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This article is initially inspired by a paper of Almog [2] on the effect of the electric current
in a problem in superconductivity. Our goal here is to discuss in detail the simplest
models which we think are enlightening for understanding the role of the pseudo-spectra
in this question and to relate them to recent results obtained together with Almog and
Pan. This paper is dedicated to Michelle Schatzman, who has shown her interest for
these pseudo-spectral questions by giving a course in 2006 with the french title: “Une
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1. Introduction

We would like to understand the following problem coming from superconductivity.
We consider a superconductor placed in an applied magnetic field and submitted to
an electric current through the sample. It is usually said that if the applied magnetic
field is sufficiently high, or if the electric current is strong, then the sample is in
a normal state. We are interested in analyzing the joint effect of the applied field
and the current on the stability of the normal state. As described for example in
our recent book with Fournais [13], this kind of question, without electric fields,
can be treated by using accurate semiclassical results on the spectral theory of the
Schrödinger operator with magnetic field starting with the analysis of the case with
constant magnetic field in the whole space and in the half-space. So it is natural to
start an analogous analysis when an electric current is considered.

We will start by describing the motivation of Almog’s paper. In the second
part, we will present proofs which have some general character and apply in a more
physical model, involving for example the non-self-adjoint operator −∂2

x − (∂y −
ix2

2 )2 + icy (c �= 0) on R2
x,y or its Dirichlet realization on {y > 0}, for which we

have obtained recently results together with Almog and Pan [3, 4].
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After a presentation in the next section of the general problems and of our main
results, we will come back to Almog’s analysis and will start from a nice “pseudo-
spectral” analysis for the complex Airy operator D2

x + ix
(
with Dx = −i d

dx

)
on the

line or on R+ and make a survey of what is known.
A preliminary version of this paper (with presentation of other results) was

written for the proceedings of a PDE conference in Evian [16]. Our results are also
related to recent results on the Fokker–Planck equation obtained by Helffer, Hérau,
Nier ([17] and references therein) or Villani [26].

2. The Model in Superconductivity

2.1. General context

The physical problem is posed in a domain Ω with specific boundary conditions.
We will only analyze here limiting situations where the domain possibly after a
blowing argument becomes the whole space (or the half-space). We will work in
dimension 2 for simplification (corresponding to a cylindrical 3D problem). We
assume that a magnetic field of magnitude He is applied perpendicularly to the
sample and identified with a function. We denote the Ginzburg–Landau parameter
of the superconductor by κ (κ > 0) and the normal conductivity of the sample by σ.
Then the time-dependent Ginzburg–Landau system (also known as the Gorkov–
Eliashberg equations) is in ]0, T [× Ω:{

∂tψ + iκΦψ = ∆κAψ + κ2(1 − |ψ|2)ψ ,
κ2 curl2A + σ(∂tA + ∇Φ) = κ Im (ψ̄∇κAψ) + κ2 curlHe ,

(2.1)

where ψ is the order parameter, A the magnetic potential, Φ the electric potential,
∇κA = ∇+ iκA and ∆κA = (∇+ iκA)2 is the magnetic Laplacian associated with
magnetic potential κA. In addition, (ψ,A,Φ) satisfies an initial condition at t = 0.

In order to solve this equation, one should also define a gauge (Coulomb, Lorentz,
etc.). The orbit of (ψ,A,Φ) by the gauge group is

{(exp(iκq)ψ,A + ∇q,Φ − ∂tq) | q ∈ Q},
where Q is a suitable space of regular functions of (t, x, y). We refer to [5] (Paragraph
B in the Introduction) for a discussion of this point. We will choose the Coulomb
gauge which reads that we can add the condition divA = 0 for any t. Another
possibility could be to take divA + σΦ = 0 but this will not be further discussed.
As in the analysis of the surface superconductivity, the “normal” solutions will
play an important role. We recall that a solution (ψ,A,Φ) is called a normal state
solution if ψ = 0 in the whole sample.

2.2. Stationary normal solutions

We now determine the stationary (i.e. time independent) normal solutions of the
system. From (2.1), we see that if (0,A,Φ) is such a solution, then (A,Φ) satisfies
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the system

κ2 curl(curlA) + σ∇Φ = κ2 curlHe, divA = 0 in Ω. (2.2)

Note that, identifying He with a function h, curlHe = (−∂yh, ∂xh). Interpreting
these two equations as the Cauchy–Riemann equations, this can be rewritten (in
addition to the divergence free condition) as the property that

κ2(curlA −He) + iσΦ,

is holomorphic function in Ω. In particular, if σ �= 0, Φ and curlA − He are
harmonic.

