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Consider a homogeneous space under a locally compact group G and a lattice Γ in G.
Then the lattice naturally acts on the homogeneous space. Looking at a dense orbit,
one may wonder how to describe its repartition. One then adopts a dynamical point of
view and compare the asymptotic distribution of points in the orbits with the natural
measure on the space. In the setting of Lie groups and their homogeneous spaces, several
results show an equidistribution of points in the orbits.

We address here this problem in the setting of p-adic and S-arithmetic groups.
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1. Introduction

1.1. Historical background

Ten years ago, Ledrappier [13] explained how Ratner’s theory (in this particular
case, he needed a theorem of Dani [4]) shall be used to understand the asymptotic
properties of the action of SL(2,Z) on the Euclidean plane R2. He proved the
following:

Theorem 1.1. (Ledrappier [13], Nogueira [17]) Let Γ be a lattice of SL(2,R) of
finite covolume c(Γ), | · | the Euclidean norm on the plane R2, ‖ · ‖ the Euclidean
norm on the algebra of 2× 2-matrices M(2,R), and v ∈ R2 with non-discrete orbit
under Γ.

Then we have the following limit, for all φ ∈ Cc(R2\{0}):
1
T

∑
γ∈Γ,‖γ‖≤T

φ(γv) T→∞−−−−→ 2
|v|c(Γ)

∫
R2\{0}

φ(w)
dw

|w| .

Remark. Nogueira [17] proved also the previous theorem for Γ = SL(2,Z) using
different techniques.

After that Gorodnik developed the strategy for the space of frames [8] and
eventually Gorodnik and Weiss gave an abstract theorem for this problem in Lie
groups and then applied it to different situations [10].

Recently, Ledrappier and Pollicott [14], and independently the author in his
PhD thesis [11], proved a p-adic analog of the first theorem for lattices of SL(2,Qp)
acting on the p-adic plane.

In this paper we adapt this strategy to handle the case of homogeneous space
under S-arithmetic groups. Our work can be viewed as the analog of [10] in this
setting.
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1.2. The S-arithmetic setting

We will work in the following arithmetic setting: let K be a number field, O its
integer ring and V the set of its places. We fix a finite set S in V containing the
Archimedean ones. For all ν ∈ V , we note Kν the completion of K associated to
ν and KS the module product of all Kν for ν ∈ S. This ring has a set of integers,
noted OS .

Consider G a semisimple simply connected K-group. We note G := G(KS) its
S-points, and we fix Γ an arithmetic lattice, i.e. commensurable to G(OS). Recall
that, according to Margulis superrigidity theorem, as soon as the total rank of G is
greater than 2, any lattice in G is an arithmetical one. Then let H be a subgroup of
G which is a product

∏
ν∈S Hν of closed subgroups of G(Kν). For example, one can

think to the stabilizer of a point for an action of G defined over K, i.e. H = gH̄g−1

where H̄ is the KS-points of a K-group and g an element in G. We will always
assume that the subgroup H is unimodular. Some references for these objects are
to be found in [18] and [15].

We are interested in the asymptotic distribution of orbits of Γ in H\G, so we
will always assume this orbit to be dense, or equivalently that HΓ is dense in G.
This last assumption is quite different of some recent works in the same area [9, 6]
where H is supposed to have a closed projection in G/Γ and the dynamic appears
by looking at larger and larger orbits. In particular, there will not be any adelic
arguments in this work.

1.2.1. Measures and projections

Definition 1.1. We say that a triple (G,H,Γ) is under study if we are in the
precedent case, that is if there is a number field K, a finite set S of places containing
the Archimedean ones, and a K-group G, K-reductive and with simply connected
semisimple part, such that:

• G is the KS points of G,
• Γ is an arithmetic lattice in G,
• H is the product of unimodular Kν-subgroups of G(Kν) for ν ∈ S,
• HΓ is dense in G and H is not compact,
• H is a semidirect productHss �Hu of a semisimple part and an unipotent radical.

We now fix some notations for projections and measures: we fix a Haar measure
mG onG;mH onH ; and notem the probability measure onG/Γ locally proportional
tomG. OnH\G, asH is unimodular, we have a unique — up to scaling —G-invariant
measure. We normalize the measure mH\G on H\G such that mG is locally the
product of mH and mH\G. The notations for the projections are as shown:

G

τ ↙ ↘ π

H\G G/Γ
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1.2.2. Balls and volume

In order to adopt a dynamical point of view, we need to instillate some evolution
in the so far static situation. So we consider families (Gt)t∈R of open and bounded
subsets in G (often called balls), and consider the sets Γt = Γ∩Gt. Letting t go to
∞, we may now consider the asymptotic distribution of the sets H\HΓt in H\G.
Of course we will consider families (Gt) that are increasing and exhausting (the
union of Gt covers G).

We introduce a notation for the intersection of such a family (Gt) and its trans-
lates with subsets of G:

Definition 1.2. Fix (Gt)t∈R a family of open subset G, L a subset of G and g an
element of G. Then for all real t, we note Lt := L ∩ Gt the intersection of Gt and
L and Lt(g) the intersection L ∩Gtg

−1.
As the restriction of the so-called balls of G, we call the sets Lt balls in L, and

skew-balls the sets Lt(g).

When L is a subgroup, we can compare the growth of volume of its normal
subgroup with respect to the sets (Gt). It may happens that a strict subgroup
grows as fast as the whole group. Such a subgroup is exhibited in [10, Sec. 12.3].
We will call such a subgroup dominant:

Definition 1.3. Let L be a unimodular subgroup ofG andmL be its Haar measure.
Fix Gt a family of open bounded subsets of G, increasing and exhausting.

A normal subgroup L′ is said to be dominant in L if for some compact C in
L, the volume of C · L′

t grows as fast as the volume of Lt, i.e. mL(C·L′
t)

mL(Lt)
does not

converge to 0 with t.

Eventually we need an explicit way to define balls in Γ. Going back to Ledrap-
pier’s theorem, we see that the balls are constructed considering a norm on the
algebra of 2× 2-matrices. Moreover, Gorodnik and Weiss [10] defined their balls in
the same spirit, first representing the group G and then using a norm on the matrix
algebra in which G is embedded. Our strategy is the same, but for technical rea-
sons we assume firstly that the norms are “algebraic”, secondly that the unipotent
radical and the semisimple part are somehow orthogonal with respect to the norm
and eventually that the norm on the unipotent part verifies a kind of ellipticity.

Definition 1.4. A size function D from G to R+ is any function constructed in
the following way: consider a K-representation ρ of G in a space V with compact
kernel in G and for all ν ∈ S a norm | · |ν on the space End(V(Kν)) verifying:

• (Algebraicity) If ν is Archimedean, the norm | · |ν may be written in a suitable
basis as the Lp-norm for p in N∗ ∪ {∞}. If ν is ultrametric, we assume that it is
the max-norm in some basis.

• (Orthogonality) for all hν = (hss
ν , h

u
ν ) in H , its norm |hν |ν is an increasing func-

tion of both |hss
ν |ν and |hu

ν |ν .
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Now define D for all g = (gν)ν∈S by the formula D(g) = max{|gν|ν for ν ∈ S}.
In order to state the ellipticity condition, let us define some notations: thanks

to ρ, we may see Hu
ν as a subgroup of GL(V(Kν)) and its Lie algebra hu =

∏
hu

ν

as a Lie subalgebra of End(V(Kν)). We also have for each ν the exponential map
expν between hu

ν and Hu
ν and its inverse logν . On each hu

ν , one may choose a basis
Bν = (uν

i ) such that [uν
i , u

ν
j ] only has components on (uν

l )l>i, l>j (e.g. a basis
adapted to the central filtration). The ellipticity condition states that, up to a
diffeomorphism of hν , the pullback by expν of the norm | · |ν in hu

ν is (a power
of) | · |ν .

Definition 1.5. (Ellipticity) We say moreover that a size function D is elliptic on
Hu if, for every ν ∈ S, there exist a α > 0 and a polynomial diffeomorphism φν

of hu
ν whose differential is upper triangular unipotent in the basis Bν , for which

φν(0) = 0 and such that | expν(φν(u))|ν is equivalent to |u|αν .

Example 1.1. The canonical example behind the definition is the unipotent radical
of a parabolic subgroup in SL(n,KS). Consider an integer 1 ≤ k < n and the
following group U (Idk is the identity matrix of size k):

U =

{(
Idk (ui,j)i≤k, j>k

0 Idn−k

)
, with ui,j ∈ KS

}
.

We choose for all ν ∈ S the max-norm on M(n,Kν). It defines a size function on
U . Now this size function is elliptic, as we may consider the diffeomorphism φν

defined by:

exp ◦φν :

(
0 (ui,j)

0 0

)
�→
(

Idk (ui,j)

0 Idn−k

)
.

The definition of ellipticity guarantees the following properties of φu:

Fact 1. The diffeomorphisms φν defined above preserve a Haar measure on hu
ν and

there is a line Zν in the center zν of hν on which φν is the identity and along which
φν is affine:

For all u ∈ hν and z ∈ Zν , we have φν(h+ z) = φν(h) + z.

Proof. This comes directly from the fact that the differential is upper triangu-
lar unipotent in the basis Bν : the Jacobian of φν is 1 and φν is affine along the
direction generated by the last vector of the basis (which belongs to the center by
construction). And on this line φν is the identity.

Let us discuss these assumptions before proceeding. The first one (algebraicity)
does not seem to be crucial. We will mainly use it in Sec. 3 and the result obtained
there may be proved in numerous applications by a direct calculus. The second
one (orthogonality) is more important and we do not know whether it is necessary
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or not. Let us say that for one of the applications (1.3), its verification is not
so straightforward. The third one (ellipticity) is stated in a strong way to avoid
technicalities. One definitely may relax it. Our main interest in this paper was not
to focus on the unipotent part and we stated this only in view of the applications
given (where the unipotent part is the radical of a parabolic subgroup of SL(n)).
For applications we may verify that these conditions are fulfilled (see Sec. 7). We
would like to stress that, when H is semisimple, the only condition is algebraicity.
Moreover, every example given in the historical section fit into the framework of
this paper.

In this setting, given a size function D, we have an associated family of balls
Gt := {g ∈ G such that D(g) < t} in G.

1.3. Statement of the main result

We prove in this paper the following result:

Theorem 1.2. Let (G,H,Γ) be a triple under study, D be a size function on G

elliptic on Hu and (Gt)t>0 be the associated family of balls. Assume that every
dominant subgroup H ′ verifies H ′Γ is dense in G.

