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Let (1o ) be a net of Radon sub-probability measures on R, and (¢« ) be a net in 0, 1] con-
verging to 0. Assuming that the generalized log-moment generating function L(\) exists
for all A in a nonempty open interval GG, we give conditions on the left or right derivatives
of L|g, implying a vague (and thus narrow when 0 € @) large deviation principle. The
rate function (which can be nonconvex) is obtained as an abstract Legendre-Fenchel
transform. This allows us to strengthen the Géartner—Ellis theorem by weakening the
essential smoothness assumption. A related question of R. S. Ellis is solved.
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1. Introduction

Let (1a) be a net of Radon sub-probability measures on a Hausdorff' topological
space X, and (t,) be a net in ]0, 1] converging to 0. Let B(X) (resp. C(X)) denote
the set of [—o0, +oo[-valued Borel measurable (resp. continuous) functions on X.
For each h € B(X), we define

A(h) = logliminf pie (e/t)
and
A(h) = loglimsup pule (e/t),

where pfe(e"/t) stands for ([, e"®/tep, (dx))te, and write A(h) when both
expressions are equal. When X = R, for each pair of reals (\,v), let hy, be the
function defined on X by hy () = Ax if & < 0 and hy,(x) = ve if x > 0 (we
write simply Ay in place of hy y). For each real A\, we put L(A\) = A(hy) when A(hy)
exists.
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182 H. Comman

A well-known problem of large deviations in R (usually stated for sequences of
probability measures) is the following: assuming that L(\) exists and is finite for all
A in an open interval G containing 0, and that the map Lg is not differentiable on
G, what conditions on L|g imply large deviations, and with which rate function?

In relation with this problem, R. S. Ellis posed the following question ([4]):
assuming that A(hy,) exists and is finite for all (\,v) € R?, what conditions on
the functional A(s, ,:(x)er2} imply large deviations with rate function J(x) =
sup(x pyerz A (@) — A(ha )} for all z € X7

In this paper, we solve the above problem by giving conditions on L involving
only its left and right derivatives; the rate function is obtained as an abstract
Legendre-Fenchel transform Afg, where S can be any set in C(X) containing
{hx : A € G} (Theorem 3). When & = {hy : A € G}, we get a strengthening
of the Gartner—Ellis theorem by removing the essential smoothness assumption
(Corollary 1). Taking S = {hy,, : (A, v) € R?} gives an answer to the Ellis question
(Corollary 2).

The techniques used are refinements of those developed in previous author’s
works ([1, 2]), where variational forms for A(h) and A(h) are obtained with
h € B(X) satisfying the usual Varadhan’s tail condition (X a general space). We
consider here the set Cc(X) of elements h in C(X) for which {y € X : eM®) — ¢ <
eh) < ehlz) 4 e} is compact for all z € X and ¢ > 0 with e"@) > ¢ The first
step is Theorem 2, which establishes that for any 7 C Cx(X), and under suitable
conditions (weaker than vague large deviations), there exist some reals m, M such
that

Ah)=  sup  {h(z) —L(z)} forallheT,
ze{m<h<M}
where [;(z) = —loginf{liminf ufe(G) : z € G C X,G open} for all z € X; in

particular, A(h) exists and has the same form as when large deviations hold. Note
that when X = R and 7 = {h) : A € G} with 0 ¢ G, then the sup in the above
expression can be taken on a compact set (if 0 € G, this follows from the exponential
tightness). It turns out that any subnet of (ule) has a subnet (,ufﬁ) satisfying the
above conditions. The second step consists in applying Theorem 2 with X = R,
7 = {hx : XA € G} and all these subnets. More precisely, we show that if = is the
left or right derivative of L at some point A\, € G, then ZYLVW)(JJ) < Az — L(Az),
whence

1) (@) < Lig(@) (1)

(Proposition 1). Let S be any set in C(X) containing {hy : A € G}, and assume
that A(h) exists for all h € S. Tt is easy to see that

TG < ATS < l(()uﬂ) < lEN’Y’Y)7 (2)
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where l(()””w)(x) = —loginf{limsup,uff(G) cx € G C X,G open} for all z € X.
Putting together (1) and (2) give