Special situation: Φ affine
As simple natural example, we observe that, if Ω = R2, (2.1) has the following
stationary normal state solution

A =
1
2J

(Jx + h)2 ı̂y, Φ =
κ2J

σ
y. (2.3)

Note that

curlA = (Jx+ h)̂ız ,

that is, the induced magnetic field equals the sum of the applied magnetic field ĥız
and the magnetic field produced by the electric current Jx̂ız .

For this normal state solution, the linearization of (2.1) with respect to the
order parameter is

∂tψ +
iκ3Jy

σ
ψ = ∆ψ +

iκ

J
(Jx + h)2∂yψ −

(
κ

2J

)2

(Jx + h)4ψ + κ2ψ. (2.4)

Applying the transformation x→ x− h/J and taking for simplification κ = 1, the
time-dependent linearized Ginzburg–Landau equation takes the form

∂ψ

∂t
+ i

J

σ
yψ = ∆ψ + iJx2 ∂ψ

∂y
−
(

1
4
J2x4 − 1

)
ψ. (2.5)

Rescaling x and t by applying

t→ J2/3t, (x, y) → J1/3(x, y), (2.6)

yields

∂tu = −(A0,c − λ)u, (2.7)

where, with Dx = −i∂x, Dy = −i∂y,

A0,c := D2
x +

(
Dy +

1
2
x2

)2

+ icy (2.8)

and

c = 1/σ, λ =
1

J2/3
, u(x, y, t) = ψ(J−1/3x, J−1/3y, J−2/3t).

Our main problem will be to analyze the long time property of the attached
semigroup.
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We now apply the transformation

u→ u eicyt

to obtain

∂tu = −
(
D2

xu+
(
Dy +

1
2
x2 − ct

)2

u− λu

)
. (2.9)

Note that by considering the partial Fourier transform with respect to the y variable,
we obtain for the Fourier transform û of u:

∂tû = −D2
xû−

[(
1
2
x2 + (−ct+ ω)

)2

− λ

]
û. (2.10)

This can be rewritten as the analysis of a family (depending on ω ∈ R) of time-
dependent problems on the line

∂tû = −Mβ(t,ω)û+ λû, (2.11)

with Mβ being the well-known anharmonic oscillator (also called the Montgomery
operator in other contexts [15] and references therein):

Mβ = D2
x +

(
1
2
x2 + β

)2

(2.12)

and

β(t, ω) = −ct+ ω.

2.3. Recent results by Almog–Helffer–Pan [3]

The main point concerning the previously defined operator A0,c is to obtain an
optimal control of the decay of the associated semigroup as t→ +∞.

Theorem 2.1. If c �= 0, A = A0,c has compact resolvent, empty spectrum, and
there exists C > 0 such that

‖exp(−tA)‖ ≤ exp

(
−2

√
2c

3
t3/2 + Ct3/4

)
, (2.13)

for any t ≥ 1 and

‖(A− λ)−1‖ ≤ exp
(

1
6c

(Reλ)3 + C (Reλ)3/2

)
, (2.14)

for all λ such that Reλ ≥ 1.

Here a semiclassical analysis of the operator Mβ as |β| → ±∞ plays an impor-
tant role. We refer to [3] for details and to [14] for the involved semiclassical
analysis.

If we consider instead the Dirichlet realization AD
c of A0,c in {y > 0}, it is easily

proven that AD
c has compact resolvent if c �= 0. We prove in [4] that if the spectrum
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of AD
c is not empty, then the decay of the semigroup exp−tAD

c is exponential with
a rate corresponding to infz∈σ(AD

c ) Re z. We will explain the argument in the case of
a simpler model: the complex Airy operator. We also conjecture in [4] that σ(AD

c )
is not empty and we give a proof of the statement for |c| large enough.