Then there is a finite partition I1, . . . , Il of R>0, and for each 1 ≤ i ≤ l, a
function αi : H\G → R>0 such that the orbit of the sets Γt = Gt ∩ Γ for t ∈ Ii
becomes distributed in H\G according to the density αi with respect to mH\G. That
means, for all ψ ∈ Cc(H\G), we have:

1
mH(Ht)

∑
γ∈Γt

ψ(τ(γ)) t→+∞−−−−→
t∈Ii

∫
H\G

ψ(x)αi(x)dmH\G(x).

The partition of the parameter space in a finite number of subspaces is not
needed when there is no non-Archimedean places as in [10] but appears even with
very simple examples as soon as ultrametric part is to be taken in consideration.
Let us also precise that the densities αi are explicitly described and effectively
computable in examples given afterwards (see Theorem 2.1).

We present here some examples of applications. Of course one may look at
numerous situations. We just present here some variations about linear actions of
the special linear group on points or subspaces. We believe that these examples show
how to apply the previous theorem to specific situations, using algebraic features
such as strong approximation in the special linear group. The proofs are postponed
to Sec. 7.

1.3.1. Applications to SL(2)

Consider the group G = SL(2,R) × SL(2,Qp) for p a prime number, and fix the
lattice Γ = SL(2,Z[ 1p ]). We fix here (for sake of simplicity) the standard Euclidean
norm | · |∞ on the matrix algebra M(2,R) and the max-norm | · |p on M(2,Qp).
For a point v in R2, we note also |v|∞ the norm of the matrix whose first column
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is v and the second one is 0. We define similarly the norm of a point in Q2
p. We

choose a Haar measure m = m∞ ⊗mp on G.
First we look at the action on the real plane, proving a result similar to Ledrap-

pier’s theorem but for the action of matrices in Γ subject to congruence conditions
on their coefficients modulo p:

Application 1.1. Let O be a bounded open subset of SL(2,Qp). Note ΓO
T the set

of elements γ ∈ Γ such that |γ|∞ ≤ T and γ ∈ O as an element of SL(2,Qp). Let v
be a point of the plane R2\{0} with coordinates independent over Q.

Then we have the following limit, for any function φ continuous with compact
support in R2\{0}:

1
T

∑
ΓO

T

φ(γ(v)) T→∞−−−−→ mp(O)
m(G/Γ)|v|∞

∫
R2
φ(w)

dw

|w|∞ .

Another action of Γ of interest is on the product of real and p-adic planes. A
precision: on the p-adic plane, we normalize the measure such that it gives mass 1 to
Z2

p. The result is that if your beginning point generates the whole plane among the
Q-subspaces, then its orbit is dense and you get a distribution result (the function
E appearing is the integer part):

Application 1.2. Let (v∞, vp) be an element of (R2\0) × (Q2
p\0). Suppose that

any Q-subspace V of Q2 verifying v∞ ∈ V ⊗Q R and vp ∈ V ⊗Q Qp is Q2. Denote
ΓT the set of elements γ ∈ Γ with |γ|∞ ≤ T and |γ|p ≤ T .

Then, for all function φ continuous with compact support in (R2\0) × (Q2
p\0),

we have the following limit:

1
TpE(lnp(T ))

∑
ΓT

φ(γv∞, γvp)
T→∞−−−−→ p2 − 1

p2m(G/Γ)|v∞|∞|vp|p

∫
R2×Q2

p

φ(v, w)
dvdw

|w|∞|w|p .

All these results may be extended with the tools presented in the paper for any
norm on the matrix algebras and by considering not only a prime number but a
finite number of them.

1.3.2. Applications to SL(n)

We look here at a generalization in greater dimension. We consider the action of
Γ = SL(n,Z) on the kth exterior power Λk(Rn), or the space of k-planes equipped
with a volume. Once again we fix the standard Euclidean norm | · | on M(n,R),
but this time it is necessary to apply our theorem (see Sec. 7). We consider also the
standard Euclidean norm | · | on Λk(Rn). And m is a Haar measure on SL(n,R).
We get:

Application 1.3. Let v be a nonzero element of Λk(Rn) such that its correspond-
ing k-plane of Rn contains no rational vector. Denote ΓT the set of elements γ ∈ Γ
with |γ| ≤ T .
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Then we have a positive real constant c (independent of Γ and v) such that for
all function φ continuous with compact support on Λk(Rn)\{0}:

1
T n2+k2−nk−n

∑
ΓT

φ(γv) T→∞−−−−→ c

m(G/Γ)|v|
∫

Λk(Rn)

φ(v′)
dv′

|v′| .

The S-arithmetic generalization of the previous result of course holds. We prefer
to postpone its statement and its proof to Sec. 7. Moreover, we do not want to
multiply here statements but one may think at examples in special unitary groups
or Spin groups instead of the special linear one.

1.4. Organization of the paper

The organization of the paper is the following: in Sec. 2 we work out the so-called
duality phenomenon, reducing the stated theorem to two results: a statement on
volume of balls in the group and an analog of a result of Shah about equidistribution
of balls of H in G/Γ. Section 3 is devoted to the study of volume of balls, using p-
adic integration. In Sec. 4 we review some tools we need to prove the analog of Shah
theorem: mainly Ratner theorem for unipotent flows in a p-adic setting and several
results due to G. Tomanov for polynomial dynamics in S-arithmetic homogeneous
spaces. Section 5 is the devoted to some technical work. We conclude the proof in
the sixth section. Eventually we treat the examples in the last section.

2. Duality

The duality phenomenon, as used by Ledrappier [13] and Gorodnik–Weiss [10], is
a consequence of the following idea: a property of the action of Γ on H\G reflects
in a property of the action of H on G/Γ. The simplest example is the density of an
orbit: Hg has dense orbit under Γ in H\G if and only if gΓ has dense orbit under
H in G/Γ. This consideration leads to the key point in the proof of Ledrappier:
instead of looking at the orbit of the lattice Γ in the space H\G, we prefer to trans-
late the problem in terms of the action of H in G/Γ. And then we may use the
precise description of unipotent orbits in the space G/Γ, namely Ratner’s theory
(cf. Sec. 4) to prove some equidistribution results. However, for asymptotic distribu-
tion of points, this phenomenon is not granted and requires additional assumptions
that we will review in this section.

We may remark that if H is symmetric, Benoist and Oh used other techniques,
i.e. the mixing property, to study asymptotic distribution of orbits [1].

In [10, Corollary 2.4], Gorodnik and Weiss presented an axiomatic frame for
duality. Unfortunately we cannot use directly their statement as we miss some
continuity hypothesis on the distance function — once again the ultrametric part
has to be handled specifically, even if the final result holds. So we present a slightly
adapted version of their result in Theorem 2.1.

In the setting defined in the precedent section, consider an increasing and
exhausting family Gt of open bounded subsets in G. We need a hypothesis of
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regularity on this family. We choose to state it using the right action of open sub-
sets of G and asking the sets Gt to be uniformly almost invariant by some open
set. As we are interested in the intersections with H , the precise (and classical)
definition is:

Definition 2.1. Let (Gt)t∈I be a family of open bounded subsets of G. We say that
it is almost (right)-invariant if for every ε > 0 one can find an open neighborhood
Uε of id in G such that the two following inequalities hold for every t ∈ I:

• the set GtUε is not too large with respect to Gt inside H :

mH(H ∩GtUε\Gt) ≤ εmH(H ∩Gt).

• Not too much points inside Gt are Uε-closed to its complement inside H :

mH(H ∩Gt\Gc
tUε) ≥ (1 − ε)mH(H ∩Gt).

One easily checks that the balls Gt defined by a size function on G are almost
invariant. Indeed for the Archimedean part, any norm on the matrix algebra is
continuous. And for the ultrametric part, the max-norm is invariant under some
open neighborhood of identity.

We also need a result of existence of limits for ratios of volumes of skew-balls
in H (Hypothesis D2 in [10]). Recall Definition 1.2: for g ∈ G and t ∈ I, Ht(g) is
the set H ∩Gtg

−1.

Definition 2.2. We say that a family (Gt)t∈I admits volume ratio limits for H if
for all g in G the ratio mH(Ht(g))

mH(Ht)
admits a limit as t goes to +∞ in I.

The Corollary 2.4 of [10] (and its proof) implies the following theorem:

Theorem 2.1. Let (G,H,Γ) be a triple under study. Let (Gt)t∈I be a family of
bounded open subsets of G almost invariant, admitting volume ratio limits for H and
such that the volumes of Ht = H∩Gt go to +∞. Assume moreover that the orbit of
Ht in G/Γ becomes equidistributed with respect to mG/Γ; i.e. for all φ ∈ Cc(G/Γ),
we have:

1
mH(Ht)

∫
Ht

φ(π(h))dmH(h) t→+∞−−−−→
t∈I

∫
G/Γ

φdmG/Γ.

Then the orbit of Γt = Gt ∩Γ is distributed in H\G according to a density with
respect to mH\G; i.e. for all ψ ∈ Cc(H\G), we have:

1
mH(Ht)

∑
γ∈Γt

ψ(τ(γ)) t→+∞−−−−→
t∈I

∫
H\G

ψ(H.g)
mH(HT g)
mH(HT )

dmH\G(Hg).

In particular the density of the limit measure is described as limit ratio of
volumes of balls. We will see in the next section a proof of existence of these
ratios. But in this paper we will not go into precise and general estimates of these
volumes. Our theorem still benefits of these estimations when available, e.g. in the
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applications (see Sec. 7). Maucourant [16] gets very precise estimations for H real
semisimple.

Proof. The proof is the same as [10, Parts 3 and 4]: the almost invariance replacing
the hypothesis of right continuity of the distance function.

Now we have to understand the right setting to apply this theorem. There are
two difficulties: the existence of volume ratio limits and the equidistribution of
H-orbits in G/Γ. The next section address the first problem. We will prove the
following theorem:

Theorem 2.2. Let (G,H,Γ) be a triple under study, D a size function on G.
Consider (Gt)t∈R the family of balls for D. Suppose that the volume of Ht goes
to +∞.

Then there exists a finite partition of R in unbounded subsets I1, . . . , Ik such
that for all 1 ≤ l ≤ k the family (Gt)t∈Il

admits volume ratio limits for H.

We shall exhibit in the following section a very simple example showing that we
really need this partition.

The second part of the paper is to prove the equidistribution property under
the hypothesis of Theorem 1.2: H is a semidirect product of a semisimple and a
unipotent groups and every dominant subgroup has dense orbit in G/Γ. We will
prove in Sec. 6 the following theorem:

Theorem 2.3. Let (G,H,Γ) be a triple under study, D a size function on G,
elliptic on Hu and Ht the induced family of balls in H. Assume that every dominant
subgroup H ′ of H has dense orbit in G/Γ.

