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Let (µα) be a net of Radon sub-probability measures on R, and (tα) be a net in ]0, 1] con-
verging to 0. Assuming that the generalized log-moment generating function L(λ) exists
for all λ in a nonempty open interval G, we give conditions on the left or right derivatives
of L|G, implying a vague (and thus narrow when 0 ∈ G) large deviation principle. The
rate function (which can be nonconvex) is obtained as an abstract Legendre–Fenchel
transform. This allows us to strengthen the Gärtner–Ellis theorem by weakening the
essential smoothness assumption. A related question of R. S. Ellis is solved.
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1. Introduction

Let (µα) be a net of Radon sub-probability measures on a Hausdorff topological
space X , and (tα) be a net in ]0, 1] converging to 0. Let B(X) (resp. C(X)) denote
the set of [−∞, +∞[-valued Borel measurable (resp. continuous) functions on X .
For each h ∈ B(X), we define

Λ(h) = log lim inf µtα
α (eh/tα)

and

Λ(h) = log lim sup µtα
α (eh/tα),

where µtα
α (eh/tα) stands for (

∫
X

eh(x)/tαµα(dx))tα , and write Λ(h) when both
expressions are equal. When X = R, for each pair of reals (λ, ν), let hλ,ν be the
function defined on X by hλ,ν(x) = λx if x ≤ 0 and hλ,ν(x) = νx if x ≥ 0 (we
write simply hλ in place of hλ,λ). For each real λ, we put L(λ) = Λ(hλ) when Λ(hλ)
exists.
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A well-known problem of large deviations in R (usually stated for sequences of
probability measures) is the following: assuming that L(λ) exists and is finite for all
λ in an open interval G containing 0, and that the map L|G is not differentiable on
G, what conditions on L|G imply large deviations, and with which rate function?

In relation with this problem, R. S. Ellis posed the following question ([4]):
assuming that Λ(hλ,ν) exists and is finite for all (λ, ν) ∈ R

2, what conditions on
the functional Λ|{hλ,ν :(λ,ν)∈R2} imply large deviations with rate function J(x) =
sup(λ,ν)∈R2{hλ,ν(x) − Λ(hλ,ν)} for all x ∈ X?

In this paper, we solve the above problem by giving conditions on L|G involving
only its left and right derivatives; the rate function is obtained as an abstract
Legendre–Fenchel transform Λ∗

|S , where S can be any set in C(X) containing
{hλ : λ ∈ G} (Theorem 3). When S = {hλ : λ ∈ G}, we get a strengthening
of the Gärtner–Ellis theorem by removing the essential smoothness assumption
(Corollary 1). Taking S = {hλ,ν : (λ, ν) ∈ R

2} gives an answer to the Ellis question
(Corollary 2).

The techniques used are refinements of those developed in previous author’s
works ([1, 2]), where variational forms for Λ(h) and Λ(h) are obtained with
h ∈ B(X) satisfying the usual Varadhan’s tail condition (X a general space). We
consider here the set CK(X) of elements h in C(X) for which {y ∈ X : eh(x) − ε ≤
eh(y) ≤ eh(x) + ε} is compact for all x ∈ X and ε > 0 with eh(x) > ε. The first
step is Theorem 2, which establishes that for any T ⊂ CK(X), and under suitable
conditions (weaker than vague large deviations), there exist some reals m, M such
that

Λ(h) = sup
x∈{m≤h≤M}

{h(x) − l1(x)} for all h ∈ T ,

where l1(x) = − log inf{lim inf µtα
α (G) : x ∈ G ⊂ X, G open} for all x ∈ X ; in

particular, Λ(h) exists and has the same form as when large deviations hold. Note
that when X = R and T = {hλ : λ ∈ G} with 0 �∈ G, then the sup in the above
expression can be taken on a compact set (if 0 ∈ G, this follows from the exponential
tightness). It turns out that any subnet of (µtα

α ) has a subnet (µtγ
γ ) satisfying the

above conditions. The second step consists in applying Theorem 2 with X = R,
T = {hλ : λ ∈ G} and all these subnets. More precisely, we show that if x is the

left or right derivative of L at some point λx ∈ G, then l
(µ

tγ
γ )

1 (x) ≤ λxx − L(λx),
whence

l
(µ

tγ
γ )

1 (x) ≤ L∗
|G(x) (1)

(Proposition 1). Let S be any set in C(X) containing {hλ : λ ∈ G}, and assume
that Λ(h) exists for all h ∈ S. It is easy to see that

L∗
|G ≤ Λ∗

|S ≤ l
(µ

tγ
γ )

0 ≤ l
(µ

tγ
γ )

1 , (2)
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where l
(µ

tγ
γ )

0 (x) = − log inf{lim supµ
tγ
γ (G) : x ∈ G ⊂ X, G open} for all x ∈ X .

Putting together (1) and (2) give

L∗
|G(x) = Λ∗

|S(x) = l
(µ

tγ
γ )

0 (x) = l
(µ

tγ
γ )

1 (x) (3)

for all x in the image of the left (resp. right) derivative of L|G; consequently, if the set
of these images contains {Λ∗

|S < +∞}, then (µtγ
γ ) satisfies a vague (narrow if 0 ∈ G)

large deviation principle with powers (tγ) and rate function Λ∗
|S , which moreover

coincides with L∗
|G on its effective domain. Using capacity theory, and in particular

a compactness argument, we conclude that the same result holds for the net (µtα
α ).

