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We are interested in the existence results for second-order differential inclusions, involv-
ing finite number of unilateral constraints in an abstract framework. These constraints
are described by a set-valued operator, more precisely a proximal normal cone to a time-
dependent set. In order to prove these existence results, we study an extension of the
numerical scheme introduced in [10] and prove a convergence result for this scheme.
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1. Introduction

We consider second-order differential inclusions, involving proximal normal cones.
These were firstly treated by Schatzman [26] in the framework of elastic impacts
and later by Moreau [15, 16] to model inelastic impacts for a mechanical system in
order to describe contact dynamics. The impact law describing the dynamics leads
to a nonincreasing kinetic energy at impacts. These second-order problems appear
in several models of mechanical systems with a finite number of degrees of freedom
and dealing with frictionless and inelastic contacts.

Let us specify this class of problems. Let I be a bounded time-interval,
f : I × R

d → R
d be a map and Q : I ⇒ R

d be a multi-valued map. The main
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question concerns the existence for solutions to the following second-order differen-
tial inclusion: 



∀ t ∈ I, q(t) ∈ Q(t)

d2q

dt2
+ N(Q(·), q(·)) � f(·, q(·)),

∀ t ∈ I, q̇(t+) = PCt,q(t) q̇(t
−)

q(0) = q0 ∈ int[Q(0)],

q̇(0) = u0.

(1.1)

We denote by int[Q(0)] the interior of the set Q(0), by N the proximal normal cone
and for q ∈ Q(t), by Ct,q the set of feasible velocities:

Ct,q := {u, q + εu ∈ Q(t + ε) for small enough ε > 0} . (1.2)

We refer the reader to [4] and [5] for details concerning different normal cones
(“limiting cone”, “Clarke cone”, . . . ). Here we will deal with “uniform prox-regular
sets” Q(t) so, according to [25], all these cones coincide.

Remark 1.1. We are looking for solutions q such that q̇ has a bounded variation,
in order that the second-order differential equation in (1.1) should be thought in
the distributional sense. More precisely, we will solve it for time-measure q̇ ∈ BV (I)
and it should be written with time-measures

dq̇ + N(Q(·), q(·))dt � f(·, q(·))dt.

In all this work, the second-order differential inclusion will be written in the distri-
butional sense for easiness. However, we emphasize that we consider time-measures.

This differential inclusion can be thought as follows: the point q(t), submitted
to the external force f(t, q(t)), has to live in the set Q(t) and so to follow its time-
evolution. The unilateral constraint “q(t) ∈ Q(t)” may lead to some discontinuities
for the velocity q̇. For example, frictionless impacts can be modeled by a second-
order differential inclusion involving the proximal normal cone (see [15, 16]). This
differential inclusion does not uniquely define the evolution of the velocity during
an impact. To complete the description, we impose the impact law

q̇(t+) = PCt,q(t) q̇(t
−),

introduced by Moreau in [15] and justified by Paoli and Schatzman in [19, 21] (using
a penalty method) for inelastic impacts.

The set Q(t) corresponds to a set of “admissible configurations” for q. In physical
problems, it is generally described by several constaints (gi)i as follows:

Q(t) :=
p⋂

i=1

{q, gi(t, q) ≥ 0} . (1.3)

The existence of a solution for such second-order problems is still open in a gen-
eral framework. The first positive results were obtained by Monteiro Marques [12]
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and Paoli and Schatzman [20] in the case of a smooth time-independent admissible
set (which locally corresponds to the single constraint case p = 1 in (1.3)). The
proof relies on a numerical method involving a time-discretization of (1.1) in order
to compute approximate solutions and is based on the study of its convergence.
The multi-constraint case with analytical data was then treated by Ballard with a
different method in [1], where a positive result of uniqueness for such problems was
obtained. Then in [22], an existence result is proved in the case of a nonsmooth
convex time-independent admissible set (given by multiple constraints). There, the
active constraints are assumed to be linearly independent in the following sense:
for each configuration q ∈ ∂Q, the gradients (∇gi(q))i∈I associated to active con-
straints I := {i, gi(q) = 0} are assumed to be linearly independent.

In the case of nonconvex admissible sets, some results were obtained for a sin-
gle constraint p = 1 (for example in [7, 8] or in [13] and [28] for the first result
concerning time-dependent constraints) and very recently in [23, 24] for the multi-
constraint case under the linear independence of the active gradients. Moreover
in [10], Maury has proposed a numerical scheme for time-independent multiple and
convex constraints gi. The admissible set Q is not assumed to be convex, however
at each time step, the numerical scheme uses a local convex approximation of Q.
This improvement is interesting as it permits to define an implementable scheme,
since the projection onto a convex set can be performed with efficient algorithms.

A first result of convergence for this scheme was proved in [10] for a single con-
straint and applications to the numerical simulation of sytems of particles submitted
to inelastic collisions are studied in [9] by the second author.

We emphasize that in the previously mentioned works, the different numerical
schemes (permitting to discretize (1.1)) are written (or can be written) in a multi-
constraint case. The main difficulties consist in proving on the one hand the exis-
tence of solutions for (1.1) and on the other hand a convergence result for the
associated numerical schemes for such multi-constrained problems. Concerning the
uniqueness, we know from [26] and [1] that even with smooth data the unique-
ness does not hold. The only positive results are proved in [27] for one-dimensional
impact problems and in [1], in the context of analytic data. This critical question
of uniqueness is not studied here.

The framework

In this work, we are interested in extending the previous work [10], in order to prove
the existence of solutions and to get a convergence result of the scheme in the case
of multiple time-dependent constraints. Moreover, we give applications in modeling
inelastic collisions.

First of all, let us precise some notations. We write W 1,∞(I, Rd) (respec-
tively, W 1,1(I, Rd)) for the Sobolev space of functions in L∞(I, Rd) (respectively,
L1(I, Rd)) whose derivative is also in L∞(I, Rd) (respectively, L1(I, Rd)). BV (I, Rd)
is the space of functions in L∞(I, Rd) with bounded variations on I. We define the
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dual space M(I) := (Cc(I))′ where Cc(I) is the space of continuous functions with
compact support (corresponding to the set of Radon measure due to Riesz theorem).
We set M+(I) for the subset of positive measures.

We consider second-order differential inclusions involving a set-valued map
Q : [0, T ] ⇒ R

d satisfying that for every t ∈ [0, T ], Q(t) is the intersection of
complements of smooth convex sets. Let us first specify the set-valued map Q. This
general framework has already been described by Venel in [30] for first-order differ-
ential inclusions (fitting into the so-called sweeping process theory) and in [2] for a
stochastic perturbation of such problems.

For i ∈ {1, . . . , p}, let gi : [0, T ]× R
d → R be a convex function with respect to

the second variable. For every t ∈ [0, T ], we introduce the sets Qi(t) defined by:

Qi(t) := {q ∈ R
d, gi(t, q) ≥ 0}, (1.4)

and the feasible set Q(t) (supposed to be nonempty)

Q(t) :=
p⋂

i=1

Qi(t). (1.5)

We denote by I = [0, T ] the time interval. The considered problem is the following:
we are looking for a solution q ∈ W 1,∞(I, Rd), q̇ ∈ BV (I, Rd) such that



∀ t ∈ I, q(t) ∈ Q(t)
d2q

dt2
+ N(Q(·), q(·)) � f(·, q(·)),

∀ t ∈ I, q̇(t+) = PCt,q(t) q̇(t
−)

q(0) = q0 ∈ int[Q(0)],

q̇(0) = u0,

(1.6)

where N(Q(t), q(t)) is the proximal normal cone of Q(t) at q(t) and Ct,q is the set
of admissible velocities:

Ct,q := {u, ∂tgi(t, q) + 〈∇q gi(t, q), u〉 ≥ 0 if gi(t, q) = 0} , (1.7)

which corresponds to (1.2) in our framework.

