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1. Introduction

Motivated by the study of discrete mechanical systems submitted to perfect uni-
lateral constraints, we consider in this paper second-order differential inclusions of
the form

ü + N(K(t), u) � g(t, u), (1.1)

where K(t) is a subset of R
d characterized by the following geometrical inequalities

u ∈ K(t) ⇔ fα(t, u) ≥ 0, α ∈ {1, . . . , ν}
with smooth functions fα and N(K(t), u) is the normal cone to K(t) at u given by

N(K(t), u) =




{0} if u ∈ Int(K(t)),


∑
α∈J(t,u)

λα∇ufα(t, u), λα ≤ 0


 if u ∈ ∂K(t),

∅ otherwise

with J(t, u) = {α ∈ {1, . . . , ν}; fα(t, u) ≤ 0}, i.e. J(t, u) is the set of active con-
straints at the point (t, u).
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The inclusion (1.1) may describe the motion of a mechanical system subjected
to the frictionless unilateral contraints

u(t) ∈ K(t) ∀ t. (1.2)

Indeed, with the definition of N(K(t), ·), any solution of (1.1) will satisfy (1.2) and,
as long as u(t) ∈ Int(K(t)), the motion will be described simply by the Ordinary
Differential Equation

ü = g(t, u).

Furthermore, if u(t) ∈ Int(K(t)) for all t ∈ (t0, t1) ∪ (t1, t2), with u(t1) ∈ ∂K(t1),
then

u̇(t−1 ) ∈ −T (K(t1), u(t1)), u̇(t+1 ) ∈ T (K(t1), u(t1)) (1.3)

with

T (K(t), u) = {v ∈ R
d; ∂tfα(t, u) + 〈∇ufα(t, u), v〉 ≥ 0 for all α ∈ J(t, u)}.

It follows that the velocity may be discontinuous at t1 and the model has to be
completed with an impact law. In this paper, we will assume that

u̇(t+) = Proj(T (K(t), u(t)), u̇(t−)). (1.4)

Observing that T (K(t), u(t)) is the set of kinematically admissible right veloc-
ities at the instant t, this relation relies on a minimization property of the kinetic
energy at impacts and thus seems to be the most physically relevant (see [11] or [13],
for a more mathematical justification in the case of time-independent constraints
see also [22]).

The adequate framework for the solutions is thus the set of absolutely contin-
uous functions u which derivative u̇ belongs to the space of functions of bounded
variation. More precisely, for any initial data (u0, v0) ∈ K(0)×T (K(0), u0), we will
consider the following Cauchy problem:

Problem (P). Find u : [0, τ ] → R
d, with τ > 0, such that

(P1) u is absolutely continuous on [0, τ ], u̇ ∈ BV (0, τ ; Rd),
(P2) u(t) ∈ K(t) for all t ∈ [0, τ ],
(P3) the measure µ = du̇ − g(·, u)dt satisfies the differential inclusion (1.1) in the

following sense: there exists ν scalar measures λα such that


du̇ − g(·, u)dt =
ν∑

α=1

λα∇ufα(·, u)

λα ≥ 0, Supp(λα) ⊂ {t ∈ [0, T ]; fα(t, u(t)) = 0} ∀α ∈ {1, . . . , ν}.
(P4) u̇(t+) = Proj(T (K(t), u(t)), u̇(t−)) for all t ∈ (0, τ),
(P5) u(0) = u0, u̇(0+) = v0.
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For this problem, existence and approximation of solutions have been studied by
several authors in the case of time-independent constraints, i.e. when the functions
fα do not depend on t.

The first results deal with the single-constraint case, i.e. ν = 1: two different
types of time-stepping schemes, formulated either at the position level or at the
velocity level, have been proposed and their convergence established (see [14, 19, 20,
23] for position-based algorithms or [10, 8, 9, 6, 7] for velocity-based algorithms).
These results have been extended to the multi-constraint case, i.e. ν ≥ 2, more
recently (see [16–18]). In both cases (ν = 1 or ν ≥ 2), the very complete study of
Ballard ([1]) can be applied if the data are analytical, leading to the uniqueness of
a maximal solution. Unfortunately, for less regular data, uniqueness is not true in
general and several counter-examples can be found in the literature (see [5, 24] or
[1] for instance).

On the contrary, for time-dependent constraints, very few results are available.
In [25], Schatzman established an existence result in the case of a single constraint
by using a penalty method, which also provides a sequence of approximate solu-
tions. Unfortunately this technique is not well suited for implementation since it
transforms the differential inclusion into a very stiff Ordinary Differential Equation,
which stiffness is related to the penalty parameter (see [21] for a more detailed dis-
cussion). It is then necessary to try to adapt the time-stepping schemes to the time-
dependent contraints framework. A first step in this direction has been achieved in
a very recent paper ([2]), in which the authors prove the convergence of a general-
ization of the velocity based algorithms when the sets of admissible positions are
defined as a finite intersection of complements of convex sets (i.e. the mappings fα

are assumed to be convex with respect to their second argument). Of course this
last assumption is a severe restriction to the applicability of their result and it is
important to relax it. The aim of this paper is thus to propose a generalization of
the position-based algorithms and to prove their convergence in a more general geo-
metrical setting than in [2]. Let us also mention another extension of [2] where the
sets K(t) are replaced by a given Lipschitz and admissible set-valued map t �→ C(t)
(see [3] and Definition 2.13 of admissible set-valued maps). We should emphasize
that all these results give, as a by-product, global existence results.

So we adopt the same regularity assumptions for the data as in [2] but we will
not assume any convexity property for the mappings fα. More precisely, let T > 0,
we assume:

(H1) The mappings fα, α ∈ {1, . . . , ν}, belong to C2([0, T ] × R
d; R) and for all

t ∈ [0, T ], the set K(t) = {u ∈ R
d; fα(t, u) ≥ 0, ∀α ∈ {1, . . . , ν}} is not

empty.

We define

K = {(t, u) ∈ [0, T ]× R
d; u ∈ K(t)}
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and for any r > 0, Kr is the neighborhood of K given by

Kr = {(s, y) ∈ [0, T ] × R
d; ∃ (t, u) ∈ K/|s− t| ≤ r, ‖y − u‖ ≤ r}.

(H2) There exist r > 0, m > 0 and M > 0 such that, for all (s, y) ∈ Kr:

m ≤ ‖∇ufα(s, y)‖ ≤ M, ‖∂tfα(s, y)‖ ≤ M,

‖∂2
t fα(s, y)‖ ≤ M, ‖∂t∇ufα(s, y)‖ ≤ M, ‖D2

ufα(s, y)‖ ≤ M.

Moreover there exist γ > 0 and ρ > 0 such that, for all t ∈ [0, T ] and for all
u ∈ K(t):

∑
α∈Jρ(t,u)

λα‖∇ufα(t, u)‖ ≤ γ

∥∥∥∥∥∥
∑

α∈Jρ(t,u)

λα∇ufα(t, u)

∥∥∥∥∥∥
∀λα ∈ R+, α ∈ Jρ(t, u),

where Jρ(t, u) is the set of almost active constraints at (t, u) defined by

Jρ(t, u) = {α ∈ {1, . . . , ν}; fα(t, u) ≤ ρ}.

(H3) The function g is a Caratheodory function from [0, T ]×R
d with values in R

d,

i.e. g(·, u) is measurable on [0, T ] for all u ∈ R
d and g(t, ·) is continuous on

R
d for all t ∈ [0, T ], and there exist kg > 0 and F ∈ L1(0, T ; R) such that, for

almost every t ∈ [0, T ] we have

‖g(t, u) − g(t, ũ)‖ ≤ kg‖u − ũ‖ ∀ (u, ũ) ∈ (Rd)2 s.t. (t, u) ∈ Kr, (t, ũ) ∈ Kr,

‖g(t, u)‖ ≤ F (t) ∀u ∈ R
d, s.t. (t, u) ∈ Kr.

