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We study the model theory of “covers” of groups H definable in an o-minimal structure
M . We pose the question of whether any finite central extension G of H is interpretable in
M , proving some cases (such as when H is abelian) as well as stating various equivalences.
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point out some notable differences with the case of covers of complex algebraic groups
(studied by Zilber and his students).
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1. Introduction and Preliminaries

There are at least two inspirations for the current paper. The first is the work of
Zilber and students, [20, 11, 1], around the model theory and categoricity, sometimes
infinitary, of universal covers of commutative complex algebraic groups. We were
interested in studying analogous questions for real Lie groups or groups definable
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in o-minimal structures. The second is the paper [13] by the second and third
authors together with Hrushovski, which studied group extensions definable in an
o-minimal structure, as well as topological covers of definable Lie groups. In Sec. 2,
we study abstract finite central extensions 1 −→ Γ ι−→ G

π−→ H −→ 1 where H
is, say, definable in an o-minimal expansion M of a real closed field, but now no
“tameness” assumption is made on G. We formulate the following conjecture:

(*) The 2-sorted structure consisting of M , (G, ·) together with the map π, is
interpretable in M .

When M is an o-minimal expansion of the real field R, then H is a “definable”
Lie group, and we will note that (*) is equivalent to:

(**) G can be equipped with the structure of a (not necessarily connected) Lie
group such that π is continuous (so G is a topological cover of H).

Now (**) is related to Milnor’s conjecture [15], and is known in many cases.
See for example [19], Theorem 2.1, Remark 2.2, Corollary 2.5, and Theorem 4.1,
as well as [6], Theorem 4.1, where it is proved that for many simply connected
simple Lie groups H , H2(H) is a Q-vector space. The point being that, for H
perfect, the homology groupH2(H), is the kernel of the “abstract” universal central
extension of H . So if H2(H) is a Q-vector space then it has no finite quotients and
hence any (abstract) finite central extension of H splits. Conceivably the analysis
works over arbitrary real closed fields, yielding information about the conjecture
(*). However, here we approach the model-theoretic statement (*) with model-
theoretic methods. In Theorem 2.3 we give some equivalents to (*), one of which
is the stable embeddability of M in (G, π,M). In Theorem 2.9, we prove (*) when
H is commutative. In Secs. 2.3 and 2.4, when M is saturated and H is definably
compact (and semisimple), we highlight the role of the “infinitesimal subgroup”
H00 of H . There is some overlap in our Sec. 2 with current work by Edmundo,
Jones, and Peatfield [9] and we will give precise references.

Section 3 deals with categoricity issues and universal covers π :G→ H of defin-
able Lie groups H . So here M is an o-minimal expansion of the field R. We make
use of results from [13] to prove the following strong relative categoricity state-
ment (Theorem 3.4): there is a single Lω1,ω-sentence σ true of ((G, ·), π,M) such
that if (G1,M1), (G2,M2) are models of σ, then any isomorphism between the real
closed fields M1 and M2 lifts to an isomorphism between the two structures. On
the other hand, it does not suffice that σ simply fixes the isomorphism type of
ker(π). We go through the case of H = R/Z in detail, summarizing the situation
in Theorem 3.12. We also discuss stable embeddability, and ask questions (such as
Problem 3.14) around suitably generalizing the material from Sec. 2 to the context
of arbitrary finitely generated central extensions of definable Lie groups.

Our model theoretic notation is quite standard. We normally feel free to work in
M eq (or T eq) so by a definable set in a structure M we mean a set definable (possi-
bly with parameters) in M eq. On the other hand, in cases such as o-minimal struc-
tures, there is a privileged sort. For certain technical reasons related to equipping a
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definable group with a “manifold topology”, when we speak of a group G definable
in an o-minimal structure M , we will tacitly assume that in fact the universe of G
is a subset of some Mn. Of course when the (one-sorted) o-minimal structure is an
expansion of an ordered group, then it eliminates imaginaries, so up to definable
bijection this is no restriction. We will often work in a “saturated model” which
means a sufficiently saturated and homogeneous model. For a set A of parameters
from a structure M , by an A-definable set we mean a set definable in M with
parameters from A.

In Sec. 2, we will use the notion of a definable set in an ambient structure being
o-minimal. The meaning is as follows: Let N be a structure, and X a ∅-definable
set in N equipped with a linear ordering < also ∅-definable in N . We say that X
(or (X,<)) is o-minimal in N if every subset of X which is definable in N is a finite
union of intervals (with endpoints in X ∪ {+∞,−∞}) and points. We say that X
is strongly o-minimal in N , if the same is true in a saturated elementary extension
of N (equivalently the number of intervals and points is bounded inside definable,
in N , families of definable subsets of X).

Notions such as interpretability, and stable embeddability, figure prominently in
the paper, so we take the opportunity here to fix our understanding of these notions,
at least with respect to the key structures that concern us.

Consider an exact sequence of groups

E := 1 −→ Γ ι−→ G
π−→ H −→ 1.

We may consider E as a 3-sorted structure (Γ, ι, G, π,H) with sorts for Γ, G,H
and functions for the group operations and the homomorphisms ι, π. Let us call
this the pure group language. Now assume that the group H is definable, let us say
without parameters, in some first-order structure M (which could be H itself). We
may then consider the richer structure N := (Γ, ι, G, π,M) where we have omitted
the H-sort and added a sort for M (from these data we can recover the group
H = π(G) ∼= G/ι(Γ)). Since Γ is isomorphic to the kernel of π, we will often use
the abridged notation

N = (G, π,M),

but this is only a matter of notational convenience since in practice it is convenient
to allow ι not to be the inclusion. So officially (G, π,M) has sorts for Γ, G,M
and symbols for the group operation of G, the homomorphisms ι and π, and the
relations and functions of M . When M is just the group H we are in the pure
group language. An isomorphism between two such structures N = (G, π,M) and
N ′ = (G′, π′,M ′) is given by a commutative diagram with exact rows

1 −−−−→ Γ −−−−→ G −−−−→ H −−−−→ 1�fΓ

�fG

�fH

1 −−−−→ Γ′ −−−−→ G′ −−−−→ H ′ −−−−→ 1
where fΓ, fG, fH are group isomorphisms and fH is induced by an isomorphism
from M to M ′.
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In this situation, with N = (G, π,M), we will say that N is naturally inter-
pretable in M (without parameters) if there are, in the structure M , a ∅-definable
group G0 and a ∅-definable homomorphism π0 :G0 → H , such that the structure
N = (G, π,M) is isomorphic to the structure N0 = (G0, π0,M) via an isomorphism
which is the identity on M . If G0 and π0 are allowed to be definable with param-
eters in M , we will say that N is naturally interpretable in M with parameters,
maybe mentioning the parameters explicitly. So the main point about naturality
here is that the interpretation of N in M should be “over M”.

We will also speak of N := (Γ, ι, G, π,M) being (naturally) interpreted (without
parameters, with parameters) in the 2-sorted structure (Γ,M), (where Γ is equipped
just with its group structure), and again this refers to an interpretation over Γ
and M .

In our context we will say that M is stably embedded in N if any subset X of Mn

which is definable with parameters in the structure N , is definable with parameters
in the structure M . A related notion (which sometimes, although not in this paper,
is taken as part of the definition of stably embedded) is that any subset X of Mn

which is definable, without parameters, in N is definable, without parameters, in
M . The latter property passes to any model N ′ = (G′, π′,M ′) elementarily equiv-
alent to N . But stable embeddability does not have to be preserved by elementary
equivalence.

