆1} (46)

{x : V1(x) < ∆1} ⊂ {x : V0(x) < ∆0}. (47)

We also assume universal bounds of the form

V1(x) ≤ α1 + β1|x|
2
, V0(x) ≥ β2|x|

2 ∀x ∈ Rn
, (48)

for certain positive constants (other types of growth
bounds could also serve).

The point in the following is that it is the Lyapunov
functions that are blended first, from which is derived a
blending of the feedbacks.

Theorem 24. There exists a semiconcave clf V of the form

V (x) := min{V0(x), cV1(x) + d}

which induces a steepest descent feedback k whose value
at every point x is either k0(x) or k1(x), that agrees with
k1 on the set {x : V1(x) ≥ ∆1} and with k0 on the set
{x : V0(x) ≤ δ0}, and that globally stabilizes the system
in the sample-and-hold sense.

Proof. We begin by establishing
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Lemma 1. There exist positive constants c and d such that

V0(x) ≤ δ0 =⇒ cV1(x) + d > δ0
V1(x) ≥ ∆1 =⇒ cV1(x) + d < V0(x).

We prove this by first picking d > δ0 so that V0(x) > d

for all x satisfying V1(x) ≥ ∆1; this is possible because of
(46). The first desired implication evidently holds for any
positive c, since V1 is nonnegative. Note that (by choice of
d) the function

x �→ V0(x)− d

α1 + β1|x|
2

is strictly positive on the set {V1 ≥ ∆1}, and, in the
limit as |x| → ∞, is bounded below by β2/β1 > 0 (as
a consequence of (48)). This implies the existence of a
constant c > 0 such that

V1(x) ≥ ∆1 =⇒ V0(x)− d

α1 + β1|x|
2
> c.

It follows now from (48) that c and d have the properties
stated in the Lemma.

We now define

k(x) :=

�
k0(x) if V0(x) ≤ cV1(x) + d

k1(x) if V0(x) ≥ cV1(x) + d

(the ambiguity when equality holds may be resolved by
either choice). We must verify that k0 and k1 are indeed
available (that is, defined) when they are called upon in
this definition.

Case 1. When V1(x) ≥ ∆1, then cV1(x) + d < V0(x) (by
Lemma 1), so that k1(x), which is defined for such x, is
available as required by the definition of k.

Case 2. When V0(x) ≤ δ0, then cV1(x) + d > δ0 ≥ V0(x)
(by Lemma 1), so that k0(x), which is defined for such x,
is available as required by the definition of k.

Case 3. For the remaining values of x, we have both
δ0 < V0(x) and V1(x) < ∆1; it follows from the second
inequality, together with (47), that k0(x) is defined; it
follows from the first inequality, together with (45), that
k1(x) is defined. Since both k0(x) and k1(x) are defined,
then k(x) is too.

Note that this analysis shows that k agrees with k1 on the
set {V1 ≥ ∆1}, and with k0 on the set {V0 ≤ δ0}. We now
show that k is a steepest descent feedback for a certain
semiconcave clf V , from which it follows that k stabilizes
the system (see Theorem 21).

We define

V (x) := min{V0(x), cV1(x) + d},

a function which is easily seen to be continuous, positive
definite, and proper.

Lemma 2. V is semiconcave on Rn\{0}.

We wish to verify that property SC of Section 5 holds at
every point x �= 0. To prove this, it suffices to consider
points

x ∈ {y : V1(y) ≤ δ1},

since V1 (and therefore cV1+k) satisfies SC on the comple-
ment of this set, V0 satisfies SC on Rn\{0}, and since the
pointwise minimum of two functions both satisfying SC at
a point also satisfies SC at the point (see Theorem 14).
Accordingly, let x �= 0 satisfy V1(x) ≤ δ1. Then V0(x) ≤ δ0
by (45), which yields

cV1(x) + d > δ0 ≥ V0(x),

by Lemma 1. It follows that locally, V coincides with V0,
whence V satisfies SC at x. The Lemma is proved.

The final step in the proof is to show that k satisfies the
infinitesimal decrease condition for V at every x �= 0, in
the sense of (38): It follows then from Theorem 21 that k
stabilizes the system.