Let us emphasize that (H2) is a kind of uniform positive linear independence
property for the vectors (∇qfα(t, u))α∈J(t,u) which implies a uniform prox-regularity
property for the sets K(t), t ∈ [0, T ] (see [2] or [4]) but does not imply convexity. In
particular this geometrical framework is much more general than the one considered
in [1, 16, 17] since it allows us to consider also cases where the active constraints
are not linearly independent, i.e. (∇ufα(t, u))α∈J(t,u) is not linearly independent.

One of the main interesting consequences of assumption (H2) is the following
result.

Lemma 1.1. There exist τ ∈ (0, r], θ ∈ (0, r], κ > 0 and δ > 0 such that, for all
t ∈ [0, T ] and for all u ∈ K(t), there exists a unit vector v(t, u) such that, for all
s ∈ [t − τ, t + τ ] ∩ [0, T ] and for all y ∈ B(u, θ), we have:

〈∇fα(s, y), v(t, u)〉 ≥ δ ∀α ∈ Jκ(s, y).

The proof of the technical lemma can be found in Lemma 5.1 of [4].
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Now let us describe our time-discretization algorithm: let h ∈ (0, r] be a given
time-step, we define tn = nh for all n ≥ 0 and

• U−1 = u0 − hv0, U0 = u0,
• for all n ∈ {0, . . . , �T

h � − 1},

Gn =
1
h

∫ tn+1

tn

g(s, Un)ds (1.5)

and

Wn = 2Un − Un−1 + h2Gn, Un+1 ∈ Argmin
z∈K(tn+1)

‖Wn − z‖. (1.6)

We may observe that this scheme coincides with the one proposed in [16] when
the constraints do not depend on time and are convex and it is a natural gen-
eralization of the position-based algorithms introduced for the first time in [14].
Furthermore, it is also closely related to the algorithm proposed in [2]. Indeed, let
us define the discrete velocities as

V n =
Un+1 − Un

h
∀n ∈

{
−1, . . . , N(h) :=

⌊
T

h

⌋
− 1
}

.

If we replace K(tn+1) by its convex approximation given by

K̃(tn+1, U
n)

= {q ∈ R
d; fα(tn+1, U

n) + 〈∇qfα(tn+1, U
n), q − Un〉 ≥ 0 ∀α ∈ {1, . . . , ν}},

then (1.6) is replaced by

Un+1 = Proj(K̃(tn+1, U
n), 2Un − Un−1 + h2Gn)

which is equivalent to

Un+1 = Un + hV n (1.7)

with

V n = Proj(Kh(tn+1, U
n), V n−1 + hGn) (1.8)

and

Kh(tn+1, U
n)

= {v ∈ R
d; fα(tn+1, U

n) + h〈∇qfα(tn+1, U
n), v〉 ≥ 0 ∀α ∈ {1, . . . , ν}}.

This is exactly the scheme introduced by Bernicot and Lefebvre-Lepot in [2]. From
a numerical point of view, it is clear that the algorithm defined by (1.7) and (1.8)
is much more easy to handle than the one defined by (1.6) but (1.7) and (1.8)
does not ensure the feasibility of the approximate positions if the functions fα,
α ∈ {1, . . . , ν}, are not convex with respect to their second argument while we
always have Un ∈ K(tn) for all nh ∈ [0, T ] with (1.5) and (1.6).
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As a consequence, the convergence proof that is given in the following sections
will allow us to extend the results of [14, 19, 16] to the more general setting associ-
ated to the assumption (H2) and to extend the result of [2] to the case of non-convex
functions fα. As usual in the multi-constraint case, we cannot expect to prove that
the limit satisfies the prescribed impact law (1.4) without introducing some fur-
ther geometrical assumptions on the active constraints along the limit trajectory.
Indeed, the model problem of a material point moving in an angular domain of R

2

shows that continuity on data is lost if the active constraints create obtuse angles
(see [15] for a detailed computation). Hence it appears that a necessary condition
to ensure continuity on data is given by

〈∇ufα(t, u(t)),∇ufβ(t, u(t))〉 ≤ 0 ∀ (α, β) ∈ J(t, u(t))2, α �= β, ∀ t ∈ [0, T ]

and it has been established in [15] that it is also a sufficient condition when the
constraints do not depend on time. It is straightforward to extend this result to the
smoothly time-dependent framework considered here.

So we define the sequence of approximate solutions (uh)h>0 by a linear interpo-
lation of the Uns, i.e.

uh(t) = Un + (t − nh)
Un+1 − Un

h
∀ t ∈ [nh, (n + 1)h], ∀n ∈

{
0, . . . ,

⌊
T

h

⌋
− 1
}

,

uh(t) = U �T/h� +
(

t −
⌊

T

h

⌋
h

)
V �T/h�−1 ∀ t ∈

[⌊
T

h

⌋
h, T

]

and we prove

Theorem 1.1. Let us assume that (H1)–(H3) hold. Let (u0, v0) ∈ K(0) ×
T (K(0), u0). Then, possibly extracting a subsequence still denoted (uh)h>0, the
approximate solutions converge uniformly on [0, T ] to a limit u which satisfies prop-
erties (P1)–(P3). Furthermore, if

(H4) 〈∇ufα(t, u(t)),∇ufβ(t, u(t))〉 ≤ 0 ∀ (α, β) ∈ J(t, u(t))2, α �= β, ∀ t ∈ [0, T ]

then u also satisfies properties (P4) and (P5) and is a solution of problem (P)
on [0, T ].

Let us emphasize that since uniqueness is not true in general for such prob-
lems, we cannot expect the convergence of the whole sequence of approximate
solutions.

The rest of the paper is organized as follows. In Sec. 2, we establish some a priori
estimates for the discrete velocities and accelerations. Then, in Sec. 3, we pass to
the limit by using Ascoli’s and Helly’s theorem and we prove that the limit motion
is feasible and satisfies properties (P1)–(P3). Finally, assuming that (H4) holds, we
prove in Sec. 4 that the initial data and the impact law are satisfied at the limit.
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2. A Priori Estimates

We prove first two preliminary lemmas.

Lemma 2.1. For all h ∈ (0, min
(
r, T

2

))
and for all n ∈ {0, . . . , N(h)−1}, N(h) :=

�T
h �, we have

V n−1 − V n + hGn ∈ N(K(tn+1), Un+1). (2.1)

Furthermore, if h‖V n‖ ≤ r, we get

∂tfα(tn+1, U
n+1) + 〈∇qfα(tn+1, U

n+1), V n〉 ≤ Mh

2
(1 + ‖V n‖)2

∀α ∈ J(tn+1, U
n+1). (2.2)

Proof. Let h ∈ (0, min
(
r, T

2

))
and n ∈ {0, . . . , N(h) − 1}. By definition of the

scheme, for all z ∈ K(tn+1) we have

‖Wn − Un+1‖2 ≤ ‖Wn − z‖2

= ‖Wn − Un+1‖2 + 2〈Wn − Un+1, Un+1 − z〉 + ‖Un+1 − z‖2.

Since Wn − Un+1 = h(V n−1 − V n + hGn), it follows that

〈V n−1 − V n + hGn, z − Un+1〉 ≤ 1
2
‖Un+1 − z‖2 ∀ z ∈ K(tn+1). (2.3)

If Un+1 ∈ Int(K(tn+1)), we immediately get V n−1 − V n + hGn = 0 and the
announced result holds. Otherwise, J(tn+1, U

n+1) �= ∅ and we may define

T 0(K(tn+1), Un+1) = {w ∈ R
d; 〈∇ufα(tn+1, U

n+1), w〉 ≥ 0 ∀α ∈ J(tn+1, U
n+1)}

and

T̃ 0(K(tn+1), Un+1) = {w ∈ R
d; 〈∇ufα(tn+1, U

n+1), w〉 > 0 ∀α ∈ J(tn+1, U
n+1)}.