Lig(a) = As(a) = 107 (@) = 10 (2) 3)

for all x in the image of the left (resp. right) derivative of L|g; consequently, if the set
of these images contains {Al*s < 400}, then (,uff) satisfies a vague (narrow if 0 € G)
large deviation principle with powers (¢,) and rate function ATS, which moreover
coincides with Ll*G on its effective domain. Using capacity theory, and in particular
a compactness argument, we conclude that the same result holds for the net (uf>).
Furthermore, {Al*s < 400} can be replaced by its interior, when ATS is proper
convex and lower semi-continuous, which is the case when S = {hy : A € G}; this
allows us to improve a strong version of Gértner—Ellis theorem given by O’Brien.

Various generalizations are given in order to get large deviations with a rate
function coinciding with AT‘S and LT‘G only on its effective domain. Note that all our
results hold for general nets of sub-probability measures and powers.

The paper is organized as follows. Section 2 fixes the notations and recall some
results on large deviations and convexity; Sec. 3 deals with the variational forms of
the functionals A; Sec. 4 treats the case X = R.

2. Preliminaries

Without explicit mention, X denotes a Hausdorff topological space, (pq) a net of
Radon sub-probability measures on X, and (¢,) a net in ]0,1] converging to 0.
Throughout the paper, the notations A, A, A, Iy, [; (introduced in Sec. 1) refer to

t
the net (ufe). We shall write liﬂﬁﬁ) when in the definition of I;, (ule) is replaced
by the subnet (,ut;). We do not make such distinction for the map A, since it does
not depend on the subnet along which the limit is taken. We recall that [y and I3
are lower semi-continuous functions.

Definition 1. (a) (i) satisfies a (narrow) large deviation principle with powers
(to) if there exists a [0, +oo]-valued lower semi-continuous function J on X such
that

limsup ple (F) < supe 7™ for all closed F € X (4)

el

and

sup e /@) <liminf plo(G) for all open G C X;

zeG
J is a rate function for (u'e), which is said to be tight when it has compact level
sets. When “closed” is replaced by “compact” in (4), we say that a vague large
deviation principle holds.
(b) (1ta) is exponentially tight with respect to (to) if for each € > 0 there exists a
compact set K. C X such that limsup ple (X\K.) < e.
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The following results are well known for a net (u)e.so, with p. a Radon prob-
ability measure ([3]); it is easy to see that the proofs work also for general nets of
sub-probability measures and powers.

Lemma 1. (a) Let X be locally compact Hausdor(f. Then, (u.) satisfies a vague
large deviation principle with powers (to) if and only if lo = l;. In this case, ly is
the rate function.

(b) If (nw) satisfies a vague large deviation principle with powers (t,), and (fq) s
exponentially tight with respect to (t,), then (ua) satisfies a large deviation principle
with same powers and same rate function.

A capacity on X is a map ¢ from the powerset of X to [0, +oo] such that:

(i) ¢(0)=0.
(ii) e(Y) =sup{c(K): K C Y, K compact} for all Y C X.
(ili) ¢(K) =inf{c¢(G) : K C G C X, G open} for all compact K C X.

The vague topology on the set of capacities is the coarsest topology for which the
maps ¢ — ¢(Y') are upper (resp. lower) semi-continuous for all compact (resp. open)
Y C X. Let T'(X,[0,1]) denote the set of [0, 1]-valued capacities on X provided
with the vague topology. It is clear that any Radon sub-probability measure and
any power of such a measure by a positive number less than 1 belong to I'(X, [0, 1]),
so that (ule) is a net in I'(X, [0, 1]). For each [0, +oc]-valued lower semi-continuous
function ! on X, we associate the element ¢; in I'(X,[0,1]) defined by ¢ (V) =
sup,cy e '@ for all Y C X. We refer to [9] for the first assertion in the following
lemma; the second one is the mere transcription of the definition of a vague large
deviation principle in terms of capacities.

Lemma 2. (a) If X is locally compact Hausdorff, then T'(X,[0,1]) is a compact
Hausdorff space.

(b) (a) satisfies a vague large deviation principle with powers (t,) and rate func-
tion J if and only if (ute) converges to ¢y in I'(X,][0,1]).