Then the orbits of Ht becomes equidistributed in G/Γ with respect to mG/Γ; i.e.
for all φ ∈ Cc(G/Γ), we have:

1
mH(Ht)

∫
Ht

φ(π(h))dmH (h) t→+∞−−−−→
∫

G/Γ

φdmG/Γ.

Theorem 1.2 is then a direct consequence of the three previous results.

3. Asymptotic Developments of Volumes

3.1. An example

The following part is slightly technical and may be misunderstood without any
example in mind. Let us show on a very simple example that we have to be careful
in describing the asymptotics of volumes of balls.

We will take here G = SL(3,R) × SL(3,Qp) for some prime p and H the
image under the adjoint representation of SL(2) of the upper triangular nilpotent
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subgroup:

H =


h(t∞, tp) =






1 2t∞ t2∞
0 1 t∞
0 0 1


 ,




1 2tp t2p

0 1 tp

0 0 1




 ; t∞ ∈ R and tp ∈ Qp


 .

We choose the max-norm on both M3(R) and M3(Qp) such that:

Hpn = {h(s∞, sp) for s∞ ∈ R with |s2∞| ≤ pn and sp ∈ Qp with |s2p|p ≤ pn}.
Hence the volume of Hpn is equal to p

n
2 +E( n

2 ) (E is the integer part).

Now let us have a look on a specific skew-ball: Hpn

(
Id,
(

p 0 0
0 1 0
0 0 p−1

))
, and we

note g =
(

Id,
(

p 0 0
0 1 0

0 0 p−1

))
. Then the skew-ball is described by:

Hpn(g) = {h(s∞, sp) for |s∞|2 ≤ pn and |p−1s2p|p ≤ pn},
hence its volume mH(Hpn(g)) is equal to p

n
2 +E( n−1

2 ). We see that the ratio
mH(Hpn (g))

mH(Hpn ) is equal to pE( n
2 )−E( n−1

2 ). This sequence does not admit any limit as n
goes to ∞. But we can split it in two subsequences: n odd or even. And then both
subsequences admit a limit (respectively p and 1).

Keeping this example in mind we will now explain why we are always able to
do this: split the space of parameters t in a finite number of subspaces in which the
hypothesis of admitting volume ratio limits is fulfilled.

3.2. Volume ratio limits

We will prove here Theorem 2.2 stated above. We will use the fact that if two
functions have an asymptotic development on the same (reasonable) scale and their
ratio is bounded, then this ratio admits a limit.

In order to get this asymptotic behavior, we use the algebraic hypothesis on
the norm. Then, following Benoist–Oh [1, Part 16], we get the expected result as
a consequence of resolution of singularities in the Archimedean case and Denef’s
Cell decomposition theorem in the non-Archimedean one. These results are the two
following propositions:

Proposition 3.1. (Benoist–Oh [1], Proposition 7.2) Let H be the group of R-points
of an algebraic R-group, ρ : H → GL(V ) a R-representation of H,mH the Haar
measure on H and | · | an algebraic norm on End(V ).

Then, for all g ∈ GL(V ), the volume mH(Ht(g)) = mH{h ∈ H |ρ(h)g| ≤ t} has
an asymptotic development on the scale taln(t)b with a ∈ Q+ and b ∈ N.

For the ultrametric part, we do not get exactly an asymptotic development
rather a finite number of asymptotic developments. This was already noted in [1]
but we need here a slightly more precise result, namely a uniformity on the number
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of simple functions needed:

Proposition 3.2. (Benoist-Oh) Let k be a finite extension of Qp, q be the norm of
an uniformizer, H the group of k-points of an algebraic k-group, ρ : H → GL(V ) a
k-representation of H,mH the Haar measure on H and | · | a max-norm on End(V ).
Let St(g) be the sphere of radius t:St(g) := {h ∈ H such that |hg| = t}.

Then there exist N0 an integer such that for all g ∈ G and for each 0 ≤ j0 ≤ N0

one of the following holds :

(1) Sqj (g) is empty for all j = j0 mod N0.
(2) There exist dj0 ∈ Q≥0, ej0 an integer and cj0 > 0 such that mH(Sqj (g)) ∼

cj0q
dj0jjej0 for all j = j0 mod N0.

Proof. We will not go into details as the proof is the same as [1, Corollary 16.7].
We will just say that applying a theorem of Denef [5, Theorem 3.1 and remark
below], we get the following:

For any polynomial map f(x, λ) from Qm+d
p to some GL(V ), for any semialge-

braic measure µ on a semialgebraic set S ⊂ Qm
p , there are some functions γi(λ, n)

and βi(λ, n) for 1 ≤ i ≤ e such that the measure I(λ, n) of the set of elements x ∈ S

with |f(x, λ)| = qn is of the form:

I(λ, n) =
e∑

i=1

γi(λ, n)pβi(λ,n).

Moreover, the functions γi and βi are simple in the following sense: for any of
these functions (hereafter denoted α) there exists an integer N such that for all λ,
the map n �→ α(λ, n) is affine along at most N arithmetic progressions in N which
cover N up to a finite set.

Now, the above proposition is just this result in the case where S is the image
under the representation ρ of H , µ is the Haar measure on H and f(λ, x) = λ · x
for λ ∈ GL(V ) and x ∈ H .

We may go on with the proof of Theorem 2.2. Let us write more explicitly the
information we get on the function mH(Ht(g)) from these two results. Fix some g
in G. Consider the set Sf of finite places in S. For each ν ∈ Sf , we note qν the norm
of the uniformizer of Kν. The previous proposition gives us an integer Nν and for
all 0 ≤ j ≤ Nν − 1 some dν,j ∈ Q, eν,j ∈ N and cν,j > 0 describing the volume
of spheres in the group Hν . Moreover, for the Archimedean part, Proposition 3.1
gives some triple d∞ ∈ Q>0, e∞ ∈ N and c∞ > 0 such that the volume of (H∞)t is
equivalent to c∞te∞ed∞t. With this data we are able to describe the volume of Ht:

Lemma 3.3. With the data above, mH(Ht(g)) is equivalent, as t goes to ∞, to:

c∞td∞(ln t)E∞
∏

ν∈Sf


E(lnqν t)∑

j=0

cν,j[Nν ]q
dν,j[Nν ]j
ν jeν,j[Nν ]


 . (3.1)
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Moreover, let

d = d∞ ×
∏

ν∈Sf

max
0≤j≤Nν

dν,j and e = e∞ ×
∏

ν∈Sf

max
0≤j≤Nν

eν,j .

Then mH(Ht(g)) lies between two constants times teedt.

Proof. By definition of the size function, the ball Ht(g) is the product for all ν in
S of the balls (Hν)t(gν) in the group Hν . For each of these balls the two previous
theorems give us an equivalent for the volume in Hν (all functions are positive
so there is no trouble summing equivalent). Now the Haar measure on H is the
product of the Haar measures on the Hν ’s. And formula (3.1) is just the product
of these equivalences.

The second part directly comes from the first one.

The following lemma is the last step:

Lemma 3.4. Under the hypothesis of Theorem 2.2 fix an element g in G.
Then there exists a constant c > 1 such that the ratio mH(Ht(g))

mH(Ht)
lies between

c−1 and c for all t.

Proof. The element g acts continuously on the module End(V(KS)) (recall that
in order to define balls in G we fixed some representation of G in a vector space
V). So there are two constants A and B such that we have for all h in H (recall
that D denotes the size function):

A ·D(h) ≤ D(hg) ≤ B ·D(h).

That implies that the set Ht(g) contains HAt and is contained in HBt.
But the second part of the previous lemma implies that the ratios mH(HAt)

mH (Ht)
and

mH(HBt)
mH(Ht)

are bounded. Hence we have proven the lemma.

We now have the tools to proceed with the proof of Theorem 2.2:

Proof. Each finite place leads to a finite partition of the space of parameters in
the following way: For ν ∈ Sf we have qν the norm of the uniformizer and the
integer Nν given by Proposition 3.2. For 0 ≤ j ≤ Nν − 1, we call Iν,j the set of
real numbers t such that E(lnqν t) is equal to j modulo Nν . Proposition 3.2 implies
that on the sets Iν,j and for all g ∈ G we have an asymptotic development of the
volume of (Hν)t(g) of the form: mH((Hν)t(g)) ∼ Cν,jt

Eν,jeDν,jt.
Now consider the finite partition I1, . . . , Il of R given by the intersection of all

these partitions. Then on a set Ij of this partition and for all g in G, the volume
mH(Ht(g)) is equivalent to some Cj(g)tEj(g)eDj(g)t. But we know by the previous
lemma that the ratio mH(Ht(g))

mH(Ht)
is bounded.

At this point we are done: since the ratio is bounded, we have Ej(g) = Ej(Id)
and Dj(g) = Dj(Id). Hence the ratio admits a limit (depending on the set Ij),
namely Cj(g)

Cj(Id) .
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4. Polynomial Dynamic in Homogeneous Spaces

We here recall some facts about polynomial dynamic in S-arithmetic groups. The
result we need can mainly be found in Tomanov [21]. They are also used in [9]. The
main difference here, which is only a technical one, is that we need to extend all
the results to orbit of polynomials in several variables. This does not change deeply
the proof of the theorems. The interested reader may refer to the author’s PhD
thesis [11] for details.

4.1. Measure on G/Γ invariant under the action of a

unipotent subgroup

4.1.1. Measure rigidity in an S-arithmetic setting

We need the rigidity theorem for measures invariant under a unipotent group, often
called Ratner’s theorem. For p-adic groups, it has been proved by Ratner and by
Margulis and Tomanov. However in an S-arithmetic setting a more precise version
can be found in [21].

Accordingly to [21], we define the notion of subgroup of class F :

Definition 4.1. Let A be a Q-subgroup of G. Then A belongs to the class F if
and only if A(KS) is the Zariski closure of the group generated by the unipotent
elements of A(KS).

Recall from [21] that for a class F -group P, the subgroup P ∩ Γ is a lattice
in P . It implies that the projection of P in G/Γ is closed.

We can now state the measure rigidity theorem:

Theorem 4.1. (Ratner, Margulis-Tomanov, Tomanov) Let G be a Q-group, Γ an
arithmetic subgroup of G = G(KS) and U a subgroup of G generated by its one-
parameter unipotent subgroups.

Then for all probability measure µ on G/Γ which is U -invariant and U -ergodic,
there exist a class F-subgroup P of G and P ′ a finite index subgroup of P = P(KS)
such that the probability µ is the P ′-invariant probability on a translate of a P ′-orbit
in G/Γ.

This theorem allows a complete description of U -invariant probability measures.