Let w̃ ∈ T̃ 0(K(tn+1), Un+1). The C2-regularity of the mappings fα, α = 1, . . . , ν,
implies that the smooth curve ϕ : s �→ Un+1 + sw̃ satisfies ϕ(s) ∈ K(tn+1) for all
s in a right neighborhood of 0. Thus, by choosing z = ϕ(s) in (2.3) and letting s

goes to 0, we obtain

〈V n−1 − V n + hGn, w̃〉 ≤ 0.

But T̃ 0(K(tn+1), Un+1) is dense in T 0(K(tn+1), Un+1). Indeed, with Lemma 1.1,
we know that there exists a unit vector v(tn+1, U

n+1) ∈ T̃ 0(K(tn+1), Un+1). Thus,
for all w ∈ T 0(K(tn+1), Un+1) the sequence (wk)k∈N∗ defined by wk = w +
1
kv(tn+1, U

n+1) for all k ≥ 1 converges to w and satisfies wk ∈ T̃ 0(K(tn+1), Un+1)
for all k ≥ 1. Hence we have

〈V n−1 − V n + hGn, w〉 ≤ 0 ∀w ∈ T 0(K(tn+1), Un+1)

and we may obtain (2.1) by using Farkas’s lemma.



June 6, 2011 11:54 WSPC/S1793-7442 251-CM S179374421100031X

270 L. Paoli

In order to prove (2.2) we observe that, for all α ∈ J(tn+1, U
n+1), we have

0 = fα(tn+1, U
n+1) ≤ fα(tn, Un) and thus

0 ≤ fα(tn, Un) − fα(tn+1, U
n+1)

= −h

∫ 1

0

(∂tfα(tn+1 − sh, Un+1 − shV n)

+ 〈∇qfα(tn+1 − sh, Un+1 − shV n), V n〉ds.

It follows that

∂tfα(tn+1, U
n+1) + 〈∇ufα(tn+1, U

n+1), V n〉

≤
∫ 1

0

(∂tfα(tn+1, U
n+1) − ∂tfα(tn+1 − sh, Un+1 − shV n))ds

+
∫ 1

0

〈∇ufα(tn+1, U
n+1) −∇ufα(tn+1 − sh, Un+1 − shV n), V n〉ds

≤ Mh

2
(1 + ‖V n‖)2.

We can reformulate (2.1) as follows: for all h ∈ big(0, min
(
r, T

2

))
and for all n ∈

{0, . . . , N(h)− 1} there exists a family of non-negative real numbers (λn
α)α∈{1,...,ν}

such that λn
α = 0 for all α �∈ J(tn+1, U

n+1) and

V n − V n−1 − hGn =
ν∑

α=1

λn
α∇ufα(tn+1, U

n+1). (2.4)

This relation is the discrete analogous of property (P3) and V n−V n−1

h −Gn can be
interpreted as a discrete reaction force at tn.

Let us assume from now on that h ∈ (0, h∗] with

h∗ = min

(
r,

T

2
,

κ

M
(
1 + 2M

δ

) , 1(
1 + 2M

δ

)2 ,
rδ

2M

)
.

Lemma 2.2. Let h ∈ (0, h∗]. For all n ∈ {0, . . . , N(h) − 1}, we have

‖V n‖ ≤ 2‖V n−1‖ + 2h‖Gn‖ +
2M

δ
. (2.5)

Proof. Let h ∈ (0, h∗] and n ∈ {0, . . . , N(h) − 1}. We define w = 2M
δ v(tn, Un),

where v(tn, Un) is the unit vector defined at Lemma 1.1 for (t, u) = (tn, Un). Then
Un + hw ∈ K(tn+1). Indeed, for all α �∈ Jκ(tn, Un), we have

fα(tn+1, U
n + hw) = fα(tn, Un) + h

∫ 1

0

(∂tfα(tn + sh, Un + shw)

+ 〈∇ufα(tn + sh, Un + shw), w〉)ds

≥ κ − hM(1 + ‖w‖) ≥ κ − hM

(
1 +

2M

δ

)
≥ 0
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and for all α ∈ Jκ(tn, Un) we have

fα(tn+1, U
n + hw) = fα(tn, Un) + h(∂tfα(tn, Un) + 〈∇qfα(tn, Un), w〉)

+ h

∫ 1

0

(∂tfα(tn + sh, Un + shw) − ∂tfα(tn, Un)|)ds

+ h

∫ 1

0

〈∇ufα(tn + sh, Un + shw) −∇ufα(tn, Un), w〉)ds

≥ h(−M + δ‖w‖) − h2M(1 + ‖w‖2)

≥ h

(
M − hM

(
1 +
(

2M

δ

)2
))

≥ 0.

By definition of Un+1 it follows that

‖2Un − Un−1 + h2Gn − Un+1‖ ≤ ‖2Un − Un−1 + h2Gn − Un − hw‖

and thus

‖V n−1 − V n + hGn‖ ≤ ‖V n−1 − w + hGn‖

which yields the conclusion.

Now we will prove a global uniform estimate for the discrete velocities.

Proposition 2.1. There exist h1 ∈ (0, h∗] and C > 0 such that

‖V n‖ ≤ C ∀n ∈ {0, . . . , N(h)}, ∀h ∈ (0, h1]. (2.6)

Proof. Let us define two real sequences (Ck)k∈N and (τk)k∈N∗ by

C0 = ‖v0‖ + 1,

Ck = Ck−1 +
4M

δ
+ ‖F‖L1(0,T ;Rd) = C0 + k

(
4M

δ
+ ‖F‖L1(0,T ;Rd)

)
∀ k ≥ 1

and

τk =
min(τ, θ)

2Ck
=

min(τ, θ)
2C0 + 2k

(
4M
δ + ‖F‖L1(0,T ;Rd)

) ∀ k ≥ 1.

It is clear that
∑

k≥1 τk is a divergent sum, thus there exists k0 ≥ 1 such that∑k0
k=1 τk > T . The main idea of the proof is to show that there exists h1 ∈ (0, h∗]
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such that, for all h ∈ (0, h1], there exists a finite family of real numbers (τh
k )1≤k≤kh

0

such that τh
0 = 0 < τh

1 < · · · < τh
kh
0

= T with 1 ≤ kh
0 ≤ k0 and

‖V n‖ ≤ Ck ∀n ∈ {0, . . . , N(h) − 1} s.t. nh ∈ [τh
k−1, τ

h
k ), ∀ k ∈ {1, . . . , kh

0 }.

The conclusion of the proof will follow with the choice C = Ck0 .
We define

C̃ = 2C + 2‖F‖L1(0,T ;Rd) +
2M

δ
and

h1 = min
(

h∗,
τ

3
,

θ

3C̃
,

r

2C̃
,

1
1 + C̃

,
τk0

2

)
.

Let h ∈ (0, h1]. We will obtain a global uniform estimate for the velocities by an
induction argument.

Since (t0, U0) = (0, q0) ∈ K, we define w0 = 2M
δ v(t0, U0). First we observe that

‖V −1‖ = ‖v0‖ ≤ C0 ≤ C, which implies, with Lemma 2.2, that ‖V 0‖ ≤ C̃. Hence
(t1, U1) ∈ B(t0, τ) × B(U0, θ) since 0 < h ≤ h1. With Lemma 2.1 we infer that
w0 − V 0 ∈ T 0(K(t1), U1). Indeed, for all α ∈ J(t1, U1)

〈∇ufα(t1, U1), w0 − V 0〉 ≥ 〈∇ufα(t1, U1), w0〉 + ∂tfα(t1, U1) − Mh

2
(1 + ‖V 0‖)

≥ δ‖w0‖ − M − Mh

2
(1 + C̃) ≥ M

2
.

