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Variational problems for Sobolev maps with bounded total variation that take values
into the one-dimensional projective space are studied. We focus on the different features
from the case of Sobolev maps with bounded conformal p-energy that take values into
the p-dimensional projective space, for p ≥ 2 integer, recently studied in [19].
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In the last decade there has been a growing interest in the study of variational
problems for maps defined between manifolds. The most relevant problem is perhaps
the one concerned with harmonic maps defined in three-dimensional domains Ω that
are constrained to take values in the two-dimensional unit sphere S2.

In this framework, one considers the Dirichlet energy

D(u,Ω) :=
1
2

∫
Ω

|Du|2 dx

of Sobolev maps into S2, i.e. in the class

W 1,2(Ω, S2) := {u ∈W 1,2(Ω,R3) : |u(x)| = 1 for a.e. x ∈ Ω}.

According to the continuum description in the Ericksen–Leslie theory, the uni-
tary vector field u(x) describes mathematically the configuration of a liquid crystal
which occupies the domain Ω.

The general form of the energy density of a liquid crystal was derived inde-
pendently by Oseen and Frank, compare e.g. [13] and the references therein. For a
particular choice of the physical constants, the energy of a nematic liquid crystal
reduces to the Dirichlet energy above.

It is well known that in the classical Sobolev approach to the theory of har-
monic maps, the weak limit process destroys energy concentration, the so-called
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bubbling-off phenomenon, and does not preserve geometric properties such as the
degree, showing e.g. creation of cavitations.

For this reason, using tools from Geometric measure theory, variational problems
concerning harmonic maps into the sphere have been tackled in a satisfactory way
in any dimension n by means of the theory of Cartesian currents of Giaquinta–
Modica–Souček [13], see also [15].

In a similar way, an exhaustive variational theory of liquid crystals has been
developed in [10].

The same authors in [11] considered the conformal p-energy

Dp(u,Bn) :=
1

pp/2

∫
Bn

|Du|p dx

of W 1,p-mappings from the unit ball Bn with values into the unit p-sphere Sp, for
any integer exponent p ≥ 2, i.e. in the class

W 1,p(Bn, Sp) := {u ∈ W 1,p(Bn,Rp+1) : |u(x)| = 1 for a.e. x ∈ Bn}.

Physical evidence shows that in general the ends of the molecules of a nematic
liquid cannot be distinguished. This means that the vector field u should actually
take values into the projective plane RP2.

The Dipole problem for harmonic maps with values into RP2 was studied in 1986
by Brezis–Coron–Lieb [6]. However, the lack of orientability of RP2 causes a lot of
trouble in the analysis of a variational theory.

In [19], we considered the p-energy of mappings that take values into the p-
dimensional projective space RPp, obtained by identification of antipodal points in
Sp. For this reason, we saw the projective p-space RPp as an embedded submanifold
RPp of some Euclidean space

RPp := gp(Sp), gp : Sp → RN(p), N(p) :=
(p + 1)(p + 2)

2
(0.1)

and we correspondingly worked with the Sobolev class

W 1,p(Bn,RPp) := {u ∈W 1,p(Bn,RN(p))|u(x) ∈ RPp for a.e. x ∈ Bn}.

Notice that RPp is a smooth, compact, connected submanifold of RN(p) without
boundary. Moreover, RPp is orientable if and only if p is odd. We also have gp(−y) =
gp(y), whereas

|Du| = |Dv| if u = gp ◦ v for some v ∈W 1,p(Bn, Sp).

Our key result in [19] is the following property, that holds true in any dimension
n, see also [5].

Theorem 0.1. Let p ≥ 2 integer. For every u ∈W 1,p(Bn,RPp) there exist exactly
two Sobolev maps v1, v2 ∈W 1,p(Bn, Sp) such that gp ◦ vi = u a.e. in Bn. Moreover,
v2 = −v1 and Dp(vi, Bn) = Dp(u,Bn).
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Using this property, we extended some of the results from [6]. More precisely, we
dealt with the concepts of singularity, degree, D-fields, flat norm, and minimal con-
nections for W 1,p-maps with values in RPp. We then analyzed the relaxed p-energy
and proved a strong density property. We also introduced a notion of optimally
connecting measure for the singularity of maps in W 1,p(Bn,RPp). Moreover, for
p = 2, in [19] we similarly considered the analogous problems concerning the liquid
crystal energy of maps in W 1,2(B3,RP2).

In this paper, we focus on the class of W 1,1-maps into the projective line RP1.
The function gp in (0.1), in the case p = 1 reduces to the mapping g1 : S1 → R3

g1(y1, y2) :=

(√
2

2
y1

2,

√
2

2
y2

2, y1y2

)
. (0.2)

Theorem 0.1 is false in the case p = 1, see Example 1.2 below. In fact, its proof
relies on the lifting theorem [22], and on the simply-connectedness of the unit p-
sphere Σp = Sp, for p ≥ 2.

For this reason, we now give the following

Definition 0.1. For Ω = Bn or Σp, we denote by W̃ 1,p(Ω,RPp) the subclass of
maps u ∈ W 1,p(Ω,RPp) for which there exists a Sobolev map v ∈ W 1,p(Ω, Sp) such
that gp ◦ v = u.

Theorem 0.1 yields that W̃ 1,p = W 1,p for every p ≥ 2, whereas for p = 1 the
strict inclusion W̃ 1,1 � W 1,1 holds, a part from the case Ω = B1. As a consequence,
the properties proved in [19] that are based on Theorem 0.1 fail to hold in the case
p = 1.

For example, if p is odd, and Σp is a copy of Sp, the degree of a continuous
W 1,p-map u from Σp into the oriented submanifold RPp is defined by

degRPp(u) :=
1
2

∫
Σp

u#ωRPp,

where ωRPp is a normalized volume p-form on RPp, so that
∫
RPp ωRPp = 1. There-

fore, the double of the degree tells the time the image of Σp by u winds around
RPp, with orientation prescribed by the sign.

According to the statements from [6], Theorem 0.1 yields that degRPp(u) ∈ Z

in the case p ≥ 3 odd. However, for p = 1, in general we have degRP1(u) ∈ 1
2 Z,

compare [6].

Main Results. In this paper, we shall prove that for every Sobolev map u ∈
W 1,1(Bn,RP1) there exists a function v ∈ BV (Bn, S1) such that g1 ◦ v = u. More-
over, v is a special function of bounded variation in SBV (Bn, S1), with jump set of
finite size, Hn−1(Jv) <∞, see [3].

As to maps u in W 1,1(Σ1,RP1), for which in general degRP1(u) ∈ 1
2 Z, we shall

prove that

degRP1(u) ∈ Z ⇐⇒ u ∈ W̃ 1,1(Σ1,RP1), see Definition 0.1.
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Similarly, for maps u in W 1,1(B2,RP1) that are smooth outside a discrete set of
points Σ(u), we shall prove that u belongs to W̃ 1,1(B2,RP1) if and only if the
degree of u around each singular point in Σ(u) is integer. This last property about
the degree means that small circles around each point of Σ(u) are wrapped by u

around the target manifold RP1 an even number of times.
More generally, in higher dimension n ≥ 2, the singularities of Sobolev maps

u ∈ W 1,1(Bn,RP1) are identified by the current P(u) ∈ Dn−2(Bn) acting on
compactly supported smooth forms ϕ as

〈P(u), ϕ〉 :=
∫
Bn

dϕ ∧ u#ωRP1 , ϕ ∈ Dn−2(Bn).

We recall that a current Γ ∈ Dn−2(Bn) is said to be an integral flat chain if
there exists an integer multiplicity (say i.m.) rectifiable current L ∈ Rn−1(Bn) such
that (∂L) Bn = Γ.

By the coarea formula, it turns out that P(u) is an integral flat chain, i.e. we can
always find an i.m. rectifiable current L ∈ Rn−1(Bn) that encloses the singularity
of u, see Proposition 3.2 below.

According to Definition 0.1 we shall prove, Theorem 9.1, that for every u ∈
W 1,1(Bn,RP1)

u ∈ W̃ 1,1(Bn,RP1) ⇐⇒ the current
1
2

P(u) is an integral flat chain, too.

The paper is organized as follows. In Sec. 1, we collect some preliminary facts and a
counterexample to the validity of Theorem 0.1 for p = 1. In Sec. 2, we deal with D-
fields, degree, and singularities ofW 1,1-maps with values into RP1, whereas in Sec. 3
we study a related Dipole problem. In Sec. 4, we shall introduce a class of Cartesian
currents in Bn×RP1, proving some basic properties. In Sec. 5, we discuss a notion
of optimally connecting measure of the singular set of W 1,1-maps with values into
RP1, and we find an explicit formula for the relaxed total variation energy.

In order to prove the main results, in Sec. 6 we start by showing the existence
of liftings of Cartesian currents in Bn × RP1, extending a result proved in [12] for
the case Bn × S1, compare also [7] for the case n = 2. In Sec. 7, we recall the
structure properties of the class of Cartesian currents in Bn× S1, and we introduce
a suitable current integration on the jump set of functions of bounded variation v ∈
BV (Bn, S1). In Sec. 8, we then analyze some properties of the currents Gv carried
by the graph of BV -maps in BV (Bn, S1) that satisfy g1 ◦ v = u ∈W 1,1(Bn,RP1).
Finally, in Sec. 9 we prove the main results stated above.

1. Maps into the Projective Line

For p ≥ 1 integer, the real projective space RPp is defined by the quotient space
RPp = Sp/ ∼p, where Sp is the unit sphere in Rp+1

Sp := {y ∈ Rp+1 : |y| = 1}



July 5, 2010 13:44 WSPC/S1793-7442 251-CM S179374421000017X

Sobolev Maps into the Projective Line with Bounded Total Variation 185

the equivalence relation being y ∼p ỹ ⇐⇒ y = ỹ or y = −ỹ. We equip RPp with the
natural metric induced on equivalence classes. We also denote by [y]p the elements
of RPp and by Pp : Sp → RPp the canonical projection Pp(y) := [y]p. Recall that
RPp is orientable if and only if p is odd.

Let Σp = Sp ⊂ Rp+1. The main feature that distinguishes the case p = 1 is
related to the fact that Σp is simply connected if and only if p ≥ 2. In fact, the
lifting theorem [22] gives:

Proposition 1.1. (Lifting theorem) If p ≥ 2, for every continuous function U :
Σp → RPp there exists a continuous function v : Σp → Sp such that Pp ◦ v = U .

This property is clearly false for p = 1, see Example 1.2 below.

Embedding of RP1. The function gp in (0.1), in the case p = 1 reduces to the
mapping g1 : S1 → R3 defined by (0.2), that clearly induces an embedding

g̃1 : RP1 → RP1, RP1 := g1(S1) ⊂ R3, g̃1([y]1) := g1(y).

Therefore, RP1 is the closed arc

RP1 =

{
z = (z1, z2, z3) ∈ R3

∣∣∣ z1 + z2 =
√

2
2
, |z − C| =

1
2

}
,

where C := (
√

2/4,
√

2/4, 0) and |z| =
√

2/2 for every z ∈ RP1, so that

H1(RP1) = π =
1
2
H1(S1).

Moreover, we equip RP1 with the induced orientation, in such a way that the
corresponding current [[RP1]] satisfies

g1#[[S1]] = 2 [[RP1]].