When V0(x) < cV1(x) + d, we have V = V0 locally and
k = k0. But (by Lemma 1) we also have V1(x) < ∆1, so
that V0(x) < ∆0 (by (47)), and infinitesimal decrease for
V0, k0 holds; that is

∃ ζ ∈ ∂CV0(x) such that
�
ζ, f(x, k0(x)

�
< −W0(x),

where W0 is the decrease rate function associated to V0.
Since V = V0 locally, we have ζ ∈ ∂CV (x), and since
k = k0, we deduce infinitesimal decrease for V, k at x (with
rate W0(x)).

When V0(x) > cV1(x) + d, we have V = cV1 + d locally
and k = k1. We claim that V1(x) > δ1. Indeed, if we have
V1(x) ≤ δ1, then V0(x) ≤ δ0 (by (45)), whence

cV1(x) + d > δ0 ≥ V0(x)

(by Lemma 1), a contradiction that proves the claim. It
follows now that V1, k1 satisfies infinitesimal decrease at x:

∃ ζ ∈ ∂CV1(x) such that
�
ζ, f(x, k1(x))

�
< −W1(x),

where W1 is the decrease rate function associated to V1.
Since

∂C
�
cV1 + d

�
= c∂CV1,

and since V = cV1 + d locally, we deduce c ζ ∈ ∂CV (x).
We have k(x) = k1(x), whence

�
c ζ, f(x, k(x))

�
< −cW1(x),

which shows that V, k satisfies infinitesimal decrease at x
with rate cW1(x).

The remaining case is that in which V0(x) = cV1(x) + d.
In that case, nonsmooth calculus provides the formula

∂CV (x) = co
�
∂CV0(x), c∂CV1(x)

�
.

Suppose first that we have elected to define k(x) = k0(x).
Then the required infinitesimal decrease for V, k will follow
from that for V0, k0 as in the argument above; we know this
holds provided V0(x) < ∆0, which we proceed to verify: We
have V1(x) < ∆1 in view of Lemma 1, so that V0(x) < ∆0

by (47).

If, alternatively, we have elected to define k(x) = k1(x),
then the required infinitesimal decrease for V, k will fol-
low as above from that for V1, k1, which holds provided
V1(x) > δ1, which we now verify: We have V0(x) > δ0 in
view of Lemma 1, so that V1(x) > δ1 by (45). �
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We remark that the proof provided the rate function
min{W0, cW1} for the clf V and its steepest descent
feedback k.

10. SLIDING-MODE CONTROL

Sliding-mode control is a well-known stabilization tech-
nique which has generated a large literature: we refer to the
monographs of Utkin (1992) and Edwards and Spurgeon
(1998) and overviews of the field by Slotine and Li (1991)
and by Young et al. (1999).

Under sliding-mode control, the state is first driven to-
wards a subset Σ of the state space, the sliding set, which
possesses a strong stability property. Subsequently, the
state trajectory remains near Σ and moves asymptotically
to the origin.

Sliding-mode feedbacks commonly take the form

x �→ g(x) + k(x) (49)

in which g(x) is smooth and k(x) is a discontinuous feed-
back with values in U . The purpose of the discontinuous
term k(x) is to force the state to approach Σ at a uniformly
positive rate. The continuous term g(x) can be thought of
as a preliminary configuration of the system.

Since, if ever the state trajectory departs from Σ, the
controller drives it back towards Σ, we expect that the
state trajectory attains Σ and then remains in it in some
sense. If sliding-mode control is implemented digitally,
with a high sample rate, the control values generated by
the control law are typically observed to switch rapidly,
after the state trajectory first crosses Σ, in such a manner
that the state trajectory remains close to Σ, and lies in Σ,
in the limit as the sample period tends to zero.

The classical approach to analyzing the feedback response
of a system under sliding-mode control assumes that
the state approaches and attains the sliding set Σ in
an initial phase, and remains in it thereafter in the
final phase. In the final phase, reduced (or ‘equivalent’)
dynamics pertain, and traditional techniques are employed
to analyze stability.