It is worth noting that if N is (naturally) interpretable in M , then such an
interpretation is reflected in Th(M) in the sense that Th(M) includes the sentences
expressing that (G0, π0,M) is a model of Th(N). So for any model M ′ of Th(M),
(G0(M ′), π0(M ′),M ′) is a model of Th(N) (where G0(M ′) etc. denote the inter-
pretations of the relevant formulas in M ′). But it is not necessarily the case that for
any model N ′ = (G′, π′,M ′) of Th(N), N ′ is isomorphic to (G0(M ′), π0(M ′),M ′).

Typically M will be the complex field Cfield, or the real field Rfield. If H is
definable in Cfield, it is also definable in Rfield (identifying C with R × R), but
the language of (G, π,Rfield) is richer than the language of (G, π,Cfield), so the
model-theoretic properties of these two structures are very different. In particular
the complex field Cfield has many automorphisms, while the real field Rfield is rigid.
The following example is instructive.

Example 1.1. Consider the exact sequence

E := 0 −→ Z
ι−→ (C,+)

exp−→ C∗ → 1

given by the complex exponential function, viewed as above as a structure
(V, π,Cfield), say. Let (G,+) be an abelian divisible torsion-free abelian group.
Zilber [20] proved that any exact sequence of the form

0 −→ Z
ι−→ (G,+)

exp−→ C∗ → 1
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is isomorphic to E via an isomorphism which can be chosen to be the identity on
the Γ-sort (= Z). However, one cannot require that the isomorphism is also the
identity on the H (i.e. field) sort. So the relative categoricity statement fails when
we replace the complex field Cfield by the real field Rfield.

Another difference between the complex and real setting is as follows (and was
already mentioned in [13]): The structure (V, π,Cfield) above is superstable of finite
U -rank. It is neither naturally nor unnaturally interpretable in the 2-sorted super-
stable structure (Z,Cfield), which we explain now. The 2-sorts (Z,+) and Cfield are
orthogonal definable groups of U -rank 1. Stability theoretic arguments yield that
any group G definable in (Z,Cfield), is definably an almost direct product of a group
G1 definable in (Z,+) and a group G2 definable in Cfield. So if (V, π,Cfield) were
interpretable in (Z,Cfield), then the associated exact sequence would definably split.
But it does not even abstractly split. On the other hand, from [13], it follows that
(V, π,Cfield) is “naturally” interpretable in the structure (Z,Rfield).

2. Finite Central Extensions

Let M be an o-minimal structure, let H be a definably connected group in M

and let π : G → H be a finite central extension of H . We study the following
problem:

Problem 2.1. When is (G, π,M) (naturally) interpretable in M?

It turns out that in this context “interpretable” is equivalent to “naturally
interpretable”, but for the proof of Theorem 2.3 (see below) it will be convenient
to work with natural interpretations. The equivalence of the two notions follows
immediately from the fact that, by results in [16], in an o-minimal expansion of a
real closed field, any definable real closed field is definably isomorphic to the ground
field.

Let us begin with an observation implicit in the literature.

Proposition 2.2. Assume M is an o-minimal expansion of the reals. Then
(G, π,M) is interpretable in M if and only if G can be given a group topology
that makes π a topological covering (hence a homomorphism of Lie groups).

Proof. (⇒): Via [17], G is definably equipped with the structure of a real Lie group
and π :G → H is a (definable) homomorphism of Lie groups, and as the kernel is
finite, must be a topological covering. (⇐) appears in [13] (see Theorems 2.8 and 8.4)
as well as in [9] (Theorem 1.4).

As mentioned in the Introduction, the question whether any abstract finite
central extension 1 −→ Γ −→ G −→ H −→ 1 of a connected real Lie group H

is equivalent to a topological extension (i.e. to an extension of Lie groups) has a
positive answer in many cases.
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2.1. Stable embeddedness

Let M be an o-minimal structure. Let H be a definably connected group in M and
let 1 −→ Γ ι−→ G

π−→ H −→ 1 be a finite central extension. We will assume, here
and subsequently, that H is ∅-definable in M (by adjoining constants if need be).

Theorem 2.3. The following are equivalent.

(1) (G, π,M) is naturally interpretable in M ;
(2) M is stably embedded in (G, π,M);
(3) M is an o-minimal set in (G, π,M).

Moreover, these conditions imply that M is strongly o-minimal in (G, π,M) and
that the stable embeddability statement holds in all models of Th((G, π,M)).

We do not know whether any finite central extension of H satisfies the above
conditions, but we will prove later that this holds in the abelian case.

Again much of the proof of Theorem 2.3 is contained in earlier papers. For
example 2 =⇒ 1 can be seen to follow from Theorem 8.2 of [13]. And 3 =⇒ 1
can be seen as a restatement of Corollary 1.2 of [9]. Neverthless for the benefit of
the reader we will give more or less direct proofs, following a sequence of lemmas.

Lemma 2.4. (1) There is a section s : H → G of π which is ∅-definable in
(G, π,M).
(2) The extension π : G → H is definably isomorphic in (G, π,M) to an exten-
sion π′ : G′ → H such that the underlying set of G′ and the homomorphism π′ are
definable in M, and the group operation of G′ is definable in (G, π,M).

Proof. (1) Let n = |ker(π)|. Since H is definably connected, by [13]
(Lemma 8.1(ii)) there is some k such that every y ∈ H can be written in the form
yn
1 · . . . · yn

k . By definable choice there are definable functions r1, . . . , rk : H → H

such that for all y ∈ H we have y = r1(y)n · . . . · rk(y)n. Since the extension is
central and |ker(π)| = n, any two elements u, v ∈ G with π(u) = π(v) satisfy
un = vn. So we can define a section s : H → G as follows. Given y ∈ H pick
x1 ∈ π−1(r1(y)), . . . , xk ∈ π−1(rk(y)) and define s(y) = xn

1 · . . . · xn
k . This proves

the first part.
(2) We can use s to define a bijection f : H × Γ→ G sending (x, a) to s(x)a. After
fixing finitely many constants from M , we can assume that Γ ⊂ M . So the set
H × Γ is definable in M . Note that π′ := π ◦ f : H × Γ → H is the projection on
the first coordinate. Put on H × Γ the unique group structure making f into an
isomorphism, and call G′ the resulting group.

Corollary 2.5. Let π : G→ H be a finite central extension of a definably connected
group H. Assume that M is stably embedded in (G, π,M). Then π : G → H is
naturally interpretable in M .
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Proof. By Lemma 2.4 we can assume that both the domain of G and the map
π are definable in M , while the group operation µ on G is definable in (G, π,M).
Since M is assumed to be stably embedded in (G, π,M), µ must be definable in M .

The assumption that M is stably embedded can be weakened: it suffices that
M be o-minimal in (G, π,M). We need:

Lemma 2.6. Let M be an o-minimal structure in a language L, and let L0 be a
sublanguage of L including the ordering on M . Let π : G→ H be a group homomor-
phism with finite kernel Γ, all definable in M . Assume that dom(G) (the underlying
set of G) as well as the map π and the group H are all definable in the language
L0. Then also the group operation of G is definable in the language L0, whence the
group G is definable in the reduct M |L0 of M .

Proof. The idea is to show that G has an L0-definable topology, and then to
observe that the group structure is determined by the topology. To this aim fix
a finite cover F of H by L0-definable definably simply connected open sets. For
U ∈ F , each definably connected component of π−1(U) is L0-definable and home-
omorphic to U via the projection π. We have thus endowed G with the structure
of a definable manifold with an L0-definable atlas, making π : G → H into an L0-
definable covering map. Now the L0-definable group operation of H can be lifted
uniquely (via uniform lifting of paths) to an L0-definable group operation µ on the
L0-definable covering space G, making π into a homomorphism. This µ must then
coincide with the original group operation on G.

Corollary 2.7. Assume that M is o-minimal in (G, π,M). Then (G, π,M) is
interpretable in M .