For any [—o0, +00]-valued (not necessary convex) function f defined on some
topological space, we put Dom(f) = {f < +oo} (the so-called effective domain),
and denote by intDom(f) (resp. bdDom(f)) the interior (resp. boundary) of
Dom(f). The range of f is denoted by ranf.

A [—00, +o0]-valued convex function f on R is said to be proper if f is | —
00, +00]-valued and takes a finite value on at least one point. The Legendre-Fenchel
transform f* of f is defined by f*(z) = supyer{Az — f(A\)} for all € R; note that
f* is convex lower semi-continuous, and proper when f is proper. Let I C R be a
nonempty interval, and fi; be a | — 0o, 4+-oc]-valued convex function on I. We denote
by J/ﬂ\[ the convex function on R which coincides with fj; on I, and takes the value

400 out of I; in this case we write simply fl’} in place of f|\1* The left and right
derivatives of f|; at some point # € Dom(f|;) are denoted by f"li(x) and f"u(x)
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respectively. A proper convex function f on R is said to be essentially smooth if
intDom(f) # 0, f is differentiable on intDom(f), and lim |f’(x,)| = +oo for all
sequences (z,) in intDom(f) converging to some & € bdDom(f) ([10]).

If L(\) exists and is finite for all A in a nonempty open interval G, then L ¢ is
convex; if moreover 0 € G, then (u,) is exponentially tight with respect to (¢o). If
L(\) exists for all reals A, then L is a [—o0, +-00]-valued convex function on R; if
moreover 0 € intDom(L), then L is proper (the proof of these facts is obtained by
modifying suitably the one of Lemma 2.3.9 in [3]).

Lemma 3. Let [ be a proper convex lower semi-continuous function on R. Then,

;gg fly) = inf f(y)

yeGNintDom(f)
for all open sets G C R.

Proof. Let G be an open subset of R. If G N Dom(f) = @, then the conclusion
holds trivially (inf@ = +oo by convention). Assume that G N Dom(f) # (. By
Corollary 6.3.2 of [10], G N intDom(f) # (. By Theorem VI.3.2 of [5], for each
2 € Dom(f) we can find a sequence (x,) in intDom(f) converging to x and such
that lim f(z,) = f(x), which implies infrpom(s) f = infGrintpom(s) f> and the
lemma is proved since infgnpom(y) f = infe f. O

3. Variational Forms for A on Cx(X)

We begin by defining a notion, which will appear as a key condition in the sequel;
it is nothing else but a uniform version of the tail condition in Varadhan’s theorem.

Definition 2. We say that a set 7 C B(X) satisfies the tail condition for (ute) if
for each € > 0, there exists a real M such that

lim sup pfe (eh/t‘ll{h>M}) <e forallheT.

For each h € B(X), each 2 € X and each ¢ > 0, we put Fon) . = {y € X:
eh@ —e < ehW < eh®@ 4 e} and Gy . = {y € X 1 eh@ —g < ehW) < M@ 4 £},
The following expressions are known when (1) is a net of probability measures,
and when 7 has only one element, say h (see [1] and [2] for the first and the second
assertions, respectively). The proofs reveal that the constant M comes from the
above tail condition (assumed to be satisfied by h), so that the uniform versions for
a general 7 follow immediately; they moreover work as well for the sub-probability
case.

Theorem 1. Let 7 C B(X) satisfying the tail condition for (ut~). There is a real
M such that for each h € T,

AW —liminf sup {("®) — e)ule (Gonn )
reX,e>0

= limliminf sup {"@plo(Gon )}
e—0 ze{h<M} '
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and

A = qup {(eh(m)—s)limsupug"(Geh<m>75)}
xeX,e>0

= sup  {("® — &) limsup ple (Genenr )}
ze{h<M},e>0

In the above expressions, Genes) . can be replaced by Fone) ..

Part (a) of the following theorem shows that under conditions strictly weaker
than large deviations, A(h) exists and has the same form as when large deviations
hold, since in this case the rate function coincides with {; (Lemma 1); it can be
seen as a vague version of Varadhan’s theorem. Note that the hypothesis h €
Cx(X) cannot be dropped: consider a vague large deviation principle for a net of
probability measures with rate function J = 400, take h = 0 and get A(h) = 0
and supy {h(xz) — J(x)} = —oco. Note also that the condition (ii) holds in particular
when (ule) converges in I'(X, [0, 1]).