It follows that

〈(V −1 − w0) − (V 0 − w0) + hG0, w0 − V 0〉 ≤ 0.

Thus

‖V 0 − w0‖ ≤ ‖V −1 − w0‖ + h‖G0‖

and

‖V 0‖ ≤ ‖V −1‖ +
4M

δ
+ h‖G0‖ ≤ C1 ≤ C.

We may reproduce the same computations and prove that

‖V n − w0‖ ≤ ‖V −1 − w0‖ + h

n∑
l=0

‖Gl‖ ∀n ∈ {0, . . . , N(h) − 1} s.t. nh ∈ [0, τ1].

Indeed, let us assume that n ∈ {1, . . . , N(h) − 1} such that nh ∈ [0, τ1] and that

‖V k − w0‖ ≤ ‖V −1 − w0‖ + h
k∑

l=0

‖Gl‖ ∀ k ∈ {0, . . . , n − 1}.
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Then ‖V k‖ ≤ C1 for all k ∈ {0, . . . , n − 1} and, with Lemma 2.2, we infer that
‖V n‖ ≤ C̃. Thus (tn+1, U

n+1) ∈ B(t0, τ) × B(U0, θ) since 0 < h ≤ h1 and, with
Lemma 2.1 w0 − V n ∈ T 0(K(tn+1), Un+1). Thus

〈(V n−1 − w0) − (V n − w0) + hGn, w0 − V n〉 ≤ 0

and

‖V n − w0‖ ≤ ‖V n−1 − w0‖ + h‖Gn‖ ≤ ‖V −1 − w0‖ + h

n∑
l=0

‖Gl‖.

Hence

‖V n‖ ≤ ‖V 0‖ +
4M

δ
+ h

n∑
l=0

‖Gl‖ ≤ C1.

Now let τh
0 = 0 and nh

1 ∈ N such that nh
1h ≤ min(τ1, T ) < nh

1h+h. If nh
1 < N(h)−1,

we define τh
1 = (nh

1 + 1)h, otherwise τh
1 = T . If nh

1 < N(h) − 1, we have τh
1 − τh

0 =
τh
1 ≥ τ1. Moreover, T > τh

1 , so k0 > 1 and (tnh
1
, Unh

1 ) ∈ K and ‖V nh
1 ‖ ≤ C1 ≤ C.

Let us assume now that nh
1 < N(h) − 1. We define w1 = 2M

δ v(tnh
1
, Unh

1 ) and
we can prove again by induction that, for all n ∈ {0, . . . , N(h) − 1} such that
nh ∈ [τh

1 , τh
1 + τ2]:

‖V n − w1‖ ≤ ‖V nh
1 − w1‖ + h

n∑
l=nh

1+1

‖Gl‖

and

‖V n‖ ≤ ‖V nh
1 ‖ +

4M

δ
+ h

n∑
l=nh

1+1

‖Gl‖ ≤ C2 ≤ C.

We define nh
2 ∈ N such that nh

2h ≤ min(τh
1 + τ2, T ) < nh

2h + h and τh
2 = nh

2h if
nh

2 < N(h)−1, otherwise τh
2 = T . We can check immediately that, if nh

2 < N(h)−1,
we have τh

2 − τh
1 ≥ τ2 and k0 > 2. Finally we complete the proof with a finite

induction argument.

Let us come now to the estimate of the discrete accelerations.

Proposition 2.2. There exists C′ > 0 such that, for all h ∈ (0, h1], we have

N(h)−1∑
n=1

‖V n − V n−1‖ ≤ C′.

Proof. Let h ∈ (0, h1]. We again use the decomposition of the interval [0, T ]
with the subintervals [τh

k , τh
k+1], k ∈ {0, . . . , kh

0 − 1}, which have been defined
in the previous proposition. We recall that, for all k ∈ {0, . . . , kh

0 − 1} and for
all n ∈ {0, . . . , N(h) − 1} such that nh ∈ [τh

k , τh
k+1] we have (tn+1, U

n+1) ∈
B(tnh

k
, τ)×B(Unh

k , θ). Furthermore, with the definition of wk = 2M
δ v(tnh

k
, Unh

k ) we
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also have

〈∇ufα(tn+1, U
n+1), w − V n〉 ≥ M

2

and thus B̄(wk − V n, 1
2 ) ⊂ T 0(K(tn+1), Un+1).

Using [12] we infer that, for all z ∈ R
d:

‖z − Proj(T 0(tn+1, U
n+1), z)‖

≤ ‖z − wk + V n‖2 − ‖Proj(T 0(tn+1, U
n+1), z) − wk + V n‖2.

Then we apply this estimate with z = V n−1 − V n + hGn: using Lemma 2.1
we know that z ∈ N(K(tn+1), Un+1) and since N(K(tn+1), Un+1) and
T 0(K(tn+1), Un+1) are convex polar cones, we get

‖V n−1 − V n‖
≤ h‖Gn‖ + ‖(V n−1 − V n + hGn) − Proj(T 0(tn+1, U

n+1), V n−1 − V n + hGn)‖
≤ h‖Gn‖ + (‖V n−1 − wk + hGn‖2 − ‖V n − wk‖2)

≤ h‖Gn‖ + (‖V n−1 − wk‖2 − ‖V n − wk‖2 + h2‖Gn‖2 + 2h〈Gn, V n−1 − wk〉)

≤
(

1 + ‖F‖L1(0,T ;Rd) + 2C +
4M

δ

)
h‖Gn‖ + (‖V n−1 − wk‖2 − ‖V n − wk‖2).

We add all these inequalities for n = nh
k , . . . , nh

k+1 −1 and for k = 0, . . . , kh
0 −2 and

for n = nh
kh
0
, . . . , N(h) − 1 if k = kh

0 − 1. We get

N(h)−1∑
n=0

‖V n−1 − V n‖ =
kh
0 −2∑
k=0

nh
k+1−1∑
n=nh

k

‖V n−1 − V n‖ +
N(h)−1∑

n=nh

kh
0 −1

‖V n−1 − V n‖

≤
(

1 + ‖F‖L1(0,T ;Rd) + 2C +
4M

δ

)N(h)−1∑
n=0

h‖Gn‖

+
kh
0−2∑
k=0

(‖V nh
k−1 − wk‖2 − ‖V nh

k+1−1 − wk‖2)

+ (‖V nh

kh
0 −1

−1 − wkh
0 −1‖2 − ‖V N(h)−1 − wkh

0 −1‖2)

≤
(

1 + ‖F‖L1(0,T ;Rd) + 2C +
4M

δ

)
‖F‖L1(0,T ;Rd)

+ 2kh
0

(
C +

2M

δ

)2

.

Recalling that kh
0 ≤ k0 for all h ∈ (0, h1], we may conclude.
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3. Convergence of the Approximate Solutions (uh)h∗≥h>0

Now we can pass to the limit in the same way as in [17]. We recall that the approx-
imate solutions are defined as

uh(t) =

{
Un+ (t − nh)Un+1−Un

h ∀ t∈ [nh, (n + 1)h], ∀n ∈{0, . . . , N(h) − 1},
UN(h)+ (t − N(h)h)V N(h)−1 ∀ t∈ [N(h)h, T ]

and we let

vh(t) =

{
V n = Un+1−Un

h ∀ t ∈ [nh, (n + 1)h), ∀n ∈ {0, . . . , N(h) − 1},
= V N(h)−1 ∀ t ∈ [N(h)h, T ]

for all h ∈ (0, h1].
From Propositions 2.1 and 2.2 we know that the sequence (uh)h1≥h>0 is

uniformly Lipschitz continuous and that (vh)h1≥h>0 is uniformly bounded in
L∞(0, T ; Rd) and in BV (0, T ; Rd). Thus, applying Ascoli’s and Helly’s theorem,
we can extract a subsequence, still denoted (uh)h1≥h>0 and (vh)h1≥h>0, and there
exist u ∈ C0([0, T ]; Rd) and v ∈ BV (0, T ; Rd) such that

uh → u strongly in C0([0, T ]; Rd),

vh → v pointwise in [0, T ],

dvh ⇀ dv weakly* in M1(0, T ; Rd).