We have to make assumptions on the constraints gi. First we require some
regularity: we suppose that there exist c > 0 and open sets Ui(t) ⊃ Qi(t) for all t

in [0, T ] verifying

dH(Qi(t), Rd \ Ui(t)) > c, (A0)

where dH denotes the Hausdorff distance. Moreover, we assume that there exist
constants α, β, M > 0 such that for all t in [0, T ], gi(t, ·) belongs to C2(Ui(t)) and
satisfies

∀ q ∈ Ui(t), α ≤ |∇q gi(t, q)| ≤ β, (A1)

∀ q ∈ Ui(t), |∂tgi(t, q)| ≤ β, (A2)
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∀ q ∈ Ui(t), |∂t∇q gi(t, q)| ≤ M, (A3)

∀ q ∈ Ui(t), |D2
qgi(t, q)| ≤ M (A4)

and

∀ q ∈ Ui(t), |∂2
t gi(t, q)| ≤ M. (A5)

In comparison with [30] and [2] where first-order differential inclusion are studied,
we require the new and natural assumption (A5), due to the fact that we consider
second-order differential inclusions.

Note that these assumptions can slightly be weakened. Indeed, the lower bound
in (A1) is only required in a neighborhood of q ∈ ∂Q(t). Moreover, we have assumed
C2-smoothness in (A4) and (A5) for the sake of simplicity, but we only need C1+ε

regularity.
Furthermore, we require a kind of independence for the active gradients. For all

t ∈ [0, T ] and q ∈ Q(t), we denote by I(t, q) the active set at q

I(t, q) := {i ∈ {1, . . . , p}, gi(t, q) = 0}, (1.8)

corresponding to the active constraints. For every ρ > 0, we define the following
set:

Iρ(t, q) := {i ∈ {1, . . . , p}, gi(t, q) ≤ ρ}. (1.9)

We assume there exist γ > 0 and ρ > 0 such that for all t ∈ [0, T ],

∀ q ∈ Q(t), ∀λi ≥ 0,
∑

i∈Iρ(t,q)

λi|∇q gi(t, q)| ≤ γ

∣∣∣∣∣∣
∑

i∈Iρ(t,q)

λi∇q gi(t, q)

∣∣∣∣∣∣ . (A6)

We will use the following weaker assumption too:

∀ q ∈ Q(t), ∀λi ≥ 0,
∑

i∈I(t,q)

λi|∇q gi(t, q)| ≤ γ

∣∣∣∣∣∣
∑

i∈I(t,q)

λi∇q gi(t, q)

∣∣∣∣∣∣ . (A6′)

Note that assumptions (A6) and (A6′) describe a kind of “positive linear indepen-
dence” of the almost active gradients. In the time-independent case, (A6′) is lightly
weaker than the linear independence assumption made in [22–24]. Assumption (A6′)
implies the “uniform prox-regularity” of the admissible set Q(t), which is a weaker
property than the convexity. Indeed, a set is said to be uniformly prox-regular when
one can move a ball of constant radius on its boundary, this ball staying outside the
considered set. This implies the fact that any point close enough to the set can be
projected on it. In case of time-dependent constraints, one has to impose (A6) in
order to control the dependence in time. This stronger hypothesis will allow us to
prove that the map t → Q(t) is Lipschitz and to have the possibility to find “good
directions” (see the fundamental Lemma 3.1). We emphasize that the notion of
prox-regularity is very useful for the study of first-order differential inclusions (the
so-called sweeping process) and naturally appears in this context. In the framework
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of second-order differential inclusions, this notion is less important. We refer to [3]
for a general result about second-order differential inclusions (involving the notion
of “admissible” sets which is related to the notion of “good directions” appearing
in Lemma 3.1).

Under these assumptions, we have a characterization of the proximal normal
cone N(Q(t), ·).
Proposition 1.2. (Proposition 2.8 of [30]) In this framework, we know that for
every t ∈ I, and every q ∈ ∂Q(t),

N(Q(t), q) :=


−

∑
i∈I(t,q)

λi∇q gi(t, q), λi ≥ 0


 .

So our problem (1.6) can be written as follows: we are looking for solutions
q ∈ W 1,∞(I, Rd), q̇ ∈ BV (I, Rd) and time-measures λi ∈ M+(I) such that



∀ t ∈ I, q(t) ∈ Q(t)

d2q

dt2
= f(·, q(·)) +

p∑
i=1

λi∇q gi(·, q(·)),

supp(λi) ⊂ {t, gi(t, q(t)) = 0} for all i

∀ t ∈ I, q̇(t+) = PCt,q(t) q̇(t
−)

q(0) = q0 ∈ int[Q(0)],

q̇(0) = u0.

(1.10)

We denote by λ = (λ1, . . . , λp) ∈ R
p the vector of the Lagrange multipliers

associated to these p constraints.
As usual, we obtain the existence results for (1.10) by proving the convergence

of a sequence of discretized solutions.
To do so, we extend the algorithm proposed by Maury in [10] for modeling

inelastic collisions, to the case of abstract and time-dependent constraints. In [10],
the convergence (up to a subsequence) is proved in the case of a single constraint.
Here, we show that this convergence still holds in the multi-constraint case.

Let us describe the numerical scheme. Let h = T/N be the time step. We denote
by qn

h ∈ R
d and un

h ∈ R
d the approximated solution and velocity at time tnh = nh

for n ∈ {0, . . . , N}.
The discretization of the continuous constraints Ctn

h ,q(tn
h) proposed in [10] corre-

sponds to a first-order approximation of the constraints in the space variable: for
t ∈ I and q ∈ U(t), we set

Kh(t, q) := {u, gi(t, q) + h〈∇q gi(t, q), u〉 ≥ 0} . (1.11)

The reason why we do not expand the time variable in this discrete admissible set
is that we will use a semi-implicit numerical scheme, with direct impliciting in time
the set Kh(t, q) (see (1.13)).
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The approximated solutions are built using the following schemes:

(1) Initialization:

(q0
h, u0

h) := (q0, u0). (1.12)

(2) Time iterations: qn
h and un

h are given. We define fn
h := 1

h

∫ tn+1
h

tn
h

f(s, qn
h)ds,

un+1
h := PKh(tn+1

h ,qn
h )[u

n
h + hfn

h ] (1.13)

and

qn+1
h := qn

h + hun+1
h , (1.14)

where PC is the Euclidean projection onto the set C. This algorithm is a “prediction-
correction algorithm”: the predicted velocity un

h +hfn
h , that may not be admissible,

is projected onto the approximate set of admissible velocities.
Since the projection PKh(tn+1

h ,qn
h) consists in a constrained minimization prob-

lem, with a finite number of affine constraints, it involves Lagrange multipliers
(λn+1

h ) ∈ R
p corresponding to the p constraints. It can be checked that we have a

discrete counterpart of the momentum balance appearing in (1.10):

un+1
h − un

h

h
= fn

h +
∑

λn+1
h,i ∇q gi(tn+1

h , qn
h) (1.15)

with λn+1
h,i ≥ 0 and λn+1

h,i = 0 when gi(tn+1
h , qn

h) + h〈∇q gi(tn+1
h , qn

h), un+1
h 〉 > 0.