Theorem 2. Let 7 C C(X) with X locally compact Hausdorff, and assume that
the following conditions are fulfilled:

(i) 7 satisfies the tail condition for (ute).

(i) limsup ple (K) < liminf ple (G) for each compact K C X and each open
G C X with K C G.

(iii) infrer A(R) > m for some real m.

The following conclusions hold.

(a) If T C Cx(X), then A(h) exists for all h € T, and there is a real M such that
A(h) = sup  {h(z) —li(x)} = sup{h(z) — l1(x)} forallheT. (5)

ze{m<h<M} reX

(b) If (11a) is exponentially tight with respect to (to), then A(h) exists for allh € T,
and there is a real M and a compact K C X such that

A(h) = sup {h(x)-li(x)} = sgg{h(x)—ll(x)} forallh e T. (6)

ze KN{m<h<M}

Proof. Assume 7 C Cx(X). By (i) and Theorem 1, there is a real M’ such that
for each h € T,

sip @) < qup eh@) (@) < AR
ze{h<M’+log2} zeX
< eMh) = sup {("M® — &) lim sup pte (Fent) )} (7)

2€{h<M'},e>0
Put M =log2 + M’, and suppose that

sup  eM@emh@ 4y < sup {(e"® — &) lim sup pte (Fon )
ze{h<M} ze{h<M’},e>0
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for some h € T and some v > 0. Then there exist zp € {h < M’} and €9 > 0 with
eh(@0) > ¢ such that

sup  eM@emh@ < (h@0) _ gy p)limsup ple (Fono) oy )- (8)

ze{h<M}

By continuity and local compactness, for each € Fnwy) ., there exist some
open sets V,, and V/ satisfying z € V,, C V,, C V// with V,. compact, and such that
M) > eM@o) oy for all y € V. Note that h(z) < M for each z € Fhwo) o, Since
eM@o) 4 gy < 2eM', By (8), for each z € Fonio) ,» there exist some open sets W,
and W/ satisfying x € W, € W,, C W/ with W, compact, and such that

" lim inf ple (W) < (") — g9 — v) limsup plg (Fono) o, )- 9)

Put G, =W, NV, for all x € Fon@o) - Since Fon@o) ¢, 1s compact, there is a finite
set A C Fon@o) ¢, such that Fonwe) o, C UIGA G thus, for some z € A we have

(e"(@0) — g5 — v) limsup pte (F h=0) o) < @) lim sup pte (G,)

e

< " limsup ple (W) < " liminf pfe (W)

(03

(where the third inequality follows from (ii)), which contradicts (9). Therefore, all
inequalities in (7) are equalities, that is for each h € T, A(h) exists and

Ah)y=sup {h(z) —l(z)} = sup{h(x) — i (x)} = sup  {h(z) — 1 (2)},

ze{h<M} zeX ze{m<h<M}

(where the third equality follows from (iii)), which proves (a). For (b), the above
proof works verbatim replacing {h < M} and Fone) ., by {h < M} N K and
Fon@o) oy M K respectively, where K is some compact set given by the exponential
tightness. O

The following definition extends the usual notion of Legendre—Fenchel transform
(when X is a real topological vector space and S its topological dual) and its
generalization proposed in [4] (with X = R and S = {hy, : (\,v) € R?}); it
coincides with our preceding notations since for S = {hy : A € G} with G a
nonempty open interval, we have

Lig(x) = iléﬁ{/\x ~ LW} = igg{m —L(N)}

= sup {ha(z) = A(ha)} = Afs ().
{hx:AEG}
In [1] (Corollary 2), we proved that for X completely regular (not necessary Haus-
dorff), a rate function has always the form Afg, where S is any set in C(X) stable
by translation, separating suitably points and closed sets, and such that each h € S
satisfies the tail condition for (ufe); this is proved in [2] for X normal Hausdorff
and S the set of all bounded continuous functions on X (this case was known under
exponential tightness hypothesis as a part of the conclusion of Bryc’s theorem). We
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will identify in the next section other sets & for which the rate function is given
by Aj's. Note that Aj is lower semi-continuous when § C C(X).