Proof. By Proposition 2.4, we can assume that both the domain of G and the
map π are definable in M . Let Mind be the expansion of M obtained by adding
symbols for all relations between elements of M which are ∅-definable in (G, π,M).
So the group operation µ of G is ∅-definable in Mind. By our assumption, Mind is
o-minimal and M is the reduct of Mind. So by Lemma 2.6 µ is definable in the
structure M .

Theorem 2.3 follows from the above: Firstly 2 → 1 is Corollary 2.5, 3 → 1 is
Corollary 2.7, and clearly 1 implies each of 2 and 3 (using the naturality of the
interpretation). The moreover statement is also clear: Indeed from Lemmas 2.5–2.7
and their proofs, it follows that the equivalent conditions of Theorem 2.3 imply the
following strengthening of point 1:

(1*) (G, π,M) is naturally interpretable in M “definably in (G, π,M)” (namely the
isomorphism of the interpretation is definable).
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To deduce from (1*) the “moreover part” of Theorem 2.3, one can simply observe
that natural definable interpretations pass to all models of the theory of (G, π,M),
so we get the corresponding strong forms of 2 and 3.

2.2. The abelian case

As in the previous subsection let H be a definably connected group ∅-definable in
the o-minimal structure M and let 1 −→ Γ ι−→ G

π−→ H −→ 1 be a finite central
extension. In this subsection we make the additional assumption that H is abelian,
and give a positive solution to Problem 2.1.

Lemma 2.8. G is abelian.

Proof. So π :G → H is an extension of H by Γ < Z(G). Note that for x, y ∈ G
and c ∈ Z(G) we have [xc, yc] = [x, y]. Since the extension π : G → H is central,
we then have a well-defined map b :H × H → Γ, given by b(π(x), π(y)) = [x, y].
For a ∈ H , {t ∈ H : b(a, t) = 0} is a subgroup of H (since in any group [x, yz] =
[x, y][x, z]y) which has finite index if Γ is finite. But H , as a definably connected
commutative group in an o-minimal structure, is known to be divisible, so has no
proper subgroups of finite index. Thus G is commutative.

Theorem 2.9. (G, π,M) is naturally interpretable in M .

Proof. Let |Γ| = n. By Lemma 2.8, G is abelian. Assume first that nG = G. There
is a surjective group homomorphism ϕ : H → nG sending π(g) to ng. Its kernel is
L = π(G[n]) ⊂ H [n], a finite subgroup of H (since any definable abelian group
has finitely many elements of any given order). Let ϕL : H/L→ nG be the induced
isomorphism. Composing with π : G→ H we get a surjective group homomorphism
π′ : H/L→ H , π′(x + L) = nx, which is definable (without parameters) in M and
isomorphic over H to π : G→ H .

Now consider the case where nG �= G. There is a surjective homomorphism
nG × Γ → G, (x, c) �→ x + c, with finite kernel. So G is the almost direct product
of Γ and nG. Exactly as in the previous paragraph, (nG, π|nG,M) is naturally
interpretable in M . As Γ is finite, also π : G→ H is interpretable in M .

2.3. The “infinitesimal” subgroup

We now specialize Problem 2.1 to the case whenH is definably compact. In this case
the “intrinsic infinitesimal subgroup” H00 of H (see [18, 5, 12]) gives us some valu-
able information. So for this subsection, let M be a saturated o-minimal expansion
of a real closed field, let H be a definably compact definably connected definable
group in M and let

1 −→ Γ ι−→ G
π−→ H −→ 1

be a finite central extension of H with |Γ| = n. We do not always use the fact that
M expands a real closed field, but it is convenient. We will prove, in this section
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the following:

Theorem 2.10. The following are equivalent.

(1) (G, π,M) is naturally interpretable in M .
(2) The set G00 consisting of nth-powers of elements of π−1(H00) is a subgroup

of G.
(3) The sequence 1 −→ Γ ι−→ G

π−→ H −→ 1 splits over the infinitesimal subgroup
H00 of H (namely 1 −→ Γ ι−→ π−1(H00) π−→ H00 −→ 1 splits as an extension
of abstract groups).

Remark 2.11. If M is not saturated (for instance M is the real field), we can still
apply the theorem by passing to a saturated extension. So (2) holds in a saturated
extension if and only if (1) holds in the original model (using the “moreover part”
of Theorem 2.3).

Lemma 2.12. H00 is uniquely divisible in the following sense: for every x ∈ H00

and every n ∈ N∗, there is unique y ∈ H00 such that yn = x.

Proof. We already know that H00 is divisible and torsion free (by Theorem 4.6
of [2]). In the abelian case this implies unique divisibility. In the general case,
by [13] we can write H as an almost direct product H = A ×Γ B of an abelian
definably connected group A and a semisimple definably connected group B (so
the intersection Γ = A ∩ B is finite and central, and each element of A commutes
with each element of B). We have H00 = A00B00. Since H00 is torsion-free and
every element of A ∩ B = Γ is torsion, the intersection A00 ∩ B00 reduces to the
identity element, namely H00 is the direct product A00×B00. So it only remains to
consider the case when H is semisimple. In this case, replacing H with a definably
isomorphic group, we can assume that H is definable without parameters in the
pure field language (again by results in [13]). So it makes sense to consider H(R),
and by [18] we have H/H00 ∼= H(R) with the natural projection H(M) → H/H00

corresponding to the standard part map st :H(M)→ H(R). The exponential map
exp: Te(H(R)) → H(R) is a local homeomorphism, so we can fix a small convex
neighborhood U of Te(H(R)) such that exp |U is a homeomorphism onto its image
V ⊂ H(R). This V is a “uniquely divisible” open neighborhood of the identity, in
the sense that for each x ∈ V and each n there is a unique y ∈ V with yn = x

and yi ∈ V for all i ≤ n. Unfortunately V is not definable in the field language,
since we used exp. We will show that V can be suitably approximated by an open
set V ′ which is definable without parameters in the pure field language and it is
still uniquely divisible. To this aim consider V 1/2 = exp({x ∈ U : 2x ∈ U}). The
closure of V 1/2 is contained in the (relatively) open set V ⊂ H(R), and since H(R)
is a compact semialgebraic set, there is a semialgebraic set V ′ between V and V 1/2

(take a finite union of balls). The containments V 1/2 ⊂ V ′ ⊂ V ensure that V ′ is
still uniquely divisible in the above sense. By completeness of the theory of real
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closed fields, V ′(M) ⊂ H(M) remains uniquely divisible. But H00 ⊂ V ′(M), so
H00 is uniquely divisible.

Corollary 2.13. Let G00 be the set of nth-powers of elements of π−1(H00) (where
n = |Γ|). Then π�G00 : G00 → H00 is bijective.

Proof. It is surjective because H00 is divisible, and injective because H00 is
uniquely divisible.

Proof of Theorem 2.10. Thanks to Corollary 2.13 (and the fact that a group
homomorphism maps nth-powers to nth-powers), the only possible splitting homo-
morphism s : H00 → π−1(H00) of 1 −→ Γ ι−→ π−1(H00) π−→ H00 −→ 1 is given
by the inverse of π �G00 (which is a group homomorphism if and only if G00 is a
group). This proves that (2) is equivalent to (3).

(1 → 2) Suppose π : G → H is (naturally) interpretable in M . We must show
that G00 is a group. So we assume that G, π are definable in M . There is no harm
in assuming that G is definably connected. As H is definably compact and ker(π)
is finite, G is also definably compact. We will show that the “intrinsic infinitesimal
subgroup” G00 of G coincides with what we have called above G00, which suffices
to give (2). We know that G00 is “torsion-free” so has trivial intersection with Γ. It
also clearly maps surjectively to H00 under π and hence π|G00 is an isomorphism
between G00 and H00. As G00 is divisible G00 coincides with the set of nth powers
of its elements, and hence G00 ⊆ G00. By Corollary 2.13 we see that G00 = G00 as
required.