In [10], the scheme is shown to be stable, robust and to present a good behavior
for large time-steps. That is why, we are interested in continuing its numerical
analysis in the multi-constraint case, with proposing some extensions like the time-
dependence of the constraints.

Results

We recall that I = [0, T ] is the time interval and h is the constant time step (tnh = nh

for n = 0, . . . , N). We denote by qh the piecewise affine function with qh(tnh) = qn
h .

We denote by uh the derivative of qh, piecewise constant equal to un+1
h on

]tnh, tn+1
h [. Finally, we define λh, piecewise constant equal to λn+1

h on ]tnh , tn+1
h [.

The convergence theorem is the following.

Theorem 1.3. Let (qh, uh, λh) be the sequence of solutions constructed from the
scheme (1.12)–(1.15) and suppose that f : I × R

d → R
d is a measurable map

satisfying:

∃KL > 0, ∀ t ∈ I, ∀ q, q̃ ∈ U(t), |f(t, q) − f(t, q̃)| ≤ KL|q − q̃|, (1.16)

∃F ∈ L1(I), ∀ t ∈ I, ∀ q ∈ U(t), |f(t, q)| ≤ F (t). (1.17)

Then, when h goes to zero, there exist subsequences, still denoted by
(qh)h, (uh)h, (λh)h, and

(q, u, λ) ∈ W 1,∞(I, Rd) × BV (I, Rd) ×M+(I)p
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such that

uh −→ u in L1(I, Rd),

qh −→ q in W 1,1(I, Rd) and L∞(I, Rd) with q̇ = u,

λh
�−⇀ λ in M+(I)p,

where (q, u, λ) is solution to (1.10) and so (q, u) is a solution to (1.6).

We emphasize that, up to our knowledge, this result is the first one concerning
such multi-constrained second-order differential inclusions with on the one hand
time-dependent constraints and on the other hand a nonconvex and nonsmooth
admissible set.

Remark 1.4. For time-independent constraints, Assumption (A6′) is required but
Assumption (A6) is not necessary.

Remark 1.5. It is important to emphasize that Theorem 1.3 gives a global exis-
tence result since the time T can be chosen independently with respect to the
initial data. This improves the results in the literature (described in the introduc-
tion) which were local such that in case of time-dependent constraints, the time T

was depending on the initial data. Note that, in the case of nondepending on time,
global results in a more regular setting were already proved in [1, 12, 18, 22, 26].

The proof is quite long and technical. We refer the reader to [10] for a first
proof dealing with the case of one (p = 1) time-independent constraint g. We
will follow the same reasoning with some new arguments (appearing in [30]) in
order to solve the difficulties raised by the multiple constraints and the time-
dependence. Section 2 is devoted to the outline and the main ideas of the proof. For
the sake of readibility, the demonstrations of some technical propositions are post-
poned to Sec. 3. In Sec. 4, we describe an application to the modeling of inelastic
collisions.

2. Convergence Result

This section is devoted to the proof of Theorem 1.3. It is divided into 7 steps
and for readibility reasons we have postponed some technical proofs in the next
section.

• Step 1. The scheme is well-defined and produces feasible configurations

Proposition 2.1. For a small enough parameter h, the scheme is well-defined.
Moreover, the computed configurations are feasible:

∀h > 0, ∀n ∈ {0, . . . , N}, qh(tnh) ∈ Q(tnh).
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Proof. Let h be smaller than c/c0 where c and c0 are given in Lemma 2.2
(below stated) and Assumption (A0) respectively. By assuming that qh(tnh) ∈
Q(tnh), we also deduce that qh(tnh) ∈ Q(tn+1

h ) + c0hB(0, 1) ⊂ U(tn+1
h ). Then

the gradient ∇q gi(tn+1
h , qn

h) is well-defined and so is the set Kh(tn+1
h , qn

h ).
Step 2 of the scheme can be performed and due to the convexity of function
gi(tn+1

h , ·),
un+1

h ∈ Kh(tn+1
h , qn

h) ⇒ qn+1
h ∈ Q(tn+1

h ).

Then we conclude by iteration.

Lemma 2.2. The set-valued map Q is Lipschitz continuous with a constant c0, for
the Hausdorff distance.

We refer the reader to Proposition 2.11 of [30] for a detailed proof of this result.
For the intermediate times t ∈ ] tnh , tn+1

h [, the point qh(t) may not belong to Q(t).
However, from Proposition 2.1 and Lemma 2.2, we have the following estimate:

∀h > 0, ∀ t ∈ I, d(qh(t), Q(t)) ≤ max{d(qn
h , Q(t)), d(qn+1

h , Q(t))} ≤ c0h.

(2.1)

• Step 2. uh is bounded in BV (I, Rd)

First, we check that the velocities are uniformly bounded (proved later in Sec. 3.1).

Proposition 2.3. The sequence of computed velocities (uh)h is bounded in
L∞(I, Rd). We set

K := sup
h

‖uh‖L∞(I) < ∞.

Proposition 2.4. The sequence of computed velocities (uh)h is bounded in
BV (I, Rd).

Proof. Since u0
h = u0 and using Proposition 2.3, it suffices to show that (uh)h

has bounded variations on I. This has been proved for a single constraint in [10].
Unfortunately, this proof cannot be extended to the multi-constraint case. To
obtain an estimate on the total variation, we use a similar technique to the one
proposed in [6] and [8]. These ideas rest on the following property: all the cones
Kh(tn+1

h , qn
h) contain a ball of fixed radius with a bounded center, which describes

the fact that the solid angles of the cones N(Q(t), qh(t)) are not too small. This
property is proved by using a “good direction” (see Lemma 3.1) which permits to
increase all the almost active constraints. The details of the proof are postponed to
Sec. 3.1.

• Step 3. Extraction of convergent subsequences
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Proposition 2.4 directly implies the following convergence result:

Proposition 2.5. There exist q in W 1,∞(I, Rd) and u in BV (I, Rd) such that, up
to a subsequence,

uh −−−→
h→0

u in L1(I, Rd),

qh −−−→
h→0

q in W 1,1(I, Rd) and L∞(I, Rd) with q̇ = u.

Furthermore, (2.1) yields

∀ t ∈ I, q(t) ∈ Q(t).

In addition, we show that the sequence of Lagrange multipliers converges:

Proposition 2.6. There exists λ in M+(I)p such that, up to a subsequence,

λh
�−⇀ λ in M+(I)p.

Proof. From (1.15), we have∑
i

hλn+1
h,i ∇q gi(tn+1

h , qn
h) = un+1

h − un
h − hfn

h

with λn+1
h,i ≥ 0 and λn+1

h,i = 0 when

gi(tn+1
h , qn

h) + h〈∇q gi(tn+1
h , qn

h), un+1
h 〉 > 0. (2.2)

Remark that for a small enough parameter h, gi(tn+1
h , qn

h)+h〈∇q gi(tn+1
h , qn

h ), un
h +

hfn
h 〉 ≤ 0 implies that i ∈ Iρ(tn+1

h , qn
h ). Consequently, the reverse triangle inequal-

ity (Assumption (A6′)) with (A1) and the Lipschitz regularity (Assumption (A3))
imply for a small enough parameter h

h
∑

i

λn+1
h,i � |un+1

h − un
h − hfn

h |.