Definition 3. Let § C B(X) such that A(h) exists for all h € S. The map Ajg
defined by

Ajs(x) = sup{h(z) — A(h)} forallz € X,
hes

is the abstract Legendre—Fenchel transform of A|s.

4. The Case X =R

In this section, we take X = R and apply Theorem 2 with 7 = {h) : A € G}
whtere G is a nonempty open interval. This allows us to compare the values of
ZYLWW) and those of LTG on ranLTGL U ranL1G+, where (ufﬂ) is a suitable subnet
of (ule) (Proposition 1). By means of a compactness argument, we then derive
sufficient conditions for large deviations, involving only the left and right derivatives
of L|g; the rate function is given by an abstract Legendre-Fenchel transform ATS
(Theorem 3). The strengthening of Gértner—Ellis theorem (Corollary 1) and the
solution to the Ellis question (Corollary 2) are obtained by taking suitable S.

Proposition 1. Let A\g € R, and assume that L(X\) exists and is finite for all X in
an open interval G containing Ng. Then, (ule) has a subnet (utyw) such that

10 (Ll (M) < MLig_ (%)~ L(A)
and
1 (L, (00)) < Mol(Zlg, (M) — L(X).

In particular,

t

ZENW)(x) < Lig(x) forallz € ranLiy U ranLiG+.

Proof. Let Gy be an open interval such that \g € Go C Go C G. Let A\; and \o
in G\{0} such that Ay < XA < X for all A\ € Gy. There exists v > 1 such that
{YA1,7A2} C Dom(L) so that hy, and hy, satisfy (individually) the tail condition
by Lemma 4.3.8 of [3] (the proof given there for probability measures works as well
for the sub-probability case). Therefore, for each £ > 0 and for each i € {1, 2} there
exists M; . such that

lim sup pufe (efi/te Liny, >m,.3) <€
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Put M, = M, .V Ms ., and obtain for each A € G,

J TG
{z:Xa>M.}
:/ A/t g (dar) + / A/t i, (de)
{z:Xx>M:}INR_ {z:Xx>M MRy

: / Mo/t g (dar) + / M2/t g (dz),
{z:Xz>M; - }JNR_ {z:Xox>Ms - }JNR 4

hence

VA€ Gy, limsup,u’éf‘ (eh*/to‘l{hA>M€})
< limsup /‘ga (ehxl/tal{hxl >Ml,€}) V lim sup :uga (eh/\2 /tal{hA2 >M2,s}) <e.

It follows that {hx : A € Go} satisfies the tail condition for (ul). Since L is
continuous and Gp compact, L|g, is bounded and in particular infyeq, L(A) > m
for some real m. Let (utyw) be a subnet of (u'>) converging in T'(X, [0, 1]) (given by
Lemma 2), put 7 = {hy : A € Gy}, and note that all the hypotheses of Theorem 2
hold for 7 and (utyw), with moreover 7 C Cx(X). If \g # 0 (say \g > 0), then \;
and Ao can be chosen such that 0 < Ay < A < Ay for all A € Gy. Since for each
real M > m, there is a compact Kj; such that U)\GGO{m < hx <M} C Ky, by
Theorem 2(a) we get a compact K such that

L(\) = sup iz — 1 (2)} for all A € Gy. (10)

zeK
If \g = 0, then (uq) (resp. (i4)) is exponentially tight with respect to (¢,) (resp.
(ty)), and we apply Theorem 2(b) to obtain (10). Therefore, for each A € Gg there

exists ) € K such that L(A\) = Azy — lg””w)(x,\). Put z = LTG+()\0), and let
(ar4x,) be a subnet of (Taya,)atroeGo,r>0- Since zx4y, € K for all A+ Ag € Go,
(®x+2,) has a subnet (zyr4y,) converging to some point 2’ € K when A — 0T,

so that
LN+ Xo) — L(Xo)

v= Y
C i )@, — 1T (@) — L)
- N/ —0+ )\/l
=2" + lim AL $20 — l§“%(w~+xo) — L(\o)
IV Y ’

which implies " = z and

_ o ) _ < )y
0= Hm Aozxrix, = U7 (2areae) = L(do) < Aoz — 177 (2) = L(Ao),
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which proves the assertion concerning LTG+()\Q). A similar proof works for
LiG,(/\O)' O

Theorem 3. Let S C C(X) and G C X be a nonempty open interval such that
S D {ha : A € G}, and assume that A(h) exists for all h € S with L(\) finite for
all A\ € G.