Furthermore, {Λ∗
|S < +∞} can be replaced by its interior, when Λ∗

|S is proper
convex and lower semi-continuous, which is the case when S = {hλ : λ ∈ G}; this
allows us to improve a strong version of Gärtner–Ellis theorem given by O’Brien.

Various generalizations are given in order to get large deviations with a rate
function coinciding with Λ∗

|S and L∗
|G only on its effective domain. Note that all our

results hold for general nets of sub-probability measures and powers.
The paper is organized as follows. Section 2 fixes the notations and recall some

results on large deviations and convexity; Sec. 3 deals with the variational forms of
the functionals Λ; Sec. 4 treats the case X = R.

2. Preliminaries

Without explicit mention, X denotes a Hausdorff topological space, (µα) a net of
Radon sub-probability measures on X , and (tα) a net in ]0, 1] converging to 0.
Throughout the paper, the notations Λ, Λ, Λ, l0, l1 (introduced in Sec. 1) refer to

the net (µtα
α ). We shall write l

(µ
tβ
β )

1 when in the definition of l1, (µtα
α ) is replaced

by the subnet (µtβ

β ). We do not make such distinction for the map Λ, since it does
not depend on the subnet along which the limit is taken. We recall that l0 and l1
are lower semi-continuous functions.

Definition 1. (a) (µα) satisfies a (narrow) large deviation principle with powers
(tα) if there exists a [0, +∞]-valued lower semi-continuous function J on X such
that

lim sup µtα
α (F ) ≤ sup

x∈F
e−J(x) for all closed F ⊂ X (4)

and

sup
x∈G

e−J(x) ≤ lim inf µtα
α (G) for all open G ⊂ X;

J is a rate function for (µtα
α ), which is said to be tight when it has compact level

sets. When “closed” is replaced by “compact” in (4), we say that a vague large
deviation principle holds.
(b) (µα) is exponentially tight with respect to (tα) if for each ε > 0 there exists a
compact set Kε ⊂ X such that lim supµtα

α (X\Kε) < ε.
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The following results are well known for a net (µε
ε)ε>0, with µε a Radon prob-

ability measure ([3]); it is easy to see that the proofs work also for general nets of
sub-probability measures and powers.

Lemma 1. (a) Let X be locally compact Hausdorff. Then, (µα) satisfies a vague
large deviation principle with powers (tα) if and only if l0 = l1. In this case, l0 is
the rate function.
(b) If (µα) satisfies a vague large deviation principle with powers (tα), and (µα) is
exponentially tight with respect to (tα), then (µα) satisfies a large deviation principle
with same powers and same rate function.

A capacity on X is a map c from the powerset of X to [0, +∞] such that:

(i) c(∅) = 0.
(ii) c(Y ) = sup{c(K) : K ⊂ Y, K compact} for all Y ⊂ X .
(iii) c(K) = inf{c(G) : K ⊂ G ⊂ X, G open} for all compact K ⊂ X .

The vague topology on the set of capacities is the coarsest topology for which the
maps c → c(Y ) are upper (resp. lower) semi-continuous for all compact (resp. open)
Y ⊂ X . Let Γ(X, [0, 1]) denote the set of [0, 1]-valued capacities on X provided
with the vague topology. It is clear that any Radon sub-probability measure and
any power of such a measure by a positive number less than 1 belong to Γ(X, [0, 1]),
so that (µtα

α ) is a net in Γ(X, [0, 1]). For each [0, +∞]-valued lower semi-continuous
function l on X , we associate the element cl in Γ(X, [0, 1]) defined by cl(Y ) =
supx∈Y e−l(x) for all Y ⊂ X . We refer to [9] for the first assertion in the following
lemma; the second one is the mere transcription of the definition of a vague large
deviation principle in terms of capacities.

Lemma 2. (a) If X is locally compact Hausdorff, then Γ(X, [0, 1]) is a compact
Hausdorff space.
(b) (µα) satisfies a vague large deviation principle with powers (tα) and rate func-
tion J if and only if (µtα

α ) converges to cJ in Γ(X, [0, 1]).

For any [−∞, +∞]-valued (not necessary convex) function f defined on some
topological space, we put Dom(f) = {f < +∞} (the so-called effective domain),
and denote by intDom(f) (resp. bdDom(f)) the interior (resp. boundary) of
Dom(f). The range of f is denoted by ranf .

A [−∞, +∞]-valued convex function f on R is said to be proper if f is ] −
∞, +∞]-valued and takes a finite value on at least one point. The Legendre–Fenchel
transform f∗ of f is defined by f∗(x) = supλ∈R{λx− f(λ)} for all x ∈ R; note that
f∗ is convex lower semi-continuous, and proper when f is proper. Let I ⊂ R be a
nonempty interval, and f|I be a ]−∞, +∞]-valued convex function on I. We denote
by f̂|I the convex function on R which coincides with f|I on I, and takes the value

+∞ out of I; in this case we write simply f∗
|I in place of f̂|I

∗
. The left and right

derivatives of f|I at some point x ∈ Dom(f|I) are denoted by f ′
|I−

(x) and f ′
|I+

(x)
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respectively. A proper convex function f on R is said to be essentially smooth if
intDom(f) �= ∅, f is differentiable on intDom(f), and lim |f ′(xn)| = +∞ for all
sequences (xn) in intDom(f) converging to some x ∈ bdDom(f) ([10]).