Let Bn(x, r) denote the n-ball in Rn centered at x and with radius r > 0, and
denote Bnr := Bn(0, r) and Bn := Bn(0, 1). For X = C∞, C0, W 1,1, BV, L1, and
for B ⊂ Rn a Borel set, we define the classes

X(B, S1) : = {v ∈ X(B,R2) : |v(x)| = 1 for a.e. x ∈ B},
X(B,RP1) : = {u ∈ X(B,R3) : u(x) ∈ RP1 for a.e. x ∈ B},

where RP1 is equipped with the induced metric from R3. We also denote by

D1(w,B) :=
∫
B

|Dw(x)| dx
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the total variation of a map w in W 1,1(B, S1) or in W 1,1(B,RP1). For B = Bn, we
finally set

D1(w) := D1(w,Bn).

Notice that if u : B → RP1 is given by u = g1 ◦v for some map v ∈ W 1,1(B, S1), we
have u ∈ W 1,1(B,RP1) and |Du| = |Dv|. In particular, for every v ∈ W 1,1(B, S1)
we infer that

D1(g1 ◦ v,B) = D1(v,B).

Now let Y = S1 or RP1. By Schoen–Uhlenbeck density theorem [20], the class
of smooth maps in W 1,1(B1,Y) is strongly dense in W 1,1(B1,Y). This is false in
the case of higher dimension n ≥ 2. For this reason, Bethuel [4] introduced the
classes R∞

1 (Bn,Y) and R0
1(B

n,Y) of maps w ∈ W 1,1(Bn,Y) that are smooth,
respectively continuous, outside a smooth closed singular subset Σ(w) of Bn of
dimension (n− 2), e.g., a discrete set for n = 2. He also proved that for any n ≥ 2,
the classes R∞

1 (Bn,Y) and R0
1(B

n,Y) are strongly dense in W 1,1(Bn,Y).

Example 1.2. Let Σ1 = S1 and consider the function ṽ : Σ1 → R2

ṽ(x1, x2) =


(√

2
2

√
1 + x1,

√
2

2
x2√

1 + x1

)
if x1 �= −1,

(0, 1) if x1 = −1.

Clearly ṽ is a function of bounded variation inBV (Σ1, S1), see Sec. 7 below; however,
ṽ is not a Sobolev function in W 1,1(Σ1, S1), due to the discontinuity at the point
(−1, 0).

Since x2
2 = 1 − x2

1 for (x1, x2) ∈ Σ1, the corresponding function ũ := g1 ◦ ṽ :
Σ1 → R3, see (0.2), satisfies

ũ(x1, x2) =

(√
2

4
(1 + x1),

√
2

4
(1 − x1),

x2

2

)
∀ (x1, x2) ∈ Σ1.

Therefore, ũ belongs to the Sobolev class W 1,1(Σ1,RP1). Moreover, ũ is continuous
and winds around the embedded manifold RP1 once.

Correspondingly, the continuous function U : Σ1 → RP1 given by U := g̃−1
1 ◦ ũ

winds around RP1 once, hence both ũ and U are homotopically nontrivial. This
also gives that Proposition 1.1 is false, for p = 1.

Consider now the homogeneous extensions

u(x) := ũ

(
x

|x|

)
, v(x) := ṽ

(
x

|x|

)
, x = (x1, x2) ∈ B2 \ {0}.

Clearly, v belongs to the class BV (B2, S1) but not to W 1,1(B2, S1), and g1 ◦ v = u.
Moreover, u is a Sobolev map in W 1,1(B2,RP1), but it does not belong to the class
W̃ 1,1(B2,RP1), see Definition 0.1. Therefore, Theorem 0.1 is also false for p = 1.
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Remark 1.3. Since Sobolev maps in W 1,1(B1,RP1) are continuous, by the lifting
theorem, and arguing as in [19], we readily check that in the case p = 1, Theorem 0.1
holds true in low dimension n = 1. As we have seen, it is false in higher dimension
n ≥ 2.

In [19] we also introduced the class

Fp := {u ∈ W 1,p(Bp,RPp) ∩ C0 |u is constant on ∂Bp

and homotopically nontrivial},
the homotopy to be intended with fixed boundary datum on ∂Bp, and we proved
that

inf{Dp(u)|u ∈ Fp} = 2Hp(RPp)

for every p ≥ 2 integer. According to Example 1.2, it is readily checked that for
p = 1 we instead have:

inf{D1(u)|u ∈ F1} = H1(RP1).

2. D-Fields, Degree, and Singularities

In this section we discuss the notions of D-field, degree, and singularities of W 1,1-
maps that take values into the projective line RP1. We first recall some notation
concerning maps into the unit circle S1.

Maps into S1. Let ωS1 denote the volume 1-form on S1

ωS1 := y1dy2 − y2dy1

so that [[S1]](ωS1) :=
∫

S1 ωS1 = 2π. Following [13], to every Sobolev function v ∈
W 1,1(Bn, S1), where n ≥ 2, we associate the (n − 2)-dimensional current P(v) ∈
Dn−2(Bn) acting on compactly supported smooth (n− 2)-forms ϕ ∈ Dn−2(Bn) as

〈P(v), ϕ〉 :=
1
2π

∫
Bn

dϕ ∧ v#ωS1 . (2.1)

We also define the (n− 1)-current D(v) ∈ Dn−1(Bn) by

〈D(v), γ〉 :=
1
2π

∫
Bn

γ ∧ v#ωS1

for every γ ∈ Dn−1(Bn), so that clearly

P(v) = ∂ D(v) on Dn−2(Bn). (2.2)

The above can be stated in terms of the so-called D-field of Brezis–Coron–
Lieb [6]. In fact, for every v ∈ W 1,1(Bn, S1) we have

v#ωS1 =
n∑
i=1

v × vxi dx
i, (2.3)

where

v × vxi := det
(
v1 v2

v1
xi

v2
xi

)
, v = (v1, v2), vjxi

:=
∂vj

∂xi
.
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In dimension n = 2, the D-field of v ∈W 1,1(B2, S1) is defined by

D(v) := (v × vx2 ,−v × vx1) ∈ L1(B2,R2).

Remark 2.1. In higher dimension n ≥ 3, the (n − 1)-vector field D(v) can be
defined as the dual to v#ωS1 ,

〈η,D(v)(x)〉 dx := η ∧ v#ωS1(x) ∀ η ∈ Λn−1(Rn),

where dx := dx1 ∧ · · · ∧ dxn. More precisely, D(v) may be identified with ∗ v#ωS1 ,
where ∗ is the Hodge operator.

If v ∈ W 1,1(Bn, S1) is smooth, for a.e. x ∈ Bn the (n − 1)-vector D(v)(x) ∈
Λn−1Rn is tangent to the naturally oriented level hypersurfaces {z ∈ Bn|v(z) =
v(x)}. More precisely, when normalized, the (n−1)-vectorD(v)(x) orients the slices
of the current [[Bn]] by the map v at v(x) ∈ S1.

For maps v ∈ W 1,1(Bn, S1) we thus have

〈D(v), γ〉 =
1
2π

∫
Bn

〈γ,D(v)〉 dx ∀ γ ∈ Dn−1(Bn).

In particular, in dimension n = 2, formula (2.2) yields to:

P(v) = 0 ⇐⇒ DivD(v) = 0 on B2,

where div denotes the distributional divergence.

The Volume Form. In [19] we introduced for p ≥ 3 odd a (normalized) volume
p-form ωRPp on RPp. For p = 1, it reads as

ωRP1 :=
1
π

(ĝ−1
1 )#ωS1,

where ĝ1 is the one-to-one map given by the restriction of g1 to the semi-circle
S1

+ := {y ∈ S1|y2 > 0}. We then compute:

ωRP1 =
√

2
π

(
−z3dz1 + z3dz2 + (z1 − z2) dz3

)
∀ z = (z1, z2, z3) ∈ RP1. (2.4)

Denote by j : R → S1 and ĵ : R → RP1 the lifting maps

j(t) := (cos t, sin t), ĵ(t) :=

(√
2

2
cos2 t,

√
2

2
sin2 t, cos t sin t

)
, (2.5)

so that

ĵ = g1 ◦ j, j#[[(0, 2π)]] = [[S1]], ĵ#[[(0, π)]] = [[RP1]].

By (2.4) we readily obtain:

g#
1 ωRP1 =

1
π
ωS1, ĵ#ωRP1 =

1
π
dt, j#ωS1 = dt, (2.6)
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so that

[[RP1]](ωRP1) = ĵ#[[(0, π)]](ωRP1) =
∫ π

0

ĵ#ωRP1 = 1. (2.7)

D-fields. For any u ∈W 1,1(Bn,RP1), and for i = 1, . . . , n, we denote

Di(u) :=
√

2 det
(

(u1 − u2) u3

(u1 − u2)xi u
3
xi

)
, u = (u1, u2, u3), ujxi

:=
∂uj

∂xi
. (2.8)

Proposition 2.2. Let u ∈ W 1,1(Bn,RP1) be such that u = g1 ◦ v for some v ∈
W 1,1(Bn, S1). Then

Di(u) = v × vxi ∀ i = 1, . . . , n.

Proof. By (0.2), we have:

(u1 − u2) =
√

2
2

((v1)2 − (v2)2) =⇒ (u1 − u2)xi =
√

2 (v1v1
xi

− v2v2
xi

)

u3 = v1v2 =⇒ u3
xi

= v1v2
xi

+ v2v1
xi
.

This gives

det
(

(u1 − u2) u3

(u1 − u2)xi u3
xi

)
=

√
2

2
|v|2 v × vxi.

Since |v| = 1, the claim follows.

Recall that the assumption in Proposition 2.2 is not satisfied in general. How-
ever, we check:

Proposition 2.3. u#ωRP1 =
1
π

(∑n
i=1Di(u) dxi

)
for every u ∈ W 1,1(Bn,RP1).

Proof. By (2.4), we compute

u#ωRP1 =
√

2
π

(
−u3 d(u1 − u2) + (u1 − u2) du3

)
=

√
2
π

n∑
i=1

(
−u3 (u1 − u2)xi + (u1 − u2)u3

xi

)
dxi

=
1
π

n∑
i=1

√
2 det

(
(u1 − u2) u3

(u1 − u2)xi u3
xi

)
dxi.

This gives the claim, by (2.8).

Definition 2.4. The D-field of a Sobolev map u ∈W 1,1(B2,RP1) is the vector field
D(u) ∈ L1(B2,R2) defined in components by D(u) = (D2(u),−D1(u)), according
to (2.8).

Remark 2.5. In higher dimension n ≥ 3, the (n − 1)-vector field D(u) of maps
u ∈W 1,1(Bn,RP1) can be defined by the dual to π u#ωRP1 ,

〈η,D(u)(x)〉 dx := η ∧ π u#ωRP1(x) ∀ η ∈ Λn−1(Rn),

i.e. by ∗ π u#ωRP1 .
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According to [6], this property justifies our definition.

Proposition 2.6. Let u ∈ W 1,1(Bn,RP1) be such that u = g1 ◦ v for some v ∈
W 1,1(B2, S1). Then

u#ωRP1 =
1
π
v#ωS1 and D(u) = D(v). (2.9)

Proof. By (2.6) we obtain

u#ωRP1 = v#(g#
1 (ωRP1)) =

1
π
v#ωS1 .