(2 → 1) We want to prove the (natural) interpretability of (G, π,M) in M

(assuming that G00 is a group). We first make a convenient reduction:

Claim. We may assume that G is definably connected in the structure (G, π,M),
namely has no proper definable subgroup of finite index.

Proof. First note that the definably connected definably compact group H has
no proper subgroups of finite index (as for example each element of H is an nth
power for all n). So if G1 is a subgroup of G of finite index (without loss, normal)
then π(G1) = H , and the index of G1 in G is bounded by |Γ|. It follows that there
is a smallest definable (in (G, π,M)) subgroup of G of finite index, G0 say. G0

maps onto H under π and G is a quotient of G0 × Γ by a finite subgroup. So if
(G0, π|G0,M) is (naturally) interpretable in M so is (G, π,M).

We continue with the proof of 2 → 1. Assume that G00 is a group. Then
the restriction of π to G00 is a group homomorphism and by Corollary 2.13
it is an isomorphism onto H00 (so G00 is divisible and torsion-free). We must
show that (G, π,M) is interpretable in M . Note that G00 is type-definable in the
structure (G, π,M) and has bounded index in G because π induces a morphism
π1 : G/G00 → H/H00 with a finite kernel (isomorphic to Γ). So if we put on G/G00
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the logic topology, π1 is a continuous homomorphism of connected compact groups.
(Connectedness of G/G00 is because of definable connectedness of G.) Since its ker-
nel is finite and H/H00 is a Lie group, we easily conclude (see below) that π1 is
a local homeomorphism (and therefore G/G00 is also a Lie group). Granted this
claim, we continue as follows. By [4, Proposition 8.3] every connected finite exten-
sion of H/H00 in the category of Lie groups, comes from a definable extension of H .
Applying this result to the extension π1 : G/G00 → H/H00, we obtain a definable
group extension π′ : L→ H and an isomorphism f : L/L00 ∼= G/G00. To prove that
the abstract extension π : G → H is interpretable in M , it suffices to show that it
is isomorphic to the definable extension π′ : L → H . To this aim define φ : L → G

as the map which sends x ∈ L to the unique y ∈ G such that f(xL00) = yG00 and
π(x) = π′(y). It is easy to see that φ is indeed an isomorphism of group extensions.
It remains to prove the missing claim above, namely that the continuous homomor-
phism π1 : G/G00 → H/H00 is a local homeomorphism. Clearly it is a closed map
since G/G00 is compact. It is also an open map being a continuous homomorphism
of topological groups. Now, since ker(π1) is finite, for any sufficiently small open
neighborhood O ⊂ G/G00 of the identity we have OO−1 ∩ ker(π1) = ∅. So π1 is
locally injective. �

2.4. The semi-simple case

Let us consider again Problem 2.1 when H is definably compact and definably
connected. By Theorem 2.10, (G, π,M) is interpretable in M if and only if the
sequence

1 −→ Γ ι−→ G
π−→ H −→ 1

splits over H00. By [13], [H,H ] is a definably semisimple definable group, H =
Z(H)[H,H ], and Z(H) ∩ [H,H ] is finite. It follows that H00 is the direct product
of Z(H)00 and [H,H ]00. So the sequence splits over H00 if and only if it splits over
Z(H)00 and over [H,H ]00. The former condition is always true by the results of
Sec. 2.2, (Theorem 2.9). So we have reduced our problem to the case when H is
semisimple. Note that in this case H is perfect (i.e. H = [H,H ]). Unfortunately we
are not able to carry out a complete analysis of this case, but we have the following
partial result.

Proposition 2.14. Let H be definably compact definably connected and semisim-
ple. Let K = π−1(H00).

(1) If [K,K]∩ Γ = 1, then the extension π : G→ H splits over H00 (so π : G→ H

is interpretable in M).
(2) In any case we have [K,K]1 ∩ Γ = 1, where [K,K]1 is the set of commutators

of K.
(3) So [K,K] = [K,K]1 is a sufficient condition for the interpretability of π : G→

H in M .



January 12, 2011 8:50 WSPC/S1793-7442 251-CM 00025

484 A. Berarducci, Y. Peterzil & A. Pillay

The proof is given later. Note that if H is definably compact, definably con-
nected, and semisimple, then H = [H,H ] = [H,H ]1 (for real Lie groups this is
Goto’s theorem). We can also show that H00 = [H00, H00], but we do not know
whether this is equal to [H00, H00]1. (This would be the case if and only if the fol-
lowing were true: the commutator map [, ] : H ×H → H sends each neighborhood
of the identity in H ×H to a neighborhood of the identity in H .) In any case what
we need is stronger, namely [K,K] = [K,K]1.

Lemma 2.15. Given a definably compact group H, if A is an abelian subgroup of
H00, then there is a definably connected definable abelian subgroup L of H which
contains A.

Proof. Note that A ⊂ Z(CH(A)) (the center of the centralizer in H of A) and that
Z(CH(A)) is definable (even if A may not be). Note that Z(CH(A))00 is contained
in Z(CH(A)) ∩ H00. But the latter is divisible and torsion-free, hence by Corol-
lary 1.2 of [5] for example, Z(CH(A))00 = Z(CH(A)) ∩ H00. As Z(CH(A))00 ≤
Z(CH(A))0 ≤ Z(CH(A)), we see that A is contained in Z(CH(A))0, as required.

Proof of Proposition 2.14. (1) Clearly [K,K] projects onto [H00, H00] = H00.
If Γ ∩ [K,K] = 1, then π �[K,K] is injective, so the extension π : G → H splits
over H00.
(2) Let γ ∈ Γ ∩ [K,K]1. So we can write γ = [a, b] for some a, b ∈ K. We must
prove that γ = 1. Since π([a, b]) = π(γ) = 1, it follows that x := π(a) commutes
with y := π(b). By Lemma 2.15 there is an abelian definably connected definable
subgroup L of H containing x and y. By Lemma 2.8, π−1(L) is abelian. So [a, b] =
γ = 1.

3. Universal Covers

3.1. 2-cocycles and sections

Let H be a definable group in a structure M . Let

1 −→ Γ ι−→ G
π−→ H −→ 1

be a central extension of H , namely an exact sequence of groups with Γ ≤ Z(G)
(identifying Γ with ker(π)). Note that we do not assume Γ to be finite, so the results
of the previous sections do not apply. Let s : H → G be a section of π, namely s a
function such that π ◦ s is the identity on H . There is a bijection f : H × Γ → G

sending (x, c) to s(x) · c, and we can put on H × Γ the unique group operation
making f into an isomorphism. This group operation can be described explicitly as
follows. Consider the 2-cocycle h : H × H → Γ, (x, y) �→ s(xy)−1s(x)s(y) induced
by s. Then on H × Γ we have the following group operation:

(x, c)(y, d) = (xy, c+ d+ h(x, y)), (1)
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where we have written the group operation on Γ additively. Call H ×h Γ the result-
ing group. Then H ×h Γ ∼= G via f : (x, c) �→ s(x) · c and the extension 1 −→ Γ ι−→
G

π−→ H −→ 1 is isomorphic to 1 −→ Γ −→ H ×h Γ −→ H −→ 1, where
H×h Γ→ H is the projection pr1 on the first coordinate. Note that if the 2-cocycle
h is definable in (Γ,M), then H ×h Γ is definable in (Γ,M), and this gives an
interpretation of (G, π,M) in (Γ,M). We have thus proved:

Proposition 3.1. If 1 −→ Γ ι−→ G
π−→ H −→ 1 admits a section s : H → G such

that the corresponding cocycle h : H×H → Γ is definable in (Γ,M), then (G, π,M)
is naturally interpretable in (Γ,M). Any parameters required for the interpretation
are those needed to define h in (Γ,M).