If L(λ) exists and is finite for all λ in a nonempty open interval G, then L|G is
convex; if moreover 0 ∈ G, then (µα) is exponentially tight with respect to (tα). If
L(λ) exists for all reals λ, then L is a [−∞, +∞]-valued convex function on R; if
moreover 0 ∈ intDom(L), then L is proper (the proof of these facts is obtained by
modifying suitably the one of Lemma 2.3.9 in [3]).

Lemma 3. Let f be a proper convex lower semi-continuous function on R. Then,

inf
y∈G

f(y) = inf
y∈G∩intDom(f)

f(y)

for all open sets G ⊂ R.

Proof. Let G be an open subset of R. If G ∩ Dom(f) = ∅, then the conclusion
holds trivially (inf ∅ = +∞ by convention). Assume that G ∩ Dom(f) �= ∅. By
Corollary 6.3.2 of [10], G ∩ intDom(f) �= ∅. By Theorem VI.3.2 of [5], for each
x ∈ Dom(f) we can find a sequence (xn) in intDom(f) converging to x and such
that lim f(xn) = f(x), which implies infG∩Dom(f) f = infG∩intDom(f) f , and the
lemma is proved since infG∩Dom(f) f = infG f .

3. Variational Forms for Λ on CK(X)

We begin by defining a notion, which will appear as a key condition in the sequel;
it is nothing else but a uniform version of the tail condition in Varadhan’s theorem.

Definition 2. We say that a set T ⊂ B(X) satisfies the tail condition for (µtα
α ) if

for each ε > 0, there exists a real M such that

lim sup µtα
α (eh/tα1{h>M}) < ε for all h ∈ T .

For each h ∈ B(X), each x ∈ X and each ε > 0, we put Feh(x),ε = {y ∈ X :
eh(x) − ε ≤ eh(y) ≤ eh(x) + ε} and Geh(x),ε = {y ∈ X : eh(x) − ε < eh(y) < eh(x) + ε}.
The following expressions are known when (µα) is a net of probability measures,
and when T has only one element, say h (see [1] and [2] for the first and the second
assertions, respectively). The proofs reveal that the constant M comes from the
above tail condition (assumed to be satisfied by h), so that the uniform versions for
a general T follow immediately; they moreover work as well for the sub-probability
case.

Theorem 1. Let T ⊂ B(X) satisfying the tail condition for (µtα
α ). There is a real

M such that for each h ∈ T ,

eΛ(h) = lim inf sup
x∈X,ε>0

{(eh(x) − ε)µtα
α (Geh(x) ,ε)}

= lim
ε→0

lim inf sup
x∈{h≤M}

{eh(x)µtα
α (Geh(x),ε)}
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and

eΛ(h) = sup
x∈X,ε>0

{(eh(x) − ε) lim sup µtα
α (Geh(x) ,ε)}

= sup
x∈{h≤M},ε>0

{(eh(x) − ε) lim sup µtα
α (Geh(x) ,ε)}.

In the above expressions, Geh(x),ε can be replaced by Feh(x),ε.

Part (a) of the following theorem shows that under conditions strictly weaker
than large deviations, Λ(h) exists and has the same form as when large deviations
hold, since in this case the rate function coincides with l1 (Lemma 1); it can be
seen as a vague version of Varadhan’s theorem. Note that the hypothesis h ∈
CK(X) cannot be dropped: consider a vague large deviation principle for a net of
probability measures with rate function J ≡ +∞, take h ≡ 0 and get Λ(h) = 0
and supX{h(x)−J(x)} = −∞. Note also that the condition (ii) holds in particular
when (µtα

α ) converges in Γ(X, [0, 1]).

Theorem 2. Let T ⊂ C(X) with X locally compact Hausdorff, and assume that
the following conditions are fulfilled:

(i) T satisfies the tail condition for (µtα
α ).

(ii) lim supµtα
α (K) ≤ lim inf µtα

α (G) for each compact K ⊂ X and each open
G ⊂ X with K ⊂ G.

(iii) infh∈T Λ(h) > m for some real m.

The following conclusions hold.

(a) If T ⊂ CK(X), then Λ(h) exists for all h ∈ T , and there is a real M such that

Λ(h) = sup
x∈{m≤h≤M}

{h(x) − l1(x)} = sup
x∈X

{h(x) − l1(x)} for all h ∈ T . (5)

(b) If (µα) is exponentially tight with respect to (tα), then Λ(h) exists for all h ∈ T ,

and there is a real M and a compact K ⊂ X such that

Λ(h) = sup
x∈K∩{m≤h≤M}

{h(x)−l1(x)} = sup
x∈X

{h(x)−l1(x)} for all h ∈ T . (6)

Proof. Assume T ⊂ CK(X). By (i) and Theorem 1, there is a real M ′ such that
for each h ∈ T ,

sup
x∈{h≤M ′+log 2}

eh(x)e−l1(x) ≤ sup
x∈X

eh(x)e−l1(x) ≤ eΛ(h)

≤ eΛ(h) = sup
x∈{h≤M ′},ε>0

{(eh(x) − ε) lim sup µtα
α (Feh(x) ,ε)}. (7)