4.1.2. The non-ergodic case

Let U be a subgroup of G generated by its one-parameter unipotent subgroups and
µ be a U -invariant probability measure on G/Γ.

For each class F subgroup of G, the precedent theorem defines a class of U -
ergodic probability measures. To understand the decomposition of µ into ergodic
components, we have to define some subsets of G:
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Definition 4.2. Let P be a class F subgroup of G. Then the sets X(P,U) and
S(P,U) are defined in the following way:

X(P,U) = {g ∈ G such that Ug ⊂ gP},
S(P,U) =

⋃
P′∈F ,P′⊂P

X(P ′, U).

We remark that X(P,U) is an algebraic subvariety of G.
For each class F subgroup P of G, let µP be the restriction of µ to π(X(P,U)−

S(P,U)). Then each ergodic component of µP is of the form given by the precedent
theorem for this group P. Moreover, since the sets π(X(P,U)−S(P,U)) are disjoint,
we get the following decomposition of µ in a denombrable sum:

µ =
∑
P∈F

µP.

This decomposition enlightens the following fact: in order to understand a mea-
sure U -invariant, we have to understand the behavior of trajectories near the variety
π(X(P,U)−S(P,U)). The goal of this section is to get a such a result. But first of
all, we will define some useful representations of the group G.

4.2. A suitable representation

We fix here a class F -subgroup P. Chevalley’s theorem [2, 5.1] grants the existence
of a K-representation ρP of G such that P is the stabilizer of a line D in the space
VP of the representation.

We fix a point vP in D(K). Moreover, we consider vP as a point of the KS-
module VP = VP (KS). We now get a function ηP from G to V given by the
following formula:

ηP (g) = ρP (g) · vP .

The normalizer N(P) of P fix the line D but not the point vP . So we define
N1(P) to be the fixator of the point vP .

The following lemma will be useful, as a link between properties of subset in
G/Γ and in VP :

Lemma 4.2. • The set ηP (Γ) is discrete in VP .
• The set N1(P )Γ/Γ is closed in G/Γ.

Proof. First the subgroup VP (OS) is discrete in VP = VP (KS) and ρP is a
K-representation. So the set ρP (G(OS)) · vP is discrete in VP . Moreover, Γ is
supposed to be arithmetic, so ηP (Γ) is contained in a finite number of translates of
ρP (G(OS)) · vP . Hence it is a discrete set.

Second, let gk = nkγk be a sequence of points in N1(P )Γ and assume that gk

converges to a point g. We want to prove that gΓ/Γ belongs to N1(P )Γ/Γ. We
rewrite the definition of gk: γ−1

k = g−1
k nk. By definition of N1(P ), we then get
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ηP (γ−1
k ) = ηP (g−1

k ). We just showed that ηP (Γ) is discrete. So the sequence γk is
stationary equal to a γ for k large enough. Then gkγ

−1 fixes vP for k large enough.
That is gkγ

−1 belongs to N1(P ). So does its limit and we can conclude: g belongs
to N1(P )Γ.

We conclude with a last definition involving the group U . The set X(P,U)
is N(P )-invariant hence N1(P )-invariant by right multiplication and it is a Zariski
closed set of G. So its image by the function ηP , which is Zariski-open and surjective
on ηP (G), is Zariski-closed in ηP (G). However, there is no reason for it to be Zariski-
closed as well in VP . So we define F (P,U) as the Zariski-closure of ηP (X(P,U))
in VP .

Remark. To avoid confusion, let us describe the Zariski topology in KS-modules:
a polynomial Q of KS[X1, . . . , Xn] is nothing but a collection of polynomials Qν for
all ν in S. A Zariski-closed subset of a KS-module M =

∏
ν∈S mν is then naturally

an intersection of products of Zariski-closed subsets of each Mν .

4.3. Behavior of polynomial functions

We now state a theorem allowing to control polynomial dynamics along the sets
π(X(P,U) − S(P,U)). Let us begin by the definition of a polynomial function in
the KS-points G of a K-group G with a faithful linear representation ρ: a function
f = (fν)ν∈S from (KS)m to G is said to be polynomial of degree d if for all ν ∈ S,
the matrix entries of ρ◦fν are all polynomial of degree d. The set of functions from
Km

S to G polynomial of degree at most d will be noted P(d,m)(G). Moreover, we
note θ =

⊗
ν∈S θν the Haar measure on KS normalized such that the volume of

KS/OS equals 1 and θm =
⊗m

θ the induced measure on Km
S .

Recall the definition of η from G to some K-module VG given by Chevalley’s
theorem. Moreover, F (P,U) has been defined as the Zariski closure of η(X(P,U))
inside VG. Hereafter, we call cube in (KS)m a product of balls

∏m
i=1

∏
ν∈S Bi,ν .

Theorem 4.3. (Tomanov) Let G be a K-group, Γ an arithmetic subgroup of G =
G(KS), U be a subgroup of G generated by its one-parameter unipotent subgroups
and P a class F-subgroup. Let C be a compact subset of X(P,U)Γ/Γ, d and m two
integers and ε > 0.

Then there exists a compact subset D of F (P,U) such that for all relatively
compact neighborhood W0 of D in VG, there exists a neighborhood W of C in G/Γ,
such that for all m, for all cube B in (KS)m, and all function f in P(d,m)(G) we
have:

• either we can find γ in Γ such that η(f(B)γ) ⊂W0

• or θm({t ∈ B such that (f(t)Γ/Γ) ∈W}) < εθm(B).

In [21] the theorem was not stated for functions in P(d,m) but for one-parameter
unipotent orbits. However, there is no conceptual jump in the proof of the
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above theorem. Moreover, the real cases of this theorem (and of all this section)
is well known [19]. The interested reader may find more technical details in the
author’s PhD thesis [11].

4.4. Non-divergence of polynomial orbits

We need a last result in order to control the divergence of polynomial orbits. The
following theorem is a kind of analog of a result of Eskin–Margulis–Shah [7]. How-
ever, we will not need the whole precision of their result, we may just use a slight
adaptation of [12, Theorems 8.4 and 9.1]:

Theorem 4.4. (Kleinbock–Tomanov) Let G be a K-group, Γ an arithmetic sub-
group of G = G(KS). Fix d and m two integers.

Then there are a finite number of parabolic subgroups Pk of G and their asso-
ciated Chevalley representations ρk in a space Vk with a marked point vk ∈ Vk in a
line stabilized by Pk such that :

for all ε > 0 there are a compact D in G/Γ and compact subsets Dk in each
Vk verifying: for all f in P(d,m)(G), for all cube B in (KS)m, one of the following
holds :

(1) θm({t ∈ B such that (f(t)Γ/Γ) �∈ D}) < εθm(B).
(2) There is an integer k such that there exists γ ∈ Γ with: ρk(f(B)γ) · vk ⊂ Dk.

5. Some Tools: Cartan Decomposition, Decomposition of
Measures and Representations

Our proof of Theorem 2.3 requires some technical tools. The first one is more
than classical: the Cartan decomposition in the semisimple part, which we recall to
settle some notations. The second one is merely a way to note all the measures (and
their translates) we will consider in the sequel, together with some basic lemmas.
The third and last one is a lemma on representations of H . It is an extension
of [19, Part 5] to our setting.

5.1. Cartan decomposition in Hss

The group H is a semidirect product of a semisimple part Hss and a unipotent one
Hu. For the semisimple part we have a Cartan decomposition: for all ν in S such
that Hν is non-compact we choose a maximal Kν-split torus Aν in Hν . We choose
then a system of positive simple restricted roots Φν thus defining the associated
sub-semigroup A+

ν of Aν . Then there exists maximal compact subgroups Cν and
finite sets Dν in the normalizer of Aν such that the following Cartan decomposition
holds: Hν is the disjoint union of the double class CνdaCν for a ∈ A+

ν and d ∈ Dν .
For the existence of these objects we refer to [20]. When Hν is compact we just
choose Cν = Hν , Aν and Dν are reduced to the identity.
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Let A+ =
∏

ν∈S A
+
ν and similarly C and D are the products of the Cν ’s and

Dν ’s. Let Φ be the union of the Φν . For α ∈ Φν ⊂ Φ and a = (aν)ν∈S we define
α(a) = α(aν).

Consider a sequence an of elements of A+.

Definition 5.1. A sequence an of elements of A+ is simplified if for all α in Φ we
have the alternative:

• either α(an) is bounded,
• or α(an) goes to +∞.

Associated to such a simplified sequence, we consider the contracted unipotent
subgroup of Hss.

U+ =
{
h ∈ Hss such that lim

n→+∞ a−1
n han = e

}
.

Remark. We did not assume that a simplified sequence an is unbounded. So the
group U+ associated may be equal to the trivial group.

5.2. Decomposition of measures

The idea is simple: given some measure µ on the ball (Hss)t, we want to define
a probability measure on the ball Ht which disintegrates (in the product H =
Hss � Hu) on µ and the Haar measure in the fibers. The notations may seem
tedious as we must work at each place in parallel. But it will prove useful later.

The assumptions made on the norm ensure the following: for all hss in Hss
ν , the

set of elements in Hu
ν such that hsshu belongs to (Hν)t is a ball of radius some

l[ν,t](hss) in Hu
ν and moreover depends continuously on hss and t. So for all t, there

is a continuous function l[ν,t] from Hss
ν to R+ such that:

(Hν)t =
⋃

h∈Hss
ν

{h} × (Hu
ν )l[ν,t](hss).

This in turn translates in terms of measures. We note mu
ν (l) the restriction of the

Haar measure mHu
ν

to the ball (Hu
ν )l. And for measure µν in Hss

ν , we may define
the measure mν(µν , t) by the formula, for all φ continuous with compact support
on Hν : ∫

Hν

φdmν(µν , t) =
∫

Hss
ν

∫
(Hu

ν )l[ν,t](o)

φ(ob)dmu
ν (l[ν,t](o))(b)dµν (o).

For µ =
⊗
µν a product measure on Hss of finite total mass and t positive, we

note m(µ, t) the product
⊗

ν∈S mν(µν , t). Eventually we note P(µ, t) the renormal-
ized probability measure and Supp(µ, t) its support. Remark that, if µ proportional
to the Haar measure of some subgroup S in Hss, then m(µ, t) is proportional to
the Haar measure in S �Hu restricted to (S �Hu)t.
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Let us immediately state two lemmas showing that these probability measures
behave well with respect to µ as soon as the support of µ does not approach the
frontier of the ball Ht. First look at translations:

Lemma 5.1. Let µn be a sequence of probability measure on Hss and tn go to ∞.
Let hn go to Id in Hss. Assume that the support of µn is included in a ball of radius
Hss

(1−ε)tn
for some ε > 0.