(a)

If
ranLi; U ranLTG+ D Dom(lp) N {l1 > —A(0)}, (11)

then (o) satisfies a vague large deviation principle with powers (to) and rate
function J satisfying

J(x) = Lig(z) = Ajs(x)  for all x € Dom(J) N {J > —A(0)}. (12)
If moreover O € G, then the principle is narrow and
J(z) = Lig(z) = Ajs(z) for all x € Dom(J). (13)
If
ranLi; U ranLTG+ D Dom(ly), (14)

then (o) satisfies a vague large deviation principle with powers (to) and rate
function J satisfying

J(z) = Lig(z) = Ajs(z) for all x € Dom(J). (15)
If moreover O € G, then the principle is narrow.
If
ranLi; U ranLiG+ D Dom(Ajs) N {li > —A(0)}, (16)

then (o) satisfies a vague large deviation principle with powers (to) and rate
function J satisfying

J(x) = Ajs(z) for allz € {J > —A(0)}, (17)
and
J(x) = Lig(x) for all x € Dom(Afs) N{J > —A(0)}. (18)
If moreover O € G, then the principle is narrow with J = AT‘S satisfying
J(z) = T‘G(x) for all x € Dom(J). (19)
If
ranLiG_ U ranLiGJr D Dom(Afs), (20)

then (o) satisfies a vague large deviation principle with powers (to) and rate
function J = ATS satisfying

J(z) = Lig(z) for all z € Dom(J). (21)

If moreover O € G, then the principle is narrow.
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(e) If ly is proper convez, then (a) (resp. (b)) holds verbatim replacing the symbol
Dom by intDom in (11)-(13) (resp. (14) and (15)).

(f) If Als is proper convex, then (¢) (resp. (d)) holds verbatim replacing the symbol

(1

9)) (resp. (20) and (21)).
Proof. For all h € § and all x € X we have by Theorem 1 (since A(h) >
A(hlgp<nry 4 (—00) 1 ary) for all reals M),

A(h) = h(z) = sup sup {h(y) —lo(y)} — h(z)

MER {h<M}

> sup (h(y) ~ lo(u)} ~ h(z) > ~lo(z).

Dom by intDom in (16), (18),

so that
(@) < Ajs(z) <lo(z) forallwe X. (22)

Assume that (11) holds, and let (u ﬁ) be a subnet of (ule). By Proposition 1 applied
o (,ut;) in place of ('), (u tﬁ) has a subnet (;57) such that

17 (@) < Lig(z) for all & € Dom(l) N {ly > —K(0)}. (23)
Since
lo < l(()ufﬁ) < lgﬁ) <1, (24)
(22) and (23) imply for each x € Dom(ly) N {l; > —A(0)},

l(()utm(x) = li’m)(x) = ch(x) = ATS(@ =lo(). (25)

If = ¢ Dom(lp), then " (z) = 1) () = +00 by (24). If I (z) < —A(0), then
1§77 (@) = 117 (@) = lo(w) = () = —A(0).

Therefore, lé“”w)(x) = li””v)(x) for all z € X. By Lemma 1 applied to (u5'), (1)
satisfies a vague large deviation principle with powers (¢,) and rate function

Ajs if x € Dom(lp) N {l1 > —A(0)}
J(x) = { —A(0) if ly(x) < —A(0) (26)
“+o0 it x ¢ Dom(lp).