An important situation where the hypothesis (and so also the conclusion) of
Proposition 3.1 holds is when M is an o-minimal expansion of Rfield, H is a con-
nected Lie group definable in M and π :G → H is the universal cover of H . This
will be discussed in detail at the beginning of Sec. 3.2. A similar situation holds
when M is an o-minimal expansion of an arbitrary real closed field, H a definably
connected group definable in M , and G is the o-minimal universal cover ofH , which
is by definition a locally definable group in M .

Finally in this subsection we point out that interpretability as in Proposition 3.1
for one model yields a stable embeddability result at the level of theories.

Proposition 3.2. Suppose that 1 −→ Γ ι−→ G
π−→ H −→ 1 admits a section

s : H → G such that the corresponding cocycle h : H × H → Γ is definable in
(Γ,M). By adding constants for suitable elements from Γ ≤ G and M, assume that
h is ∅-definable in (Γ,M).

Then for any (G′, π′,M ′) ≡ (G, π,M), M ′ is stably embedded in (G′, π′,M ′).

Proof. It is enough to prove the conclusion when (G′, π′,M ′) is saturated. There
is no harm in assuming that our languages and theories are countable. We fix
some big cardinal κ such that any countable theory has a (necessarily unique)
saturated model of cardinality κ. As mentioned in the Introduction, the fact
that (H ×h Γ, pr1,M) is a model of Th(G, π,M) is contained in Th(Γ,M). Let
(Γ′,M ′) be a saturated model of cardinality κ of Th(Γ,M). So the corresponding
(H ′×h′ Γ′, pr1,M ′) is also saturated, of cardinality κ and elementarily equivalent to
(G, π,M). So it suffices to show that M ′ is stably embedded in (H ′×h′ Γ′, pr1,M ′).
And for that it suffices to prove that M ′ is stably embedded in (Γ′,M ′). This is
clear, but we give a proof anyway. First if a,m are tuples from Γ′,M ′ respectively,
then tp(a,m) in (Γ′,M ′) is determined by tp(a) in Γ′ and tp(m) in M ′. By com-
pactness any formula φ(x, y) in the language of (Γ′,M ′), (where x, y are tuples of
variables ranging over tuples of the appropriate length from Γ′, M ′, respectively)
is equivalent, modulo Th((Γ′,M ′) to a finite disjunction of formulas of the form
θ(x) ∧ ψ(y) where θ is in the language of Γ′ and ψ in the language of M ′. Now let
φ(x, y) be in the language of (Γ′,M ′), let us fix some tuple a from Γ′, and we have to
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show that the set Y of tuples m from M ′ such that (Γ′,M ′) |= φ(a,m), is definable
(possibly with parameters) in the structure M ′. Suppose φ(x, y) is equivalent, as
above, to the finite disjunction

∨
i∈I θi(x) ∧ ψi(y). Let I0 ⊆ I be the set of i such

that Γ′ |= θi(a). Then Y is definable in M ′, without parameters, by the formula∨
i∈I0

ψi(y).

Warning: It may happen that some models (G′, π′,M ′) of Th((G, π,M)) (even
with M ′ = M and Γ′ = Γ) are not interpretable in a model of Th(Γ,M). The
problem is that there could be no section s : H → G′ definable in (G′, π′,M ′)
inducing the given 2-cocycle h. An example is the exotic extension of R/Z by Z

given in Theorem 3.12.

3.2. Relative Lω1,ω-categoricity

When we talk about categoricity in the language Lω1,ω, we are by convention work-
ing over a countable language L, and we are usually interested in forms of categoric-
ity (in a given cardinal, relative to the isomorphism type of part of the structure,
absolute,...) of a single Lω1,ω sentence σ. So for example any countable L-structure
M is Lω1,ω-ω-categorical in the sense that there is a single Lω1,ω-sentence σ whose
unique countable model is M . If in addition all elements of M are named by con-
stants, then M is absolutely Lω1,ω-categorical: there is a Lω1,ω-sentence whose
unique model is M .

Our main result is Theorem 3.4 below which concerns categoricity in Lω1,ω,
relative to the isomorphism type of the field, in a strong sense.

The “standard” model we will be concerned with is (G, π,M) where for con-
venience M is just Rfield, and π :G → H is the universal cover of some connected
Lie group H which is definable in M (and we add constants for parameters over
which H is defined). So G is the universal cover of H as a topological (equivalently
Lie) group, but in the structure (G, π,M) on the face of it we only see the group
structure on G. It was proved in [13] that Proposition 3.1 applies to this situation.
This is the content of Sec. 8.1 of [13] and specifically of Theorem 8.5 there and
its proof which we give a brief summary of. The key point (depending on results
of Edmundo and Eleftheriou) is that the universal cover π :G → H of H can be
realized as a topological group, H̃ say, which is “locally definable” (or

∨
-definable)

in M . In other words there is a locally definable group H̃ in M (equipped via
o-minimality with topological, hence Lie group structure) and a locally definable
surjective homomorphism π̃ : H̃ → H , and there is an isomorphism of topological
groups f :G → H̃ which makes everything commute. Let Γ1 < H̃ be f(Γ), hence
a discrete group also locally definable in M . Now H̃ being locally definable in M ,
there is (using the existence of Skolem functions) a section s :H → H̃ definable in
M . The corresponding cocycle h :H × H → Γ1 has finite image Γ0 < Γ1. So the
map h :H ×H → Γ0 is a partition of H ×H which is again definable in M . Hence
the locally definable group H̃ is isomorphic to (so can be identified with) H ×h Γ1
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which is definable in (Γ1,M). Identifying Γ with Γ1 this gives an isomorphism
f :G → H ×h Γ, and gives the interpretation of (G, π,M) in (Γ,M). Note that Γ
is ∅-definable in (G, π,M), but there is no reason to believe that f is definable in
(G, π,M) (in fact in general it is not). Note that f commutes with the canonical
projection maps π :G → H and pr1 :H ×h Γ → H . In this situation, the key new
lemma needed for the relative Lω1,ω-categoricity statement is:

Lemma 3.3. The isomorphism f :G→ H×h Γ is Lω1,ω-definable without parame-
ters in the structure (G, π,M). Namely there is an Lω1,ω-formula χ(x, y) such that
for any a ∈ G and b ∈ H ×h Γ, f(a) = b iff (G, π,M) |= χ(a, b).

Let us note in passing that using the isomorphism f :G→ H×h Γ we can define
a section s : H → G, and conversely given a section s we can define f (with h the
cocycle induced by the section). This observation will be used later. Let us now
prove the lemma.

Proof. Let Λ range over finite index subgroups of Γ which are ∅-definable in (Γ,+).
As Γ is a finitely generated abelian group, the intersection of all such Λ is 0. For
each Λ, f induces an isomorphism fΛ :G/Λ→ (H ×h Γ)/Λ.

Claim 1. Each fΛ is ∅-definable in (G, π,M).

Proof. Let n be the index of Λ in Γ. We have surjective homomorphisms fromG/Λ
toH and (H×hΓ)/Λ toH , induced by π, pr1 which we will still call π, pr1. Moreover,
fΛ commutes with these projections. Note that π :G/Λ→ H is, among other things,
a finite topological cover (of connected Lie groups). By Proposition 2.2 for example,
the group G/Λ is interpretable in M , so in particular it can be considered as a
definably connected group definable in M . By [13, Lemma 8.1], for some k, every
element of G/Λ can be written as a product of k nth powers. Let y ∈ G/Λ, and
write y = yn

1 ·. . .·yn
k . For i = 1, . . . , k, let zi ∈ (H×hΓ)/Λ such that pr1(zi) = π(yi).

As n = |ker(π)| = |ker(pr1)| and the extensions are central, zn
i depends only on

π(yi). Clearly fΛ(y) = zn
1 · . . . · zn

k .