On the face of it, this would seem to come perilously
close to the thin set fallacy (since, in fact, Σ is usually
a set of measure zero), which is cause for concern when
discontinuous feedbacks are involved (see Section 7). What
makes the technique work in this case is that the sliding set
is strongly stable, so that simply remaining near Σ suffices
to drive the state to 0. Clearly, however, any analysis
based on the supposition that, in the final phase, the state
remains precisely in the sliding set can only have heuristic
value, and necessarily precludes treating certain types of
error.

In Clarke and Vinter (2009), certain Lyapunov functions,
together with steepest descent feedbacks implemented in
the sample-and-hold sense, are used in the analysis of
sliding-mode control. A distinctive feature of this approach
is that it takes account, from the outset, of implementa-
tion constraints, and gives conditions under which these
controllers are stabilizing, in the presence not only of
large disturbances, but also of modeling, actuator and

observation errors. We obtain in this way the first rigorous
error analysis of the procedure.

Theorem 25 below pertains to a model featuring ‘delay-
free, zero-order hold’ digital control implementation, in
which the state is measured and the corresponding control
value is calculated instantaneously at each sample time,
and this control value is applied until the next sampling;
that is, sample-and-hold. The focus on a particular imple-
mentation scheme might seem restrictive, but this is not
the case. Indeed, as shown in Clarke and Vinter (2009),
many practical implementation schemes (digital control
with time delay, filtering, hysteresis and/or regulariza-
tion of the discontinuous controller) can be interpreted
as a standard sample-and-hold scheme with measurement
and/or actuator error, and are therefore covered by our
model.

System description

Given the initial condition x0, a partition π = {ti}i≥0 of
[0,∞), and a two-part feedback g, k as in (49), we generate
a state trajectory x(·) as follows:

x(0) = x0

x
�(t) = f

�
x(t), ui, d(t)

�
a.e. t ∈ [ti, ti+1],

�
(50)

where the constant control value ui applied on the parti-
tion interval [ti, ti+1] is given by

ui = ai + g
�
x(ti) +mi

�
+ k

�
x(ti) +mi

�
∀ i ≥ 0,

and where d(·) : [0,∞) → Rk is a measurable function
having values in a given subset D of Rk. Note that f now
depends on the additional ‘disturbance variable’ d.

The sequences {ai} and {mi} describe the n-vector actua-
tor errors and m-vector measurement errors at successive
sample instants, respectively, and d(·) is a disturbance
signal. Because the feedback law is applied in a sample-
and-hold manner, a physically meaningful state x(·) is
generated by the scheme, depending of course on the initial
state x0 and the partition, the values of the feedback, the
errors mi and ai, and the disturbance d(·). In contrast to
earlier sections, there is no single trajectory generated by
the partition and the feedback; stabilization is now un-
derstood in the robust sense that all possible trajectories
generated this way go to zero (for suitably fine partitions,
for sufficiently small errors).

The hypotheses on the data are: continuity and linear
growth of f and g, compactness of U andD, local Lipschitz
behavior of f with respect to the state.

Lyapunov functions for sliding-mode control

We assume that the feedback design has been carried out
in ignorance of the measurement and actuator errors, and
on the basis of a possibly inaccurate nominal dynamic
model:

x
� = f0(x, u, d)

in which the function f0 may differ from the true dynamic
function f . The only hypothesis imposed on f0 is that it
be continuous.
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We proceed to introduce not one, but two Lyapunov
functions V1 : R

n → [0,∞) and V2 : R
n → [0,∞), a

decrease rate function W : Rn → [0,∞) associated with
V2, and a subset Σ ⊂ R

n of the state space, the sliding
set. Σ is assumed to be a closed set containing the origin.

V1 will be used to capture the property that the sliding-
mode control drives the state arbitrarily close to Σ, in
finite time. V2 is associated with the subsequent motion of
the state to a neighbourhood of the origin. V1, V2 and W

will be required to satisfy the following conditions.

(LF1): V1 is a continuous nonnegative function, and
V1(x) = 0 if and only if x ∈ Σ. Furthermore, the restriction
of V1 to R

n\Σ is continuously differentiable, and there
exists ω1 > 0 such that

�
∇V1(x), f0

�
x, g(x) + k(x), d)

��
≤ −ω1

∀x ∈ R
n
\Σ, d ∈ D.