Put M = log 2 + M ′, and suppose that

sup
x∈{h≤M}

eh(x)e−l1(x) + ν < sup
x∈{h≤M ′},ε>0

{(eh(x) − ε) lim sup µtα
α (Feh(x) ,ε)}
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for some h ∈ T and some ν > 0. Then there exist x0 ∈ {h ≤ M ′} and ε0 > 0 with
eh(x0) > ε0 such that

sup
x∈{h≤M}

eh(x)e−l1(x) < (eh(x0) − ε0 − ν) lim sup µtα
α (Feh(x0),ε0

). (8)

By continuity and local compactness, for each x ∈ Feh(x0),ε0
, there exist some

open sets Vx and V ′
x satisfying x ∈ Vx ⊂ Vx ⊂ V ′

x with Vx compact, and such that
eh(y) > eh(x0)−ε0−ν for all y ∈ V ′

x. Note that h(x) ≤ M for each x ∈ Feh(x0),ε0
, since

eh(x0) + ε0 < 2eM ′
. By (8), for each x ∈ Feh(x0),ε0

, there exist some open sets Wx

and W ′
x satisfying x ∈ Wx ⊂ Wx ⊂ W ′

x with Wx compact, and such that

eh(x) lim inf µtα
α (W ′

x) < (eh(x0) − ε0 − ν) lim sup µtα
α (Feh(x0),ε0

). (9)

Put Gx = Wx ∩Vx for all x ∈ Feh(x0),ε0
. Since Feh(x0),ε0

is compact, there is a finite
set A ⊂ Feh(x0),ε0

such that Feh(x0),ε0
⊂

⋃
x∈A Gx; thus, for some x ∈ A we have

(eh(x0) − ε0 − ν) lim sup µtα
α (Feh(x0),ε0

) ≤ eh(x) lim sup µtα
α (Gx)

≤ eh(x) lim sup µtα
α (Wx) ≤ eh(x) lim inf µtα

α (W ′
x)

(where the third inequality follows from (ii)), which contradicts (9). Therefore, all
inequalities in (7) are equalities, that is for each h ∈ T , Λ(h) exists and

Λ(h) = sup
x∈{h≤M}

{h(x) − l1(x)} = sup
x∈X

{h(x) − l1(x)} = sup
x∈{m≤h≤M}

{h(x) − l1(x)},

(where the third equality follows from (iii)), which proves (a). For (b), the above
proof works verbatim replacing {h ≤ M} and Feh(x0),ε0

by {h ≤ M} ∩ K and
Feh(x0),ε0

∩ K respectively, where K is some compact set given by the exponential
tightness.

The following definition extends the usual notion of Legendre–Fenchel transform
(when X is a real topological vector space and S its topological dual) and its
generalization proposed in [4] (with X = R and S = {hλ,ν : (λ, ν) ∈ R

2}); it
coincides with our preceding notations since for S = {hλ : λ ∈ G} with G a
nonempty open interval, we have

L∗
|G(x) = sup

λ∈R

{λx − L̂|G(λ)} = sup
λ∈G

{λx − L(λ)}

= sup
{hλ:λ∈G}

{hλ(x) − Λ(hλ)} = Λ∗
|S(x).

In [1] (Corollary 2), we proved that for X completely regular (not necessary Haus-
dorff), a rate function has always the form Λ∗

|S , where S is any set in C(X) stable
by translation, separating suitably points and closed sets, and such that each h ∈ S
satisfies the tail condition for (µtα

α ); this is proved in [2] for X normal Hausdorff
and S the set of all bounded continuous functions on X (this case was known under
exponential tightness hypothesis as a part of the conclusion of Bryc’s theorem). We
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will identify in the next section other sets S for which the rate function is given
by Λ∗

|S . Note that Λ∗
|S is lower semi-continuous when S ⊂ C(X).

Definition 3. Let S ⊂ B(X) such that Λ(h) exists for all h ∈ S. The map Λ∗
|S

defined by

Λ∗
|S(x) = sup

h∈S
{h(x) − Λ(h)} for all x ∈ X,

is the abstract Legendre–Fenchel transform of Λ|S .

4. The Case X = R

In this section, we take X = R and apply Theorem 2 with T = {hλ : λ ∈ G}
where G is a nonempty open interval. This allows us to compare the values of

l
(µ

tγ
γ )

1 and those of L∗
|G on ranL′

|G−
∪ ranL′

|G+
, where (µtγ

γ ) is a suitable subnet

of (µtα
α ) (Proposition 1). By means of a compactness argument, we then derive

sufficient conditions for large deviations, involving only the left and right derivatives
of L|G; the rate function is given by an abstract Legendre–Fenchel transform Λ∗

|S
(Theorem 3). The strengthening of Gärtner–Ellis theorem (Corollary 1) and the
solution to the Ellis question (Corollary 2) are obtained by taking suitable S.

Proposition 1. Let λ0 ∈ R, and assume that L(λ) exists and is finite for all λ in
an open interval G containing λ0. Then, (µtα

α ) has a subnet (µtγ
γ ) such that

l
(µ

tγ
γ )

1 (L′
|G−

(λ0)) ≤ λ0L
′
|G−

(λ0) − L(λ0)

and

l
(µ

tγ
γ )

1 (L′
|G+

(λ0)) ≤ λ0(L′
|G+

(λ0)) − L(λ0).