3. A Simplified Model: No Magnetic Field

We assume, following Almog [2], that a current of constant magnitude J is being
flown through the sample in the x axis direction, and that there is no applied
magnetic field: h = 0. Then (2.1) has (in some asymptotic regime) the following
stationary normal state solution

A = 0, Φ = Jx. (3.1)

For this normal state solution, the linearization of (2.1) gives

∂tψ + iJxψ = ∆x,yψ + ψ, (3.2)

whose analysis is (see ahead) strongly related to the Airy equation.

3.1. The complex Airy operator in R

This operator can be defined as the closed extension A of the differential operator
on C∞

0 (R) A+
0 := D2

x + ix. We observe that A = (A−
0 )∗ with A−

0 := D2
x − ix and

that its domain (see [21]) is

D(A) = {u ∈ H2(R), xu ∈ L2(R)}.
In particular, A has compact resolvent.

It is also easy to see that

Re 〈Au|u〉 ≥ 0. (3.3)

Hence −A is the generator of a semigroup St of contraction,

St = exp−tA. (3.4)

Hence all the results of this theory can be applied.
In particular, we have, for Reλ < 0

‖(A− λ)−1‖ ≤ 1
|Reλ| . (3.5)

One can also show that the operator is maximally accretive. We can, for exam-
ple, use the following criterion, which extends the standard criterion of essential
self-adjointness:

Theorem 3.1. For an accretive operator A0, the following conditions are equiva-
lent for its closed extension A = A0:

(i) A is maximally accretive.
(ii) There exists λ0 > 0 such that A∗

0 + λ0I is injective.
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In our case it is immediate to verify that D2
x − ix+ λ is actually injective in S′(R)

(take the Fourier transform).
A very special property of this operator is that, for any a ∈ R,

TaA = (A− ia)Ta, (3.6)

where Ta is the translation operator (Tau)(x) = u(x− a).
As immediate consequence, we obtain that the spectrum is empty and that the

resolvent of A, which is defined for any λ ∈ C satisfies

‖(A− λ)−1‖ = ‖(A− Reλ)−1‖. (3.7)

One can also look at the semiclassical question, i.e. consider the operator

Ah = h2D2
x + ix, (3.8)

and observe that it is the toy model for some results of Dencker–Sjöstrand–Zworski
[11]. The symbol is (x, ξ) �→ p(x, ξ) = ξ2 + ix and microlocally at (0, 0), we have
{Re p, Im p}(0, 0) = 0 and {Im p, {Re p, Im p}}(0, 0) �= 0.

Of course in such a homogeneous situation one can go from one point of view to
the other but it is sometimes good to look at what each theory gives on this very
particular model. We refer for example to the lectures by Sjöstrand [23].

The most interesting property is the control of the resolvent for Reλ ≥ 0.

Proposition 3.1. (W. Bordeaux-Montrieux [6]) As Reλ→ +∞, we have

‖(A− λ)−1‖ ∼
√
π

2
(Reλ)−

1
4 exp

4
3
(Reλ)

3
2 . (3.9)

This improves a previous result by Martinet [21]. The proof of the (rather stan-
dard) upper bound is based on the direct analysis of the semigroup in the Fourier
representation. We note indeed that

F(D2
x + ix)F−1 = ξ2 − d

dξ
. (3.10)

Then we have

FStF−1v = exp
(
−ξ2t− ξt2 − t3

3

)
v(ξ + t), (3.11)

and this implies immediately

‖St‖ = exp max
ξ

(
−ξ2t− ξt2 − t3

3

)
= exp

(
− t3

12

)
. (3.12)

Then one can get an estimate of the resolvent by using, for λ ∈ C, the formula

(A− λ)−1 =
∫ +∞

0

exp−t(A− λ) dt. (3.13)

The right-hand side can be estimated using (3.12) and the Laplace method.
For a closed accretive operator, (3.13) is standard when Reλ < 0, but estimate

(3.12) on St gives immediately a holomorphic extension of the right-hand side to
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the whole space, showing independently that the spectrum is empty (see Davies
[8]) and giving for λ > 0 the estimate

‖(A− λ)−1‖ ≤
∫ +∞

0

exp
(
λt− t3

12

)
dt. (3.14)

The asymptotic behavior as λ → +∞ of this integral is immediately obtained by
using the Laplace method and the dilation t = λ

1
2 s in the integral.