Then the sequence of (signed) measure P(((hn)∗µn), tn) − P(µn, tn) converges
to 0.

Proof. The assumption on the supports of µn ensures that the supports of (hn)∗µn

are included in (Hss)tn for n large enough. Moreover (by left-uniform continuity of
the norms), we have for every sequence gn in the support of µ and for all place ν
(here we forget some subscripts ν to keep the formula readable):

l[ν,tn](hngn)
l[ν,tn](gn)

n→∞−−−−→ 1.

As, eventually, the sequence of signed measures (hn)∗µn − µn goes to 0 as n→ ∞,
the lemma is proven by a straightforward calculus.

The second lemma allows one to handle also a sequence of measure µn:

Lemma 5.2. Let µn be a sequence of probability measures on Hss converging to µ
as n → ∞ with all these measures supported in a given compact set and absolutely
continuous with respect to some λ. Let tn be a sequence of real numbers going to
+∞ and hn a sequence of elements in Hss.

Then the sequence of (signed) measure P(((hn)∗µn), tn) − P((hn)∗µ, tn) goes to
0 as n→ ∞.

Proof. By hypothesis, the signed measure µn − µ has a density going to zero in
L1(λ) as n→ ∞. But all these densities are supported inside a compact set. Hence
µn − µ has a total variation going to zero, i.e. for all ε > 0 and n large enough, for
all functions on Hss, we get:∣∣∣∣

∫
fdµn −

∫
fdµ

∣∣∣∣ ≤ εmax(|f |).

This ensures that its translates under hn go to zero, i.e. that

P((hn)∗(µn, tn)) − P(((hn)∗µ), tn) n→∞−−−−→ 0.

5.3. A lemma on linear representation

The first equidistribution result we will prove is for projections of probability mea-
sures of the form P((an)∗l, tn) where l is a probability measure on U+ absolutely
continuous with respect to the Haar measure. But we need a result on the action
of its support S((an)∗l, tn): it sends every non-invariant point to ∞.
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The situation of this section is the following: let (an) be a simplified sequence.
Let Ω be an open and relatively compact subset of U+. Let (tn) be a sequence
of real numbers tending to ∞ such that the sets anΩ are included in balls Hss

tn
.

Let Nss be the smallest normal subgroup of H such that the projection of an is
bounded in H/Nss.

Lemma 5.3. Let ρ = (ρν)ν∈S be a KS-representation of H in a finite dimensional
KS-module V =

∏
Vν . Let On be the set {o ∈ Ω×Hu, D(ano) ≤ tn}. Let N be the

smallest subgroup of H such that anOn stay in a compact in H/N .
Let Λ be a discrete subset of V with no N -invariant points and vn a sequence

of elements of Λ.
Then the sequence of sets ρ(anOn)vn is not contained in any compact subset

of V .

This whole subsection will be the proof of this lemma.

Proof. We split this proof into two cases: whether the sequence an is bounded
or not.

Case 1. an is bounded.
We may assume that every an equals Id. Then U+ is trivial, On is the ball

D(o) ≤ tn in Hu and N is the group Hu. As tn go to ∞, we may extract an
increasing subsequence of balls covering Hu. If vn is not bounded, as Id belongs to
On, then the lemma is proven. If not, as Λ is discrete, we may assume that vn is
constantly equal to some v which is not N -invariant. Now the exponential function
composed of g �→ ρ(g)v gives us a polynomial function from the Lie algebra hu

to V , and ρ(Hu)v is the image of this polynomial function. That means that this
function is constant or unbounded. As it is not constant, it is unbounded, proving
the lemma in this case.

Case 2. an is not bounded.
In this situation, the action of an and U+ alone send non-invariant points to ∞

(remark that Ω is included in On by definition).
First of all, let V Nss

be the Nss-invariant sub-module of V and W an Nss-
invariant complement. Write vn = vNss

n +wn. If wn goes to 0, by discreteness of Λ,
vN

n goes to ∞. Let C be a compact of G such that anOn is included in CN . Then,
by definition of U+ and semisimplicity of Hss, the sets anU

+ are included in CNss.
And for any ω ∈ Ω, the sequence ρ(anω)vn = ρ(anω)(vN

n ) + ρ(anω)wn belongs to
ρ(C)vN

n +W . Hence this sequence goes to ∞, proving the lemma in this case.
So we may assume that wn does not go to zero. Up to a renormalization and

an extraction, we assume that wn converges to some nonzero element w ∈ W . It
is enough to prove that the sets ρ(anΩ)w leave every compact of V . Making this
reduction we lose the discreteness hypothesis on Λ but we will not need it anymore.

We now prove the lemma by contradiction: suppose that the above sets stay in
some compact. We prove first that w is Nss-invariant and then N -invariant.
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The first step is to show that we may assume that w is U+-invariant: let V + be
the module of U+-invariant points and V − its an-invariant complement. Note p+

the projection on V + in the direction V −. We have the following:

Lemma 5.4. Let ρ = (ρν)ν∈S be a KS-representation of H in a finite dimensional
KS-module V =

∏
Vν . Let U be a nontrivial unipotent subgroup, and Ω an open

subset of U .
Then the set ρ(Ω)w is not contained in any complement of the submodule V U

of U -invariant points.

Proof. Once again we prove it by contradiction: suppose ρ(Ω)w generates some
submodule V ′ in direct sum with V U . And let ω1, . . . , ωk be elements of Ω such
that the ρ(ωi)w generate V ′. Then there is a neighborhood Ω′ of the identity in U
such that all the Ω′ωi are included in Ω.

And V ′ is Ω′ invariant. So it is invariant by the Zariski closure of Ω′, i.e. by
U . The Lie–Kolchin theorem implies that there is a nonzero U -invariant element in
the U -invariant module V ′ (to be very precise, you have to apply the Lie–Kolchin
theorem at each place, restricting the representation in the obvious way). This is
the contradiction: V ′ cannot be in direct sum with V U .

So, there is some ω ∈ Ω such that p+(ρ(ω)w) is not zero. But we know that
ρ(anω)w is bounded. Hence ρ(an)p+(ρ(ω)w) is bounded. Let us show that it implies
that Nss is contained in the kernel of the representation:

Lemma 5.5. Let v be a U+-invariant and nonzero point of V such that ρ(an)v is
bounded. Then Nss is contained in the kernel of the representation ρ.

Proof. We may assume that at each place ρν is an irreducible representation.
First of all, let W be the sub-KS-module of V containing all the vectors w such
that ρ(an)w is bounded. Consider P− the opposite parabolic subgroup in Hss:

P− = {h ∈ H such that anha
−1
n is a bounded sequence}.

Then it is clear that ρ(P−)v is included in W . By U+ invariance of v, we even get
that ρ(P−U+)v is included in W . But P−U+ is open in H ; so Zariski-dense. We
deduce that ρ(H)v is included in W and by irreducibility that W = V .

Let us now prove that all the elements of V are U+-invariant. We just have to
prove it on eigenvectors for the action of an (V is the sum of the eigenspaces for this
action). Remind that, as an has determinant one and all the vectors have a bounded
orbit under the action of an, all the eigenvalues of this action are of modulus 1.
So let v′ be in V with ρ(an)v′ = λnv

′ and ω be some element of U+. Fix an open
neighborhood of the identity Ω in U+. Then by definition there is some integer i
such that a−1

i ωai belongs to Ω. Hence ρ(ω)v′ belongs to ρ(ai)(ρ(Ω)λ−1
i v′). But the

latter is included in some compact B independent of i because we have seen that
all elements of V have bounded orbit in V and the sets ρ(Ω)λ−1

i v′ are contained
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in some compact. So ρ(U+)v′ is included in B. But U+ is an unipotent subgroup
hence ρ(U+)v′ is the whole image of a polynomial function. It can be bounded if
and only if it is constant. Hence v′ is U+-invariant.

We have just proven that every element of V is U+-invariant. Hence the ker-
nel of the representation contains the normal subgroup generated by U+, hence
contains Nss.

Let us proceed with the proof of Lemma 5.3. The situation is now simple: we
may forget about the semisimple part because it acts trivially. And we just have
an element w of V such that ρ(On)w is bounded. Now for each n, the projection of
On in Hu is a ball (by the hypothesis of orthogonality on the norm). If the On are
bounded, then N = Nss is semisimple and we are done. If not we may as in case 1
assume that the projections of On on Hu are increasing balls and ρ(On)w may be
bounded only if w is Hu-invariant. Here N is the subgroup generated by Nss and
Hu and w is N -invariant.

In both cases we found the contradiction: w is N -invariant. Hence Lemma 5.3
is proved.

6. Equidistribution of Dense Orbits

The aim of this section is to prove Theorem 2.3 (see p. 10). We use the rigidity
of the dynamic of unipotent flows reviewed in the previous sections. The article of
Shah [19] is the main source of inspiration for this proof.

6.1. Equidistribution over unipotent subgroups

The first equidistribution result is the following: if an is simplified and l a probability
measure on U+, then the projections of P((an)∗l, tn) in G/Γ become equidistributed
with respect to the Haar measure mG/Γ if its support Supp((an)∗l, tn) does not stay
close to a normal subgroup with closed orbit:

Proposition 6.1. Let (G,H,Γ) be a triple under study with a size function D

elliptic on Hu. Let tn be a sequence of positive number going to +∞ and (an) be
a simplified sequence in A+, U+ the contracted unipotent subgroup of Hss and l a
measure on U+ compactly supported and absolutely continuous with respect to the
Haar measure. Let N be the smallest normal subgroup of H such that the projections
of Supp((an)∗l, tn) remain in a compact subset in H/N . Assume eventually that
NΓ is dense in G.

Then we have the following limit in the space of probability on G/Γ:

lim
n→∞ π∗(P((an)∗l, tn)) = mG/Γ,

that is, for every function φ continuous with compact support on G/Γ, we have:∫
H

φ(xΓ/Γ)dP((an)∗l, tn)(x) n→∞−−−−→
∫

G/Γ

φdmG/Γ.
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The proof of this proposition is the core of Theorem 2.3. We will use here the
theory of polynomial orbits and Ratner’s theorem exposed above, together with
Lemma 5.3. The derivation of Theorem 2.3 from this proposition will not present
any major difficulty.

Proof. We first show that any weak limit of the sequence studied in the proposition
is a probability measure invariant by some unipotent subgroup. Then we will use
the theory developed and the previous lemma to show that it can only be the Haar
probability measure on G/Γ.