In particular,

l
(µ

tγ
γ )

1 (x) ≤ L∗
|G(x) for all x ∈ ranL′

|G−
∪ ranL′

|G+
.

Proof. Let G0 be an open interval such that λ0 ∈ G0 ⊂ G0 ⊂ G. Let λ1 and λ2

in G\{0} such that λ1 < λ < λ2 for all λ ∈ G0. There exists γ > 1 such that
{γλ1, γλ2} ⊂ Dom(L) so that hλ1 and hλ2 satisfy (individually) the tail condition
by Lemma 4.3.8 of [3] (the proof given there for probability measures works as well
for the sub-probability case). Therefore, for each ε > 0 and for each i ∈ {1, 2} there
exists Mi,ε such that

lim sup µtα
α (ehλi

/tα1{hλi
>Mi,ε}) < ε.
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Put Mε = M1,ε ∨ M2,ε, and obtain for each λ ∈ G0,∫
{x:λx>Mε}

eλx/tαµα(dx)

=
∫
{x:λx>Mε}∩R−

eλx/tαµα(dx) +
∫
{x:λx>Mε}∩R+

eλx/tαµα(dx)

≤
∫
{x:λ1x>M1,ε}∩R−

eλ1x/tαµα(dx) +
∫
{x:λ2x>M2,ε}∩R+

eλ2x/tαµα(dx),

hence

∀λ ∈ G0, lim sup µtα
α (ehλ/tα1{hλ>Mε})

≤ lim sup µtα
α (ehλ1/tα1{hλ1>M1,ε}) ∨ lim sup µtα

α (ehλ2/tα1{hλ2>M2,ε}) < ε.

It follows that {hλ : λ ∈ G0} satisfies the tail condition for (µtα
α ). Since L|G is

continuous and G0 compact, L|G0 is bounded and in particular infλ∈G0 L(λ) > m

for some real m. Let (µtγ
γ ) be a subnet of (µtα

α ) converging in Γ(X, [0, 1]) (given by
Lemma 2), put T = {hλ : λ ∈ G0}, and note that all the hypotheses of Theorem 2
hold for T and (µtγ

γ ), with moreover T ⊂ CK(X). If λ0 �= 0 (say λ0 > 0), then λ1

and λ2 can be chosen such that 0 < λ1 < λ < λ2 for all λ ∈ G0. Since for each
real M ≥ m, there is a compact KM such that

⋃
λ∈G0

{m ≤ hλ ≤ M} ⊂ KM , by
Theorem 2(a) we get a compact K such that

L(λ) = sup
x∈K

{λx − l
(µ

tγ
γ )

1 (x)} for all λ ∈ G0. (10)

If λ0 = 0, then (µα) (resp. (µγ)) is exponentially tight with respect to (tα) (resp.
(tγ)), and we apply Theorem 2(b) to obtain (10). Therefore, for each λ ∈ G0 there

exists xλ ∈ K such that L(λ) = λxλ − l
(µ

tγ
γ )

1 (xλ). Put x = L′
|G+

(λ0), and let
(xλ′+λ0) be a subnet of (xλ+λ0 )λ+λ0∈G0,λ>0. Since xλ+λ0 ∈ K for all λ + λ0 ∈ G0,
(xλ′+λ0) has a subnet (xλ′′+λ0) converging to some point x′′ ∈ K when λ′′ → 0+,
so that

x = lim
λ′′→0+

L(λ′′ + λ0) − L(λ0)
λ′′

= lim
λ′′→0+

(λ′′ + λ0)xλ′′+λ0 − l
(µ

tγ
γ )

1 (xλ′′+λ0) − L(λ0)
λ′′

= x′′ + lim
λ′′→0+

λ0xλ′′+λ0 − l
(µ

tγ
γ )

1 (xλ′′+λ0) − L(λ0)
λ′′ ,

which implies x′′ = x and

0 = lim
λ′′→0+

λ0xλ′′+λ0 − l
(µ

tγ
γ )

1 (xλ′′+λ0) − L(λ0) ≤ λ0x − l
(µ

tγ
γ )

1 (x) − L(λ0),
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which proves the assertion concerning L′
|G+

(λ0). A similar proof works for
L′
|G−

(λ0).

Theorem 3. Let S ⊂ C(X) and G ⊂ X be a nonempty open interval such that
S ⊃ {hλ : λ ∈ G}, and assume that Λ(h) exists for all h ∈ S with L(λ) finite for
all λ ∈ G.

(a) If

ranL′
|G−

∪ ranL′
|G+

⊃ Dom(l0) ∩ {l1 > −Λ(0)}, (11)

then (µα) satisfies a vague large deviation principle with powers (tα) and rate
function J satisfying

J(x) = L∗
|G(x) = Λ∗

|S(x) for all x ∈ Dom(J) ∩ {J > −Λ(0)}. (12)

If moreover 0 ∈ G, then the principle is narrow and

J(x) = L∗
|G(x) = Λ∗

|S(x) for all x ∈ Dom(J). (13)

(b) If

ranL′
|G−

∪ ranL′
|G+

⊃ Dom(l0), (14)

then (µα) satisfies a vague large deviation principle with powers (tα) and rate
function J satisfying

J(x) = L∗
|G(x) = Λ∗

|S(x) for all x ∈ Dom(J). (15)