We now complete the proof of Lemma 3.3. Let χ(x, y) be the conjunction of
fΛ(x/Λ) = y/Λ, where Λ ranges over the (countable) family of ∅-definable sub-
groups of Γ of finite index. This χ(x, y) will do. �

Let us now prove the main result of this section. Recall that π :G → H is the
universal cover of some connected Lie group H which is definable in M = Rfield.

Theorem 3.4. Consider the structure (G, π,M) equipped also with constants for
generators of Γ, and let L be its language. Then

(i) There is a single Lω1,ω-sentence σ which is true of (G, π,M) and such that
whenever (G1, π1,M1), (G2, π2,M2) are models of σ, then ANY isomorphism
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between M1 and M2 extends (uniquely) to an isomorphism between (G1, π1,M1)
and (G2, π2,M2).

(ii) Let T ′ be the set of all Lω1,ω sentences true in (G, π,M). Then (G, π,M) is the
unique model of T ′.

Proof. (i) Note first that if (G′, π′,M ′) is (first order) elementarily equivalent to
(G, π,M), then we have the group H ′ ×h′ Γ′ ∅-definable in (G′, π′,M ′). Moreover,
if (G′′, π′′,M ′′) is elementarily equivalent to (G, π,M) and c is an isomorphism
between Γ′ and Γ′′ and d an isomorphism between M ′ and M ′′ (fixing the appro-
priate constants), then (c, d) determines an isomorphism between the structures
(Γ′,M ′) and (Γ′′,M ′′) and in particular an isomorphism which we also call (c, d)
between the groups H ′×h′ Γ′ and H ′′×h′′ Γ′′. So we let σ be the conjunction of (i)
the first order theory of (G, π,M), (ii) a sentence fixing the isomorphism type of Γ
together with its generators, (iii) a sentence expressing that χ(x, y) is an isomor-
phism between G and H ×h Γ. Hence if (G′, π′,M ′) and (G′′, π′′,M ′′) are models
of σ, then we already have an isomorphism c : Γ′ → Γ′′, and if d :M ′ → M ′′ is
an isomorphism, then χ((G′′, π′′,M ′′))−1 ◦ (c, d)◦χ((G′, π′,M ′)) is an isomorphism
betweenG′ andG′′ which together with d gives an isomorphism between (G′, π′,M ′)
and (G′′, π′′,M ′′), as required. (In the above, the notation χ((G′, π′,M ′)) is sup-
posed to denote the interpretation of χ in (G′, π′,M ′).)
(ii) Note that M = Rfield (with finitely many additional constants) can be char-
acterized up to isomorphism by the collection of all Lω1,ω-sentences true in it. (In
addition to the first order theory, say that the rationals are dense and that every
Dedekind cut in the rationals is realized.) Together with σ from part (i), this col-
lection of infinitary sentences has a unique model.

We end with a couple of remarks. First the formal statement of Theorem 3.4(ii)
is not in itself surprising: given a structure N of cardinality the continuum, it may
happen (as with the reals) that every element of N is “Lω1,ω-definable”, in which
case N is clearly the unique model of its full Lω1,ω theory. So it is Theorem 3.4(i)
which we consider the main point. We can then ask if the analogous statement
holds in the complex case. So we consider the Zilber structure ((C,+), exp, (C,+, ·))
(where there is no connection between the two sorts other than exp), with say
an additional constant for the generator of ker(exp). Let A be the axiom system
consisting of the first order theory of the standard model ((C,+), exp, (C,+, ·))
(a single Lω1,ω-sentence) together with the Lω1,ω-sentence fixing the isomorphism
type of the kernel of exp. What Zilber proves is that if (V, π,K) and (V ′, π′,K ′)
are models of the system A and if K,K ′ are isomorphic, then the two structures
(V, π,K) and (V ′, π′,K ′) are isomorphic by an isomorphism f say. But one cannot
demand that f lifts a given isomorphism between K and K ′. In fact there will
be many automorphisms of (C,+, ·) which do not lift to automorphisms of the
standard model. It follows trivially that there is NO single Lω1,ω-sentence σ true
in the standard model such that given models (V, π,K) and (V ′, π′,K ′) of σ any
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isomorphism between the field sorts K and K ′ lifts to an isomorphism between the
full structures. Namely Theorem 3.4(i) fails in this complex setting.

It is natural to ask what we can say about models of the analogue of system A in
the o-minimal case, i.e. where we just fix the first order theory and the isomorphism
type of ker(π). The rest of the paper is devoted to clarifying these issues.

3.3. Inverse limits

Definition 3.5. Let H be a real Lie group, say connected, let

1 −→ Γ −→ H̃ −→ H −→ 1

be the universal cover of H , and let Ĥ be the inverse limit of all the finite covering
homomorphisms of H . Up to isomorphism each finite cover of H is a quotient of
the universal cover. So

Ĥ = lim←−
Λ∈J

H̃/Λ,

where J is the family of all subgroups of Γ of finite index. We can and will identify
Ĥ with the subgroup of ΠΛ∈J H̃/Λ consisting of those elements (xΛ)Λ∈J of the
product such that whenever Λ ⊂ Λ′ the element xΛ is mapped to xΛ′ under the
natural homomorphism H̃/Λ→ H̃/Λ′.

With the notation above we say that a subgroup G of Ĥ is dense if for any
x = (xΛ)Λ∈J in Ĥ and finite subset F of J , there is y ∈ G such that yΛ = xΛ

for Λ ∈ F . This is clearly equivalent to the natural maps (in fact homomorphisms)
from G to H̃/Λ being surjective for all Λ ∈ J . So we obtain immediately:

Proposition 3.6. Let H be a connected real Lie group and let

1 −→ Γ −→ H̃ −→ H −→ 1

be the universal cover of H. The natural embedding f : H̃ → Ĥ, induced by the
morphisms from H̃ to the finite covers of H, has dense image in Ĥ.

Example 3.7. Each finite cover of R/Z is of the form R/Z
k−→ R/Z where “k” is

multiplication by the positive integer k. Let

R̂/Z ⊂ Πk∈N∗R/Z

be the inverse limit of these finite covers. The elements of R̂/Z are the sequences
(hi : i > 0) ∈ Πi∈N∗R/Z satisfying the compatibility conditions khik = hi ∈ R/Z

for all positive integers i, k.

Proposition 3.8. Let

0 −→ Z
ι−→ (R,+) modZ−→ R/Z −→ 0

be the universal cover of the circle group. There is a natural embedding f : R →
R̂/Z ⊂ Πn∈N∗R/Z sending x to (modZ(x/n) :n > 0). The image of R is dense in
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R̂/Z and consists exactly of those sequences (hi : i > 0) ∈ R̂/Z such that hi → 0 in
R/Z for i→∞.

Proof. The density is already stated in Proposition 3.6. We prove the second part.
One direction is obvious: if x ∈ R then x/n → 0 in R, so the images in R/Z

also tend to 0. Conversely, let (hi : i > 0) ∈ R̂/Z and suppose that hi → 0. We
must find x ∈ R such that π(x/n) = hn for every n. Since hi → 0 for i → ∞, in
particular h2n → 0 for n → ∞. So there is some n0 ∈ N such that for all n ≥ n0

we have h2n ∈ V where V is the image of (−1/4, 1/4) under the natural projection
R → R/Z. Note that for each a ∈ V the equation 2x = a has a unique solution x

in V , which we call 1
2a (there is of course a second solution in R/Z lying outside

of V ). So for all n ≥ n0 we have h2n+1 = 1
2h2n . It then clearly follows that there

is a real number x ∈ R such that modZ(x/m) = hm for all powers of two m = 2n

bigger than 2n0 . Now consider the sequence ai := modZ(x/i), i ∈ N∗. It suffices to
show that ai = hi for every i ∈ N∗. So consider the difference bi = ai − hi. Then
bi tends to zero for i → ∞, and bi = 0 for all powers i of 2 bigger than 2n0 . So it
suffices to prove the following claim.