Therefore, we obtain for this small enough parameter h

‖λh‖L1(I) � VarI(uh) + ‖F‖L1(I).

Hence from Proposition 2.4 together with hypothesis (1.17), (λh)h is bounded in
L1(I), which concludes the proof.

• Step 4. Momentum balance

As in Step 6 of Theorem 1 in [10], using Proposition 2.5 together with Proposi-
tion 2.6, we pass to the limit in the discrete momentum balance (1.15) to obtain

Proposition 2.7. The momentum balance is verified by the limits u and λ : in the
sense of time-measure

u̇ = f(·, q(·)) +
∑

i

λi∇q gi(·, q(·)).
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Note that this equation has to be thought in terms of time-measure (see
Remark 1.1):

du = f(·)dt +
∑

i

∇q gi(·, q(·))λi,

where we denote by du the differential measure of the BV -function u.

• Step 5. Support of the measures λi

From the uniform convergence of qh and the Lipschitz regularity of gi (Assumptions
(A1) and (A2)), it can be checked, as in Step 7 of Theorem 1 in [10], that

Proposition 2.8.

∀ i, supp(λi) ⊂ {t, gi(t, q(t)) = 0}.
Indeed (2.2) describes a similar property for the discretized multipliers. The uniform
convergence allows us to go to the limit in (2.2) and to prove the previous
proposition.

This property describes the fact that the measure λi has a contribution only
when the associated constraint gi is saturated.

• Step 6. Initial condition

As in Step 8 of Theorem 1 in [10], using again the uniform convergence of qh it can
be shown that

q(0) = q0 and u(0) = u0.

We emphasize that to prove this point, we use the property q0 ∈ Int[Q(0)]. From
this, it can be checked that for tnh < s with s a small enough parameter the desired
velocity un

h + hfn
h still remains admissible and so we do not need to project. That

allows us to deal with any initial velocity u0 ∈ R
d. If q0 ∈ ∂Q(0), this property

still holds if we assume that the initial velocity is admissible: u0 ∈ C0,q0 . Else, we
would get

u+(0) = PC0,q0
(u0)

according to the next proposition.

• Step 7. Collision law
Finally, Theorem 1.3 will follow, provided that we check the collision law for the
limits u and q, which is given by the following proposition.

Proposition 2.9.

∀ t0 ∈ I, u+(t0) = PCt0,q(t0)(u
−(t0)).

Proof. The idea is to let h go to zero in the discrete collision law,

un+1
h = PKh(tn+1

h ,qn
h )[u

n
h + hfn

h ].

The main difficulty comes from the fact that the mapping q → Kh(t, q) is not
Lipschitzian. The details of the proof are postponed to Sec. 3.2.
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3. Auxiliary Results

Before proving the technical Propositions 2.3, 2.4 and 2.9, we recall the following
main lemma. This technical result is very important and all our proofs rest on
this idea. It says that, for each time tnh, one can find a “good direction” increas-
ing all the constraints which are almost active, the corresponding increase being
independent of n.

Lemma 3.1. There exist constants δ, κ, θ and τ > 0 such that for all t ∈ I, for all
q ∈ ∂Q(t) there exists a unit vector v := v(t, q) satisfying:

• for all s ∈ [t − τ, t + τ ], y ∈ Q(s) ∩ B(q, θ) and i ∈ Iκρ(s, y),

〈∇q gi(s, y), v〉 ≥ δ,

where ρ is the constant defined in (A6).

This lemma is a consequence of the reverse triangle inequality (Assumption (A6)).
We do not give the proof here and refer the reader to Lemma 2.10 in [30] for a
detailed proof with τ = 0 and to Lemma 5.2 in [2] for a complete proof with some
τ > 0. Indeed in the previously mentioned papers, a detailed construction of such
“good directions” can be found.

3.1. BV estimate for uh (Propositions 2.3 and 2.4)

We first prove a uniform bound of the computed velocities uh in L∞(I).

Proof of Proposition 2.3. (1) For any t ∈ I and q ∈ Q(t), construction of a
specific point w ∈ Ct,q. From Lemma 3.1, there exists a “good direction”: a unit
vector v satisfying,

∀ i ∈ Il(t, q), 〈∇q gi(t, q), v〉 ≥ δ, (3.1)

for some numerical constants δ, l > 0 nondepending on t and q. For k > 0, a large
enough number, we claim that kv belongs to Ct,q. Indeed for i ∈ Il(t, q) (⊃ I(t, q)),
with k ≥ (β + δ)/δ, it comes

∂tgi(t, q) + 〈∇q gi(t, q), kv〉 ≥ ∂tgi(t, q) + kδ ≥ δ > 0, (3.2)

thanks to Assumption (A2).
Choosing k = (β + δ)/δ, we have built a point w = kv belonging to Ct,q with

|w| = (β + δ)/δ.

(2) This vector w belongs to Kh(s + h, q̃) for (s, q̃) close to (t, q) and h small enough.
Let fix a point (t, q) (for example the initial condition (t, q) = (0, q0)). From the
previous point, we know that there exists a bounded admissible velocity w ∈ Ct,q,
which satisfies the stronger property (3.2).
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More precisely if s ∈ I and q̃ ∈ Q(s) satisfy

|s − t| + |q̃ − q| ≤ min{l/(2β), ε} := ν (3.3)

with ε a small parameter verifying 2εM(1 + (β + δ)/δ) ≤ δ then w ∈ Kh(s + h, q̃).
Indeed, from (3.3) we have

Il/2(s, q̃) ⊂ Il(t, q).

This, together with (3.2) and (3.3) gives, for all i ∈ Il/2(s, q̃)

∂tgi(s, q̃) + 〈∇q gi(s, q̃), w〉 ≥ δ − εM(1 + |w|) ≥ δ/2.

Moreover, for the other indices i /∈ Il/2(s, q̃) we have

gi(s, q̃) + h[∂tgi(s, q̃) + 〈∇q gi(s, q̃), w〉] ≥ l

2
− hβ(1 + |w|).

Consequently, for h small enough (h ≤ h0 := l/(2β(1 + (β + δ)/δ) + δ/2)), we
obtain

∀ i, gi(s, q̃) + h [∂tgi(s, q̃) + 〈∇q gi(s, q̃), w〉] ≥ h
δ

2
,

which, by a first-order expansion in time gives:

∀ i, gi(s + h, q̃) + h〈∇q gi(s + h, q̃), w〉 ≥ h
δ

2
+ Oh→0(h2).

We deduce that there exists h1 ≤ h0 such that, for h ≤ h1,

∀ i, gi(s + h, q̃) + h〈∇q gi(s + h, q̃), w〉 ≥ 0,

and consequently w ∈ Kh(s + h, q̃).

(3) Estimate on the velocities for small time intervals.
Let us fix h ≤ h1 (given in the previous point) and a small time interval [t−, t+] ⊂ I

of length

|t+ − t−| ≤ ν

2
(
|un0

h | + 2β+δ
δ +

∫ T

0 F (t)dt
) ,

where n0 is the smallest integer n such that tnh ≥ t−. We assume that tn0
h ∈ [t−, t+].