Note that V1 is not assumed to be differentiable at points
in Σ.

Now we define the set F0(x) as follows:
�
lim
i→∞

f0

�
x, g(x) + k(xi), d

�
: xi → x, d ∈ D

�
.

We may think of F0(x) as consisting of all possible velocity
values x

� when the state is at x (in limiting terms, and
for the nominal dynamics given by f0). Note that F0(x)
reduces to

f0(x, g(x) + k(x), D)

if k is continuous at x. Another case of special interest is
that in which k(x) takes a given value k+ everywhere on, or
to one side of, a given sliding hypersurface Σ of dimension
n − 1, and a value k− on the opposite side. Then, at any
point x of Σ, we have

F0(x) =
�
f0(x, g(x) + k+, d) : d ∈ D

�

∪
�
f0(x, g(x) + k−, d) : d ∈ D

�
.

The set F0(x) is used to express the decrease condition
satisfied by V2.

(LF2): V2 and W are continuous nonnegative functions
such that V2(0) = W (0) = 0 and

V2(x) > 0 and W (x) > 0 for x ∈ Σ\{0}.

Furthermore, the restriction of V2 to R
n\{0} is continu-

ously differentiable, and

max
w∈F0(x)

�
∇V2(x), w

�
< −W (x) for all x ∈ Σ\{0}.

Observe that (LF1) and (LF2) incorporate variants of
the usual infinitesimal decrease condition of clf’s. That of
(LF2) is stated with the help of F0 because it would not
make sense to simply require, for example, that the inner
product

�∇V2(x), f(x, g(x) + k(x), d)�

be negative when x lies in Σ. The reason for this is that
the set Σ may be thin, and k may be discontinuous; an
implementation might never actually evaluate k at any

points in Σ, so that the values of the inner product on
merely the sliding set cannot in themselves assure the
required stabilization.

We require one more property of the Lyapunov pair:

(LF3): V1 + V2 is proper; that is, for any c, the following
level set is bounded:

{x : V1(x) + V2(x) ≤ c }.

Sufficient conditions for stabilization

The theorem below is taken from Clarke and Vinter (2009).
It asserts that if the actuator and measurement errors are
sufficiently small (the proof gives explicit bounds), if the
modeling error between f and f0 (matched to the gradients
of V1 and V2) is sufficiently small, and if the partition size
is small enough (or equivalently, the sampling rate high
enough), then sample-and-hold stabilization takes place.

We define the set M(x) by
�
lim
i→∞

(f − f0)(x, g(x) + k(xi), d) : xi → x, d ∈ D
�
.

We may think of M(x) as consisting of the relevant
modeling error (in limiting terms) at the state x.

Theorem 25. Let V1, V2, W , and Σ satisfy hypotheses
(LF1)–(LF3). Choose any numbers

R > r > 0, ω ∈ (0,ω1), � > 0.

Then there exist positive numbers

C, em, ea, δ, e1, e2, T

(where C does not depend on r) with the following
properties:

Take any sequences {mi} and {ai} in R
m and R

n respec-
tively, partition {ti}, measurable function d : [0,∞) → D

and x0 ∈ B(0, R) satisfying

|mi| ≤ em, |ai| ≤ ea, |ti+1 − ti| ≤ δ for all i.

Suppose in addition that the two following bounds on
modeling error hold:
���∇V1(x), f(x, g(x) + k(x), d)− f0(x, g(x) + k(x), d)

���
≤ e1 ∀ x ∈ B(0, C)\Σ, d ∈ D, (51)

and
���∇V2(x), w

��� ≤ e2

∀ w ∈ M(x), x ∈
�
B(0, C) ∩ Σ

�
\{0}. (52)

Let x(·) be any state trajectory generated by (50) (such
trajectories exist). Then

|x(t)| ≤ C ∀ t ≥ 0, x(t) ∈ B(0, r) ∀ t ≥ T.