(3.1)

Furthermore, the definitions of uh and vh imply that

uh(t) = u0 +
∫ t

0

vh(s)ds ∀ t ∈ [0, T ], ∀h ∈ (0, h1].

We can pass to the limit by using Lebesgue’s theorem and we obtain

u(t) = u0 +
∫ t

0

v(s)ds ∀ t ∈ [0, T ]. (3.2)

Hence u is C-Lipschitz continuous on [0, T ] and u̇ = v ∈ BV (0, T ; Rd). Moreover,
we can check easily that

Lemma 3.1. For all t ∈ [0, T ], u(t) ∈ K(t).

Proof. This is a direct consequence of the feasibility of the approximate positions.
Indeed, for all t ∈ [0, T ] and for all h ∈ (0, h1] there exists n ∈ {0, . . . , N(h)} such
that t ∈ [nh, (n + 1)h). Then we can use a Taylor’s expansion to estimate from
below fα(u(t)), α ∈ {1, . . . , ν}. More precisely, for all α ∈ {1, . . . , ν},

fα(t, u(t)) = fα(nh, uh(nh))

+
∫ 1

0

(∂tfα(nh + s(t − nh), uh(nh) + s(u(t) − uh(nh)))(t − nh)ds
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+
∫ 1

0

〈∇ufα(nh + s(t − nh), uh(nh)

+ s(u(t) − uh(nh))), u(t) − u(nh)〉)ds.

But

‖u(t) − uh(nh)‖ ≤ ‖u(t) − u(nh)‖ + ‖u(nh) − uh(nh)‖
≤ C(t − nh) + ‖u − uh‖C0([0,T ];Rd).

Using the uniform convergence of (uh)h1≥h>0 to u on [0, T ], we infer that there
exists h2 ∈ (0, h1] such that

Ch + ‖u − uh‖C0([0,T ];Rd) ≤ r ∀h ∈ (0, h2].

It follows that, for all h ∈ (0, h2]:

fα(t, u(t)) ≥ fα(tn, Un) − M(h + ‖u(t) − uh(nh)‖)
≥ −M((1 + C)h + ‖u − uh‖C0([0,T ];Rd)),

which allows us to conclude.

Next we prove that the limit trajectory satisfies property (P3). With the def-
inition of uh and vh, the Stieltjes measure üh = du̇h = dvh is a sum of Dirac’s
measures:

üh(t) =
N(h)−1∑

n=1

(V n − V n−1)δ(t − nh)

and we define

Gh(t) =
N(h)−1∑

n=1

hGnδ(t − nh)

+
N(h)−1∑

n=1

ν∑
α=1

λn
α(∇ufα(tn+1, U

n+1) −∇ufα(tn, u(tn)))δ(t − nh),

λα,h(t) =
N(h)−1∑

n=1

λn
αδ(t − nh) ∀α ∈ {1, . . . , ν}.

Then relation (2.4) can be rewritten as

dvh =
ν∑

α=1

λα,h∇ufα(·, u) + Gh (3.3)

and we have to pass to the limit in the above relation.
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First we observe that

Lemma 3.2. For all α ∈ {1, . . . , ν} and for all h ∈ (0, h1] we have

N(h)−1∑
n=1

|λn
α| ≤

γ

m
(TV (vh) + ‖F‖L1(0,T ;Rd)).

Proof. Let α ∈ {1, . . . , ν} and n ∈ {1, . . . , N(h)− 1}. With relation (2.4) we have∥∥∥∥∥∥
ν∑

β=1

λn
β∇ufβ(tn+1, U

n+1)

∥∥∥∥∥∥ ≤ ‖V n − V n−1‖ + h‖Gn‖

and λn
β ≥ 0 for all β ∈ {1, . . . , ν} with λn

β = 0 if β �∈ J(tn+1, U
n+1). Thus, using

assumption (H2), we get∥∥∥∥∥∥
ν∑

β=1

λn
β∇ufα(tn+1, U

n+1)

∥∥∥∥∥∥ =

∥∥∥∥∥∥
∑

β∈J(tn+1,Un+1)

λn
β∇ufα(tn+1, U

n+1)

∥∥∥∥∥∥
≥ 1

γ

∑
β∈J(tn+1,Un+1)

λn
β‖∇ufα(tn+1, U

n+1)‖

=
1
γ

ν∑
β=1

λn
β‖∇qfα(tn+1, U

n+1)‖

≥ m

γ

ν∑
β=1

λn
β ≥ m

γ
λn

α.

Hence

N(h)−1∑
n=1

|λn
α| =

N(h)−1∑
n=1

λn
α

≤ γ

m

N(h)−1∑
n=1

(‖V n − V n−1‖ + h‖Gn‖)

≤ γ

m
(TV (vh) + ‖F‖L1(0,T ;R)).

Reminding the uniform estimate of vh in BV (0, T ; Rd) obtained at
Proposition 2.2, we infer that the scalar measures λα,h, α ∈ {1, . . . , ν}, are uni-
formly bounded in M1(0, T ; R). Thus, possibly extracting another subsequence,
there exist non-negative scalar measures λα, such that for all α ∈ {1, . . . , ν}:

λα,h ⇀ λα weakly* in M1(0, T ; R).
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It remains to pass to the limit in the last term of the right-hand side of (3.3).

Lemma 3.3. The sequence (Gh)h∗≥h>0 converges weakly to g(·, u)dt in M1(0, T ;
R

d), where g(·, u)dt is the measure of density g(·, u) with respect to Lebesgue’s mea-
sure on [0, T ].

Proof. Let φ ∈ C0([0, T ]; Rd). By definition of Gh we have

〈Gh, φ〉M1(0,T ;Rd),C0([0,T ];Rd)

=
N(h)−1∑

n=1

h〈Gn, φ(nh)〉

+
N(h)−1∑

n=1

ν∑
α=1

λn
α〈∇ufα(tn+1, U

n+1) −∇ufα(tn, u(tn)), φ(nh)〉

=
N(h)−1∑

n=1

∫ tn+1

tn

〈g(s, Un), φ(nh)〉ds

+
N(h)∑
n=1

ν∑
α=1

λn
α〈∇ufα(tn+1, U

n+1) −∇ufα(tn, u(tn)), φ(nh)〉

=
∫ T

0

〈g(s, u(s)), φ(s)〉ds −
∫ T

N(h)h

〈g(s, u(s)), φ(s)〉ds

+
N(h)−1∑

n=1

∫ tn+1

tn

〈g(s, Un) − g(s, u(s)), φ(s)〉ds

+
N(h)−1∑

n=1

∫ tn+1

tn

〈g(s, Un), φ(nh) − φ(s)〉dt

+
N(h)−1∑

n=1

ν∑
α=1

λn
α〈∇ufα(tn+1, U

n+1) −∇ufα(tn, u(tn)), φ(nh)〉.

But, for all n ∈ {1, . . . , N(h) − 1}, we have (tn, u(tn)) ∈ K and

‖Un+1 − u(tn)‖ ≤ ‖Un+1 − Un‖ + ‖uh(tn) − u(tn)‖
≤ Ch + ‖u − uh‖C0([0,T ];Rd).