We are looking for a bound on the velocity on this time interval. From the first two
points, setting (t, q) = (tn0

h , qn0
h ), we have an admissible velocity w ∈ Ct,q such that

for all s ∈ I and q̃ ∈ Q(s) we have

w ∈ Kh(s + h, q̃)

as soon as |s− t| + |q̃ − q| ≤ ν. Since for s = tnh ∈ [t−, t+], |s− t| ≤ ν/2, we deduce
that for all integers n such that tnh ∈ [t−, t+], if

|qn
h − qn0

h | ≤ ν/2, (3.4)

then

w ∈ Kh(tn+1
h , qn

h).



January 12, 2011 8:50 WSPC/S1793-7442 251-CM 00024

458 F. Bernicot & A. Lefebvre-Lepot

Considering such an integer n satisfying (3.4), since un+1
h is the Euclidean projection

of un
h + hfn

h on the convex set Kh(tn+1
h , qn

h) (containing the point w), we deduce
that

|un+1
h − w| ≤ |un

h + hfn
h − w|,

which implies

|un+1
h − w| ≤ |un

h − w| +
∫ tn+1

h

tn
h

F (t)dt.

We set m the smallest integer (bigger than n0) such that m + 1 does not satisfy
(3.4) or tm+1

h /∈ [t−, t+]. By summing these inequalities from n = n0 to n = p − 1
with n0 ≤ p ≤ m, we get

∀ p ∈ [n0, m], |up
h − w| ≤ |un0

h − w| +
∫ T

0

F (t)dt.

Finally, it becomes

sup
n0≤p≤m

|up
h| ≤ |un0

h | + 2
β + δ

δ
+

∫ T

0

F (t)dt. (3.5)

By integrating in time, we deduce

|qm+1
h − qn0

h | ≤
(
|un0

h | + 2
β + δ

δ
+

∫ T

0

F (t)dt

)
|t+ − t−| ≤ ν/2

by the assumption on the length of the time interval. As a consequence, we get that
n = m + 1 satisfies (3.4) which by definition of m, yields tmh ≤ t+ < tm+1

h . Hence,
from (3.5), we have

sup
t−≤tn

h≤t+

|un
h| ≤ |un0

h | + 2
β + δ

δ
+

∫ T

0

F (t)dt.

(4) End of the proof.

The parameter h < h1 being fixed, we are now looking for a bound on uh on the
whole time interval I = [0, T ]. Let us start with t− = t(0) := 0. From the previous
point we know that with

t+ = t(1) := min


 ν

2
(
|u0| + 2β+δ

δ +
∫ T

0 F (t)dt
) , T




we have

sup
0≤tn

h≤t(1)

|uh(tnh)| ≤ |u0| + 2
β + δ

δ
+

∫ T

0

F (t)dt.
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Then, let us assume that there exists n1 such that t(0) < tn1
h ≤ t(1) < tn1+1

h . We
have 0 ≤ δ1 := t(1) − tn1

h < h. In that case, we set t− = tn1
h and

t+ = t(2) := min


tn1 +

ν

2
(
|u0| + 4β+δ

δ + 2
∫ T

0
F (t)dt

) , T




= min


t(1) − δ1 +

ν

2
(
|u0| + 4β+δ

δ + 2
∫ T

0
F (t)dt

) , T


 .

From the previous point, we deduce that

sup
t(1)≤tn

h≤t(2)

|uh(tnh)| ≤ sup
tn1≤tn

h≤t(2)

|uh(tnh)| ≤ |u0| + 4
β + δ

δ
+ 2

∫ T

0

F (t)dt

and so

sup
0≤tn

h≤t(2)

|uh(tnh)| ≤ |u0| + 4
β + δ

δ
+ 2

∫ T

0

F (t)dt.

By iterating this reasoning, for any integer k ≥ 1 we set

t(k) := min


t(k − 1) − δk−1 +

ν

2
(
|u0| + 2k β+δ

δ + 2k
∫ T

0 F (t)dt
) , T




= min


−

k−1∑
i=1

δi +
k∑

i=1

ν

2
(
|u0| + 2iβ+δ

δ + 2i
∫ T

0 F (t)dt
) , T


 ,

where δk < h for all k. This construction of t(k) can be made while there exists nk

such that t(k−2) < t
nk−1
h ≤ t(k−1) < t

nk−1+1
h . That is, while t(k−1)−t(k−2) > h.

This condition will be verified as long as

−δk−2 +
ν

2
(
|u0| + 2(k − 1)β+δ

δ + 2(k − 1)
∫ T

0
F (t)dt

) > h.

Therefore, using the fact that 0 ≤ δk−2 < h, we see that we can construct t(k) for
k < N verifying

ν

2
(
|u0| + 2(k − 1)β+δ

δ + 2(k − 1)
∫ T

0
F (t)dt

) > 2h,

which is equivalent to

k < k0(h) := 1 +
(

ν

8h
− |u0|

2

)(
β + δ

δ
+

∫ T

0

F (t)dt

)−1

. (3.6)
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Consequently, we know that the velocities can be bounded on [0, t(k0(h))] where

t(k0(h)) = min


−

k0(h)−1∑
i=1

δi +
k0(h)∑
i=1

ν

2
(
|u0| + 2iβ+1

δ + 2i
∫ T

0
F (t)dt

) , T


 .

Now, using the fact that k0(h) goes to infinity when h goes to zero, that the
harmonic serie diverges and that (3.6) yields∣∣∣∣∣∣

k0(h)−1∑
i=1

δi

∣∣∣∣∣∣ ≤ hk0(h) ≤ C,

we see that t(k0(h)) is equal to T for h small enough. Therefore, there exists h2 < h1

such that, for h < h2, T = t(k0(h2)) = t(k0(h)). Finally, we see that, for h < h2,
t(k) can be constructed until k = k0(h2) and uh can be bounded as follows:

sup
h≤h2

sup
0≤tn

h≤T
|uh(tnh)| ≤ |u0| + 2k0(h2)

β + δ

δ
+ 2k0(h2)

∫ T

0

F (t)dt (3.7)

which concludes the proof of the existence of a uniform bound in L∞ for the veloc-
ities uh.

To prove Proposition 2.4, it suffices now to show that the sequence (uh)h has
bounded variation.

Theorem 3.2. The sequence (uh)h has a bounded variation on I.

Proof. In order to study the variation of uh on I, we split I into smallest intervals.
We define (sj)j for j from 0 to P such that:



s0 = 0, sP = T,

|sj+1 − sj | =
1
2

min
{

τ,
θ

K

}
, for j = 0, . . . , P − 2,

|sP − sP−1| ≤ 1
2

min
{

τ,
θ

K

}
,

where τ and θ are given by Lemma 3.1 and K is the bound on ‖uh‖L∞(I) (see
Proposition 2.3). All these constants do not depend on h and such a construction
gives

P =

[
2T

min
{
τ, θ

K

}
]

+ 1, (3.8)

which is independent of h. Then, for all h, we define nj
h for j from 0 to P − 1 as

the first time step strictly greater than sj :

t
nj

h−1

h ≤ sj < t
nj

h

h

and nP
h is set equal to N (tNh = t

nP
h

h = T ).
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In the following, we suppose h < min{|sj+1 − sj |}/2. Doing so, we obtain a

strictly increasing sequence of (tn
j
h

h )j with

|tn
j
h

h − t
nj−1

h

h | ≤ min
{

τ,
θ

K

}
. (3.9)

The variation of uh on I can be written as follows:

VarI(uh) =
N−1∑
n=0

|un+1
h − un

h| =
P−1∑
j=0

Varjuh,

where

Varj(uh) :=
nj+1

h −1∑
n=nj

h

|un+1
h − un

h|

corresponds to the variation on [tn
j
h

h , t
nj+1

h

h [. To study these terms, we recall that

un+1
h = PKh(tn+1

h
,qn

h
)[u

n
h + hfn] (3.10)

by construction and state the following lemma:

Lemma 3.3. There exist η > 0 and uniformly bounded vectors ynj
h such that, for

all small enough h, for all j = 0, . . . , P and n ∈ [nj
h, nj+1

h [, we have

x1 = PKh(tn+1
h ,qn

h )[x0] =⇒ |x1 − x0| ≤ 1
2η

(
|x0 − ynj

h |2 − |x1 − ynj
h |2

)
.