In dimension n = 2, the claim follows from Proposition 2.2, see (2.3). In higher
dimension, it is a consequence of our definitions, see Remarks 2.1 and 2.5.

Degree. The degree of a continuous map U : Σ1 → RP1, where Σ1 is a copy of S1,
is well-defined by identifying S1 with the unit circle in C and using the function
z �→ z2, compare [6]. Therefore, differently to what happens in the case p ≥ 3 odd,
the degree of maps into RP1 in general belongs to 1

2 Z.
We define the degree of a map u ∈ W 1,1(Σ1,RP1) by

degRP1(u) :=
1
2π

∫
Σ1

D(u) · ν dH1,

where D(u) is the D-field of any smooth extension in W 1,1(Ω,RP1) of u to a neigh-
borhood of Σ1 in R2, see Definition 2.4, and ν is the outward unit normal to Σ1.
By Proposition 2.3, in fact, we deduce that

degRP1(u) =
1
2

∫
Σ1
u#ωRP1 ∈ 1

2
Z. (2.10)

Example 2.7. Taking u = ũ, see Example 1.2, we compute

ũ#ωRP1 =
1
2π

(x1dx2 − x2dx1)

so that

degRP1(ũ) =
1
2

∫
Σ1
ũ#ωRP1 =

1
2
· 1
2π

∫
Σ1

(x1dx2 − x2dx1) =
1
2
. (2.11)

Therefore, the double of the degree, 2 degRP1(u) ∈ Z, tells the times the function
u : Σ1 → RP1 winds around RP1, with orientation prescribed by the sign.

In a similar way, if u belongs to R0
1(B2,RP1), and Σ(u) = {aj|j = 1, . . . ,m}

is the discrete set of its singularities, the degree of u at a singular point aj is
well-defined by

degRP1(u, aj) :=
1
2π

∫
∂B2(a,r)

D(u) · νa,r dH1
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for r > 0 small, where νa,r is the outward unit normal to ∂B2(a, r). By
Proposition 2.3 we have:

degRP1(u, aj) =
1
2

∫
∂B2(a,r)

u#ωRP1 ∈ 1
2

Z. (2.12)

Again, the double of the degree, 2 degRP1(u, ai) ∈ Z, tells the times the function
u|∂B2(aj ,r), for r small, winds around RP1, with orientation prescribed by the sign,
and in general degRP1(u, ai) belongs to 1

2 Z.

Singularity. According to (2.1), to any map u ∈ W 1,1(Bn,RP1), where n ≥ 2, we
associate the current P(u) ∈ Dn−2(Bn) acting on forms ϕ ∈ Dn−2(Bn) as

〈P(u), ϕ〉 :=
∫
Bn

dϕ ∧ u#ωRP1, (2.13)

and the (n− 1)-current D̃(u) ∈ Dn−1(Bn) given by

〈D̃(u), γ〉 :=
∫
Bn

γ ∧ u#ωRP1

for every γ ∈ Dn−1(Bn), so that again we have

P(u) = ∂D̃(u) on Dn−2(Bn). (2.14)

Notice that by (2.9) and the definitions (2.1) and (2.13), we readily infer:

Proposition 2.8. Let u ∈ W 1,1(Bn,RP1), where n ≥ 2. Assume that there exists
a Sobolev function v ∈W 1,1(Bn, S1) such that g1 ◦ v = u. Then 1

2 P(u) = P(v).

In dimension n = 2, by Proposition 2.3 and Definition 2.4 we deduce that for
any u ∈ W 1,1(Bn,RP1)

〈P(u), ϕ〉 =
1
π

∫
B2
Dϕ · D(u) dx ∀ϕ ∈ C∞

c (B2). (2.15)

Therefore, for every open set Ω ⊂ B2 we have

P(u) Ω = 0 ⇐⇒ Div(D(u) Ω) = 0. (2.16)

In higher dimension n ≥ 3, the D-field D(u) ∈ L1(Bn,Λn−1R
n) of u ∈

W 1,1(Bn,RP1) being defined as in Remark 2.5, we deduce that

〈D̃(u), γ〉 =
1
π

∫
Bn

〈γ,D(u)〉 dx ∀ γ ∈ Dn−1(Bn). (2.17)

Example 2.9. Taking e.g. u = u, see Example 1.2, we have Σ(u) = {0} and

u#ωRP1 =
1
2π

(
x1

ρ2
dx2 − x2

ρ2
dx1

)
, ρ := |(x1, x2)|.

By (2.13) we then obtain

〈P(u), ϕ〉 =
1
2π

∫
B2

1
ρ2

(Dϕ · x) dx = −ϕ(0)
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for every ϕ ∈ C∞
c (B2), whereas∫

∂B2
r

u#ωRP1 =
1
2π

∫
∂B2

r

(
x1

r2
dx2 − x2

r2
dx1

)
= 1

for every 0 < r < 1, so that

P(u) = −δ0, degRP1(u, 0) =
1
2
. (2.18)

For maps u in R0
1(B

2,RP1) as above, the degrees of u at the singular points aj
are related to the current P(u) ∈ D0(B2) as follows:

Proposition 2.10. Let u ∈ R0
1(B

2,RP1) and Σ(u) = {aj|j = 1, . . . ,m} the singu-
lar set of u. Then

P(u) = −
m∑
j=1

2 ∆̃j δaj ⇐⇒ degRP1(u, aj) = ∆̃j ∈
1
2

Z ∀ j. (2.19)

Proof. Since the argument is local, we may and do assume that u has only one
singular point at the origin. In this case, we have to show that

P(u) = −2 degRP1(u, 0) δ0. (2.20)

By (2.15), for any ϕ ∈ C∞
c (B2) we compute

〈P(u), ϕ〉 =
1
π

lim
ε→0+

∫
Aε

Dϕ · D(u) dx,

where Aε := B2 \B2
ε . Integrating by parts, since u is smooth on Aε, for 0 < ε < 1,

we obtain∫
Aε

Dϕ · D(u) dx =
∫
∂+Aε

ϕ (D1(u) dx1 + D2(u) dx2) −
∫
Aε

ϕdiv D(u) dx,

where div D(u) is the divergence of D(u). The test function ϕ being compactly
supported in B2, we have∫

∂+Aε

ϕ (D1(u) dx1 + D2(u) dx2) = −
∫
∂B2

ε

ϕ (D1(u) dx1 + D2(u) dx2).

Moreover, since P(u) Aε = 0, by (2.16) we deduce that∫
Aε

ϕdiv D(u) dx = 0.

By the smoothness of ϕ, using Proposition 2.3 and (2.12) we then obtain

−〈P(u), ϕ〉 =
1
π

lim
ε→0+

∫
∂B2

ε

ϕ (D1(u) dx1 + D2(u) dx2)

= ϕ(0) · lim
ε→0+

1
π

∫
∂B2

ε

(D1(u) dx1 + D2(u) dx2)

= ϕ(0) · lim
ε→0+

∫
∂B2

ε

u#ωRP1 = ϕ(0) · 2 degRP1(u, 0)

and hence (2.20), as required.
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Example 2.11. If u(x) := u(x/|x|) for some u ∈ W 1,1(Σ1,RP1), then u ∈
W 1,1(B2,RP1). By (2.16) and (2.20) we then obtain:

P(u) = −2 degRP1(u, 0) δ0, degRP1(u, 0) = degRP1(u). (2.21)

3. Minimal Connections and Dipoles

In this section we discuss the Dipole problem of W 1,1-maps u with values in RP1.
For this reason, we first recall some notation about minimal connections.

Integral Flat Chains and Minimal Connections. Let n ≥ 2 and Ω ⊂ Rn open.

Definition 3.1. A current Γ ∈ Dn−2(Ω) is an integral flat chain if there exists an
i.m. rectifiable current L ∈ Rn−1(Ω) such that (∂L) Ω = Γ.

For any current Γ ∈ Dn−2(Ω) we also denote by

mr,Ω(Γ) := inf{M(D)|D ∈ Dn−1(Ω), (∂D) Ω = Γ},
mi,Ω(Γ) := inf{M(L)|L ∈ Rn−1(Ω), (∂L) Ω = Γ}, (3.1)

the real and integral mass of Γ relative to Ω, respectively. Therefore, mi,Ω(Γ) <∞
if and only if Γ is an integral flat chain. In this case, moreover, Federer–Fleming’s
closure theorem [9] yields that the minimum in (3.1) is always attained, and an i.m.
rectifiable current L ∈ Rn−1(Ω) is an integral minimal connection of Γ allowing
connections to the boundary of Ω if (∂L) Ω = Γ and M(L) = mi,Ω(Γ), see [13].

For example, the current P(u) ∈ Dn−2(Bn) of the singularities of a Sobolev
map u in W 1,1(Bn,RP1), see (2.13), is an integral flat chain.

Proposition 3.2. Let u ∈W 1,1(Bn,RP1), where n ≥ 2. Then

π ·mi,Bn(P(u)) ≤ D1(u,Bn) <∞.

Proof. By the coarea formula [2], we have

D1(u,Bn) =
∫

RP1
Hn−1(u−1(z)) dH1(z).

We then find z ∈ RP1 such that the i.m. rectifiable current Lz ∈ Rn−1(Bn)

Lz := τ(u−1(z), 1, ξ), ξ(x) :=
D(u(x))
|D(u(x))| , x ∈ u−1(z),

acting on forms γ ∈ Dn−1(Bn) as

〈Lz, γ〉 =
∫
u−1(z)

〈γ(x), ξ(x)〉 dHn−1(x),

has finite mass

M(Lz) = Hn−1(u−1(z)) ≤ 1
π

D1(u,Bn) <∞.
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Finally, by (2.14) and (2.17), or by (2.15) for n = 2, we deduce that (∂Lz) Bn =
P(u).

The Dipole Problem. We let n = 2 and fix ai ∈ R2, for i = 1, . . . ,m. As in [6], the
dipole problem involves the class

F̃1 := {u ∈ L1
loc(R

2,RP1) : |Du| ∈ L1(R2), u ∈ C∞(R2 \ {ai|i = 1, . . . ,m}),
u is constant at infinity, degRP1(u, ai) = ∆̃i ∀ i},

where to each point ai we assign a nonzero number ∆̃i ∈ 1
2 Z, and we set Γ̃0 :=

−
∑m
i=1 ∆̃i δai , so that 2 Γ̃0 is an i.m. rectifiable current in R0(R2).

Proposition 3.3. The class F̃1 is non-empty if and only if the compatibility
condition

m∑
i=1

∆̃i = 0, ∆̃i ∈
1
2

Z/{0} (3.2)

is satisfied. If (3.2) holds, moreover, we have

inf{D1(u,R2)|u ∈ F̃1} = π ·mi,R2(2 Γ̃0). (3.3)

Proof. By (2.19) it turns out that P(u) = 2 Γ̃0 for every u ∈ F̃1. Therefore, the
first statement follows from the fact that the maps in F̃1 are constant at infinity.
If (3.2) holds, we have mi,R2(2 Γ̃0) < ∞, see (3.1), and we can find an integral
minimal connection for 2 Γ̃0, i.e. an i.m. rectifiable current L0 ∈ R1(R2) such that
∂L0 = 2 Γ̃0 and M(L0) = mi,R2(2 Γ̃0). Moreover, arguing as in [19], for every ε > 0
we find a map uε ∈ F̃1 such that D1(uε,R2) ≤ H1(RP1) · M(L0) + ε. This proves
the inequality “≤” in (3.3).