So consider the sequence of probability measures π∗(P((an)∗l, tn)) and µ a weak
limit. The first step will be to prove that µ is a probability measure on G/Γ. The
second one will be an invariance of µ by some unipotent subgroup, thus allowing the
use of the tools reviewed. Eventually we will prove that this µ is the Haar measure
on G/Γ, proving the proposition.

The group U+ is a unipotent subgroup of G of dimension say m. Hence the
exponential map from its Lie algebra u to it is a polynomial map which send the
Haar measure on the Haar measure.

Now, look at the projections of Supp((an)∗l, tn) in Hu. They are product of
balls (Hu

ν )rn(ν) of radius some rn(ν). As before, we have the exponential map from
hu to Hu. Recall that we assumed that there is a polynomial diffeomorphism φ of
hu which is measure preserving, affine along a line Z on which φ is identity, and
such that the pullback of D by exp ◦φ is equivalent to the max of some power of
norms | · |ν . Hence the preimage of a ball Hu

t is almost a cube: there is a 0 < A < 1
such that the preimage of a ball Hu

t is of volume at least A in a cube. From now
on, exp2 is the composition exp ◦φ.

And the measure (a−1
n )∗[P((an)∗l, tn)] is absolutely continuous with respect to

the image under exp1 × exp2 of the Haar measure on u×hu. The first result we get is
a uniformity on the absolute continuity. Up to adding variables, we see exp1 × exp2

as a map from Km
S ×Kr

S to U+ ×Hu. Recall that θm (resp. θr) is a Haar measure
on Km

S (resp. Kr
S).

Lemma 6.2. Let C be a positive real number. There exist a cube B in Km
S , a

sequence of cubes Bn in Kr
S and an ε > 0 such that for all measurable subset E in

G/Γ we have:

If 1
θm(B)θr(Bn)π

′∗((exp1)∗(θm) ⊗ (exp2)∗(θr))(E) ≤ ε,

then π′∗((a−1
n )∗[P((an)∗l, tn)])(E) ≤ C

2 .

Proof. We choose B to be a cube in Km
S such that Ω is included in exp1(B) and

Bn to be a cube in which the preimage of
∏

ν H
u
rn(ν) under exp2 is of measure at

least A.
We claim that for a set of positive measure of element ω in Ω, the ball {u ∈

Hu such that D(anωu) ≤ tn} contains the product of balls of radius rn(ν)
2 . This

is a direct consequence of the fact that Ω is a compact and the hypothesis made
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on D; namely the so-called orthogonality between the semisimple part and the
unipotent part.

Hence in the set exp1(B)×exp2(Bn), the set a−1
n Supp((an)∗l, tn) is positive and

bounded from 0 relative measure, i.e. for some C > 0, for all n:

((exp1)∗(θm) ⊗ (exp2)∗(θr))[a−1
n Supp((an)∗l, tn)]

θm(B)θr(Bn)
≥ C.

As (a−1
n )∗[P((an)∗l, tn)] is the restriction of the measure l ⊗ (exp2)∗(θr) to

its support Supp((an)∗l, tn) renormalized to be a probability measure, and l is
absolutely continuous with respect to (exp1)∗(θm) the conclusion of the lemma
follows.

Step 1. The measure µ is a probability measure on G/Γ.

Proof. This result is quite classical, at least in the setting of Lie groups. We will
of course use Theorem 4.4. Moreover, it is enough to prove it for the sequence of
measures (an)∗(exp1)∗(θm)⊗(exp2)∗(θr) restricted to B×Bn thanks to the previous
lemma.

Consider the functions Θn(t, s) = an exp1(t) exp2(s). They are polynomials of
fixed degree. Fix some 0 < ε < 1. We want to find a compact set D in G/Γ such
that the images of all (but a finite number) the function Θn are included inside this
compact except for a set of relative measure at most ε.

We claim now that the subset D given to us by Theorem 4.4 is convenient. The
strategy seems clear: apply Theorem 4.4 and then show that the second part of the
alternative is impossible for all but finitely many n.

Hence we may apply Theorem 4.4 to the functions Θn restricted to B×Bn which
is a cube. And we know, using Lemma 5.3, that the action of an exp1(B)×exp2(Bn)
sends the points vk outside of the compact Dk unless it is invariant by the group N .

So for n large enough, either all the points vk appearing in Theorem 4.4 are
invariant under Nss and Hu or the whole cube B×Bn but a set of relative measure
at most ε is mapped inside D. Now the first part of the alternative means that the
subgroup N is included in the intersection of the parabolic subgroups Pk and as a
corollary its orbit in G/Γ is closed. And we assumed the group N has a dense orbit
in G/Γ.

So for n large enough, the total mass of points (t, s) ∈ B×Bn such that Θn(t, s)
does not belong to D does not exceed 2ε times the mass of B ×Bn.

Step 2. The probability measure µ is left-invariant by some unipotent subgroup Z.

Proof. We also handle differently the cases according to the behavior of an:

Case 1. an is bounded.
We may assume that an is constantly equal to Id and U+ is restricted to {Id}.

Hence the set On = Supp(Id, tn) is a sequence of balls of radius tn in Hu and the
probability measure P(ω, tn) is the Haar measure of Hu restricted to On.
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Let Z be a line in the center hu along which φ is affine and on which φ is the
identity. Then exp2(Z) is a one-parameter subgroup in the center of Hu, and for
all h ∈ Hu with h = exp2(u) and z ∈ Z, we have

exp2(z)h = exp(φ(z)) exp(φ(u)) = exp(φ(u) + φ(z)) = exp2(z + u).

By the ellipticity hypothesis, the functionD(exp2(u+z)) is equivalent toD(exp2(u))
when u goes to ∞.

Hence, for a fixed z ∈ Z, the “norm” D(exp2(z)h) is equivalent to D(h). This
proves that the ratio mHu (exp2(z)On∩On)

mHu (On) tends to 1, which means that µ is left-
invariant by exp2(Z).

Case 2. an is not bounded.
Then, by construction an has a contracting action on U+. Moreover,

u+∗ µ is the limit of u+∗ π∗(P((an)∗l, tn)). And the last one may be rewritten
π∗(P[(an)∗(a−1

n u+an)∗l, tn]). As a−1
n u+an goes to Id, Lemma 5.2 implies that µ

is U+ invariant.

Hence we may use all the tools presented: there exists a class F -subgroup P of
G such that µ(X(P,Z)) is positive. We want to show that P = G. This is the third
and final step:

Step 3. Any class F -subgroup P such that µ(X(P,Z)) > 0 is the group G.

Proof. We will naturally use Theorem 4.3. Fix a compact C of X(P, V ) of positive
measure.

Using Lemma 6.2, we get an ε such that for all measurable subset E in C we
have:

If 1
θm(B)θr(Bn)π∗((exp1)∗(θm) ⊗ (exp2)∗(θr))(E) ≤ ε,

then π∗((a−1
n )∗[P((an)∗l, tn)])(E) ≤ µ(C)

2 .

Once again we will apply Theorem 4.3 to the function Θn(t, s) =
an exp1(t) exp2(s), restricted to B ×Bn, to the compact C and the ε just defined.
Then there exists a compact D of F (P, V ) such that for all neighborhood W0 of D
there exists a neighborhood W of C such that for all n we get the alternative:

• There exists γn in Γ such that η(Θn(B ×Bn)γn) ⊂W0

• θm ⊗ θr({t, s ∈ B ×Bn such that Θn(t, s)Γ/Γ ∈ W}) < εθm ⊗ θr(B ×Bn).

Now fix any neighborhood W0 of D and assume that we are in the second case
of the previous alternative. Then by construction, we have:

1
θm ⊗ θr(B ×Bn)

π∗((exp1)∗(θm) ⊗ (exp2)∗(θr))(a−1
n )(W ) < ε.

But we have π∗(P((an)∗l, tn))(W ) > µ(C)
2 as W contains C and the measures

π∗(P((an)∗l, tn)) converges to µ. By definition of ε, the previous inequality does not
hold for n large enough.
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Now we use Lemma 5.3. Consider the representation ρ of G in the K module V
associated to P via Chevalley’s theorem. And restrict it to a representation of H
in V . Let Λ be the discrete set η(h0Γ). We want to show that one of these points
is invariant under the action of the group N . But this is a direct application of
Lemma 5.3: the sets ρ(anB×Bn)η(γn) = η(Θn(B×Bn)) are included in W0 hence
bounded. The conclusion Lemma 5.3 being violated, the hypothesis is not fulfilled:
one of the points γn is N -invariant.

We have done most of the work. Let us conclude, using notations and results of
Sec. 4: N is included in γ−1

n N1(P )γn. So the projection of N1(P ) in G/Γ contains a
translate of the projection of N . But the latter is dense and the first one is closed:
N1(P ) projects onto G/Γ hence is Zariski-dense in G. We conclude that N1(P ) = G.
That means that P is a normal subgroup of G, so is equal to G by simplicity.

To conclude the proof of Proposition 6.1, note that the rigidity Theorem 4.1
implies that µ is invariant under some finite index subgroup P ofG. As G is a simply
connected group, G itself is the unique finite index subgroup of G. Eventually µ is
G-invariant so is the Haar probability measure on G/Γ.

6.2. Equidistribution of spheres

We need a last step before proving Theorem 2.3: that is a proposition very similar
to Proposition 6.1 but more adapted to Cartan decomposition in the group Hss.
Recall that, at the beginning of Sec. 6, we defined the Cartan decomposition Hss =
CDA+C. The following proposition holds (compare with [19, Corollary 1.2]):

Proposition 6.3. Let (G,H,Γ) be a triple under study equipped with a size func-
tion D elliptic on Hu. Let (hn) be a sequence in Hss, tn a sequence of positive
numbers going to +∞ and µ a probability measure on C absolutely continuous with
respect to the Haar probability measure on C. We assume that for some ε > 0 and
for all c in the support of µ, we have D(hnc) ≤ (1 − ε)tn. Let N be the smallest
normal subgroup of H such that the projection of the support of P((an)∗µ, tn) is
bounded in H/N . Assume that ΓN is dense in G.

Then the projection of probability measures P((an)∗µ, tn) in G/Γ becomes
equidistributed :

lim
n→∞ π∗(P((an)∗µ, tn)) = mG/Γ,

that is, for every function φ continuous with compact support on G/Γ, we have:∫
H

φ(hΓ/Γ)dP((an)∗µ, tn) n→∞−−−−→
∫

G/Γ

φdmG/Γ.

Proof. We will prove that any weak limit of this sequence of probability measure
is the Haar measure mG/Γ.