Proof. The outline of the proof is the following: first, we prove that there exist
unit vectors vnj

h such that

n ∈ [nj
h, nj+1

h [ =⇒ B

(
2βK

δ
vnj

h , η

)
⊂ Kh(tn+1

h , qn
h) with η :=

K

2
, (3.11)

where K is a bound on ‖uh‖L∞(I) (see Proposition 2.3). Then, we conclude using
similar arguments to the ones exposed in [6, 8].

Step 1. From Lemma 3.1 with t = t
nj

h

h and q = q
nj

h

h , we have a unit “good direction”
written vnj

h . Let n belong to [nj
h, nj+1

h [. From Proposition 2.1, we know that qn+1
h

belongs to Q(tn+1
h ). Moreover, (3.9) gives |tn+1

h − t
nj

h

h | ≤ τ and |qn+1
h − q

nj
h

h | ≤ θ.
Consequently, Lemma 3.1 gives

∀ i ∈ Iκρ(tn+1
h , qn+1

h ),
〈
∇q gi(tn+1

h , qn+1
h ), vnj

h

〉
≥ δ. (3.12)

We deduce that for all index i ∈ {1, . . . , p} and a small enough parameter h:

gi(tn+1
h , qn

h ) +
2βK

δ
h〈∇q gi(tn+1

h , qn+1
h ), vnj

h〉 ≥ −hβK + 2hβK = hβK. (3.13)
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Indeed, we write

gi(tn+1
h , qn

h) +
2βK

δ
h〈∇q gi(tn+1

h , qn+1
h ), vnj

h〉

=
[
gi(tn+1

h , qn
h) − gi(tn+1

h , qn+1
h )

]
+

[
gi(tn+1

h , qn+1
h ) +

2βK

δ
h〈∇q gi(tn+1

h , qn+1
h ), vnj

h〉
]

.

The first term can be estimated using (A1) and the bound K on ‖uh‖L∞(I). In
order to estimate the second term, if i ∈ Iκρ(tn+1

h , qn+1
h ), we use (3.12) together

with the fact that gi(tn+1
h , qn+1

h ) ≥ 0, which gives the required bound. In the case
i /∈ Iκρ(tn+1

h , qn+1
h ), we use gi(tn+1

h , qn+1
h ) ≥ κρ and (A1), which also gives the

required bound for h small enough.
Finally, (3.13) together with assumption (A1) implies that for all v ∈

B(2βK
δ vnj

h , K/2)

gi(tn+1
h , qn

h) + h〈∇q gi(tn+1
h , qn

h), v〉 ≥ hβK − hβK

2
=

hβK

2
≥ 0,

which proves (3.11).

Step 2. Let n belong to [nj
h, nj+1

h [. We define

znj
h := ynj

h + η
x0 − x1

|x0 − x1| where ynj
h :=

2βK

δ
vnj

h .

(Here we assume x0 �= x1, else the desired result is obvious.) From the previous
step we have

znj
h ∈ B

(
2βK

δ
vnj

h , η

)
⊂ Kh(tn+1

h , qn
h).

The point x1 being the projection of x0 onto the closed convex set Kh(tn+1
h , qn

h ),
we get

〈x0 − x1, z
nj

h − x1〉 ≤ 0.

From this we have

|x0 − ynj
h |2 = |x1 − ynj

h |2 + |x0 − x1|2

+ 2〈znj
h − ynj

h , x0 − x1〉 + 2〈x1 − znj
h , x0 − x1〉

≥ |x1 − ynj
h |2 + 2〈znj

h − ynj
h , x0 − x1〉

≥ |x1 − ynj
h |2 + 2η|x0 − x1|.

This, together with the fact that the vectors ynj
h are uniformly bounded by 2βK

δ ,
ends the proof of Lemma 3.3.
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We now come back to the proof of Theorem 3.2. For n in [nj
h, nj+1

h [, using (3.10)
and the previous lemma (with x0 = un

h + hfn
h and x1 = un+1

h ), it becomes

|un+1
h − un

h − hfn
h | ≤

1
2η

(|x0 − ynj
h |2 − |x1 − ynj

h |2)

≤ 1
2η

(|un
h + hfn

h − ynj
h |2 − |un+1

h − ynj
h |2)

≤ 1
2η

(|un
h − ynj

h |2 − |un+1
h − ynj

h |2)

+
1
2η

|hfn
h |2 +

1
η
|hfn

h ||un
h − ynj

h |

≤ 1
2η

(|un
h − ynj

h |2 − |un+1
h − ynj

h |2)

+
1
2η

|hfn
h |2 +

1
η
|hfn

h |(K + L),

where L := 2βK/δ (see Proposition 2.3 for the definition of K). By summing up
these terms for n from nj

h to nj+1
h − 1 we get

Varj(uh) =
nj+1

h −1∑
n=nj

h

|un+1
h − un

h| ≤
1
2η

(|unj
h

h − ynj
h |2 − |unj+1

h

h − ynj
h |2)

+
nj+1

h −1∑
n=nj

h

1
2η

|hfn
h |2 +

1
η
(K + L + η)

nj+1
h −1∑
n=nj

h

|hfn
h |

and finally

Var(uh) =
P−1∑
j=0

Varj(uh) ≤ 1
2η

P−1∑
j=0

(|unj
h

h − ynj
h |2 − |unj+1

h

h − ynj
h |2) +

1
2η

‖F‖2
L1(I)

+
1
η
(K + L + η)‖F‖L1(I)

≤ 1
η
(K + L)2P +

1
2η

‖F‖2
L1(I) +

1
η
(K + L + η)‖F‖L1(I).

This completes the proof of Theorem 3.2, since P does not depend on h from (3.8).

3.2. Collision law for the limits u and q (Proposition 2.9)

This subsection is devoted to the proof of Proposition 2.9, recalled in the following
theorem:

Theorem 3.4. Let t0 ∈ I be fixed. The limit function u verifies:

u+(t0) = PCt0 ,q(t0)(u
−(t0)).
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Note that, from Proposition 2.5, u ∈ BV (I), so that u−(t0) and the u+(t0) limits
are well-defined.

The proof is quite technical so for an easy reference, we remember the definitions
of the sets Ct,q (given in (1.7)):

Ct,q := {u, ∂tgi(t, q) + 〈∇q gi(t, q), u〉 ≥ 0, if gi(t, q) = 0}

and Kh(t, q) (given in (1.11)):

Kh(t, q) := {u, gi(t, q) + h〈∇q gi(t, q), u〉 ≥ 0} .