The proof by [21] of the lower bound is obtained by constructing quasimodes for
the operator (A − λ) in its Fourier representation. We observe (assuming λ > 0),
that

ξ �→ u(ξ;λ) := exp
(
ξ3

3
− λξ − 2

3
λ

3
2

)
(3.15)

is a solution of (
− d

dξ
+ ξ2 − λ

)
u(ξ;λ) = 0. (3.16)

Multiplying u(·;λ) by a cutoff function χλ with support in ]−∞,
√
λ[ and χλ = 1

on ]−∞,
√
λ − 1[, we obtain a very good quasimode, concentrated as λ → +∞,

around −√
λ, satisfying(

− d

dξ
+ ξ2 − λ

)
(χλu(ξ;λ)) = rλ(ξ), (3.17)

where rλ is with support in [
√
λ−1,

√
λ] and of order e−

4
3 λ

3
2 . This is not far of giving

the announced lower bound for the resolvent. The proof by Bordeaux-Montrieux is
by introducing a Grushin’s problem.

Of course this is a very special case of a result on the pseudo-spectra but this
leads to an almost optimal result.

4. Pseudo-Spectra and Semigroups

We arrive now at the analysis of the properties of a contraction semigroup exp−tA,
with A maximally accretive. As before, we have, for Reλ < 0,

‖(A− λ)−1‖ ≤ 1
|Reλ| . (4.1)

If we add the assumption that Im 〈Au, u〉 ≥ 0 for all u in the domain of A, one gets
also for Imλ < 0

‖(A− λ)−1‖ ≤ 1
|Imλ| , (4.2)

so the main remaining question is the analysis of the resolvent in the set Reλ ≥
0, Imλ ≥ 0, which corresponds to the numerical range of the operator.
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We recall that, for any ε > 0, we define the ε-pseudo-spectra by

Σε(A) =
{
λ ∈ C | ‖(A− λ)−1‖ > 1

ε

}
, (4.3)

with the convention that ‖(A− λ)−1‖ = +∞ if λ ∈ σ(A).
We have

∩ε>0Σε(A) = σ(A). (4.4)

We define, for any ε > 0, the ε-pseudo-spectral abscissa by

α̂ε(A) = inf
z∈Σε(A)

Re z (4.5)

and the growth bound of A by

ω̂0(A) = lim
t→+∞

1
t

log ‖exp−tA‖. (4.6)

Of course, by considering eigenfunctions, we have

−ω̂0(A) ≤ inf
z∈σ(A)

Re z, (4.7)

but the equality is wrong in general. The right behavior is given by:

Theorem 4.1. (Gearhart–Prüss) Let A be a densely defined closed operator in a
Hilbert space X such that −A generates a contraction semigroup, then

lim
ε→0

α̂ε(A) = −ω̂0(A). (4.8)

We refer to [12] for a proof and to [18] for a more quantitative version of this
theorem.

5. The Complex Airy Operator in R+

5.1. Spectral analysis

Here we mainly describe some results presented in [2], who refers to [20]. We consider
the Dirichlet realization AD of the complex Airy operator D2

x + ix on the half-line,
whose domain is

D(AD) = {u ∈ H1
0 (R+), x

1
2u ∈ L2(R+), (D2

x + ix)u ∈ L2(R+)}, (5.1)

and which is defined (in the sense of distributions) by

ADu = (D2
x + ix)u. (5.2)

Moreover, by construction, we have

Re 〈ADu |u〉 ≥ 0, ∀u ∈ D(AD). (5.3)

Again we have an operator, which is the generator of a semigroup of contraction,
whose adjoint is described by replacing in the previous description (D2

x + ix) by
(D2

x − ix), the operator is injective and as its spectrum contained in Reλ > 0.
Moreover, the operator has compact inverse, hence the spectrum (if any) is discrete.
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Using what is known on the usual Airy operator, Sibuya’s theory and a complex
rotation, we obtain ([2]) that the spectrum of AD is given by

σ(AD) =
+∞⋃
j=1

{λj} (5.4)

with

λj = −
(

exp i
π

3

)
µj , (5.5)

the µj ’s being real zeros of the Airy function satisfying

0 > µ1 > · · · > µj > µj+1 > · · · . (5.6)

As can be recovered by Weyl’s formula, there exists a constant c �= 0 such that
µj ∼ cj

2
3 . It is also in [2] that the vector space generated by the corresponding

eigenfunctions is dense in L2(R+). But there is no way to normalize these eigen-
functions for getting a good basis of L2(R+). See Almog [2], Davies [9] and Henry
[19] who show that the norm of the spectral projector πn associated with the nth
eigenvalue increases exponentially like expαn for some α > 0. Following Davies [9],
we say in this case that AD is spectrally wild.