To prove the converse inequality, we follow the proof of Theorem 1 in [13].
More precisely, let R := [[R2 \ {ai|i = 1, . . . ,m}]]. For every u ∈ F̃1, similarly to
Proposition 3.2, consider the slices of the current R at points z ∈ RP1,

〈R, u, z〉 := τ(u−1(z), 1, ζ),

ζ being the unit (n−1)-vector field orienting u−1(z) in the natural way. Therefore,
〈R, u, z〉 ∈ R1(R2) and ∂〈R, u, z〉 = 2 Γ̃0 for H1-a.e. z ∈ RP1, so that by the
definition of L0 we get

H1(u−1(z)) = M(〈R, u, z〉) ≥ M(L0).

Moreover, by the coarea formula,∫
RP1

M(〈R, u, z〉) dH1(z) =
∫

RP1
H1(u−1(z)) dH1(z) =

∫
R2

|Du(x)| dx.

We have thus obtained

D1(u,R2) ≥
∫

RP1
M(L0) dH1(z) = H1(RP1) ·mi,R2(2 Γ̃0)

for every u ∈ F̃1, as required.
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4. Cartesian Currents in Bn × RP1

In this section, we introduce a class of Cartesian currents in Bn × RP1, proving
some basic properties.

Graphs. If u : Bn → RP1 is smooth, the graph current Gu in Rn(Bn × RP1) is
defined by the integration of compactly supported smooth n-forms ω in Bn × RP1

over the naturally oriented n-manifold given by the graph Gu of u, i.e.

Gu(ω) :=
∫
Gu

ω, ω ∈ Dn(Bn × RP1).

We thus have

Gu(ω) =
∫
Bn

(Id � u)#ω ∀ω ∈ Dn(Bn × RP1), (4.1)

where (Id � u)(x) := (x, u(x)). Following [13], the i.m. rectifiable current Gu ∈
Rn(Bn×RP1) carried by the graph of a function u ∈W 1,1(Bn,RP1) is well-defined
in the a.e. approximate sense by (4.1). Therefore, the area formula yields

M(Gu) =
∫
Bn

√
1 + |Du|2 dx.

Moreover, for n ≥ 2, the current P(u) of the singularity, see (2.13), satisfies

〈P(u), ϕ〉 = Gu(dϕ ∧ ωRP1) = ∂Gu(ϕ ∧ ωRP1) (4.2)

for every ϕ ∈ Dn−2(Bn), as Gu(ϕ ∧ dωRP1) = 0.

Weak Limits. Recall that the weak convergence Tk ⇀ T as currents in Dn(Bn ×
RP1) is defined in the dual sense by Tk(ω) → T (ω) for every ω ∈ Dn(Bn × RP1).

Let {uk} be a sequence of smooth maps in W 1,1(Bn,RP1) satisfying
supk D1(uk) <∞ and converging in L1 to a Sobolev function u ∈ W 1,1(Bn,RP1).
By Stoke’s theorem we have

∂Guk
(ω̃) := Guk

(dω̃) =
∫
Guk

dω̃ =
∫
∂Guk

ω̃ = 0

for every ω̃ ∈ Dn−1(Bn × RP1). Then, by Federer–Fleming’s closure theorem [9],
possibly passing to a subsequence the currents Guk

weakly converge to an i.m.
rectifiable current T in Rn(Bn × RP1) satisfying the null-boundary condition

∂T (ω̃) = 0 ∀ ω̃ ∈ Dn−1(Bn × RP1). (4.3)

Moreover, the L1-convergence uk → u yields that on “horizontal” forms we have

T (φ(x, y) dx) =
∫
Bn

φ(x, uT (x)) dx ∀φ ∈ C∞
c (Bn × RP1), (4.4)
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where uT = u. Also, the following structure property holds:

Proposition 4.1. Let T in Rn(Bn × RP1) satisfying (4.3) and (4.4), where uT ∈
W 1,1(Bn,RP1). Then there exists an i.m. rectifiable current LT ∈ Rn−1(Bn) such
that

T = GuT + LT × [[RP1]]. (4.5)

Proof. Every (n− 1)-form in Dn−1(Bn) can be written as

ωη :=
n∑
i=1

(−1)i−1ηi d̂xi, d̂xi := dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn (4.6)

for some vector field η = (η1, . . . , ηn) ∈ C∞
c (Bn,Rn), so that dωη = div η dx. Define

LT ∈ Rn−1(Bn) by

LT (ωη) := ST (ωη ∧ ωRP1), η ∈ C∞
c (Bn,Rn),

where

ST := T −GuT ∈ Rn(Bn × RP1).

Forms of the type φ(x, y) dx + ωη∧α, where φ ∈ C∞
c (Bn × RP1), η ∈ C∞

c (Bn,Rn),
and α ∈ D1(RP1), are dense in Dn(Bn × RP1). Therefore, it suffices to show that

ST (ω) = LT × [[RP1]](ω) ∀ω = φ(x, y) dx + ωη ∧ α. (4.7)

Now, by (4.4), and by definition of Cartesian product of currents, we have

ST (φ(x, y) dx) = LT × [[RP1]](φ(x, y) dx) = 0.

Moreover, since the de Rham cohomology group H1
dR(RP1) � Z, by Hodge decom-

position theorem we can write α = λωRP1 + dβ for some λ ∈ R and β ∈ C∞(RP1),
so that

ωη ∧ α = λωη ∧ ωRP1 + ωη ∧ dβ.

Lemma 4.2. ST (ωη ∧ dβ) = 0 for every η ∈ C∞
c (Bn,Rn) and β ∈ C∞(RP1).

Lemma 4.2, the proof of which is postponed, gives:

ST (ωη ∧ α) = λST (ωη ∧ ωRP1).

Since moreover [[RP1]](dβ) = ∂[[RP1]](β) = 0, formula (2.7) gives

[[RP1]](α) = λ [[RP1]](ωRP1) + [[RP1]](dβ) = λ (4.8)

and hence, by definition of Cartesian product of currents,

LT × [[RP1]](ωη ∧ α) = LT (ωη) · [[RP1]](α) = λLT (ωη) = λST (ωη ∧ ωRP1).

This gives (4.7), as required.

Proof of Lemma 4.2. Since

d(ωη ∧ β) = div η(x)β(y) dx + (−1)n−1ωη ∧ dβ



July 5, 2010 13:44 WSPC/S1793-7442 251-CM S179374421000017X

Sobolev Maps into the Projective Line with Bounded Total Variation 197

by (4.3) we have

T (div η(x)β(y) dx) = (−1)nT (ωη ∧ dβ),

so that

(−1)nST (ωη ∧ dβ) = T (div η(x)β(y) dx) + (−1)n−1GuT (ωη ∧ dβ).

By (4.4) we find that

T (div η(x)β(y) dx) =
∫
Bn

div η(x)β(uT (x)) dx.

Moreover, since (−1)n−id̂xi ∧ dxh = δhi dx, we compute

(−1)n−1(Id � uT )#(ωη ∧ dβ) = (−1)n−1ωη ∧ u#
T (dβ)

=
n∑
i=1

(−1)n−iηid̂xi ∧
2∑
j=1

Djβ(uT )
n∑
h=1

Dhu
j
T dx

h

=
n∑
i=1

ηi
2∑
j=1

Djβ(uT )Diu
j
T dx

=
n∑
i=1

ηiDi[β(uT )] dx.

By (4.1), and integrating by parts, this gives

(−1)n−1GuT (ωη ∧ dβ) = (−1)n−1

∫
Bn

(Id � uT )#(ωη ∧ dβ)

=
n∑
i=1

∫
Bn

ηi(x)Di[β(uT (x))] dx

= −
∫
Bn

div η(x)β(uT (x)) dx

and finally ST (ωη ∧ dβ) = 0.

Cartesian Currents. For this reason, we introduce the following

Definition 4.3. Denote by Cart1,1(Bn×RP1) the class of i.m. rectifiable currents
T ∈ Rn(Bn × RP1) satisfying the null-boundary condition (4.3) and the structure
property (4.5) for some Sobolev map uT ∈W 1,1(Bn,RP1) and some i.m. rectifiable
current LT ∈ Rn−1(Bn).

Notice that each current T ∈ Cart1,1(Bn × RP1) has finite mass

M(T ) = M(GuT ) + π · M(LT ) <∞.

Moreover, for future use, we point out the following property:

Proposition 4.4. Let n ≥ 2 and T ∈ Cart1,1(Bn × RP1) satisfying (4.5). Accord-
ing to (2.13), the null-boundary condition (4.3) is equivalent to the formula

(∂LT ) Bn = −P(uT ). (4.9)



July 5, 2010 13:44 WSPC/S1793-7442 251-CM S179374421000017X

198 D. Mucci

Proof. In order to prove that (4.9) implies (4.3), we decompose any form ω ∈
Dk(Bn × RP1) as ω = ω(0) + ω(1) according to the number of differentials in the
“vertical” y-directions. Moreover, we split the differential d = dx + dy.

Since uT ∈ W 1,1(Bn,RP1), arguing as e.g. in [13], see also [15], we get:

(i) ∂GuT (η(0)) = 0 for every η ∈ Dn−1(Bn × RP1);
(ii) ∂GuT (dyγ(0)) = 0 for every γ ∈ Dn−2(Bn × RP1).

Moreover, ∂(LT × [[RP1]])(η(0)) = 0 for every η ∈ Dn−1(Bn × RP1). Then, by
(4.5) and (i) we deduce that the null-boundary condition (4.3) is equivalent to the
property

∂(LT × [[RP1]])(η(1)) = −∂GuT (η(1)) ∀ η ∈ Dn−1(Bn × RP1). (4.10)

By a density argument we reduce to prove (4.10) when η(1) = ϕ ∧ α for some
ϕ ∈ Dn−2(Bn) and α ∈ D1(RP1). As in the proof of Proposition 4.1, we then
decompose α = λωRP1 + dβ, so that

η(1) = ϕ ∧ α = λϕ ∧ ωRP1 + ϕ ∧ dβ, λ ∈ R, β ∈ C∞(RP1).

Using (4.2) and (ii), we have

∂GuT (ϕ ∧ α) = ∂GuT (λϕ ∧ ωRP1) + ∂GuT (ϕ ∧ dβ) = λ 〈P(uT ), ϕ〉 + 0.

Since moreover ∂[[RP1]] = 0, by (4.8) we obtain

∂(LT × [[RP1]])(ϕ ∧ α) = (∂LT × [[RP1]])(ϕ ∧ α) = ∂LT (ϕ) · [[RP1]](α) = λ∂LT (ϕ),

so that (4.9) implies (4.10), hence (4.3). The converse implication follows from the
previous computation, by taking η = η(1) = ϕ ∧ ωRP1 , i.e. λ = 1 and β = 0.

The Total Variation Energy. Using the parametric lower semicontinuous extension
of the total variation energy integrand, Giaquinta–Modica–Souček defined a non-
negative functional T �→ D1(T ) on the class of Cartesian currents cart(Bn × S1),
see Sec. 7 below, called the total variation energy.