First of all, we may assume that hn is an element of A+. Indeed, using Car-
tan decomposition, we write hn = c1ndnanc

2
n, and, up to an extraction, the three
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sequences c1n, c2n and dn converge to respectively c1, c2 and d. Now, let µ′ be the
pushforward of µ under c2: µ′(c2A) = µ(A). Lemma 5.2 guarantees that the equidis-
tribution of π∗(P((hn)∗µ, tn)) is equivalent to the one of π∗(P((an)∗µ′, tn)). And by
construction, N is also the smallest normal subgroup such that the projection of
Supp((an)∗µ′, tn) is bounded in H/N .

Moreover, up to another extraction, we assume that an is simplified. Consider
now the opposite parabolic subgroup P− to U+ in Hss and U− the expanded
unipotent subgroup:

U− =
{
h ∈ Hss such that lim

n→+∞ anha
−1
n = e

}
.

Every neighborhood of an element c in C, contains a neighborhood which is homeo-
morphic to a neighborhood of Id in P−×U+ via the application (p−, u+) �→ p−u+c.
We may split the support of µ in such sets (up to a negligible set), or in other
words, we assume µ to be supported inside an open set homeomorphic to an open
set Ω−×Ω+ in P−×U+. We furthermore assume that both Ω− and Ω+ are product
set of the form

∏
ν∈S Ων . Moreover, at the Archimedean places, we may “thicken”

a little bit µ to construct a measure absolutely continuous with respect to mHss : let
λ be a probability measure on a sufficiently small neighborhood O of Id in U−∞ (the
Archimedean part of U−) absolutely continuous with respect to the Haar measure
on U−∞. Then λ ⊗ µ is absolutely continuous with respect to the Haar measure on
Hss (see [19, p. 15]).

Looking at the action of an on U− and using Lemma 5.1 it is clear that for
every function f continuous with compact support in G/Γ, the integrals of f for
the both measures π∗(P((an)∗λ⊗ µ, tn)) and π∗(P((an)∗µ, tn)) are equivalent as n
go to ∞:∣∣∣∣∣

∫
G/Γ

fdπ∗(P((an)∗λ⊗ µ, tn)) −
∫

U+×Hu

f(x)dπ∗(P((an)∗µ, tn))

∣∣∣∣∣
≤
∫

U−

∣∣∣∣
∫

H

f(x)dπ∗((P((anoa
−1
n )an)∗µ, tn) − (P((an)∗µ, tn)))(x)

∣∣∣∣ dλ(o)

n→∞−−−−→ 0. (6.1)

The limit is obtained using anoa
−1
n

n→∞−−−−→ Id, Lemma 5.1 and the dominated
convergence theorem.

We work now with λ⊗ µ. Remark that, at non-Archimedean places, we do not
have to modify µ, as maximal compact subgroups are also open.

Now, using [19, Proposition 6.1], we may decompose this probability measure
λ⊗ µ in the product Ω− × Ω+: there are a probability measure ν− on Ω− and for
almost all x in Ω−, a probability measure ν+

x on Ω+ such that:

• ν− and all the ν+
ω are absolutely continuous with respect to the Haar measure

on P− and U+ respectively.



March 9, 2010 15:47 WSPC/251-CM 1793-7442 S1793744210000120

28 A. Guilloux

• for all φ continuous with compact support in Hss, we have∫
Hss

φd(λ ⊗ µ) =
∫

Ω−

∫
Ω+

φ(xy)dν+
x (y)dν−(x).

Consider now a function f continuous with compact support in G/Γ. We have:∫
G/Γ

fdπ∗(P((an)∗λ⊗ µ, tn)) =
∫

Ω−

∫
Ω+×Hu

f(yΓ/Γ)dP((anx)∗ν+
x , tn)(y)dν−(x).

So the last difficulty that remains is to compare the two probability measures
P((anx)∗ν+

x , tn) and P((an)∗ν+
x , tn): if we prove that they are sufficiently close, then

we may use Proposition 6.1 to conclude that the limit is the Haar probability mea-
sure mG/Γ. But under conjugacy by an, the elements in P− remains bounded. So,
if we choose the support of λ small enough, Lemma 5.1 ensures that the two mea-
sures P((anx)∗ν+

x , tn) = P((anxa
−1
n )∗(an)∗ν+

x , tn) and P((an)∗ν+
x , tn) are arbitrarily

closed.
Fix ε > 0 and choose the support O of λ such that we have: for all x ∈ O, all n∣∣∣∣

∫
Ω+×Hu

f(yΓ/Γ)dP((anx)∗ν+
x , tn)(y) −

∫
Ω+×Hu

f(yΓ/Γ)dP((an)∗ν+
x , tn)(y)

∣∣∣∣ ≤ ε.

Then, we have:∣∣∣∣∣
∫

G/Γ

fdπ∗(P((an)∗λ⊗ µ, tn))

−
∫

Ω−

∫
Ω+×Hu

f(yΓ/Γ)dP((an)∗ν+
x , tn)(y)dν−(x)

∣∣∣∣ ≤ ε.

Now, Proposition 6.1 states that for all x, we have the limit:∫
Ω+×Hu

f(yΓ/Γ)dP((an)∗ν+
x , tn)(y) n→∞−−−−→

∫
G/Γ

fdmG/Γ.

We conclude applying the dominated convergence theorem:∣∣∣∣∣
∫

G/Γ

fdπ∗(P((an)∗λ⊗ µ, tn)) −
∫

G/Γ

fdmG/Γ

∣∣∣∣∣ ≤ ε.

So the previous inequality together with (6.1) leads to (for n large enough):∣∣∣∣∣
∫

G/Γ

fdπ∗(P((an)∗µ, tn)) −
∫

G/Γ

fdmG/Γ

∣∣∣∣∣ ≤ 2ε.

As this is true for arbitrary ε, we have finally obtained the desired result:∫
G/Γ

fdπ∗(P((an)∗µ, tn)) n→∞−−−−→
∫

G/Γ

fdmG/Γ.

The proposition is proven.
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Thanks to this proposition, we are able to define a subset of large relative volume
in H such that, basically, as soon as the support of P(h∗mC , t) hits this subset, the
projection of this measure in G/Γ is closed to the Haar probability measure:

Corollary 1. Let (G,H,Γ) be a triple under study, together with a size function
D elliptic on Hu. Assume that every dominant normal subgroup of H has a dense
orbit in G/Γ. Fix ε > 0, f a continuous function with compact support in G/Γ, and
O some open subset in C. Then there is a finite number of non-dominant normal
subgroups N1, . . . , Nk of H, a compact subset B in H such that :

For h in H, O′ ⊂ C containing O with µ the probability measure on O′ propor-
tional to the Haar measure on C and t > 0 verifying for all o in O, D(go) ≤ t

1+ε ,

we have:
If the support of P(h∗µ, t) is not included in any BNi, then∣∣∣∣∣

∫
G/Γ

fdπ∗(P(h∗µ, t)) −
∫

G/Γ

fdmG/Γ

∣∣∣∣∣ ≤ ε.

Proof. Take the Ni’s to be the maximal normal non-dominant subgroups. They
are in finite number. Assume they do not verify the corollary. Then we construct
a sequence hn, tn, On such that the supports of P((hn)∗µn, tn) are not included in
any compact neighborhood of a non-dominant normal subgroup and the difference
of integrals is always greater than ε:∣∣∣∣∣

∫
G/Γ

fdπ∗(P((hn)∗µn, tn)) −
∫

G/Γ

fdmG/Γ

∣∣∣∣∣ > ε. (6.2)

Up to an extraction, we may assume that µn converges to a measure which is
equal to the probability measure µ∞ on an open O′∞ containing O and proportional
to the Haar measure of C.

These supports are yet included in a compact neighborhood of some normal
subgroup N which has to be dominant. By assumption, N has a dense projection
in G/Γ. So we may apply the above proposition to this sequence: the projection
π∗(P((hn)∗µ∞, tn)) converges to the Haar probability measure mG/Γ. But, using
Lemma 5.2, letting n go to infinity, the measure π∗(P((hn)∗µ∞, tn)) is arbitrarily
closed to π∗(P((hn)∗µn, tn)). This contradicts 6.2.

6.3. Equidistribution of balls

At last we are able to conclude the proof of equidistribution of balls. Fix a function
f continuous with compact support in G/Γ. Fix ε > 0. Let η > 0 be such that
mH(H(1+η)t)

mH(Ht)
≤ 1 + ε for all t.

There is a neighborhood O of Id in C such that for all h ∈ Hss we have
D(ho) ≤ √

1 + ηD(h). And we may choose O such that C is a disjoint union of
translates of O (up to a negligible set): there exist c1, . . . , cs such that ciO ∩ cjO
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has measure 0 and the union ∪s
1ciO is of full measure in C. Note µO the restriction

of the probability Haar measure of C to O.
Let H̃t be the union over c ∈ CD, a ∈ A+, and 1 ≤ i ≤ s with D(caci) ≤ t, of

the support of m((caci)∗µO, (1 + η)t). Thanks to the Cartan decomposition, up to
a negligible set, H̃t contains Ht, is contained in H(1+η)t and the restriction of mH

to H̃t may be written:

(mH)|H̃t
=

s∑
1

∫
c∈CD,a∈A,D(caci)≤t

m((caci)∗µO, (1 + η)t).

Let Et be the union of the supports of measures m((ca)∗µca, (1 + η)t) which
are completely included in B

⋃k
1 Ni (the sets constructed in the above corollary).

As none of the Ni’s are dominant, for t large enough, the relative mass of Et in
H̃t is less than ε and the symmetric difference between Ht and H̃t\Et is almost
negligible:

mH(Ht∆(H̃t\Et))
mH(Ht)

≤ 2ε.

Corollary 1 implies that for all a ∈ A, c ∈ CD and 1 ≤ i ≤ s, if the support
Supp(m((caci)∗µO, (1+η)t)) is not included in Et, then its projection is pretty well
distributed:∣∣∣∣∣
∫

H

f dm((caci)∗µO, (1 + η)t) −m((caci)∗µO, (1 + η)t)(H)
∫

G/Γ

f dmG/Γ

∣∣∣∣∣ ≤ ε.

Integrating all these approximation over c, a and ci leads to:∣∣∣∣∣ 1
mH(H̃t\Et)

∫
H̃t\Et

fdπ∗(mH) −
∫

G/Γ

fdmG/Γ

∣∣∣∣∣ ≤ ε.

So going back to the desired integral, we get (for t large enough):∣∣∣∣∣ 1
mH(Ht)

∫
Ht

fdπ∗(mH) −
∫

G/Γ

fdmG/Γ

∣∣∣∣∣ ≤ (1 + 4 max(|f |))ε.

As ε is arbitrarily small, we get the desired result:

1
mH(Ht)

∫
Ht

fdπ∗(mH) t→∞−−−→
∫

G/Γ

fdmG/Γ.