Moreover, we recall that

K := sup
h

‖uh‖L∞(I) < ∞.

The desired property

u+(t0) = PCt0,q(t0)(u
−(t0)) (3.14)

can be seen as the limit (for h going to 0) of the “discretized property”

un+1
h = PKh(tn+1

h ,qn
h )[u

n
h + hfn]. (3.15)

Proof. First we claim that

u+(t0) ∈ Ct0,q(t0). (3.16)

To verify this property, let us consider an index i such that gi(t0, q(t0)) = 0. Then
a first-order expansion gives:

gi(t0 + ε, q(t0 + ε)) = ε
[
∂tgi(t0, q(t0)) + 〈u+(t0),∇q gi(t0, q(t0))〉

]
+ oε→0(ε).

The feasibility of q(t0 + ε) (see Proposition 2.5) yields

∂tgi(t0, q(t0)) + 〈u+(t0),∇q gi(t0, q(t0))〉 ≥ 0

which corresponds to (3.16).
Let us now come back to the proof of (3.14). As we just proved u+(t0) ∈ Ct0,q(t0)

and since Ct0,q(t0) is a convex set, (3.14) is equivalent to

∀w ∈ Ct0,q(t0), 〈u−(t0) − u+(t0), w − u+(t0)〉 ≤ 0. (3.17)

So, in the following, let us choose w ∈ Ct0,q(t0). To prove (3.17), we construct a family
of points wν for ν > 0 such that wν tends to w when ν goes to zero and satisfies
wν ∈ Kh(t+h, q) for h sufficiently small and (t, q) close to (t0, q(t0)). Then, for each
ν, we go to the limit on h, t and q to show that 〈u−(t0)− u+(t0), wν − u+(t0)〉 ≤ 0
and finally, we make ν go to zero to conclude.
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Step 1. From Lemma 3.1, there exists a neighborhood U ⊂ I×R
d around (t0, q(t0))

and v ∈ R
d such that for all t ∈ I and q ∈ Q(t)

(t, q) ∈ U ⇒ ∀ i ∈ Iκρ(t, q), 〈∇q gi(t, q), v〉 ≥ δ, (3.18)

with a numerical constant δ > 0. For ν > 0, we consider the point wν := w + νv

with ν > 0. For all i ∈ Iκρ(t, q)∩I(t0, q(t0)), (3.18) together with w ∈ Ct0,q(t0) gives

∂tgi(t0, q(t0)) + 〈∇q gi(t, q), wν〉 = ∂tgi(t0, q(t0)) + 〈∇q gi(t, q), w〉 + ν〈∇q gi(t, q), v〉
≥ 〈∇q gi(t, q) −∇q gi(t0, q(t0)), w〉 + νδ

≥ νδ − M |w| [|t − t0| + |q − q(t0)|]
and consequently from Assumptions (A3) and (A5)

∂tgi(t, q) + 〈∇q gi(t, q), wν〉 ≥ νδ − (M |w| + M) [|t − t0| + |q − q(t0)|] .
So for every ν > 0, if (t, q) is closed enough to (t0, q(t0)), we deduce that for all
i ∈ Iκρ(t, q) ∩ I(t0, q(t0))

∂tgi(t, q) + 〈∇q gi(t, q), wν〉 ≥ νδ

2
.

For the indices i /∈ Iκρ(t, q), we have

gi(t, q) + h [∂tgi(t, q) + 〈∇q gi(t, q), wν〉] ≥ κρ − hβ(1 + |w| + ν).

Finally for i /∈ I(t0, q(t0)),

gi(t, q)+h [∂tgi(t, q) + 〈∇q gi(t, q), wν〉] ≥ σ−hβ(1+|w|+ν)−β [|t − t0| + |q − q(t0)|] ,
with

σ := min
i/∈I(t0,q(t0))

gi(t0, q(t0)) > 0.

We conclude that for each fixed ν > 0, there are εν and hν such that for every
h < hν , (t, q) ∈ U with |t − t0| + |q − q(t0)| ≤ εν and q ∈ Q(t) we have

∀ i, gi(t, q) + h [∂tgi(t, q) + 〈∇q gi(t, q), wν〉] ≥ h
νδ

2
,

which by a first-order expansion in time gives:

∀ i, gi(t + h, q) + h〈∇q gi(t + h, q), wν〉 ≥ h
νδ

2
+ Oh→0(h).

At the cost of decreasing hν , it comes for h < hν ,

∀ i, gi(t + h, q) + h〈∇q gi(t + h, q), wν〉 ≥ 0,

and consequently, wν ∈ Kh(t + h, q) for every h < hν , (t, q) ∈ U with |t− t0|+ |q −
q(t0)| ≤ εν and q ∈ Q(t).

Step 2. Let us now fix the parameter ν.
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Thanks to the uniform Lipschitz regularity of the maps qh and their uniform con-
vergence towards q, there exists h̃ν ≤ hν such that for ε ≤ εν/(2+2K) and h ≤ h̃ν ,

tkh, tk+1
h ∈ [t0 − ε, t0 + ε] ⇒ |tk+1

h − t0| + |qk
h − q(t0)| ≤ εν .

From this, as qk
h ∈ Q(tkh) from Proposition 2.1, the previous step (with t = tkh) gives

wν ∈ Kh(tk+1
h , qk

h). Therefore, Kh(tk+1
h , qk

h) being convex, we have

〈uk
h + hfk

h − uk+1
h , wν − uk+1

h 〉 ≤ 0. (3.19)

We sum up these inequalities for k from n to p, integers chosen such that tnh is the
first time step in [t0 − ε, t0− ε + h] and tp+1

h the last one in [t0 + ε− h, t0 + ε]. First,
we know that∣∣∣∣∣

p∑
k=n

h〈fk, wν − uk+1
h 〉

∣∣∣∣∣ ≤ (|wν | + K)
∫ t0+ε

t0−ε

F (t)dt, (3.20)

with K := suph ‖uh‖∞. We also have

p∑
k=n

〈uk
h − uk+1

h , wν〉 = 〈uh(tnh) − uh(tp+1
h ), wν〉. (3.21)

We deal with the remainder as follows: we write

p∑
k=n

〈uk
h − uk+1

h ,−uk+1
h 〉 =

p∑
k=n

〈uk
h − uk+1

h , uk
h〉 − |un

h|2 + |up+1
h |2,

which gives

p∑
k=n

〈uk
h − uk+1

h ,−uk+1
h 〉 =

1
2

p∑
k=n

|uk
h − uk+1

h |2 +
1
2

[
−|uh(tnh)|2 + |uh(tp+1

h )|2
]

=
1
2
Var2(uh)2[tn

h ,tp
h] +

1
2
[−|uh(tnh)|2 + |uh(tph)|2], (3.22)

where we wrote Var2 for the L2-variation of a function. Using (3.19)–(3.22), we
finally get:

1
2
Var2(uh)2[tn

h,tp
h] +

1
2

[
−|uh(tnh)|2 + |uh(tp+1

h )|2
]

+ 〈uh(tnh) − uh(tph), wν〉 �
∫ t0+ε

t0−ε

F (t)dt.