It turns out that such a functional can be defined on our class of currents
Cart1,1(Bn × RP1) in such a way that the following properties hold:

Theorem 4.1. We have:

(a) T �→ D1(T ) is lower semicontinuous with respect to the weak Dn-convergence
in Cart1,1(Bn × RP1);

(b) if T satisfies (4.5), then D1(T ) = D1(uT , Bn) + π · M(LT ).
(c) for every T ∈ Cart1,1(Bn × RP1), there exists a sequence of smooth maps

{uk} ⊂W 1,1(Bn,RP1) such that Gvk
⇀ T in Dn and D1(uk, Bn) → D1(T ) as

k → ∞.
(d) we also have mass convergence M(Guk

) → M(T ) as k → ∞.
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Sketch of the proof. Properties (a) and (b) follow from the definition of total
variation energy, compare [13]. In order to prove the density property (c), we may
argue as in [13]. Roughly speaking, for every T ∈ Cart1,1(Bn ×RP1), by Bethuel’s
theorem [4] we find a sequence of maps {uk} ⊂ R∞

1 (Bn,RP1) strongly converging to
uT in W 1,1. This gives that the real mass mr,Bn(P(uk)−P(u)) → 0 as k → ∞, see
(3.1). By Proposition 3.2 and by Hardt–Pitts theorem [16], we deduce that the inte-
gral mass mi,Bn(P(uk) − P(u)) → 0 as k → ∞. Therefore, we reduce to prove the
density property (c) for currents in Cart1,1(Bn × RP1) satisfying (4.5) for some
uT ∈ R∞

1 (Bn,RP1) and some integral current LT ∈ Rn−2(Bn), i.e. such that
MBn(∂LT ) < ∞. By Federer’s strong approximation theorem [8], we then reduce
to the case in which LT is an (n−2)-dimensional integral polyhedral chain. Therefore,
a Dipole-type construction yields the claim in (c). Finally, the mass convergence in
(d) follows from the strong W 1,1-convergence uk → uT at the first step.

A Few Remarks. For p ≥ 3 odd, in [19] we found that the weak limits of sequences
of currents carried by graphs of smooth maps uk ∈ W 1,p(Bn,RPp) satisfying
supk Dp(uk, Bn) <∞, for n ≥ p + 1, are i.m. rectifiable currents in Rn(Bn ×RPp)
of the type

T = GuT + 2 L̃T × [[RPp]]

for some uT ∈ W 1,p(Bn,RPp) and some i.m. rectifiable current L̃T ∈ Rn−p(Bn).
Moreover, compare (4.9), the null-boundary condition reads as (∂L̃T ) Bn =
− 1

2 P(uT ), where P(uT ) ∈ Dn−p−1(Bn) is the current of the singularities of uT .
This is a consequence of Theorem 0.1, and it actually defines the class cartp,1(Bn×
RPp), that is closed under the weak convergence of sequences with equibounded
masses, or p-energies. Moreover, the current LT := 2L̃T has even multiplicity.

In the case p = 1, taking e.g. n = 2 and uT = u, see Example 1.2, by (2.18)
we infer that in order to enclose the singularity of u, one has to take an i.m.
rectifiable current L ∈ R1(B2) such that (∂L) B2 = δ0, e.g. an oriented line
from the boundary of B2 to the origin. This yields that in general the current
LT ∈ Rn−1(Bn) in (4.5) does not have an even multiplicity.

Moreover, the class Cart1,1(Bn × RP1) is not closed under the weak convergence
of sequences with equibounded masses, or total variation energies. In fact, if a
sequence {uk} of smooth maps in W 1,1(Bn,RP1) satisfies supk D1(uk, Bn) < ∞,
possibly passing to a subsequence, in general the uk’s weakly converge in the BV -
sense to a function of bounded variation inBV (Bn,RP1). Therefore, the weak limits
of the corresponding currents Guk

∈ Cart1,1(Bn × RP1) are i.m. rectifiable currents
in Bn×RP1 with a more complicated structure, as they involve the integration on
the “graph” of functions in BV (Bn,RP1).

5. Optimally Connecting Measure and Relaxed Energy

In this section we discuss a notion of optimally connecting measure of the singular
set of u. We then analyze the relaxed total variation energy.
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Optimally Connecting Measure. Proposition 3.2 yields that for every u ∈
W 1,1(Bn,RP1), where n ≥ 2, we can find an integral minimal connection of the
singularity P(u), i.e. an i.m. rectifiable current Lu ∈ Rn−1(Bn) such that

(∂Lu) Bn = P(u) and M(Lu) = mi,Bn(P(u)) <∞.

We thus have

Lu(γ) =
∫
Lu

θu 〈γ,Lu〉 dHn−1 ∀ γ ∈ Dn−1(Bn),

where Lu is a countably (n − 1)-rectifiable set in Bn, the multiplicity function
θu : Lu → N+ is Hn−1 Lu-summable, and Lu : Lu → Λn−1Rn is an Hn−1 Lu-
measurable unit (n − 1)-vector field that provides an orientation to the (n − 1)-
dimensional approximate tangent space to Lu at Hn−1-a.e. point.

We then call µ̃u := θuHn−1 Lu an optimally connecting measure of the singular
set of u. Notice that the total variation of µ̃u satisfies

|µ̃u|(Bn) =
∫
Bn

θu dHn−1 = M(Lu) = mi,Bn(P(u)). (5.1)

By Proposition 4.4, it turns out that the current Tu := Gu−Lu × [[RP1]] actually
belongs to the class Cart1,1(Bn × RP1). This clearly gives:

Proposition 5.1. For every u ∈ W 1,1(Bn,RP1) there exists a current T ∈
Cart1,1(Bn × RP1) with corresponding W 1,1-function uT = u in (4.5).

Moreover, we have:

Theorem 5.2. Let u ∈ W 1,1(Bn,RP1) and let µ̃u as above. Then there exists a
sequence of smooth maps {uk} ⊂W 1,1(Bn,RP1) satisfying the following properties:

(i) uk ⇀ u weakly in W 1,1 as k → ∞;
(ii) D1(uk, Bn) → D1(u,Bn) + π · |µ̃u|(Bn) as k → ∞;
(iii) |Duk| Ln Bn ⇀ |Du| Ln Bn + π µ̃u weakly as measures;
(iv) for any open set A contained in Bn \ spt µ̃u, we have strong W 1,1-convergence

of uk|A to u|A.

Proof. The first three assertions follow by applying the density property (c) in
Theorem 4.1 to the current Tu ∈ Cart1,1(Bn × RP1). Moreover, the mass conver-
gence (d) in Theorem 4.1 implies that

lim
k→∞

∫
A

√
1 + |Duk|2 dx =

∫
A

√
1 + |DuT |2 dx

for any open set A contained in Bn \ spt µ̃u. Therefore, the last assertion follows
from a theorem due to Reshetnyak, as observed in [1].
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Relaxed Energy. In the same spirit as for Lebesgue’s area, the relaxed total variation
energy with respect to the L1-convergence is defined on maps u ∈ L1(Bn,RP1) by

D̂1(u,Bn) := inf
{

lim inf
k→∞

D1(uk, Bn)|{uk} ⊂ C∞(Bn,RP1),

uk → u in L1(Bn,R3)
}
. (5.2)

We readily obtain:

Proposition 5.3. The relaxed energy D̂1(u,Bn) is finite if and only if u ∈
BV (Bn,RP1).

We write an explicit formula for the relaxed energy of W 1,1-maps. In dimension
n = 1, by Schoen–Uhlenbeck density theorem [20] we clearly have:

D̂1(u,B1) = D1(u,B1) ∀u ∈ W 1,1(B1,RP1).

In higher dimension n ≥ 2, Proposition 5.1 yields that for every u ∈
W 1,1(Bn,RP1) the class

T 1,1
u := {T ∈ Cart1,1(Bn × RP1)|uT = u in (4.5)}

is non-empty, whereas by Proposition 4.4

T 1,1
u = {Gu + L× [[RP1]]|L ∈ Rn−1(Bn), (∂L) Bn = −P(u)},

where P(u) ∈ Dn−2(Bn) is given by (2.13). Since moreover the current Tu :=
Gu − Lu × [[RP1]] belongs to T 1,1

u , by (5.1) and property (b) from Theorem 4.1 we
obtain:

inf{D1(T )|T ∈ T 1,1
u } = D1(Tu) = D1(u,Bn) + π ·M(Lu). (5.3)

Proposition 5.4. For every u ∈ W 1,1(Bn,RP1) we have

D̂1(u,Bn) = D1(u,Bn) + π ·mi,Bn(P(u))
= D1(u,Bn) + π · |µ̃u|(Bn).

Proof. By (5.1) and (5.3), it suffices to show that

D̂1(u,Bn) = inf{D1(T )|T ∈ T 1,1
u }. (5.4)

Let T ∈ T 1,1
u , and apply the density property (c) from Theorem 4.1. Since the

weak convergence Guk
⇀ T with D1(uk) → D1(T ) yields the L1-convergence

uk → uT , and uT = u, we deduce that the inequality “≤” holds in (5.4). To
prove the converse inequality, let {uk} ⊂ C∞(Bn,RP1) such that uk → u in L1

and supkD1(uk) < ∞. Possibly passing to a subsequence, we can assume that
lim infk D1(uk) = limk D1(uk). The argument at the beginning of Sec. 4 gives that
(possibly passing again to a subsequence) the currents Guk

weakly converge in Dn
to some current T ∈ Cart1,1(Bn × RP1) such that uT = u, i.e. T ∈ T 1,1

u . Since
D1(Guk

) = D1(uk), the lower semicontinuity property (a) from Theorem 4.1 yields
D1(T ) ≤ lim infk D1(uk), hence the inequality “≥” holds in (5.4).
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Remark 5.5. Similarly to the case of maps into S1, compare [12] and [15], a
representation formula for the relaxed energy can be obtained on the larger class
of maps BV (Bn,RP1), arguing as e.g. in [18].

6. Existence of Liftings

In this section we prove the existence of liftings of currents in Cart1,1(Bn × RP1).
This will be used in Sec. 8 below to deduce some preliminary properties to our
main result, Theorem 9.1. We write a complete proof, even if it is very similar, with
minor modifications, to the analogous existence result proved in [12], see Theorem 2
in [13], for Cartesian currents in Bn × S1.

Subgraphs. We first recall that the current subgraph of a real valued L1-function
ψ ∈ L1(Bn) is the (n+ 1)-dimensional current SGψ in Dn+1(Bn × R) defined by

SGψ(φ(x, t)dx ∧ dt) :=
∫
Bn

(∫ ψ(x)

0

φ(x, t) dt
)
dx, φ ∈ C∞

c (Bn × R). (6.1)

Moreover, see [8], the mass of the boundary current ∂SGψ agrees with the total
variation of ψ,

MBn×R(∂SGψ) = |Dψ|(Bn). (6.2)

Therefore, by the boundary rectifiability theorem [21], it turns out that ∂SGψ is an
i.m. rectifiable current in Rn(Bn × R) if and only if ψ is a function of bounded
variation in BV (Bn), see [3].