5.2. Decay of the semigroup

We now apply Gearhart–Prüss theorem to our operator AD and our main
theorem is:

Theorem 5.1.

ω̂0(AD) = −Reλ1 = µ1/2. (5.7)

This statement was established by Almog [2] in a much weaker form. Using the first
eigenfunction it is easy to see that

‖ exp−tAD‖ ≥ exp−Reλ1t. (5.8)

Hence we immediately have

0 ≥ ω̂0(AD) ≥ −Reλ1. (5.9)

To prove that −Reλ1 ≥ ω̂0(AD), it is enough to show the following lemma.

Lemma 5.1. For any α < Reλ1, there exists a constant C such that, for all λ s.t.
Reλ ≤ α

‖(AD − λ)−1‖ ≤ C. (5.10)

Proof. We know that λ is not in the spectrum. Hence the problem is just a control
of the resolvent as |Imλ| → +∞. The case when Imλ < 0 has already be considered.
Hence it remains to control the norm of the resolvent as Imλ → +∞ and Reλ ∈
[−α,+α].
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This is indeed a semiclassical result.a The main idea is that when Imλ→ +∞,
we have to inverse the operator

D2
x + i(x− Imλ) − Reλ.

If we consider the Dirichlet realization in the interval ]0, Im λ
2 [ of D2

x + i(x− Imλ)−
Reλ, it is easy to see that the operator is invertible by considering the imaginary
part of this operator and that this inverse R1(λ) satisfies

‖R1(λ)‖ ≤ 2
Imλ

.

Far from the boundary, we can use the resolvent R(λ) of the problem on the line
for which we have a uniform control of the norm for Reλ ∈ [−α,+α].

More precisely (see [4] for details) we approximate the resolvent by

φ1,λR1(λ)φ1,λ + φ2,λR(λ)φ2,λ,

where φj,λ(x) = φj( x
Im λ) (for j = 1, 2), Suppφ1 ⊂ ]−∞, 1

2 [, Suppφ2 ⊂ ]14 ,+∞[ and
φ2

1 + φ2
2 = 1 on [0,+∞[.

5.3. Physical interpretation

Coming back to the application in superconductivity, one is looking at the semi-
group associated with AJ := D2

x + iJx − 1 (where J ≥ 0 is a parameter). The
stability analysis leads to a critical value

Jc = (Reλ1)−
3
2 , (5.11)

such that:

• For J ∈ [0, Jc[, ‖ exp−tAJ‖ → +∞ as t→ +∞.
• For J > Jc, ‖ exp−tAJ‖ → 0 as t → +∞.

This improves Lemma 2.4 in Almog [2], who gets only this decay for ‖exp−tAJψ‖,
with ψ in a specific dense subspace in L2(R+).

6. Numerical Computations

There is a classical picture due to Trefethen of the pseudo-spectra of the Davies
operator D2

x + ix2 on the line. Our picture gives the corresponding one real-
ized for the case of the complex Airy operator by Bordeaux-Montrieux, who has
used eigtool.b The picture gives the level-curves C(ε) of the norm of the resolvent
‖(A− z)−1‖ = 1

ε corresponding to the boundary of the ε-pseudo-spectra. The right
column gives the correspondence between the color and log10(ε).

aAfter a dilation the operator becomes Im λ
“
h2D2

x + i(x − 1) − Re λ
Im λ

”
with h = |Im λ|− 3

2 .
bsee http://www-pnp.physics.ox.ac.uk/∼stokes/courses/scicomp/eigtool/html/eigtool/documen-
tation/menus/airy-demo.html and http://www.comlab.ox.ac.uk/pseudospectra/eigtool/.
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As usual for this kind of computation for non-self-adjoint operators, we observe,
in addition to the (discrete) spectrum lying on the half-line of argument π

4 (respec-
tively π

3 ), an unexpected spectrum starting from the fifteenth eigenvalue. This was
already observed by Davies for the complex harmonic oscillator D2

x + ix2. This is
immediately connected with the accuracy of the computations of Maple.