As in Lemma 3.1 we define h2 ∈ (0, h1] such that

Ch + ‖u − uh‖C0([0,T ];Rd) ≤ r ∀h ∈ (0, h2].
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It follows that, for all h ∈ (0, h2], we have∥∥∥∥∥∥
N(h)−1∑

n=1

ν∑
α=1

λn
α〈∇ufα(tn+1, U

n+1) −∇ufα(tn, u(tn)), φ(nh)〉
∥∥∥∥∥∥

≤
N(h)−1∑

n=1

ν∑
α=1

λn
αM(h + ‖Un+1 − u(nh)‖)‖φ(nh)‖

≤
N(h)−1∑

n=1

ν∑
α=1

λn
αM((C + 1)h + ‖u − uh‖C0([0,T ];Rd))‖φ‖C0([0,T ];Rd)

≤ Mν((C + 1)h + ‖u − uh‖C0([0,T ];Rd))

×‖φ‖C0([0,T ];Rd)

γ

m

(
TV (vh) + ‖F‖L1(0,T ;Rd)

)
.

Moreover,∣∣∣∣∣∣
N(h)−1∑

n=1

∫ tn+1

tn

〈g(s, Un), φ(nh) − φ(s)〉ds

∣∣∣∣∣∣
≤

N(h)−1∑
n=1

∫ tn+1

tn

‖g(s, Un)‖‖φ(nh) − φ(s)‖ds ≤ ωφ(h)‖F‖L1(0,T ;Rd),

where ωφ denotes the modulus of continuity of φ. Furthermore, using assumption
(H3) we have ∣∣∣∣∣∣

N(h)−1∑
n=1

∫ tn+1

tn

〈g(s, Un) − g(s, u(s)), φ(s)〉ds

∣∣∣∣∣∣
≤

N(h)−1∑
n=1

∫ tn+1

tn

kg‖Un − u(s)‖‖φ(s)‖ds

≤ kg(Ch + ‖u − uh‖C0([0,T ];Rd))
∫ T

0

‖φ(s)‖ds

for all h ∈ (0, h2], since

‖Un − u(s)‖ ≤ ‖uh(nh) − uh(s)‖ + ‖uh(s) − u(s)‖
≤ Ch + ‖u − uh‖C0([0,T ];Rd)

≤ r.

Finally ∣∣∣∣∣
∫ T

N(h)h

〈g(s, u(s)), φ(s)〉ds

∣∣∣∣∣ ≤ ‖φ‖C0([0,T ];Rd)

∫ T

N(h)h

F (s)ds

and we can pass to the limit as h tends to zero to get the announced result.
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Hence we can pass to the limit in (3.3) and we get

du̇ = dv =
ν∑

α=1

λα∇ufα(·, u) + g(·, u)dt.

Finally we prove that

Lemma 3.4. For all α ∈ {1, . . . , ν} we have

Supp(λα) ⊂ {t ∈ [0, T ]; fα(t, u(t)) = 0}.

Proof. Let α ∈ {1, . . . , ν} and φ ∈ C0([0, T ]; R) such that φ �≡ 0 and

Supp(φ) ⊂ [0, T ]\{t ∈ [0, T ]; fα(t, u(t)) = 0} = {t ∈ [0, T ]; fα(t, u(t)) > 0}.

Using the continuity of the mappings fα, α ∈ {1, . . . , ν}, we obtain that, for all
t ∈ Supp(φ) there exists rt ∈ (0, r) such that

fα(s, y) ≥ 1
2
fα(t, u(t)) > 0 ∀ s ∈ [t − rt, t + rt] ∩ [0, T ], ∀ y ∈ B̄(u(t), rt).

Then

Supp(φ) ⊂
⋃

t∈Supp(φ)

(
t − rt

4(C + 1)
, t +

rt

4(C + 1)

)

and, since Supp(φ) is a compact subset of R, there exists a finite family (ti)1≤i≤p

of points of Supp(φ) such that

Supp(φ) ⊂
p⋃

i=1

(
ti − rti

4(C + 1)
, ti +

rti

4(C + 1)

)
.

Let r̃ = min1≤i≤p
rti

4(C+1) and h∗
1 ∈ (0, min

(
h1,

r̃
4(C+1)

)]
such that

‖u − uh‖C0([0,T ];Rd) ≤
r̃

4
∀h ∈ (0, h∗

1].

Then, by definition of λα,h we have

〈λα,h, φ〉M1(0,T ;R),C0([0,T ];R) =
N(h)−1∑

n=1

λn
αφ(nh) ∀h ∈ (0, h1].

But, for all nh ∈ Supp(φ) there exists ti ∈ {t1, . . . , tp} such that nh ∈ (ti −
rti

4(C+1) , t
i + rti

4(C+1)

)
. It follows that, for all h ∈ (0, h∗

1], we have

|(n + 1)h − ti| < h +
rti

4(C + 1)
≤ rti

2(C + 1)
< rti
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and

‖Un+1 − u(ti)‖ ≤ ‖uh(tn+1) − u(tn+1)‖ + ‖u(tn+1) − u(ti)‖
≤ ‖u − uh‖C0([0,T ];Rd) + C|(n + 1)h − ti|

≤ r̃

4
+ C

rti

2(C + 1)
< rti .

Thus fα(tn+1, U
n+1) > 0 and λn

α = 0 for all nh ∈ Supp(φ). We infer that

〈λα,h, φ〉M1(0,T ;R),C0([0,T ];R) =
N(h)−1∑

n=1

λn
αφ(nh) = 0 ∀h ∈ (0, h∗

1]

which allows us to conclude.

4. Transmission of the Velocity at Impacts

In this section we prove that the limit trajectory satisfies the impact law (P4) and
the initial data (P5).

First we observe that the impact law is satisfied at any instant t ∈ (0, T ) such
that J(t, u(t)) = ∅. Indeed, by continuity of the mappings fα, α ∈ {1, . . . , ν}, we
may define rt ∈ (0, min(r, t, T − t)) such that, for all α ∈ {1, . . . , ν} we have

fα(s, y) ≥ 1
2
fα(t, u(t)) > 0 ∀ s ∈ [t − rt, t + rt], ∀ y ∈ B̄(u(t), rt)

and we define ht ∈
(
0, min

(
h1,

rt

4(C+1)

)]
such that ‖u − uh‖C0([0,T ];Rd) ≤ rt

4 for all
h ∈ (0, ht]. Then, for all r̃ ∈ (0, rt] and for all h ∈ (0, ht], we define

n− =

⌊
t − r̃

4(C+1)

h

⌋
+ 1, n+ =

⌊
t + r̃

4(C+1)

h

⌋
.

It follows that

2h < (n− − 1)h ≤ t − r̃

4(C + 1)
< n−h < · · · < n+h

≤ t +
r̃

4(C + 1)
< (n+ + 1)h < T − 2h

and

V n−−1 = vh

(
t − r̃

4(C + 1)

)
, V n+ = vh

(
t +

r̃

4(C + 1)

)
.

With relation (2.4) we get

V n+ − V n−−1 =
n+∑

n=n−

hGn +
n+∑

n=n−

ν∑
α=1

λn
α∇ufα(tn+1, U

n+1).
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But, for all n ∈ {n−, . . . , n+} we have tn = nh ∈ [t − r̃
4(C+1) , t + r̃

4(C+1)

]
and

|tn+1 − t| ≤ r̃

4(C + 1)
+ h ≤ rt

2(C + 1)
< rt,

‖Un+1 − u(t)‖ ≤ ‖Un+1 − uh(t)‖ + ‖uh(t) − u(t)‖
≤ C|tn+1 − t| + ‖u − uh‖C0([0,T ];Rd) < rt.