Angle Function. According to (2.5), denote by î : Bn × R → Bn × RP1 the lifting
map

î(x, t) := (x, ĵ(t)), ĵ(t) :=

(√
2

2
cos2 t,

√
2

2
sin2 t, cos t sin t

)
. (6.3)

Since by (6.3) we have (z1 − z2)2 + 2z2
3 = 1/2 for every z = (z1, z2, z3) ∈ RP1, the

function φ : RP1 → R

φ(z) :=
1
2

arctan

( √
2 z3

z1 − z2

)
satisfies dφ(z) = Θ̂(z) for H1-a.e. z ∈ RP1, where Θ̂ is the non-normalized volume
one-form on RP1

Θ̂(z) := π · ωRP1(z) =
√

2
(
−z3dz1 + z3dz2 + (z1 − z2) dz3

)
,

see (2.4). Define the angle function θ̂ : RP1 → [0, π[ by

θ̂(z) :=


φ(z) if z ∈ ĵ([0, π/4[),
φ(z) + π/2 if z ∈ ĵ(]π/4, 3π/4[)
φ(z) + π if z ∈ ĵ(]3π/4, π[),

,
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whereas θ̂(
√

2/4,
√

2/4, 1/2) := π/4 and θ̂(
√

2/4,
√

2/4,−1/2) := 3π/4. We thus
have ĵ ◦ θ̂ = IdRP1 and θ̂(ĵ(t)) = t for every t ∈ [0, π[. Finally, by (2.6) we have

dθ̂ = Θ̂, ĵ#Θ̂ = dt. (6.4)

Existence of Liftings. Denote by Gp0 the current in Rn(Bn×RP1) integration over
the graph of the constant map p0(x) ≡ ĵ(0) = (

√
2/2, 0, 0).

Theorem 6.1. Let T ∈ Cart1,1(Bn × RP1), see Definition 4.3. Then there exists
a real valued BV -function ψT ∈ BV (Bn) such that

T −Gp0 = (−1)n î#∂SGψT . (6.5)

Moreover, if uT ∈ W 1,1(Bn,RP1) is the corresponding W 1,1-function in (4.5), we
have

uT = ĵ ◦ ψT Ln-a.e. on Bn. (6.6)

Proof. We divide it in three steps.

Step 1. Arguing as in [14], we find a current Σ ∈ Dn+1(Bn × RP1) such that

T −Gp0 = (−1)n∂Σ on Dn(Bn × RP1). (6.7)

In fact, Bn being simply-connected, both the real relative homology groups Hn(Bn×
RP1, ∂Bn × RP1; R) and Hn(Bn, ∂Bn; R) and equal to R, and the canonical
projection of the first one into the second one is an isomorphism. Denoting by
π : Bn × RP1 → Bn the orthogonal projection onto the first factor, by (4.5) we
have π#T = π#Gp0 = [[Bn]]. Therefore, T and Gp0 are homologous relative cycles
in Hn(Bn × RP1, ∂Bn × RP1; R). This gives (6.7), compare Theorem 2 in [13].

Step 2. Proof of (6.5). Since the current Σ in (6.7) is an (n+1)-dimensional normal
current in Bn×RP1, by [21] we find the existence of a function g̃ ∈ BVloc(Bn×RP1)
such that for any f̃ ∈ C∞

c (Bn × RP1)

Σ(f̃(x, θ̂) dx ∧ Θ̂) =
∫
Bn×RP1

f̃(x, θ̂) g̃(x, θ̂) dHn+1. (6.8)

Setting then f, g : Bn × R → R by

f(x, t) := f̃(x, ĵ(t)), g(x, t) := g̃(x, ĵ(t)),

clearly f and g are π-periodic in t and

Σ(f̃(x, θ̂) dx ∧ Θ̂) =
∫
Bn

dx

∫ π

0

f(x, t) g(x, t) dt. (6.9)

Moreover, in the sense of measures |Dg̃| = ‖∂Σ‖, whereas by (6.7) we infer that
∂Σ is i.m. rectifiable in Rn(Bn × RP1). Therefore, we find that |Dg̃| = σHn S
for some n-rectifiable set S ⊂ Bn × RP1 and some integer-valued Hn-integrable
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function σ on S. As a consequence, we find a real number r0 ∈ R and an integer-
valued locally BV -function g ∈ BVloc(Bn × R,Z), actually g ∈ BVloc(Bn × (0, π)),
such that

g(x, t) = r0 + g(x, t). (6.10)

Consider the function ψ = ψT ∈ BVloc(Bn) defined by

ψ(x) :=
∫ π

0

g(x, t) dt (6.11)

and the (n + 1)-dimensional current SGψ in (6.1). In Step 3 below we will prove
the following claim:

î#SGψ + r0 [[Bn × RP1]] = Σ on Dn+1(Bn × RP1). (6.12)

Since î#∂SGψ = ∂î#SGψ and ∂ [[Bn × RP1]] = 0 on Dn(Bn × RP1), by (6.7) we
readily obtain (6.5). As a consequence we infer

M(∂SGψ) ≤ M(T ) + Ln(Bn) <∞,

which yields that the total variation of ψ is finite, see (6.2). Also, a Poincaré type
inequality yields that ψ ∈ BV (Bn). Finally, formula (6.6) is an immediate conse-
quence of (4.4), (6.5), and of the definition (6.1) of SGψ.

Step 3. Proof of the Claim (6.12). By (4.4) and (6.7) we obtain for any f̃ ∈
C∞
c (Bn × RP1)∫

Bn

[
f̃(x, uT (x)) − f̃(x, p0)

]
dx = (−1)n∂Σ(f̃(x, θ̂) dx).

Therefore, since (−1)ndf̃(x, θ̂) dx = f̃,bθ(x, θ̂) dx∧ Θ̂, compare (6.4), by (6.8) we get∫
Bn

[
f̃(x, uT (x)) − f̃(x, p0)

]
dx =

∫
Bn×RP1

f̃,bθ(x, θ̂) g̃(x, θ̂) dH
n+1.

Denoting for a.e. x ∈ Bn by l(x) the point in [0, π) such that ĵ(l(x)) = uT (x), and
since ĵ(0) = p0, by (6.9) we may rewrite∫

Bn

[
f(x, l(x)) − f(x, 0)

]
dx =

∫
Bn

dx

∫ π

0

f,t(x, t) g(x, t) dt.

Since by the π-periodicity of f∫ π

0

f,t(x, t) dt = 0 ∀x ∈ Bn,

by (6.10) we get ∫
Bn

dx

∫ π

0

[
g(x, t) − χ[0,l(x)](t)] f,t(x, t) dt = 0,

where χA is the characteristic function of A ⊂ R. The last equality yields that∫
Bn

dx

∫ π

0

[
g(x, t) − χ[0,l(x)](t)]ϕ(x, t) dt = 0
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for all C∞-maps ϕ which are π-periodic in t and such that
∫ π
0 ϕ(x, t) dt = 0 for

every x ∈ Bn. Consequently, for a.e. x ∈ Bn

g(x, t) = c(x) + χ[0,l(x)](t),

in particular, c(x) is integer-valued. Integrating with respect to t ∈ [0, π], by (6.11)
we obtain

ψ(x) = π c(x) + l(x) for Ln-a.e. x ∈ Bn

and hence, taking account again the π-periodicity of f in t,∫
Bn

dx

∫ π

0

f(x, t) g(x, t) dt =
∫
Bn

dx

∫ π

0

f(x, t)
(
c(x) + χ[0,l(x)](t)

)
dt

=
∫
Bn

dx

{
c(x)

∫ π

0

f(x, t) dt+
∫ l(x)

0

f(x, t) dt
}

=
∫
Bn

dx

∫ ψ(x)

0

f(x, t) dt =: SGψ(f(x, t) dx ∧ dt),

(6.13)

see (6.1). Now, (6.3) and (6.4) yield

î#(f̃(x, θ̂) dx ∧ Θ̂) = f(x, t) dx ∧ ĵ#Θ̂ = f(x, t) dx ∧ dt.

This gives

î#SGψ(f̃(x, θ̂) dx ∧ Θ̂) := SGψ (̂i#(f̃(x, θ̂) dx ∧ Θ̂)) = SGψ(f(x, t) dx ∧ dt).

Since moreover î#[[Bn × (0, π)]] = [[Bn × RP1]], we also have

r0 [[Bn × RP1]](f̃(x, θ̂) dx ∧ Θ̂) = r0 [[Bn × (0, π)]](f dx ∧ dt)

=
∫
Bn

dx

∫ π

0

r0 f(x, t) dt.

By (6.9), (6.10) and (6.13) we finally obtain the claim (6.12).

7. Cartesian Currents in Bn × S1

In order to prove Theorem 9.1 below, in this section we recall the structure prop-
erties of the class cart(Bn × S1). We then introduce a suitable current integration
on the jump set of functions in BV (Bn, S1).

Graphs of W 1,1-functions into S1. To every Sobolev map v in W 1,1(Bn, S1) we
associate an i.m. rectifiable current Gv ∈ Rn(Bn × S1) by

Gv(ω) :=
∫
Bn

(Id � v)#ω ∀ω ∈ Dn(Bn × S1), (7.1)

where (Id � v)(x) := (x, v(x)) and the pull-back is defined in the a.e. approximate
sense. If v is smooth, Gv is the current integration over the oriented graph of v.
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Remark 7.1. For n ≥ 2, the current P(v) ∈ Dn−2(Bn) of the singularity, see (2.1),
satisfies

2π · 〈P(v), ϕ〉 = Gv(dϕ ∧ ωS1) = ∂Gv(ϕ ∧ ωS1) (7.2)

for every ϕ ∈ Dn−2(Bn), as Gv(ϕ ∧ dωS1) = 0. Moreover, arguing as in Proposi-
tion 3.2 one infers that

2π ·mi,Ω(P(v)) ≤ D1(v,Bn) <∞,

hence P(v) is an integral flat chain, see Definition 3.1.
Therefore, if u ∈ W 1,1(Bn,RP1) satisfies the property u = g1 ◦ v for some

v ∈ W 1,1(Bn, S1), by Proposition 2.8 we deduce that 1
2P(u) is an integral flat

chain, too.
As we have seen, in general the above condition u = g1 ◦ v is not satisfied.

However, in Theorem 9.1 below we shall prove that the converse implication holds
true, too.

Weak Limits. Let {vk} a sequence of smooth maps from Bn into S1 satisfying
supk D1(vk, Bn) <∞. Arguing as in Sec. 4, we infer that the currents Gvk

, possibly
passing to a subsequence, weakly converge in Dn(Bn × S1) to an i.m. rectifiable
current T̃ ∈ Rn(Bn × S1) satisfying the null-boundary condition

∂T̃ (ω̃) := T̃ (dω̃) = 0 ∀ ω̃ ∈ Dn−1(Bn × S1) (7.3)

and acting on “horizontal” forms as

T̃ (φ(x, y) dx) =
∫
Bn

φ(x, vT (x)) dx ∀φ ∈ C∞
c (Bn × S1) (7.4)

for some function of bounded variation vT ∈ BV (Bn, S1). Therefore, the weak Dn-
limits of the Gvk

’s involve the currents Gv in Bn × S1 integration on the “graph”
of functions in BV (Bn, S1), see Definition 7.4 below. We recall that a function
v ∈ L1(Bn, S1) belongs to the class BV (Bn, S1) if its distributional derivative Dv
is a measure with bounded total variation. Following e.g. [3], one decomposes

Dv = ∇v dx+DCv + (v+ − v−) ⊗ νvHn−1 Jv,

where ∇v is the approximate gradient of v, the countably Hn−1-rectifiable subset
Jv of Bn, the so-called jump set, is given by the jump points of v, we choose
νv = (ν1

v , . . . , ν
n
v ) a unit normal to Jv, and v−(x) and v+(x) are the one-sided

limits of v at x ∈ Jv with respect to νv, for Hn−1-a.e. x ∈ Jv. We also recall
that v is a special function of bounded variation in SBV (Bn, S1) if v belongs to
BV (Bn, S1) and its distributional derivative Dv has no Cantor part, i.e. DCv = 0.
Notice that in general Hn−1(Jv) ≤ ∞, even if v belongs to SBV (Bn, S1), and the
strict inclusion W 1,1(Bn, S1) � SBV (Bn, S1) holds.
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Graphs of BV -Functions into S1. Following the notation from [18], to every function
v ∈ BV (Bn, S1) we again associate an i.m. rectifiable current Gv in Rn(Bn × S1).
We decompose Gv into its absolutely continuous, Cantor, and Jump parts

Gv := Gav +GCv +GJv .