If moreover 0 ∈ G, then the principle is narrow.
(c) If

ranL′
|G− ∪ ranL′

|G+
⊃ Dom(Λ∗

|S) ∩ {l1 > −Λ(0)}, (16)

then (µα) satisfies a vague large deviation principle with powers (tα) and rate
function J satisfying

J(x) = Λ∗
|S(x) for all x ∈ {J > −Λ(0)}, (17)

and

J(x) = L∗
|G(x) for all x ∈ Dom(Λ∗

|S) ∩ {J > −Λ(0)}. (18)

If moreover 0 ∈ G, then the principle is narrow with J = Λ∗
|S satisfying

J(x) = L∗
|G(x) for all x ∈ Dom(J). (19)

(d) If

ranL′
|G− ∪ ranL′

|G+
⊃ Dom(Λ∗

|S), (20)

then (µα) satisfies a vague large deviation principle with powers (tα) and rate
function J = Λ∗

|S satisfying

J(x) = L∗
|G(x) for all x ∈ Dom(J). (21)

If moreover 0 ∈ G, then the principle is narrow.
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(e) If l0 is proper convex, then (a) (resp. (b)) holds verbatim replacing the symbol
Dom by intDom in (11)–(13) (resp. (14) and (15)).

(f) If Λ∗
|S is proper convex, then (c) (resp. (d)) holds verbatim replacing the symbol

Dom by intDom in (16), (18), (19)) (resp. (20) and (21)).

Proof. For all h ∈ S and all x ∈ X we have by Theorem 1 (since Λ(h) ≥
Λ(h1{h≤M} + (−∞)1{h>M}) for all reals M),

Λ(h) − h(x) ≥ sup
M∈R

sup
{h≤M}

{h(y) − l0(y)} − h(x)

≥ sup
y∈X

{h(y) − l0(y)} − h(x) ≥ −l0(x),

so that

L∗
|G(x) ≤ Λ∗

|S(x) ≤ l0(x) for all x ∈ X. (22)

Assume that (11) holds, and let (µtβ

β ) be a subnet of (µtα
α ). By Proposition 1 applied

to (µtβ

β ) in place of (µtα
α ), (µtβ

β ) has a subnet (µtγ
γ ) such that

l
(µ

tγ
γ )

1 (x) ≤ L∗
|G(x) for all x ∈ Dom(l0) ∩ {l1 > −Λ(0)}. (23)

Since

l0 ≤ l
(µ

tγ
γ )

0 ≤ l
(µ

tγ
γ )

1 ≤ l1, (24)

(22) and (23) imply for each x ∈ Dom(l0) ∩ {l1 > −Λ(0)},

l
(µ

tγ
γ )

0 (x) = l
(µ

tγ
γ )

1 (x) = L∗
|G(x) = Λ∗

|S(x) = l0(x). (25)

If x �∈ Dom(l0), then l
(µ

tγ
γ )

0 (x) = l
(µ

tγ
γ )

1 (x) = +∞ by (24). If l1(x) ≤ −Λ(0), then

l
(µ

tγ
γ )

0 (x) = l
(µ

tγ
γ )

1 (x) = l0(x) = l1(x) = −Λ(0).

Therefore, l
(µ

tγ
γ )

0 (x) = l
(µ

tγ
γ )

1 (x) for all x ∈ X . By Lemma 1 applied to (µtγ
γ ), (µγ)

satisfies a vague large deviation principle with powers (tγ) and rate function

J(x) =




Λ∗
|S if x ∈ Dom(l0) ∩ {l1 > −Λ(0)}

−Λ(0) if l1(x) ≤ −Λ(0)

+∞ if x �∈ Dom(l0).

(26)

By Lemma 2(b), (µtγ
γ ) converges to cJ in Γ(X, [0, 1]). Since (µtβ

β ) is arbitrary, we
have proved that any subnet of (µtα

α ) has a subnet converging vaguely to cJ . By
Lemma 2(a), it follows that (µtα

α ) converges vaguely to cJ , which proves the first
assertion of (a) ((12) follows from (25) and (26), since J = l0 = l1). If 0 ∈ G, then
(13) follows from (22) and (26) since −L(0) ≤ L∗

|G, and the principle is narrow by
exponential tightness. The proofs of (b)–(d) are similar. Assume that l0 is proper
convex, and

ranL′
|G− ∪ ranL′

|G+
⊃ intDom(l0) ∩ {l1 > −Λ(0)}.
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In the same way as above we get for each x ∈ intDom(l0) ∩ {l1 > −Λ(0)},

l
(µ

tγ
γ )

0 (x) = l
(µ

tγ
γ )

1 (x) = L∗
|G(x) = Λ∗

|S(x) = l0(x). (27)

Suppose that l
(µ

tγ
γ )

1 (x) > l0(x) for some x ∈ {l1 > −Λ(0)}. Since l1 and l
(µ

tγ
γ )

1 are
lower semi-continuous, there is an open set G0 containing x such that

inf
G0∩{l1>−Λ(0)}

l
(µ

tγ
γ )

1 > inf
G0∩{l1>−Λ(0)}

l0 = inf
G0∩{l1>−Λ(0)}∩intDom(l0)

l0,

where the equality follows from Lemma 3 applied to l0 and G0 ∩ {l1 > −Λ(0)}.
Then, there exists y ∈ G0 ∩ {l1 > −Λ(0)} ∩ intDom(l0) such that l

(µ
tγ
γ )

1 (y) > l0(y),

which contradicts (27). We then have l
(µ

tγ
γ )

1 (x) ≤ l0(x) for all x ∈ {l1 > −Λ(0)},
and by (24),

l
(µ

tγ
γ )

0 (x) = l
(µ

tγ
γ )

1 (x) = l0(x) for all x ∈ {l1 > −Λ(0)}.