It follows that fα(tn+1, U
n+1) > 0 and λn

α = 0 for all α ∈ {1, . . . , ν} and for all
n ∈ {n−, . . . , n+}. Thus

∥∥∥∥vh

(
t +

r̃

4(C + 1)

)
− vh

(
t − r̃

4(C + 1)

)∥∥∥∥
=

∥∥∥∥∥∥
n+∑

n=n−

hGn

∥∥∥∥∥∥ ≤
∫ tn++1

tn−

F (s)ds ≤
∫ t+ r̃

4(C+1) +h

t− r̃
4(C+1)

F (s)ds.

We can pass to the limit as h tends to zero, then as r tends to zero and we get

‖v(t−) − v(t+)‖ ≤ 0,

i.e. v(t−) = u̇(t−) = u̇(t+) = v(t+).
Now let us consider t ∈ (0, T ) such that J(t, u(t)) �= ∅. If J(t, u(t)) = {1, . . . , ν},

we let rt = 1
2 min(r, t, T − t). Otherwise, using again the continuity of the map-

pings fα, α ∈ {1, . . . , ν}, we define rt ∈ (0, min(r, t, T − t)) such that, for all
α ∈ {1, . . . , ν}\J(t, u(t)) we have

fα(s, y) ≥ 1
2
fα(t, u(t)) > 0 ∀ s ∈ [t − rt, t + rt], ∀ y ∈ B̄(u(t), rt).

Then, using the uniform convergence of (uh)h1≥h>0 to u on [0, T ], we define
ht ∈ (0, min

(
h1,

rt

4(C+1)

)]
such that ‖u − uh‖C0([0,T ];Rd) ≤ rt

4 for all h ∈ (0, ht].
It follows that, for all h ∈ (0, ht] and for all nh ∈ [t − rt

4(C+1) , t + rt

4(C+1)

]
we have

J(tn+1, U
n+1) ⊂ J(t, u(t)). Indeed, let h ∈ (0, ht] and nh ∈ [t− rt

4(C+1) , t+ rt

4(C+1)

]
.

We have

|tn+1 − t| ≤ rt

4(C + 1)
+ h ≤ rt

2(C + 1)
< rt,

‖Un+1 − u(t)‖ ≤ ‖Un+1 − uh(t)‖ + ‖uh(t) − u(t)‖
≤ C|tn+1 − t| + ‖u − uh‖C0([0,T ];Rd) < rt

and we infer that

fα(tn+1, U
n+1) > 0 ∀α �∈ J(t, u(t)).
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Then we split J(t, u(t)) as J(t, u(t)) = J1(t, u(t)) ∪ J2(t, u(t)) with

J1(t, u(t)) =
{

α ∈ J(t, u(t)); ∃ rα ∈ (0, rt], ∃hα ∈ (0, ht]/∀h ∈ (0, hα],

∀nh ∈
[
t − rα

4(C + 1)
, t +

rα

4(C + 1)

]
∩ [0, T ], fα(tn+1, U

n+1) > 0
}

(4.1)

and

J2(t, u(t)) =
{

α ∈ J(t, u(t)); ∀ rα ∈ (0, rt], ∀hα ∈ (0, ht], ∃h ∈ (0, hα],

∃nh ∈
[
t − rα

4(C + 1)
, t +

rα

4(C + 1)

]
∩ [0, T ]/fα(tn+1, U

n+1) ≤ 0
}

.

(4.2)

Since J1(t, u(t)) is a finite set, we may define r̃t = minα∈J1(t,u(t)) rα, h̃t =
minα∈J1(t,u(t)) hα if J1(t, u(t)) �= ∅, and r̃t = rt and h̃t = ht if J1(t, u(t)) = ∅.

Now let r̃ ∈ (0, r̃t] and h ∈ (0, h̃t]. We define as previously

n− =

⌊
t − r̃

4(C+1)

h

⌋
+ 1, n+ =

⌊
t + r̃

4(C+1)

h

⌋

which implies that

2h < (n− − 1)h ≤ t − r̃

4(C + 1)
< n−h < · · · < n+h ≤ t +

r̃

4(C + 1)

< (n+ + 1)h < T − 2h

and

V n−−1 = vh

(
t − r̃

4(C + 1)

)
, V n+ = vh

(
t +

r̃

4(C + 1)

)
.

Thus

V n+ − V n−−1 =
n+∑

n=n−

hGn +
n+∑

n=n−

ν∑
α=1

λn
α∇ufα(tn+1, U

n+1).

But, for all n ∈ {n−, . . . , n+}, we have tn = nh ∈ [t − r̃
4(C+1) , t + r̃

4(C+1)

]
. Hence

J(tn+1, U
n+1) ⊂ J(t, u(t)) and α �∈ J(tn+1, U

n+1) if α ∈ J1(t, u(t)), so

V n+ − V n−−1 =
n+∑

n=n−

hGn +
∑

α∈J2(t,u(t))

n+∑
n=n−

λn
α∇ufα(tn+1, U

n+1). (4.3)

If J2(t, u(t)) = ∅ we may conclude as previously that u̇(t+) = u̇(t−).
On the other hand, we have u(s) ∈ K(s) for all s ∈ [0, T ], so u̇(t+) ∈

T (K(t), u(t)). We infer that u̇(t+) = u̇(t−) ∈ T (K(t), u(t)) and thus u̇(t+) =
u̇(t−) = Proj(T (K(t), u(t)), u̇(t−)).
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Otherwise, if J2(t, u(t)) �= ∅, we rewrite (4.3) as follows:

vh

(
t +

r̃

4(C + 1)

)
− vh

(
t − r̃

4(C + 1)

)

=
∑

α∈J2(t,u(t))


 n+∑

n=n−

λn
α


∇ufα(t, u(t)) +

n+∑
n=n−

hGn

+
∑

α∈J2(t,u(t))

n+∑
n=n−

λn
α(∇ufα(tn+1, U

n+1) −∇ufα(t, u(t))). (4.4)

We may deduce that

Lemma 4.1. We have

v(t+) − v(t−) ∈
∑

α∈J2(t,u(t))

R
+∇ufα(t, u(t)).

Proof. We can estimate the last two terms of (4.4) as follows:

∥∥∥∥∥∥
n+∑

n=n−

hGn

∥∥∥∥∥∥ ≤
∫ tn++h

tn−

F (s)ds ≤
∫ t+ r̃

4(C+1) +h

t− r̃
4(C+1)

F (s)ds

and, using Lemma 3.2

∥∥∥∥∥∥
∑

α∈J2(t,u(t))

n+∑
n=n−

λn
α(∇ufα(tn+1, U

n+1) −∇ufα(t, u(t)))

∥∥∥∥∥∥
≤

∑
α∈J2(t,u(t))

n+∑
n=n−

λn
α‖∇ufα(tn+1, U

n+1) −∇ufα(t, u(t))‖

≤
∑

α∈J2(t,u(t))

n+∑
n=n−

λn
αM(|tn+1 − t| + ‖Un+1 − u(t)‖)

≤
∑

α∈J2(t,u(t))

n+∑
n=n−

λn
αM

((
h +

r̃

4(C + 1)

)
(C + 1) + ‖u − uh‖C0([0,T ];Rd)

)

≤ M

((
h +

r̃

4(C + 1)

)
(C + 1) + ‖u − uh‖C0([0,T ];Rd)

)

× νγ

m
(TV (vh) + ‖F‖L1(0,T ;Rd)).
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Reminding the uniform estimate of TV (vh) obtained at Proposition 2.2, we infer
that

lim
r̃→0+

lim
h→0+

∥∥∥∥∥∥ vh

(
t +

r̃

4(C + 1)

)
− vh

(
t − r̃

4(C + 1)

)