Every n-form ω ∈ Dn(Bn × S1) splits as ω(0) + ω(1) according to the number of
“vertical” differentials. Write ω(0) = φ(x, y) dx for some φ ∈ C∞

0 (Bn × S1),

ω(1) =
n∑
i=1

2∑
j=1

(−1)n−iφji (x, y) d̂xi ∧ dyj (7.5)

for some φji ∈ C∞
0 (Bn × S1), and denote φj := (φj1, . . . , φ

j
n). We set

GCv (φ(x, y) dx) = GJv (φ(x, y) dx) = 0,

Gv(φ(x, y) dx) = Gav(φ(x, y) dx) :=
∫
Bn

φ(x, v(x)) dx.

Moreover, we define

Gav(ω
(1)) :=

2∑
j=1

∫
Bn

(
∇vj(x) · φj(x, v(x))

)
dx

=
2∑
j=1

n∑
i=1

∫
Bn

∇iv
j(x)φji (x, v(x)) dx

GCv (ω(1)) :=
2∑
j=1

∫
Bn

φj(x, v(x)) dDCvj

GJv (ω(1)) :=
n∑
i=1

2∑
j=1

∫
Jv

(∫
lx

φji (x, y) dy
j

)
νiv dHn−1(x).

In this formula, for Hn−1-a.e. x ∈ Jv we denote by lx the oriented simple arc of S1

from v−(x) to v+(x) and satisfying the following properties:

(i) if v+(x) = v−(x), then lx is constantly the point v+(x);
(ii) if v+(x) �= −v−(x), then lx is a geodesic arc;
(iii) if v+(x) �= −v−(x), then lx is oriented in the counterclockwise sense in the

case Arg (v+(x)) ∈ [0, π], and in the clockwise sense in the case Arg (v+(x)) ∈
] − π, 0[.

Here, Arg (θ) ∈] − π, π] is the argument of the unit complex number θ ∈ S1 ⊂ C.
Notice that for Hn−1-a.e. x ∈ Jv we have ∂[[lx]] = δv+(x) − δv−(x) and∫

lx

ωS1 = ρ(v+(x), v−(x)), (7.6)

where ρ : S1 × S1 → [−π, π] is the signed distance on S1, compare [17], defined by

ρ(θ1, θ2) :=
{

Arg
(
θ1/θ2) if θ1/θ2 �= −1,

Arg
(
θ1) − Arg(θ2) if θ1/θ2 = −1,

∀ θ1, θ2 ∈ S1. (7.7)
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Similarly to Proposition 4.1, we have:

Proposition 7.2. Let T̃ ∈ Rn(Bn × S1) satisfy (7.3) and (7.4) for some vT ∈
BV (Bn, S1). Then there exists an i.m. rectifiable current L̃T in Rn−1(Bn) such
that

T̃ = GvT + L̃T × [[S1]]. (7.8)

Proof. Let ωη ∈ Dn−1(Bn) given by (4.6). Define L̃T ∈ Rn−1(Bn) by

L̃T (ωη) :=
1
2π

S̃T (ωη ∧ ωS1), η ∈ C∞
c (Bn,Rn),

where we have set

S̃T := T̃ −GvT ∈ Rn(Bn × S1).

As in the proof of Proposition 4.1, it suffices to show that

S̃T (ω) = L̃T × [[S1]](ω) ∀ω = φ(x, y) dx + ωη ∧ α, (7.9)

where φ ∈ C∞
c (Bn × S1), η ∈ C∞

c (Bn,Rn), and α ∈ D1(S1). By (7.4) we check

S̃T (φ(x, y) dx) = L̃T × [[S1]](φ(x, y) dx) = 0,

whereas by Hodge decomposition theorem, we can write α = λωS1 + dβ for some
λ ∈ R and β ∈ C∞(S1). We also have:

Lemma 7.3. ST (ωη ∧ dβ) = 0 for every η ∈ C∞
c (Bn,Rn) and β ∈ C∞(S1).

This gives S̃T (ωη ∧ α) = λ S̃T (ωη ∧ ωS1), whereas

L̃T × [[S1]](ωη ∧ α) = L̃T (ωη) · [[S1]](α) = λ 2πL̃T (ωη) = λ S̃T (ωη ∧ ωS1)

and hence (7.9).

Proof of Lemma 7.3. As in Lemma 4.2, by (7.3) we obtain

(−1)nS̃T (ωη ∧ dβ) = T̃ (div η(x)β(y) dx) + (−1)n−1GvT (ωη ∧ dβ).

By (7.4) we find that

T̃ (div η(x)β(y) dx) =
∫
Bn

div η(x)β(vT (x)) dx =: −〈D(β ◦ vT ), η〉.

Moreover, by the definition of GvT , with φji = ηiDyjβ in (7.5), and since ∂[[lx]] =
δv+T (x) − δv−T (x), we infer

(−1)n−1GvT (ωη ∧ dβ) =
2∑
j=1

∫
Bn

∂β

∂yj
(vT (x))〈∇vjT (x), η(x)〉 dx

+
2∑
j=1

∫
Bn

∂β

∂yj
(vT (x)) η(x) dDCvjT

+
∫
JvT

(
β(v+

T (x)) − β(v−T (x)
)
〈η(x), ν(x)〉 dHn−1 .
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Finally, by the chain rule for the derivative D(η ◦ vT ), see [3], we obtain

(−1)n−1GvT (ωη ∧ dβ) = 〈D(β ◦ vT ), η〉

and hence S̃T (ωη ∧ dβ) = 0.

The above facts motivate the following

Definition 7.4. We denote by cart(Bn × S1) the class of i.m. rectifiable currents
T̃ ∈ Rn(Bn×S1) with finite mass, M(T̃ ) <∞, satisfying the null-boundary condi-
tion (7.3), that can be decomposed as in (7.8) for some function vT ∈ BV (Bn, S1)
and some i.m. rectifiable current L̃T in Rn−1(Bn).

Remark 7.5. The class cart(Bn × S1) agrees with the one from [12] and [13].
Moreover, for any v ∈ BV (Bn, S1) one has

Gav(ω) =
∫
Bn

(Id � v)#ω ∀ω ∈ Dn(Bn × S1),

where the pull-back is defined in the approximate sense. Therefore, if vT is a Sobolev
map in W 1,1(Bn, S1), we have GCvT

= GJvT
= 0, hence GvT agrees with the current

in definition (7.1). This yields that the class cart(Bn× S1) contains the currents of
the type

T = Gv + L̃× [[S1]],

for some v ∈ W 1,1(Bn, S1) and L̃ ∈ Rn−1(Bn). In this case, arguing as in Propo-
sition 4.4, by (7.2) one infers that for n ≥ 2, the null-boundary condition (7.3) is
equivalent to:

(∂L̃) Bn = −P(v).

Currents Integration on the Jump Set. We denote by [[Jv]] the i.m. current in
Dn−1(Bn) integration of (n − 1)-forms on the jump set Jv of a function v ∈
BV (Bn, S1). More precisely, we set

[[Jv]] := τ(Jv , 1, ∗νv),

where the tangent unit (n− 1)-vector ∗νv is defined Hn−1-a.e. on Jv by

∗νv :=
n∑
i=1

(−1)i−1νiv êi, êi := e1 ∧ · · · ∧ ei−1 ∧ ei+1 ∧ · · · ∧ en.

Notice that M([[Jv]]) = Hn−1(Jv), so that [[Jv]] has finite mass, and hence it is an
i.m. rectifiable current in Rn−1(Bn), if and only if Hn−1(Jv) < ∞. Moreover, if
ωη ∈ Dn−1(Bn) is given by (4.6), we have

[[Jv]](ωη) =
∫
Jv

〈ωη, ∗νv〉 dHn−1 =
∫
Jv

η · νv dHn−1.
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Assume now that g1 ◦ v = u for some Sobolev map u in W 1,1(Bn,RP1). This
yields that v− = −v+ Hn−1-a.e. in Jv. By (7.7), we then deduce that for Hn−1-a.e.
x ∈ Jv

ρ(v+(x), v−(x)) =
{
π if Arg(v+(x)) ∈ [0, π]
−π if Arg(v+(x)) ∈] − π, 0[.

Therefore, setting Jv(x) := θv(x) · (∗νv(x)), where

θv(x) := (−1)n−1 1
π
ρ(v+(x), v−(x)) ∈ {−1,+1}, x ∈ Jv,

we conclude that the current Jv := τ(Jv , 1,Jv) has multiplicity one and satisfies

Jv(ωη) =
∫
Jv

〈ωη,Jv〉 dHn−1 =
(−1)n−1

π

∫
Jv

ρ(v+, v−) η · νv dHn−1. (7.10)

Remark 7.6. We again have M(Jv) = Hn−1(Jv). Therefore, Jv has finite mass,
and hence Jv ∈ Rn−1(Bn), if and only if Hn−1(Jv) <∞.

Remark 7.7. Finally, if a function v ∈ BV (Bn, S1) satisfies g1 ◦ v ∈ W 1,1(Bn,
RP1), we have DCv = 0, see Remark 8.1 below. Therefore, we infer that v belongs
to W 1,1(Bn, S1) if and only if Jv = 0.

8. Preliminary Results

In this section, using the lifting Theorem 6.1, we analyze some properties of the
currents Gv carried by the graph of maps in BV (Bn, S1) that satisfy g1 ◦ v =
u ∈ W 1,1(Bn,RP1). This properties will be used to prove of our main result,
Theorem 9.1 below. For the sake of clarity, we postpone the proofs to the end
of the section.

According to (2.5) and (6.3), denote by i : Bn × R → Bn × S1 the map

i(x, t) := (x, j(t)), j(t) := (cos t, sin t).

Remark 8.1. We first observe that the function uT in Theorem 6.1 belongs to
W 1,1(Bn,RP1). Therefore, by applying the chain rule to (6.6), see [3], we readily
infer that the lifting map ψT : Bn → R is a special function of bounded variation in
SBV (Bn), i.e. the Cantor part of the distributional derivative is zero, DCψT = 0.
As a consequence, the corresponding function

vT := j ◦ ψT : Bn → S1

is a special function of bounded variation in SBV (Bn, S1), i.e. DCvT = 0.

Setting h1(x, y) = (x, g1(x)) ∈ Bn×RP1 for (x, y) ∈ Bn×S1, we have ĵ = g1 ◦ j
and î = h1 ◦ i, whence

i#[[Bn × (0, 2π)]] = [[Bn]] × [[S1]], î#[[Bn × (0, π)]] = [[Bn]] × [[RP1]].
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Proposition 8.2. Let u ∈W 1,1(Bn,RP1). Assume that there exists a Sobolev map
v ∈ W 1,1(Bn, S1) such that g1 ◦ v = u, see Definition 0.1. Then h1#Gv = Gu. More
generally, if u = g1 ◦ v for some v ∈ BV (Bn, S1), we have h1#G

a
v = Gu.