Since

l
(µ

tγ
γ )

0 (x) = l
(µ

tγ
γ )

1 (x) = l0(x) = l1(x) = −Λ(0) for all x ∈ {l1 ≤ −Λ(0)},

it follows as above that (µtα
α ) converges vaguely to cJ , with J = l0 = l1 satisfying

by (27),

J(x) = L∗
|G(x) = Λ∗

|S(x) for all x ∈ intDom(J) ∩ {J > −Λ(0)}. (28)

If 0 ∈ G, then −L(0) ≤ L∗
|G, and by (22) and (28) we get

J(x) = L∗
|G(x) = Λ∗

|S(x) for all x ∈ intDom(J).

This proves the assertion of (e) concerning (a); the one concerning (b) is proved
similarly. Assume that Λ∗

|S is proper convex, and

ranL′
|G− ∪ ranL′

|G+
⊃ intDom(Λ∗

|S) ∩ {l1 > −Λ(0)}.

As above we get

l
(µ

tγ
γ )

0 (x) = l
(µ

tγ
γ )

1 (x) = L∗
|G(x) = Λ∗

|S(x) (29)

for all x ∈ intDom(Λ∗
|S) ∩ {l1 > −Λ(0)}. The same reasoning as in the proof of (e)

(with Λ∗
|S in place of l0) gives l

(µ
tγ
γ )

1 (x) ≤ Λ∗
|S(x) for all x ∈ {l1 > −Λ(0)}, and

by (22),

l
(µ

tγ
γ )

0 (x) = l
(µ

tγ
γ )

1 (x) = Λ∗
|S(x) = l0(x) for all x ∈ {l1 > −Λ(0)}. (30)

Since

l
(µ

tγ
γ )

0 (x) = l
(µ

tγ
γ )

1 (x) = −Λ(0) for all x ∈ {l1 ≤ −Λ(0)},
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it follows as above that (µtα
α ) converges vaguely to cJ , with J satisfying (17). Since

J = l1, (29) gives

J(x) = L∗
|G(x) for all x ∈ intDom(Λ∗

|S) ∩ {J > −Λ(0)}. (31)

Since 0 ∈ G implies −L(0) ≤ L∗
|G, by (22), (30), (31), we obtain J = Λ∗

|S and

J(x) = L∗
|G(x) for all x ∈ intDom(Λ∗

|S).

This proves the assertion of (f) concerning (c); the one concerning (d) is proved
similarly.

The standard Gärtner–Ellis theorem deals with the case where (µα) is a sequence
of Borel probability measures; it states that if L(λ) exists for all reals λ, L is lower
semi-continuous essentially smooth and 0 ∈ intDom(L), then (µα) satisfies a large
deviation principle with powers (tα) and rate function L∗ ([3], Theorem 2.3.6; [7,6]).
A stronger version has been given by O’Brien ( [8], Theorem 5.1): if L(λ) exists and
is finite for all λ in a nonempty open interval G and if L̂|G is essentially smooth, then
(µα) satisfies a vague large deviation principle with powers (tα) and rate function
L∗
|G; if moreover 0 ∈ G, then the principle is narrow. The former version is recovered

by taking G = intDom(L) (the hypotheses implying L∗ = L∗
|G with L̂|G essentially

smooth). The improvements consist in the obtention of the vague large deviations,
and in the fact that L in not assumed to exist out G (even when L exists on X , it
is not assumed to be lower semi-continuous).

The following corollary summarizes the case where S = {hλ: λ ∈ G} in
Theorem 3, and where large deviations hold with rate function L∗

|G (= Λ∗
|S). It

strengthens the O’Brien’s version of Gärtner–Ellis theorem by obtaining the same
conclusions, with the essential smoothness hypothesis replaced by the weaker condi-
tion (32) (or (33) when 0 ∈ G); in particular, there is no differentiability assumption.
Furthermore, it works for general nets of Radon sub-probability measures.

Corollary 1. We assume that L(λ) exists and is finite for all λ in a nonempty
open interval G ⊂ X.

(a) If

ranL′
|G− ∪ ranL′

|G+
⊃ intDom(L∗

|G), (32)

then (µα) satisfies a vague large deviation principle with powers (tα) and rate
function L∗

|G. The condition (32) is satisfied in particular when L̂|G is essen-
tially smooth.

(b) If 0 ∈ G and

ranL′
|G− ∪ ranL′

|G+
⊃ intDom(L∗

|G) ∩ {l1 > −L(0)}, (33)

then (µα) satisfies a large deviation principle with powers (tα) and rate func-
tion L∗

|G.
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Proof. (b) and the first assertion of (a) follow from Theorem 3(f) with S =
{hλ: λ ∈ G}. Assume that L̂|G is essentially smooth. Extend L|G by continuity to
a convex function L|G on G, so that L̂|G is a proper convex lower semi-continuous

function on X with G = intDom(L̂|G); moreover, L̂|G is essentially smooth. By
Theorem 26.1 and Corollary 26.4.1 of [10], we have

ranL′
|G ⊃ intDom(L∗

|G), (34)

which gives (32) since ranL′
|G = ranL′

|G and L∗
|G = L∗

|G.