By Lemma 2(b), (,ufﬂ) converges to ¢y in I'(X, [0, 1]). Since (,ut;) is arbitrary, we
have proved that any subnet of (ule) has a subnet converging vaguely to c;. By
Lemma 2(a), it follows that (ufe) converges vaguely to ¢y, which proves the first
assertion of (a) ((12) follows from (25) and (26), since J =y = {1). If 0 € G, then
(13) follows from (22) and (26) since —L(0) < Lj, and the principle is narrow by
exponential tightness. The proofs of (b)—(d) are similar. Assume that [y is proper
convex, and

ranlig U ranLTG+ O intDom(lp) N {l; > —A(0)}.
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In the same way as above we get for each = € intDom(lg) N {l; > —A(0)},
7 (@) = 1 (@) = Lig(a) = Afs(e) = lo(@). (27)

t»y _ t»y
Suppose that 17 (z) > Io(z) for some z € {l; > —A(0)}. Since I; and 1" are
lower semi-continuous, there is an open set Gy containing x such that

inf lg“” > inf _ lp= _inf lo,
Gon{li>—A(0)} Gon{li>—A(0)} GoNn{l1>—A(0)}NintDom(lp)

where the equality follows from Lemma 3 applied to Iy and Go N {l; > —A(0)}.
Then, there exists y € Go N {l; > —A(0)} NintDom(ly) such that zﬁ“vﬁ)(y) > lo(y),

which contradicts (27). We then have zY‘v”(a:) < lo(z) for all x € {I; > —A(0)},
and by (24),

199 () = 19 (2) = lo(2) for all @ € {I; > —A(0)}.

1 @) = 10 (@) = lo(a) = (@) = =K(0) forall w € {1 < ~K(O)},

it follows as above that (ule) converges vaguely to ¢y, with J = [y = [; satisfying
by (27),

J(z) = Lig(z) = Ajs(z) for all z € intDom(J) N {J > —A(0)}. (28)
If 0 € G, then —L(0) < L{;, and by (22) and (28) we get
J(x) = Lig(z) = Ajsg(x) for all z € intDom(J).

This proves the assertion of (e) concerning (a); the one concerning (b) is proved
similarly. Assume that AT‘S is proper convex, and

ranLig U ranLTGJr D intDom(Afs) N {l1 > —A(0)}.
As above we get
try try
177 (@) = " (@) = Lig(a) = Ajs(x) (20)
for all 2 € intDom(A*.) N {l; > —A(0)}. The same reasoning as in the proof of (e
|S

(with Ajs in place of lp) gives zﬁ“”(x) < Ars(x) for all z € {l; > —A(0)}, and
by (22),

1977 @) = 1 (@) = Ajs(@) = lo(@) forallw € {ly > —K(0)}.  (30)
Since

lé"”w)(w) _ ZYW)(%) = —A(0) forall x € {l; < —A(0)},
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it follows as above that (ufe) converges vaguely to ¢y, with J satisfying (17). Since
J =1, (29) gives

J(x) = Lig(z) for all z € intDom(Afs) N{J > —A(0)}. (31)
Since 0 € G implies —L(0) < Lig, by (22), (30), (31), we obtain J = Ajs and
J(x) = Lig(z) for all z € intDom(Afs).

This proves the assertion of (f) concerning (c); the one concerning (d) is proved
similarly. O

The standard Géartner—Ellis theorem deals with the case where (u ) is a sequence
of Borel probability measures; it states that if L()\) exists for all reals A, L is lower
semi-continuous essentially smooth and 0 € intDom(L), then (1) satisfies a large
deviation principle with powers (¢, ) and rate function L* ([3], Theorem 2.3.6; [7,6]).
A stronger version has been given by O’Brien ( [8], Theorem 5.1): if L(\) exists and
is finite for all A in a nonempty open interval G' and if IT‘E is essentially smooth, then
(e ) satisfies a vague large deviation principle with powers (¢,) and rate function
LTG; if moreover 0 € G, then the principle is narrow. The former version is recovered
by taking G = intDom(L) (the hypotheses implying L* = LTG with Z—‘E essentially
smooth). The improvements consist in the obtention of the vague large deviations,
and in the fact that L in not assumed to exist out G (even when L exists on X, it
is not assumed to be lower semi-continuous).

The following corollary summarizes the case where & = {hy: A € G} in
Theorem 3, and where large deviations hold with rate function Ll*G (= ATS). It
strengthens the O’Brien’s version of Gartner—Ellis theorem by obtaining the same
conclusions, with the essential smoothness hypothesis replaced by the weaker condi-
tion (32) (or (33) when 0 € G); in particular, there is no differentiability assumption.
Furthermore, it works for general nets of Radon sub-probability measures.

Corollary 1. We assume that L(\) exists and is finite for all X in a nonempty
open interval G C X.