Denote now by Gq0 the current in Rn(Bn×S1) integration over the graph of the
constant map q0(x) ≡ j(0) = (1, 0). As a consequence of the lifting Theorem 6.1,
we obtain:

Proposition 8.3. Under the hypotheses of Theorem 6.1, the image current by the
lifting i satisfies

(−1)ni#∂SGψT = T̃ −Gq0 ,

for some Cartesian current T̃ ∈ cart(Bn × S1) with corresponding BV -function
equal to vT := j ◦ ψT .

As a consequence, we also have:

Proposition 8.4. For every u ∈ W 1,1(Bn,RP1), there exists a function v ∈
SBV (Bn, S1) such that

u = g1 ◦ v Ln-a.e. on Bn.

Moreover, for every T ∈ Cart1,1(Bn × RP1), with corresponding function uT = u

in (4.5), there exists a current T̃ ∈ cart(Bn × S1), with corresponding BV -function
vT = v in (7.8), such that T = h1#T̃ , i.e.

h1#(Gv + L̃T × [[S1]]) = Gu + LT × [[RP1]], (8.1)

where L̃T , LT ∈ Rn−1(Bn).

Recall now that the i.m. current Jv ∈ Dn−1(Bn) is given by (7.10). We finally
obtain:

Proposition 8.5. Under the hypotheses of Proposition 8.4, property (8.1) yields

LT = 2 L̃T + Jv. (8.2)

In particular, the function v ∈ SBV (Bn, S1) has jump set of finite measure,
Hn−1(Jv) <∞.

Proofs. We finally collect the proofs of the results stated above.

Proof of Proposition 8.2. Assume first that v ∈ W 1,1(Bn, S1). Since h1 ◦ (Id �
v) = Id � (g1 ◦ v), by (7.1) and (4.1) we get

〈h1#Gv, ω〉 := 〈Gv, h#
1 ω〉 =

∫
Bn

(Id � v)#
(
h#

1 ω
)

=
∫
Bn

(
Id � (g1 ◦ v)

)#
ω =

∫
Bn

(Id � u)#ω =: 〈Gu, ω〉

for every form ω ∈ Dn(Bn × RP1). If v ∈ BV (Bn, S1), the claim follows from
Remark 7.5.
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Proof of Proposition 8.3. For every φ ∈ C∞
c (Bn × S1) we have

(−1)ndφ(x, j(t)) dx =
∂

∂t
φ(x, j(t)) dx ∧ dt.

Therefore, using (6.1) we compute

(−1)ni#∂SGψT (φ(x, y) dx)
:= (−1)n∂SGψT (i#φ(x, y) dx) = (−1)n∂SGψT (φ(x, j(t)) dx)

= (−1)nSGψT (dφ(x, j(t)) dx) =
∫
Bn

(∫ ψT (x)

0

∂

∂t
φ(x, j(t)) dt

)
dx

=
∫
Bn

(
φ(x, j(ψT (x))) − φ(x, j(0))

)
dx = (GvT −Gq0 )(φ(x, y) dx).

Moreover, the current ∂SGψT belongs to Rn(Bn×R), and has null boundary inside
Bn×R. This yields that T̃ := (−1)ni#∂SGψT +Gq0 is an i.m. rectifiable current in
Rn(Bn × S1) that satisfies the null-boundary condition (7.3) and agrees with GvT

on horizontal forms φ(x, y) dx, see (7.4). The assertion follows from Proposition 7.2
and Definition 7.4.

Proof of Proposition 8.4. Recall that î = h1 ◦ i, whereas p0 = g1(q0). This gives

(−1)nî#∂SGψT = h1#((−1)ni#∂SGψT ), h1#Gq0 = Gp0 .

The claim follows from Proposition 5.1, Theorem 6.1 and Proposition 8.3.

Proof of Proposition 8.5. Let T̃ ∈ cart(Bn × S1) given by Proposition 8.4, so
that vT = v. Since g1#[[S1]] = 2 [[RP1]], we get

h1#T̃ = h1#(Gv + L̃T × [[S1]]) = h1#Gv + 2 L̃T × [[RP1]].

Moreover, Proposition 8.2 yields that h1#G
a
v = Gu, whereas Gv = Gav + GJv , as

GCv = 0, see Remark 8.1. Therefore, (8.1) is equivalent to

h1#G
J
v + 2 L̃T × [[RP1]] = LT × [[RP1]]. (8.3)

Now let ωη ∧ ωRP1 ∈ Dn(Bn × RP1), where ωη ∈ Dn−1(Bn) is given by (4.6).
By (2.6), we have

h#
1 (ωη ∧ ωRP1) = ωη ∧ g#

1 ωRP1 =
1
π
ωη ∧ ωS1 .

Therefore, denoting y1 := y2 and y2 := y1, according to the notation in (7.5) we
infer that

π h#
1 (ωη ∧ ωRP1) = ω(1), where φji (x, y) := (−1)n−1+j ηi(x) yj .

By the definition of GJv (ω(1)) from Sec. 7, we thus obtain:

π h1#G
J
v (ωη ∧ ωRP1) = GJv (π h#

1 (ωη ∧ ωRP1))

=
n∑
i=1

2∑
j=1

∫
Jv

(∫
lx

(−1)n−1+jηi(x) yjdyj
)
νiv(x) dHn−1(x)

= (−1)n−1

n∑
i=1

∫
Jv

ηi(x)
(∫

lx

(y1dy2 − y2dy1)
)
νiv(x) dHn−1(x).



July 5, 2010 13:44 WSPC/S1793-7442 251-CM S179374421000017X

Sobolev Maps into the Projective Line with Bounded Total Variation 213

Using (7.6), we get

π h1#G
J
v (ωη ∧ ωRP1) = (−1)n−1

∫
Jv

ρ(v+, v−) η · νv dHn−1

and hence

h1#G
J
v (ωη ∧ ωRP1) = Jv(ωη),

compare (7.10), whereas by (2.7)

2 L̃T × [[RP1]](ωη ∧ ωRP1) = 2 L̃T (ωη), LT × [[RP1]](ωη ∧ ωRP1) = LT (ωη).

By (8.3), we conclude that

Jv(ωη) + 2 L̃T (ωη) = LT (ωη)

for every η ∈ C∞
c (Bn,Rn), that gives (8.2). Finally, the property Hn−1(Jv) < ∞

follows from Remark 7.6 and (8.2), as M(LT ) + M(2 L̃T ) <∞.

9. Main Results

Now let u ∈ W 1,1(Bn,RP1), where n ≥ 2, and let P(u) ∈ Dn−2(Bn) the current
of the singularities of u, given by (2.13). In Proposition 3.2 we have noticed that
P(u) is always an integral flat chain.

We now consider the following properties:

(a) there exists a Sobolev map v ∈ W 1,1(Bn, S1) such that g1 ◦ v = u a.e. in Bn,

see Definition 0.1;
(b) the current 1

2 P(u) is an integral flat chain, see Definition 3.1.

Proposition 2.8 yields that the implication (a) ⇒ (b) is true, see Remark 7.1. As
we have seen in Examples 1.2 and 2.9, both the above properties (a) and (b) are not
verified, in general. Recall also that property (a) is always true in low dimension n =
1, see Remark 1.3. Moreover, property (b) means that we can find an i.m. rectifiable
current L ∈ Rn−1(Bn), with finite mass, such that (∂L) Bn = 1

2 P(u). Finally,
notice that the function v from Example 1.2 satisfies g1 ◦ v = u ∈ W 1,1(B2,RP1),
belongs to the class SBV (B2, S1), and its jump set Jv = {(x1, 0) ∈ B2| − 1 < x1 <

0} has finite size.

We now show that the converse implication (b) ⇒ (a) holds true, too. More
precisely, from the results of the previous sections we obtain:

Theorem 9.1. Let u ∈ W 1,1(Bn,RP1), where n ≥ 2. Then there exists a function
v ∈ SBV (Bn, S1) with Hn−1(Jv) < ∞ such that g1 ◦ v = u. Moreover, the above
properties (a) and (b) are equivalent.

Proof. By Propositions 5.1, 8.4 and 8.5, we deduce the first assertion and the
corresponding formula (8.2), where the currents LT , L̃T , and Jv are i.m. rectifiable
in Rn−1(Bn), and Jv is given by (7.10).
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As we have seen, Proposition 2.8 and Remark 7.1 yield the implication
(a) ⇒ (b). To prove the converse implication, assume that 1

2 P(u) is an integral flat
chain, see Definition 0.1. Then there exists an i.m. rectifiable current L̂ ∈ Rn−1(Bn)
such that

2(∂L̂) Bn = −P(u).

Proposition 4.4 yields that

T̂ := Gu + 2L̂× [[RP1]] ∈ Cart1,1(Bn × RP1).

Therefore, applying the arguments of the previous section to T = T̂ , formula (8.2)
gives

Jv = 2 (L̂− L̃T ), where L̂− L̃T ∈ Rn−1(Bn).

Since the current Jv has multiplicity one, see Sec. 7, this gives that Jv = 0, condition
that is equivalent to the membership of v to the Sobolev class W 1,1(Bn, S1), see
Remark 7.7, as required.

In the case e.g. of maps in R0
1(B

2,RP1), the above property (b) says that the
degree of u at each singular point aj of Σ(u) is integer, see Proposition 2.10. There-
fore, if (b) holds, the image of the circle ∂B2(aj , r) by the function u, for r > 0
small, covers the target space RP1 an even number of times, given by the number
2 | degRP1(u, aj)| ∈ 2 N, with orientation prescribed by the sign of degRP1(u, aj).
Moreover, property (b) has to be compared with the formulas (2.11) and (2.18) for
the functions from Example 1.2.

In fact, as a consequence of Theorem 9.1 we finally obtain:

Corollary 9.2. If u ∈ R0
1(B2,RP1), the degree of u at each singular point aj of

Σ(u) is integer if and only if there exists a Sobolev map v ∈W 1,1(B2, S1) such that
g1 ◦ v = u. Similarly, if u ∈ W 1,1(Σ1,RP1), the degree (2.10) is integer if and only
if there exists a Sobolev map v ∈W 1,1(Σ1, S1) such that g1 ◦ v = u.

Proof. If u ∈ R0
1(B

2,RP1), by (2.19) we deduce that 1
2 P(u) is an integral flat

chain if and only if degRP1(u, ai) ∈ Z for every i. The first claim then follows
from Theorem 9.1. Moreover, we observe that for every u ∈ W 1,1(Σ1,RP1), the
corresponding homogeneous extension u(x) := u(x/|x|) belongs to W 1,1(B2,RP1).
Moreover, by (2.21) we deduce that the current 1

2 P(u) is an integral flat chain if and
only if the degree (2.10) of u is integer. Therefore, by Theorem 9.1, degRP1(u) ∈ Z

if and only if we find a Sobolev map v ∈ W 1,1(B2, S1) such that g1 ◦ v = u. In
this case, moreover, we have v(x) := v(x/|x|) for some v ∈ W 1,1(Σ1, S1) such that
g1 ◦ v = u. This gives the second claim.
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