If we consider the level curves C(ε), Bordeaux-Montrieux [6] gets for the Davies
operator

Im z = (1 + o(1))
(

3
2

)2
3

(Re z)
1
3

(
ln

(Re z)
1
3

ε

)2
3

as Re z → +∞.
The computation for the picture is done on an interval [0, L] with Dirichlet

conditions at 0 and L using 400 “grid points”. The figure gives the level-curves of
the norm of the resolvent ‖(A−z)−1‖ = 1

ε corresponding for each ε to the boundary
of the ε-pseudo-spectrum. The right column gives the correspondence between the
color and log10(ε).

In the upper part of the Airy-picture in Fig. 1, these level-curves become asymp-
totically vertical lines corresponding to the fact that each ε-pseudo-spectrum of the
Airy operator is a left-bounded half-plane.

Fig. 1. Pseudo-spectra of the Airy complex operator with Dirichlet condition. (The original, color
version of this picture is visible at http://www.math.u-psud.fr/helffer/pseudoairy.jpg.)
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A more accurate analysis of the figure also shows that for ε = 10−1, the ε-pseudo-
spectrum has two components, the bounded one containing the first eigenvalue.
For ε = 10−2, the ε-pseudo-spectrum has three components, each bounded one
containing one eigenvalue. Note also the property that, for a given k, as ε → 0,
the component of the ε-pseudo-spectrum containing one eigenvalue µk becomes
asymptotically a disk centered at µk.

7. Higher Dimension Problems Relative to Airy

Here we follow (and extend) Almog [2].

7.1. The model in R2

We consider the operator

A2 := −∆x,y + ix. (7.1)

Proposition 7.1.

σ(A2) = ∅. (7.2)

Proof. After a Fourier transform in the y variable, it is enough to show that

(Â2 − λ)

is invertible with

Â2 = D2
x + ix+ η2. (7.3)

We just have to control, for a given λ ∈ C, the norm of (D2
x + ix+η2−λ)−1 (whose

existence is given by the 1D result) in L(L2(R)), uniformly with respect to η.

7.2. The model in R
2
+: perpendicular current

Here it is useful to reintroduce the parameter J , which is assumed to be positive.
Hence we consider the Dirichlet realization

AD,⊥
2 := −∆x,y + iJx (7.4)

in R2
+ = {x > 0}.

Proposition 7.2.

σ(AD,⊥
2 ) = ∪r≥0,j∈N∗(λj + r), (7.5)

where the λj ’s have been introduced in (5.5).

Proof. For the inclusion ⋃
r≥0,j∈N∗

(λj + r) ⊂ σ(AD,⊥
2 ),

we can use L∞ eigenfunctions in the form

(x, y) �→ uj(x) exp iyη,
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where uj is the eigenfunction associated to λj . We have then use the fact that
L∞-eigenvalues belong to the spectrum. This can be formulated in the following
proposition.

Proposition 7.3. Let Ψ ∈ L∞(R2
+) ∩H1

loc(R
2
+) satisfying, for some λ ∈ C,

−∆x,yΨ + iJxΨ = λΨ (7.6)

in R2
+ and

Ψx=0 = 0. (7.7)

Then either Ψ = 0 or λ ∈ σ(AD,⊥
2 ).

The strong relation between the spectrum and the existence of generalized eigen-
functions is well known (under the name of Sch’nol’s theorem), see [13] and [3].

For the opposite inclusion, we observe that we have to control uniformly

(AD − λ+ η2)−1

with respect to η under the condition that

λ �∈
⋃

r≥0,j∈N∗
(λj + r).

It is enough to observe the uniform control as η2 → +∞ which results from (4.1).

7.3. The model in R
+
2 : Parallel current

Here the models are the Dirichlet realization in R
2
+:

AD,‖
2 = −∆x,y + iJy, (7.8)

or the Neumann realization

AN,‖
2 = −∆x,y + iJy. (7.9)

Using the reflexion (or antireflexion) trick, we can see the problem as a problem on
R2 restricted to odd (respectively even) functions with respect to (x, y) �→ (−x, y).
It is clear from Proposition 7.1 that in this case the spectrum is empty.

Remark 7.1. The case when the current is neither parallel nor perpendicular is
open.
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