Claim. Let (bi : i > 0) ∈ R̂/Z satisfy the following two conditions: (i) bi → 0 for
i→∞; (ii) bi = 0 for infinitely many values of i. Then bi = 0 for all i.

To prove the claim let (nk)k∈N∗ be an infinite sequence with bnk
= 0 for all

k ∈ N∗. Given m and k, consider bm·nk
. Since bnk

= 0, bm·nk
should be an mth

torsion element. As k tends to infinity, bm·nk
should tend to zero, so the only mth

root it can be is the zero element. Hence bm·nk
is eventually zero for large k. But

then bm = nk · bm·nk
= 0.

3.4. The universal cover of R/Z

We study in more detail the model theory of the universal cover 0 −→ Z −→ R
modZ−→

R/Z −→ 0 of the circle group. We do this both (i) in the “pure group” language
where both R and R/Z are equipped only with their (additive) group structures
(and of course we have a symbol for the covering map modZ) and (ii) in the richer
language in which the group R/Z is viewed as ([0, 1),+(mod Z)) equipped with
predicates for all sets of n-tuples ∅-definable in Rfield. In fact in case (ii) there is
no harm in working, as earlier, with the structure ((R,+),modZ,Rfield) where of
course only modZ links the two sorts. (We can actually work in any sub-language
in which the topology of R/Z is definable, so for instance we can replace Rfield by
(R,+, <) and work with the structure ((R,+),modZ, (R,+, <)).)

If we work in context (i), it turns out that the only extension of R/Z by Z which
is a model of the first order theory of 0 −→ Z −→ R

modZ−→ R/Z −→ 0 is (up to iso-
morphism) the standard model ((R,+),modZ,R/Z) (this also follows from Zilber’s
results). However, in context (ii) there are at least 2ℵ0 pairwise non-isomorphic
models. This implies in particular that in the structure ((R,+),modZ,Rfield) we
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cannot define a section s : R/Z = [0, 1) → R in a first-order way, for otherwise
we could use s to obtain an isomorphism f as in Lemma 3.3 and then obtain a
first-order categoricity result reasoning as in Theorem 3.4. So roughly speaking
our results say that we cannot lift the topology of R/Z to R in a first-order way,
although (using the Lω1,ω-section) we can do it by an infinitary formula. Let us
begin with context (i). We need:

Lemma 3.9. Let V be an abelian divisible torsion free group (hence a Q-vector
space). Let Γ be an infinite subgroup of V with |Γ| < |V |. Then the isomorphism
type of (V,+,Γ) is determined by the isomorphism type of (Γ,+) and the isomor-
phism type of (V/Γ,+).

Proof. Suppose that (V1,+,Γ1) and (V2,+,Γ2) have Γ1
∼= Γ2 and V1/Γ1

∼= V2/Γ2.
For i = 1, 2, the Q-vector subspace 〈Γi〉 of Vi generated by Γi is isomorphic to
Γi⊗Z Q and therefore its isomorphism type is determined by the isomorphism type
of Γi. So any isomorphism f : Γ1 → Γ2 extends to an isomorphism f : 〈Γ1〉 → 〈Γ2〉.
By our assumptions |V1/Γ1| = |V2/Γ2|. Since ℵ0 ≤ |Γi| < |Vi|, this is equivalent
to dim(V1/〈Γ1〉) = dim(V2/〈Γ2〉). So f extends to an isomorphism (V1,+,Γ1) ∼=
(V2,+,Γ2).

In the above proof note that the isomorphism (V1,+,Γ1) ∼= (V2,+,Γ2) can be
chosen to extend any given isomorphism f : Γ1 → Γ2.

Corollary 3.10. Let (G,+) be an abelian divisible torsion-free group and consider
an exact sequence E of the form

0 −→ Z
ι−→ (G,+) π−→ R/Z −→ 0.

In the pure group language E is isomorphic to the universal cover of the circle group

0 −→ Z −→ (R,+) modZ−→ R/Z −→ 0.

Indeed there is such an isomorphism which fixes pointwise the kernel Z and permutes
R/Z by a group automorphism.

Corollary 3.11. With G as above, let π̂ : G → R̂/Z be the map sending g to
(π(g/n))n∈N∗ . Then π̂ has dense image.

Proof. By Proposition 3.8 and Corollary 3.10.

Let us now consider context (ii). To repeat, our “standard model” is
((R,+),modZ,Rfield). In addition to the field structure on Rfield, the additive group
structure on the first copy R of the reals, and the covering map modZ, it will be
convenient to adjoin a constant symbol for a given generator 1Z of kernel Z of
modZ. We will call this language L.



January 12, 2011 8:50 WSPC/S1793-7442 251-CM 00025

492 A. Berarducci, Y. Peterzil & A. Pillay

Theorem 3.12. Let (G,+) be an abelian divisible torsion-free group and consider
an exact sequence E of the form

0 −→ Z
ι−→ (G,+) π−→ R/Z −→ 0

viewed naturally as an L-structure (G, π,Rfield). Then:

(1) (G, π,Rfield) ≡ ((R,+),modZ,Rfield) in the language L if and only if for every
positive n ∈ N, π(ι(1Z)/n) = modZ(1/n) (which equals 1/n in the field sort
under the identification of R/Z with [0, 1)).

(2) The isomorphism type of (G, π,Rfield) is given precisely by the image of the map
π̂ : G→ R̂/Z, x �→ (π(x/n))n∈N∗ , and there are at least 2ℵ0 possibilities.

(3) The structure (G, π,Rfield) is isomorphic (in the language L) to the standard
model ((R,+),modZ,Rfield) if and only if (G,+) can be equipped with the struc-
ture of a topological group making π a covering homomorphism.

Proof. (1) Note first that the fact that modZ(1Z/n) = (1/n) for all n > 0 is part
of Th((R,+), modZ,Rfield) (as 1Z is named by a constant, and 1/n in the field sort
is also named by a constant). Hence we have (⇒).

To prove the converse we can take two saturated elementary extensions of the
respective structures, and show that they are isomorphic. In fact it is no more work
to give axioms for what will be the common theory. So we will define a theory
T , with sorts Γ, G,M , such that both (G, π,Rfield) and ((R,+),modZ,Rfield) are
models of T (with a constant for 1Z), and then we will prove the completeness of
T by showing that two saturated models (of the same cardinality) are isomorphic.
The theory T says the following:

(1) M ≡ Rfield,
(2) H := π(G) = [0, 1)M with addition modulo 1,
(3) 0 −→ Γ ι−→ G

π−→ H −→ 0 is an exact sequence of abelian groups,
(4) G is divisible and torsion-free,
(5) 1Γ is an element of Γ such that hn := π(ι(1Γ/n)) is 1/n ∈ H ⊂M .

To prove the completeness of T fix a saturated model N = (Γ, ι, G, π,M) of car-
dinality κ > ℵ0, let H = π(G) and let Ĥ be the inverse limit of the system of
maps k : H → H,x �→ kx. The elements of Ĥ are the sequences (an | n > 0) with
an ∈ H such that kank = an for all positive integers k, n. Let π̂ : G → Ĥ be the
map g �→ (π(g/n) :n > 0). By Corollary 3.10, the reduct N0 of N to the “pure
group language” is isomorphic to a saturated elementary extension of the standard
model ((R,+),modZ,R/Z) discussed earlier. So by Corollary 3.11 and compactness
(i.e. saturation), the map π̂ : G→ Ĥ is surjective. Let

V := ker(π̂).