The solution to the Ellis question (with in fact weaker hypotheses) is a direct
consequence of Theorem 3(c), by taking S = {hλ,ν : (λ, ν) ∈ R

2}.

Corollary 2. Put S = {hλ,ν : (λ, ν) ∈ R
2}, and assume that Λ(hλ,ν) exists for all

(λ, ν) ∈ R
2 and is finite for all pairs (λ, λ) with λ in some open interval G containing

0. If ranL′
|G−

∪ ranL′
|G+

⊃ Dom(Λ∗
|S) ∩ {l1 > −L(0)}, then (µα) satisfies a large

deviation principle with powers (tα) and rate function J = Λ∗
|S . Moreover,

J(x) = L∗
|G(x) for all x ∈ Dom(J).

The following example is often cited as a typical case not covered by the
Gärtner–Ellis theorem ([4, 8]).

Example 1. Consider the sequence (µ1/n
n ) where µn{−1} = µn{1} = 1

2 for all
n ∈ N. Then L(λ) = |λ| for all reals λ. Take S = {hλ,ν : (λ, ν) ∈ R

2} and compute

Λ(hλ,ν) = −λ ∨ ν for all (λ, ν) ∈ R
2,

hence

Λ∗
|S(x) =

{
0 if |x| = 1,

+∞ if |x| �= 1.

Then, ranL′
− ∪ ranL′

+ = {−1, 1} ⊃ Dom(Λ∗
|S), and by Corollary 2, (µn) satisfies a

large deviation principle with powers (1/n) and rate function J = Λ∗
|S . Since

L∗(x) =
{

0 if |x| ≤ 1,

+∞ if |x| > 1,

we have J(x) = L∗(x) for all x ∈ {−1, 1} = Dom(J). Note that for any nonempty
open set G ⊂ ] − 1, 1[,

ranL′
|G− ∪ ranL′

|G+
�⊃ intDom(L∗

|G) ∩ {J > 0} ⊃ ] − 1, 1[,

and the condition (33) of Corollary 1 does not hold.
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The following example exhibits a situation with convex rate function, where
both above corollaries do not work; we then apply Theorem 3 with another set S.

Example 2. Consider the net (µε
ε)ε>0, where µε is the probability measure on X

defined by µε(0) = 1 − 2pε, µε(−ε log pε) = µε(ε log pε) = pε, and assume that
lim ε log pε = −∞. Put Qn(x) = n|x|e−|x|−x for all n ∈ N and all x ∈ X , and take
S = {Qn: n ∈ N} ∪ {hλ: λ ∈ ] − 1, 1[}. Easy calculations give Λ(Qn) = 0 for all
n ∈ N, and

L(λ) =
{

0 if |λ| ≤ 1,

+∞ if |λ| > 1,

so that

L∗
|]−1,1[(x) = L∗(x) = |x| for all x ∈ X,

and

Λ∗
|S(x) = sup

n∈N

{Qn(x) − Λ(Qn)} ∨ L∗
|]−1,1[(x) =

{
0 if x = 0,
+∞ otherwise.

Then, ranL′
|]−1,1[ = {0} ⊃ Dom(Λ∗

|S), and by Theorem 3(d), (µε) satisfies a large
deviation principle with powers (ε)ε>0 and rate function J = Λ∗

|S . Note that J is
convex but J �= L∗ (however, J coincides with L∗ on Dom(J)); in particular, L is
not essentially smooth and the Gärtner-Ellis theorem does not work. Furthermore,
for any nonempty open set G ⊂ ] − 1, 1[,

{0} = ranL′
|G �⊃ intDom(L∗

|G) ∩ {J > 0} ⊃ X\{0}

and the condition (33) of Corollary 1 does not hold either. We observe also that
Corollary 2 does not apply; indeed, the set {hλ,ν : (λ, ν) ∈ R

2} is not suitable since

Λ(hλ,ν) =
{

0 if λ ≥ −1 and ν ≤ 1,
+∞ otherwise

gives Λ∗
|{hλ,ν :(λ,ν)∈R2}(x) = L∗(x) for all x ∈ X .

References

1. H. Comman, Functional approach of large deviations in general spaces, J. Theor.
Probab. 18 (2005) 187–207.

2. H. Comman, Criteria for large deviations, Trans. Amer. Math. Soc. 355 (2003) 2905–
2923.

3. A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications, 2nd edn.
(Springer-Verlag, 1998).

4. R. S. Ellis, An overview of the theory of large deviations and applications to statistical
mechanics, Scand. Actuarial J. 1 (1995) 97–142.

5. R. S. Ellis, Entropy, Large Deviations, and Statistical Mechanics (Springer-Verlag,
1985).

6. R. S. Ellis, Large deviations for a general class of random vectors, Ann. Probab. 12
(1984) 1–12.



October 20, 2009 14:36 WSPC/251-CM 00007

196 H. Comman
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(Birkhäuser, 1991), pp. 43–83.

10. R. T. Rockafeller, Convex Analysis (Princeton Univ. Press, 1970).