Let us now choose a sequence of εm going to zero, such that uh pointwisely converges
to u at the instants t0 − εm and t0 + εm (which is possible as uh converges almost
everywhere towards u). For each εm and h small enough, we have shown that the
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last inequality holds. Then, passing to the limit for h → 0 we get

1
2
Var2(u)2[t0−εm,t0+εm] +

1
2
[−|u(t0 − εm)|2 + |u(t0 + εm)|2]

+ 〈u(t0 − εm) − u(t0 + εm), wν〉 �
∫ t0+εm

t0−εm

F (t)dt,

which gives for εm → 0

1
2
Var2(u)2

[t−0 ,t+0 ]
+

1
2
[−|u−(t0)|2 + |u+(t0)|2

]
+ 〈u−(t0) − u+(t0), wν〉 ≤ 0.

Finally we obtain

1
2

∣∣u+(t0) − u−(t0)
∣∣2 +

1
2
[−|u−(t0)|2 + |u+(t0)|2

]
+ 〈u−(t0) − u+(t0), wν〉 ≤ 0.

By expanding the square quantities, this can be written as follows

〈u−(t0) − u+(t0), wν − u+(t0)〉 ≤ 0. (3.23)

To conclude the proof, it now suffices to remember that wν = w + νv and, since
for each ν > 0, the previous reasoning holds, we obtain (3.17) by letting ν go to 0
in (3.23).

4. Application to the Modeling of Inelastic Collisions

The continuous model

We consider a mechanical system of N spherical rigid particles in three dimensions.
We denote by qi ∈ R

3 the position of the center of particle i, by ri its radius, by mi

its mass and by fi ∈ R
3 the external force exerted on it. Let q ∈ R

3N be defined
by q := (. . . , qi, . . .) and f ∈ R

3N by f := (. . . , fi, . . .). We denote by Dij(q) the
signed distance between particles i and j:

Dij(q) := |qi − qj | − (ri + rj),

and we set eij(q) = (qj − qi)/|qj − qi| (see Fig. 1).
The problem we are interested in is to describe the path of the configuration

q submitted to the force-field f and undergoing inelastic collisions. This inelastic
collision law can be modeled by imposing nonoverlapping contraints on the particles

qi

qj

eij(q)

Dij(q)

Fig. 1. Particles i and j: notations.
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(see the work of Moreau [17] introducing this concept). Therefore, we write that
the positions of the particles have to belong to a set of admissible configurations
Q0 avoiding overlappings:

q ∈ Q0 :=
⋂
i,j

{q, Dij(q) ≥ 0}.

We define M as the mass matrix of dimension 3N × 3N , M = diag (. . . ,
mi, mi, mi, . . .). Then, we denote by Gij ∈ R

3N the gradient of distance Dij with
respect to the positions of the particles:

Gij(q) = (. . . , 0, −eij, 0, . . . , 0, eij , 0, . . . , 0)t.

i j

The set Cq is the set of admissible velocities:

Cq := {u, 〈Gij(q), u〉 ≥ 0, if Dij(q) = 0} . (4.1)

To finish with notations, we denote by λ = (. . . , λij , . . .) ∈ R
N(N−1)/2 the vec-

tor made of the Lagrange multipliers associated to the N(N − 1)/2 constraints
“Dij(q) ≥ 0”.

Let I = ] 0, T [ be the time interval. The multi-particle model we are interested
in may be formally phrased as follows:



q ∈ W 1,∞(I, R3N ), q̇ ∈ BV (I, R3N ), λ ∈ (M+(I))N(N−1)/2,

∀ t ∈ I, q̇(t+) = PCq(t) q̇(t
−),

Mq̈ = f +
∑
i<j

λijGij(q)

supp(λij) ⊂ {t, Dij(q(t)) = 0} for all i, j

Dij(q(t)) ≥ 0 for all i, j

q(0) = q0 such that Dij(q0) > 0 for all i, j, q̇(0) = u0.

(4.2)

The main equation

Mq̈ − f =
∑
i<j

λijGij(q) ∈ −N(Q0, q) (4.3)

expresses the fact that overlapping is prevented by a repulsive force (the impulsion)
acting on each sphere along the normal vector at the contact point. When there
is no contact, N(Q0, q) is reduced to {0}, so that (4.3) reads as Mq̈ = f , which is
the Fundamental Principle of Dynamics applied on each sphere. Equation q̇(t+) =
PCq(t) q̇(t

−) provides the inelastic collision model. It can be extended to an elastic
collision model with a restitution coefficient e by writing

q̇(t+) = PCq(t) q̇(t
−) − ePN(Q0,q(t))q̇(t−).

We assume for simplicity that each mass mi is equal to 1. Then Problem (4.2)
fits into the previously studied framework.
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Remark 4.1. The case of different masses can be taken into account by using the
adapted scalar product (u, v)M = 〈Mu, v〉, as was done in [10]. It turns back to
replace the projection step in the numerical algorithm by

un+1 = PKh(tn+1
h ,qn

h )(u
n + hM−1fn),

where P here denotes the projection relatively to this new norm.
M being a diagonal matrix with non-negative diagonal coefficients, it is easy to

show that the following results still hold true in that case.

We emphasize that Assumption (A0) is satisfied as soon as

min
i

ri > 0,

and then Assumptions (A1) and (A4) hold true.
In order to apply our previous results, it remains to check Assumption (A6). As

explained in [30], that corresponds to estimate the Kuhn–Tucker multipliers. Such
an estimate is given in the following lemma.

Lemma 4.2. There exists a > 0 (depending on N and on the radii ri) such that
for all q ∈ R

3N , F ∈ R
3N and Lagrange multipliers (µij) ∈ R

N(N−1)/2 satisfying∑
µijGij(q) = F with µij ≥ 0 and µij = 0 when Dij(q) > 0,

then

µij ≤ a|F |.
Concerning the proof of this lemma, we refer the reader to Proposition 4.7

of [30] (for a geometric proof) and to Proposition 2.18 of [11] (for a more “physical”
proof). These proofs are written in a two-dimensional framework but they can be
easily extended in our three-dimensional case. Actually, Lemma 4.2 is equivalent
to Assumption (A6) with ρ = 0. However, it can be extended and still holds for
ρ small enough (for example ρ < infi ri), see Remark 4.11 of [30]. Consequently,
Assumption (A6) is satisfied for some small enough ρ > 0.

According to our main theorem (Theorem 1.3), it follows that Problem (4.2) has
solutions and that the associated numerical scheme converges (up to a subsequence).

We can allow the radii to depend on time. In that case, the set of admissible
velocities can be written

Ct,q := {u, 〈Gij(q), u〉 ≥ 0, if Dij(t, q) = 0} ,

where

Dij(t, q) = |qi − qj | − (ri(t) + rj(t)).

As soon as ri is uniformly twice-differentiable in time and

inf
t∈[0,T ]

inf
i

ri(t) > 0,

Theorem 1.3 gives the existence of solutions to the continuous problem and the
convergence of the scheme up to a subsequence.
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These theoretical results permit to legitimate the implementation of this numer-
ical scheme. This was performed by the second author by creating SCoPI Soft-
ware [29]. We refer the reader to [10] for some good properties of stability and
robustness for the algorithm and efficiency for large time steps.

Remark 4.3. We refer the reader to [9], where the second author extends this
model in order to consider gluey particles. In this case, she add an extra parameter
(depending on q) for describing the corresponding admissible set. This new opera-
tion does not keep the necessary regularity of the admissible set. She has already
obtained a result of convergence for the associated numerical scheme in the single-
constraint case. We plan in a forthcoming work to extend this proof with the ideas
presented here in order to deal with the multi-constraint case.
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