This concludes the proof of Theorem 2.3.

7. Applications

We conclude this text by some explanations on the applications described in the
Introduction.
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7.1. In dimension 2

Recall the framework: we consider the group G = SL(2,R)×SL(2,Qp) for p a prime
number, and the lattice Γ = SL(2,Z[ 1p ]). We fix here (for sake of simplicity) the
standard Euclidean norm |.|∞ on the matrix algebra M(2,R) and the max-norm
| · |p on M(2,Qp). For a point v in R2, we note also |v|∞ the norm of the matrix
whose first column is v and the second one is 0. We define similarly the norm of a
point in Q2

p. We choose a Haar measure m = m∞ ⊗mp on G.
The first result was:

Application 1.1. Let O be a bounded open subset of SL(2,Qp). Note ΓO
T the set

of elements γ ∈ Γ such that |γ|∞ ≤ T and γ ∈ O as an element of SL(2,Qp). Let v
be a point of the plane R2\{0} with coordinates independent over Q.

Then we have the following limit, for any function φ continuous with compact
support in R2\{0}:

1
T

∑
ΓO

T

φ(γ(v)) T→∞−−−−→ 2mp(O)
m(G/Γ)|v|∞

∫
R2
φ(w)

dw

|w|∞ .

Proof. We work here in the product of R2\{0} and SL(2,Qp). We see it as the
homogeneous space H\G with H = Stab(v) the stabilizer of v for the linear action
of SL(2,R) on the plane.

Then it is not difficult to see that the hypotheses on the norm are fulfilled
and that H has no dominant subgroup except itself. Moreover, the volume of balls
are explicitly computed: the ratios of mH(Htg) and mH(Ht) tends to 1

|v||w| where
w = g(v) [10, Sec. 12.4]. Remark that there is no need to split the parameter
space.

It remains to prove that H.SL(2,Z[ 1p ]) is dense in G. But it contains Stab(v).
SL(2,Z) which is by hypothesis dense in SL(2,R). Now we may use the strong
approximation in SL(2) [18]: the algebraic group SL(2) is semisimple simply con-
nected, hence the product SL(2,R).SL(2,Z[ 1p ]) is dense in G. This yields the desired
property: H.SL(2,Z[ 1p ]) is dense in G.

Now, Theorem 2.1 implies the stated result.

The second application was the following one. Recall that on the p-adic plane,
we normalize the measure such that it gives mass 1 to Z2

p. The result is that if your
beginning point generates the whole plane among the Q-subspaces, then its orbit
is dense and you get a distribution result (the function E appearing is the integer
part):

Application 1.2. Let (v∞, vp) be an element of (R2\0) × (Q2
p\0). Suppose that

any Q-subspace V of Q2 verifying v∞ ∈ V ⊗Q R and vp ∈ V ⊗Q Qp is Q2. Denote
ΓT the set of elements γ ∈ Γ with |γ|∞ ≤ T and |γ|p ≤ T .
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Then, for all function φ continuous with compact support in (R2\0) × (Q2
p\0),

we have the following limit:
1

TpE(lnp(T ))

∑
ΓT

φ(γv∞, γvp)

T→∞−−−−→ 2(p2 − 1)
p2m(G/Γ)|v∞|∞|vp|p

∫
R2×Q2

p

φ(v, w)
dvdw

|w|∞|w|p .

Proof. The proof here is similar to the previous one, the groupH being Stab(v∞)×
Stab(vp). The hypotheses on the norm are fulfilled, as H is unipotent. The volume
ratio limits are easy to compute and left to the reader. You just have to be careful
with the normalizations of measures, letting this constant p2−1

p2 appear.
So it just remains to prove that H.SL(2,Z[ 1p ]) is dense in G. The key point is

that its closure must be (up to finite index) the R × Qp-points of a Q-subgroup of
SL(2), by Tomanov theorem: it is a closed subset in G/Γ invariant under unipotent
subgroups.

Hence, if either v∞ or vp has coordinates independent over Q, the argument in
previous application show the density. The only remaining case is when both v∞
and vp are stabilized by a Q-unipotent group. But the assumption that v∞ and vp

“generates” Q2 is then equivalent to the fact that these two stabilizers are different.
Now we may conclude, arguing that two different unipotent subgroups of SL(2,Q)
generate the whole group. Hence the smallest Q-subgroup of SL(2,Q) such that its
real points contains the stabilizer of v∞ and its p-adic the stabilizer of vp is SL(2).
And the closure of H.SL(2,Z[ 1p ]) is G.

The two previous examples showed how to profit of both the rigidity of orbit
closures in an S-arithmetic setting and algebraic features such as strong approx-
imation in the ambient group G. These arguments are also the core of the next
case.

7.2. In greater dimension

Recall that we look at the action of Γ = SL(n,Z) on the kth exterior power Λk(Rn).
And we fix the standard Euclidean norm | · | on M(n,R). We consider also the
standard Euclidean norm on Λk(Rn) and m is a Haar measure on SL(n,R). We
want to prove:

Application 1.3. Let v be a nonzero element of Λk(Rn) such that its corresponding
k-plane of Rn contains no rational vector. Denote ΓT the set of elements γ ∈ Γ with
|γ| ≤ T .

Then we have a positive real constant c (independent of Γ and v) such that for
all function φ continuous with compact support on Λk(Rn)\{0}:

1
T n2+k2−nk−n

∑
ΓT

φ(γv) T→∞−−−−→ c

m(G/Γ)|v|
∫

Λk(Rn)

φ(v′)
dv′

|v′| .
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Proof. Here we have to be more careful than in previous section. We consider the
subgroup H = Stab(v). It is a conjugate of the group H0 of the form:

H0 =

(
SL(k,R) Hu

0 SL(n− k,R)

)
:=

(
Hk Hu

0 Hn−k

)
.

So it is a semidirect product of a semisimple and a unipotent group. Moreover,
the quotient H0\G identifies with Λk(Rn)\{0} via the projection associating at an
element of SL(n,R) the exterior product of its k-first lines.

We have to prove the orthogonality property for the norm on H = gH0g
−1

(g ∈ SL(n,R)). The key point is that one may use Iwasawa decomposition to write
g = oan where o belongs to SO(n), a is diagonal and n is upper triangular and
unipotent (so is an element of H0). Hence H = oaH0a

−1o−1 and H inherits the
decomposition Hss �Hu from the canonical one of H0 by conjugation by oa. Now
the bi-invariance of the Euclidean norm under SO(n), and the fact that a normalizes
the semisimple part of H0 and the unipotent one imply that for h = oah0a

−1o−1

with the obvious notation:

|h|2 = |ah0a
−1|2 = |ahss

0 a
−1|2 + |ahu

0a
−1|2 = |hss|2 + |hu|2.

Now it is clear that H0 has no dominant subgroup except itself, so the same
holds forH . Let us prove thatHΓ is dense before evaluating the volume ratio limits.
A way to see it is to pull back the dynamic on the space of k-frames: choose a family
of k vectors in Rn such that their exterior product is v. Then the hypothesis on v

is that the k-plane generated by this family of vector contains no nonzero rational
vectors. By a theorem of Dani and Raghavan [3], it implies that the orbit of this
family under Γ is dense in the space of k-frames. This in turn implies by projection
that the orbit of v under Γ is dense in H0\G, i.e. that HΓ is dense in G.

We have computed the volume ratios to get the limiting density. Precisely, let
w = H0g

′ = g−1H(g′g−1) be a nonzero point in Λk(Rn). Then the limiting density
at w given by Theorem 2.1 is the ratio:

mH(Ht(g′g−1))
mH(Ht)

.

The set Ht(g′g−1) is by definition {h ∈ H such that |hgg′| ≤ t}; or the set {h0 ∈
H0 such that |gh0g

′| ≤ t}. Hence we have to compute the measure Mt(g, g′) =
mH0({h0 ∈ H0 such that |gh0g

′| ≤ t}). The choice of normalization of mH0 has no
importance, as we only want to compute ratios. Using the bi-invariance of the norm
and the Iwasawa decomposition of g and g′−1, we immediately see that Mt(g, g′) =

1
|Vol(g)||Vol(g′)|Mt(1, 1), where Vol(g) is the determinant of the k first line of g. And,
by the definition of the exterior product, the absolute value of this determinant
is the Euclidean norm of their exterior product. So we may rewrite Mt(g, g′) =

1
|v||w|Mt(1, 1). This gives the limiting density.

At this point, we need a last estimation: an equivalent of MT (1, 1) which gives
the renormalization factor T n2+k2−nk−n. So we want to compute the volume of the
set {h0 ∈ H0 such that |h0| ≤ T } for the standard Haar measure onH0: the product
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of the standard Haar measure on the three groups SL(k,R), SL(n− k,R) and Hu.
Using the estimations of Maucourant [16], we see that the volume of the sphere of
radius T in these groups are respectively of order T k2−k−1, T (n−k)2−(n−k)−1 and
T k(n−k)−1. So the leading term of the volume of the ball of radius T is of order:∫

T 2
1 +T 2

2 +T 2
3 ≤T 2

T k2−k−1
1 T

(n−k)2−(n−k)−1
2 T

k(n−k)−1
3 .

Hence the leading term is of order:

T k2−k+(n−k)2−(n−k)+n(n−k) = T n2+k2−nk−n.

This concludes the proof of Application 1.3.

We conclude this paper with the S-arithmetic generalization of the previous
result. We leave the proof to the reader. All the arguments are in the three previous
proofs except an estimation of the volume of the ball of radius T in SL(k,Qp) (p
being a prime number). Using Cartan decomposition and some basic combinatorics,
we get that the leading term of this volume is (pE(lnp(T )))k2−k. We fix the max norm
in the standard basis on M(n,Qp) and Λk(Qn

p ). The group Γ is SL(n,Z[ 1p ]), and
we note for an element γ ∈ Γ, |γ| the max of its real Euclidean norm and p-adic
max norm.

Application 7.1. Let v = (v∞, vp) be a nonzero element of Λk(Rn×Qn
p ) such that

there is no nonzero rational vector belonging to both the real k-planes associated
to v∞ and the p-adic one associated to vp. Denote ΓT the set of elements γ ∈ Γ
with |γ| ≤ T .

Then we have a positive real constant c (independent of Γ and v) such that for
all function φ continuous with compact support on Λk(Rn)\{0}:

1
(TpE(lnp(T )))n2+k2−nk−n

∑
ΓT

φ(γv)

T→∞−−−−→ c

m(G/Γ)|v∞|∞

∫
Λk(Rn×Qn

p )

φ(v′∞, v
′
p)

dv′∞v′p
|v′∞|∞|vp|p .
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