Furthermore,

dΣ

�
x(t)

�
≤ � for all t ∈ [V1

�
x(0)

�
/ω,∞),

where dΣ is the Euclidean distance to the set Σ.

An example

We now illustrate in a simple example how sliding-mode
control can yield robust feedback stabilization in the
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presence of arbitrarily large modeling error (at the price
of large and active control laws); we also interpret in our
context the known issue of ‘matching’ the errors.

The setting is a familiar one in texts on sliding-mode
control (see for example Slotine and Li (1991)). We take
n = 2 and denote points in state space by (x, y). The
dynamics are given by

x
�(t) = y(t), y

�(t) = h
�
x(t)

�
+ u(t).

The goal is to stabilize the state to the origin by means of
continuous + switching state feedback, where the switch-
ing term is bounded in magnitude by some constant L > 0.

The choice of sliding set is

Σ := {(x, y) : x+ y = 0},

a choice motivated by the fact that if the (x, y) could be
restricted to a neighborhood of Σ (by some discontinuous
feedback strategy), the dynamics would then imply ẋ ≈
−x, which in turn seems to imply the stabilization of x
to 0. As for the component y of the state, note that the
corresponding differential equation

ẏ(t) = h
�
x(t)

�
+ u(t)

leaves the fate of y somewhat in doubt; of course, this
differential equation is irrelevant on the sliding set itself,
except (possibly) as a limiting idealization. On the other
hand, the relation y(t) ≈ −x(t) tends to confirm that y

should converge to 0 too. Given that in practice the state
(x, y) will not be exactly in Σ, a rigorous analysis requires
a different approach; Theorem 25 provides this.

We take a nominal dynamic system having the same
structure:

x
�(t) = y(t), y

�(t) = h0

�
x(t)

�
+ u(t).

where the modeling error h− h0 may be large. (However,
we suppress the disturbance signal, for ease of exposition.)
It is assumed that h and h0 are continuous and have
linear growth, and that h − h0 is globally bounded; we
also assume that h is Lipschitz on bounded sets.

We wish to place ourselves in the general framework
considered by Theorem 25, for n = 2,m = 1 and

f(x, y, u) = [ y, h(x) + u ]T , U = [−L,L].

Thus we seek a feedback

(x, y) �→ g(x, y) + k(x, y),

where k(x, y) ∈ [−L,L]. The nominal function f0 is the
same as f , but with h replaced by h0.

We first choose Lyapunov functions in accordance with
(LF1)–(LF3). A natural choice for V1 is

V1(x, y) := |x+ y|,

which is continuous, zero precisely on Σ, and continuously
differentiable on R

2\Σ. The decrease condition required in
hypothesis (LF1) of the Theorem becomes

x+ y

|x+ y|

�
h0(x) + y + g(x, y) + k(x, y)

�
≤ −ω1.

This suggests taking

g(x, y) = −h0(x)− y, k(x, y) = −L sgn(x+ y).

(The value assigned to sgn(0) will be immaterial.) With
these choices, we see that ω1 can be taken to be L.

There are many possible choices for V2, but a function
depending only upon x suggests itself, for the reason that
∇V2 then has a zero inner product with f − f0: the
Lyapunov function is ‘matched’ to the modeling error. This
automatically assures that the bound (52) in the statement
of the theorem will be satisfied. We take V2(x, y) = x

2.

With these choices, we see that (LF2) and (LF3) are
satisfied, for W (x, y) = x

2.

Proposition 26. Suppose that L is taken larger than

�h− h0�∞ := sup
x∈Rn

|(h− h0)(x)|.

Then, for any 0 < r < R, for all sufficiently small levels
of actuator and measurement error, and for all sufficiently
fine partitions, the feedback given above stabilizes initial
points in B(0, R) to B(0, r).

Proof. (Sketch) In order to apply Theorem 25, we set
ω1 = L and then take any ω in the open interval

(0, L− �h− h0�∞).

The left side of (51) is bounded by �h − h0�∞, which
can be shown to provide a suitable choice of e1 (for all
sufficiently small values of ea, em and δ). As mentioned,
(52) holds automatically. The Theorem applies and yields
the required conclusion. �
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