Then V is a Q-vector space of dimension κ included in ker(π). (Note that in the
standard model V = 0.) Since G is a Q-vector space we can write

G = V ⊕W
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for some Q-vector space W < G. The subgroup W is not unique, but for any choice
of W we have

W ∼= Ĥ

via π̂. Similarly, given another saturated model N1 = (Γ1, ι1, G1, π1,M1) of cardi-
nality κ, we obtain G1 = V1 ⊕W1 as above. Since the theory of T includes the
complete theory of Rfield, we have M ∼= M1 (hence H ∼= H1). To prove the proposi-
tion we can as well assume that M = M1. To simplify notations we can also assume
that ι, ι1 are the inclusion maps. Since V, V1 are Q-vector spaces of the same dimen-
sion, we have V ∼= V1. Moreover, W ∼= Ĥ ∼= W1 by composing π̂ with the inverse of
π̂1. We conclude that G ∼= G1 as coverings of H (namely the isomorphism obtained
in this way commutes with π, π1). Note that the proof so far yields completeness
of the “reduct” T0 of T to the language which omits the constant symbol for a
generator of Z.

But, working in the language L, we must still show that, for a suitable choice of
W,W1, the isomorphism G ∼= G1 constructed above sends 1Γ to 1Γ1 (clearly it sends
ker(π) to ker(π1), but this is not enough). To this aim let Z1Γ be the subgroup of
G generated by 1Γ. Note that Z1Γ ⊂ ker(π) (the equality holds in the standard
model). Now let Q1Γ be the divisible hull of Z1Γ and observe that V ∩ Q1Γ = 0
(if not π(1Γ/n) = 0 for infinitely many n, contradicting the axiom π(1G/n) = hn).
It then follows that we can write G = V ⊕W for some Q-vector space W < G

containing Q1Γ. In particular, 1Γ ∈W . In N1 we can similarly write G1 = V1⊕W1

with 1Γ1 ∈ W1. As above we have an isomorphism G ∼= G1 commuting with π, π1

and sending V to V1 and W to W1. This isomorphism must send 1Γ to some element
x ∈ W1 with π1(x/n) = hn for every n. But 1Γ1 is the unique such x. So 1Γ goes
to 1Γ1 and we are done. Namely, we have exhibited an isomorphism between the
L-structures N and N1.

(2) Suppose that E′ is another exact sequence which is isomorphic to E as an
L-structure, via isomorphism f say. Note that f must be the identity on Rfield

(also on Z assuming that the same generator is named by the constant in the two
structures). Hence for each a ∈ G, and n > 0, f(π(a/n)) = π′(f(a)/n). This says
precisely that π̂(G) and π̂′(G′) have the same image in R̂/Z.

Conversely if E′ is another exact sequence with kernel Z, and image R/Z and G′

divisible torsion-free, then the map π̂′ :G′ → R̂/Z is well-defined, and is an embed-
ding. So (G′, π′,Rfield) is isomorphic to (π̂′(G′), pr1,Rfield) where pr1 is projection
on the first coordinate.

We have shown the first part of (2). For the rest of it, we construct continuum
many suitable subgroups of R̂/Z. Our standard model is ((R,+),modZ,Rfield) with
an additional constant for 1 in the first sort R. We have the embedding m̂odZ : R→
R̂/Z. In particular, we have m̂odZ(Z) ≤ R̂/Z. Let H denote the subgroup of R̂/Z

consisting of sequences h̄ = (hn)n with h1 = 0. Then H is of cardinality continuum,
whereas m̂odZ(Z) ≤ H is countable. Let {h̄α :α < 2ℵ0} be a set of continuum many
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elements of H which are in different cosets modulo m̂odZ(Z). Let g ∈ R \Q and let
v̄ = π̂(g) ∈ R̂/Z. For each α, let w̄α = v̄ + h̄α ∈ R̂/Z.

Claim. For each α there is Gα ≤ R̂/Z such that w̄α ∈ Gα, Gα ∩ H = m̂odZ(Z)
and (Gα, pr1,Rfield) (with the interpretation of the distinguished constant 1 as
modZ(1Z)) is elementarily equivalent to the standard model (equivalently is a model
of the theory T described above).

Proof. Note that NO element of the sequence w̄α is a torsion element of R/Z.
Hence the set of integer multiples of elements of w̄α is a 1-dimensional Q-vector
space, Wα say, which is disjoint over 0 from the torsion subgroup T of R/Z.
Hence Wα extends to a Q-vector space W ′α such that T ⊕ W ′α = R/Z. Let
Gα = m̂odZ(Q)⊕ {(v/n)n∈N∗ : v ∈ W ′α} ∼= Q⊕W ′α.

Note that for α �= β, w̄β /∈ Gα. For otherwise w̄β − w̄α = h̄β − h̄α ∈ Gα. But
h̄β − h̄α ∈ H\m̂odZ(Z), contradicting the properties of Gα in the Claim above.
Hence Gα �= Gβ for α �= β. This yields (2).

(3) This is really a straightforward and easy group-theoretic/topological remark,
which is well-known: Namely, IF (G,+) is an abelian divisible topological group,
equipped with a covering homomorphism π onto the topological group R/Z and
with kernel Γ abstractly isomorphic to Z, THEN π :G → R/Z IS the universal
cover.

Let us note in passing that G has the structure of a 1-dimensional Lie group.
Also Γ is a discrete subgroup of G, and π :G→ R/Z is the quotient map (as a map
of topological, or Lie groups).

By the universal property of the universal cover modZ : R → R/Z there is a
(unique) continuous homomorphism f :R→ G such that π ◦ f = modZ. Note that
ker(f) ≤ Z. So f(R) is a connected 1-dimensional Lie group, which is torsion-free,
hence homeomorphic to R, in particular a Q-vector space. But then G/f(R) is both
a Q-vector space as well as a quotient of Γ, so has to be trivial. Namely, f : R→ G

is surjective. Now a ker(f) is a subgroup of ker(modZ) = Z, so is either trivial, or a
finite index subgroup of Z. In the latter case f(R) is compact, impossible, so ker(f)
is trivial, and f is a homeomorphism. �

Let us finish this subsection by remarking that the non-categoricity (relative to
the kernel Z, and to the real field Rfield) statements in Theorem 3.12 also hold with
the reals replaced by an arbitrary (even saturated) real closed field, even though
such a field may have automorphisms.

3.5. Questions and final comments

We end with a couple of problems.

Problem 3.13. Describe the groups definable in (a) the 2-sorted structure
((Z,+),Rfield), or more generally in (b) ((Z,+),M) for any o-minimal expansion
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M of Rfield, or more generally in (c) a structure ((A,+),M) where (A,+) ≡ (Z,+)
and M is o-minimal expansion of an arbitrary real closed field.

Comment. We have seen that universal covers of simple Lie groups are examples
of groups definable in the structure (a).

Problem 3.14. Let M be an o-minimal expansion of Rfield and let H be a definable,
definably connected group in M . Let

1 −→ Γ ι−→ G
π−→ H −→ 1

be an exact sequence of groups, with ι(Γ) < Z(G) and Γ finitely generated. Assume
that M is stably embedded in (G,M, π). What can we say?

Comment. We know that when Γ is finite, then the extension can be interpreted in
M (Theorem 2.3) and G can be given a group topology making π into a topological
covering (Proposition 2.2). This is not always true when Γ is infinite (even for
H = R/Z) due to the non-categoricity result in Theorem 3.12. However, one can
at least conjecture that there is a topological covering homomorphism

1 −→ Γ ι′−→ G′ π′−→ H −→ 1

such that (G, π,M) ≡ (G′, π′,M). This is a kind of converse to the statement that
if 1 −→ Γ ι−→ G

π−→ H −→ 1 is a covering homomorphism, then M is stably
embedded in (G,M, π) at the level of theories. The latter statement is implicit in
earlier results. In fact we have already remarked that when G is the universal cover
Propositions 3.1 and 3.2 apply, and the same argument works for every cover.
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