(a) If
raang_ U ranLTG+ ») intDom(LTG), (32)

then (uo) satisfies a vague large deviation principle with powers (t,) and rate
function LT‘G. The condition (32) is satisfied in particular when L) is essen-
tially smooth.

(b) If0 € G and

ranLig U I“aDLTG_‘_ D intDom(Ljg) N {l > —L(0)}, (33)

then (o) satisfies a large deviation principle with powers (to) and rate func-
tion LTG'
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Proof. (b) and the first assertion of (a) follow from Theorem 3(f) with S =
{hx: X € G}. Assume that L is essentially smooth. Extend L by continuity to

a convex function L|§ on (G, so that L|§ is a proper convex lower semi-continuous

function on X with G = intDom(l//%); moreover, I//l\@ is essentially smooth. By
Theorem 26.1 and Corollary 26.4.1 of [10], we have

ranLTa D intDom(L ), (34)
which gives (32) since ranLIE =ranL|; and LTE = Lig- |

The solution to the Ellis question (with in fact weaker hypotheses) is a direct
consequence of Theorem 3(c), by taking S = {hy,: (\,v) € R?}.

Corollary 2. Put S = {hy,: (\,v) € R?*}, and assume that A(hy,) ezists for all
(\,v) € R? and is finite for all pairs (A, \) with X in some open interval G containing
0. IfranLi, U ranLTGJr D Dom(Afg) N{ly > —L(0)}, then (pa) satisfies a large

deviation principle with powers (to) and rate function J = Al*s. Moreover,
J(x) = Lig(x) for all x € Dom(J).

The following example is often cited as a typical case not covered by the
Gértner—Ellis theorem ([4, 8]).

Example 1. Consider the sequence (u,la/n) where p{—1} = p,{1} = 3 for all

n € N. Then L()\) = || for all reals \. Take S = {hy ,: (\,v) € R?} and compute
A(hy,) = —-AVrv forall (\v)€R?
hence
« (z) = 0 if |z| =1,
ISYT oo if 2] # 1.
Then, ranL’ Uranl/ = {-1,1} D Dom(ATS), and by Corollary 2, (u,,) satisfies a
large deviation principle with powers (1/n) and rate function J = Ajs. Since

0 if |2| <1
L* _ =~ 4
(z) {—l—oo if |z| > 1,

we have J(z) = L*(x) for all z € {—1,1} = Dom(J). Note that for any nonempty
open set G C | —1,1],

ranLjg U ranLTG+ 2 intDom(Ljg) N{J >0} D] —1,1],

and the condition (33) of Corollary 1 does not hold.
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The following example exhibits a situation with convex rate function, where
both above corollaries do not work; we then apply Theorem 3 with another set S.

Example 2. Consider the net (u£)s>0, where p. is the probability measure on X
defined by pe(0) = 1 — 2p., p-(—clogp:) = pe(elogp:) = pe, and assume that
lime log p. = —o0. Put Q,,(z) = n|z|e”!*l —z for all n € N and all 2 € X, and take
S ={Qn: n € N} U{hx: A € ] —1,1[}. Easy calculations give A(Q,) = 0 for all
n € N, and

i <
= 1w hot
so that
N—11((@) = L*(x) = [z| forallze X,
and

0 if x =0,
+o00  otherwise.

Njo(o) = sup{Qnli) —~ A(@u)} V Lj_y y(0) = {

Then, raan]q,l[ ={0} D Dom(ATS), and by Theorem 3(d), (uc) satisfies a large
deviation principle with powers (¢).>0 and rate function J = Afg. Note that J is
convex but J # L* (however, J coincides with L* on Dom(J)); in particular, L is
not essentially smooth and the Géartner-Ellis theorem does not work. Furthermore,
for any nonempty open set G C ] — 1, 1],

{0} =ranL|g 7 intDom(Ljg) N {J > 0} D X\{0}

and the condition (33) of Corollary 1 does not hold either. We observe also that
Corollary 2 does not apply; indeed, the set {hy ,: (A, v) € R?} is not suitable since

0 if A>—-land v <1,
+o00  otherwise

At = {

gives Ar{hx,u:(x,u)eW}(x) = L*(x) for all x € X.
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