−
∑

α∈J2(t,u(t))


 n+∑

n=n−

λn
α


∇ufα(t, u(t))

∥∥∥∥∥∥ = 0. (4.5)

Finally we infer from assumption (H2) that C :=
∑

α∈J2(t,u(t)) R
+∇ufα(t, u(t)) is a

closed subset of R
d. Indeed, let (xn)n∈N, with xn =

∑
α∈J2(t,u(t)) xα,n∇ufα(t, u(t))

for all n ∈ N, be a sequence of C. With assumption (H2) we have

m
∑

α∈J2(t,u(t))

xα,n ≤
∑

α∈J2(t,u(t))

xα,n‖∇ufα(t, u(t))‖

≤ γ

∥∥∥∥∥∥
∑

α∈J2(t,u(t))

xα,n∇ufα(t, u(t))

∥∥∥∥∥∥
for all n ∈ N. Hence, if (xn)n∈N converges to x∗ in R

d, the sequence (‖xn‖)n∈N

is bounded and all the non-negative real sequences (xα,n)n∈N, α ∈ J2(t, u(t)), are
bounded. Possibly extracting a subsequence, still denoted (xn)n∈N, we may infer
that there exist non-negative real numbers xα,∗ such that

xα,n −−−−−→
n→+∞ xα,∗ ∀α ∈ J2(t, u(t)).

Then we get∥∥∥∥∥∥xn −
∑

α∈J2(t,u(t))

xα,∗∇ufα(t, u(t))

∥∥∥∥∥∥ ≤
∑

α∈J2(t,u(t))

|xα,n − xα,∗|‖∇ufα(t, u(t))‖

≤ M
∑

α∈J2(t,u(t))

|xα,n − xα,∗| ∀n ∈ N

and we obtain at the limit x∗ =
∑

α∈J2(t,u(t)) xα,∗∇ufα(t, u(t)) ∈ C. Hence, using
(4.5) and passing to the limit as h tends to zero, then as r tends to zero in (4.4),
we obtain the announced result.

Now we will prove that

Proposition 4.1. For all α ∈ J2(t, u(t)) we have

∂tfα(t, u(t)) + 〈∇ufα(t, u(t)), u̇(t+)〉 = 0.
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Proof. Since we already know that u̇(t+) ∈ T (K(t), u(t)), we only need to prove
that

∂tfα(t, u(t)) + 〈∇ufα(t, u(t)), u̇(t+)〉 ≤ 0 ∀α ∈ J2(t, u(t)).

Let α ∈ J2(t, u(t)) and r̃ ∈ (0, r̃t]. Using the definition of J2(t, u(t)) (see (4.1) and
(4.2)), we may define a subsequence (hi)i∈N strictly decreasing to zero such that,
for all i ∈ N we have hi ∈ (0, h̃t] and there exists nhi ∈ [t − r̃

4(C+1) , t + r̃
4(C+1)

]
such that fα(tn+1, U

n+1) ≤ 0, i.e. α ∈ J(tn+1, U
n+1). We define

ni = max
{

n ∈ N; nhi ∈
[
t − r̃

4(C + 1)
, t +

r̃

4(C + 1)

]
and α ∈ J(tn+1, U

n+1)
}

.

With Lemma 2.1 we have

∂tfα(tni+1, U
ni+1) + 〈∇ufα(tni+1, U

ni+1), V ni〉 ≤ Mhi

2
(1 + ‖V ni‖)2

≤ Mhi

2
(1 + C)2.

It follows that

∂tfα(t, u(t)) + 〈∇ufα(t, u(t)), V n+〉

≤ Mhi

2
(1 + C)2 + (∂tfα(t, u(t)) − ∂tfα(tni+1, U

ni+1))

+ 〈∇ufα(t, u(t)), V n+ − V ni〉
+ 〈∇ufα(t, u(t)) −∇ufα(tni+1, U

ni+1), V ni〉. (4.6)

We can estimate the second and fourth terms of the right-hand side of (4.6) as

‖∂tfα(t, u(t)) − ∂tfα(tni+1, U
ni+1)‖

≤ M(|t − tni+1| + ‖Uni+1 − u(t)‖)

≤ M

((
r̃

4(C + 1)
+ hi

)
(C + 1) + ‖u − uhi‖C0([0,T ];Rd)

)

and

‖〈∇ufα(t, u(t)) −∇ufα(tni+1, U
ni+1), V ni〉‖

≤ M(|t − tni+1| + ‖Uni+1 − u(t)‖)‖V ni‖

≤ MC

((
r̃

4(C + 1)
+ hi

)
(C + 1) + ‖u − uhi‖C0([0,T ];Rd)

)
.
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If ni = n+, the third term of the right-hand side of (4.6) vanishes. Otherwise we
rewrite it as follows

〈∇ufα(t, u(t)), V n+ − V ni〉

=

〈
∇ufα(t, u(t)),

n+∑
n=ni+1

hGn

〉

+

〈
∇ufα(t, u(t)),

n+∑
n=ni+1

∑
β∈J(tn+1,Un+1)

λn
β∇ufβ(tn+1, U

n+1)

〉

≤ M

∫ t+ r̃
4(C+1) +hi

t− r̃
4(C+1)

F (s)ds

+

〈
∇ufα(t, u(t)),

n+∑
n=ni+1

∑
β∈J(tn+1,Un+1)

λn
β∇ufβ(t, u(t))

〉

+

〈
∇ufα(t, u(t)),

n+∑
n=ni+1

∑
β∈J(tn+1,Un+1)

λn
β(∇ufβ(tn+1, U

n+1)

−∇ufβ(t, u(t)))

〉
.

Since α �∈ J(tn+1, U
n+1) for all n ∈ {ni + 1, . . . , n+} by definition of ni and

J(tn+1, U
n+1) ⊂ J(t, u(t)), assumption (H4) implies that the second term of the

right-hand side of this last inequality is non-positive. Furthermore, the last term
can be estimated as∥∥∥∥∥∥
〈
∇ufα(t, u(t)),

n+∑
n=ni+1

∑
β∈J(tn+1,Un+1)

λn
β(∇ufβ(tn+1, U

n+1) −∇ufβ(t, u(t)))

〉∥∥∥∥∥∥
≤

n+∑
n=ni+1

∑
β∈J(tn+1,Un+1)

λn
βM2(|t − tn+1| + ‖Un+1 − u(t)‖)

≤ M2ν

((
r̃

4(C + 1)
+ hi

)
(C + 1) + ‖u − uhi‖C0([0,T ];Rd)

)

× (TV (vhi) + ‖F‖L1(0,T ;Rd)).

Then we can pass to the limit in all the terms of the right-hand side of (4.6), and
recalling that V n+ = vh

(
t + r̃

4(C+1)

)
, we obtain

lim
r̃→0+

lim
hi→0+

∂tfα(t, u(t)) + 〈∇ufα(t, u(t)), V n+〉

= ∂tfα(t, u(t)) + 〈∇ufα(t, u(t)), v(t+)〉 ≤ 0.
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Now we can easily check that

u̇(t+) = Proj(T (K(t), u(t)), u̇(t−)).

Indeed we already know that u̇(t+) ∈ T (K(t), u(t)) and that u̇(t+) − u̇(t−) ∈∑
α∈J2(t,u(t)) R

+∇ufα(t, u(t)). Hence there exist non-negative real numbers λ̄α, for
α ∈ J2(t, u(t)), such that

u̇(t+) − u̇(t−) =
∑

α∈J2(t,u(t))

λ̄α∇ufα(t, u(t))

and for all w ∈ T (K(t), u(t))

〈u̇(t−) − u̇(t+), w − u̇(t+)〉 = −
∑

α∈J2(t,u(t))

λ̄α〈∇ufα(t, u(t)), w − u̇(t+)〉.

But, using the previous proposition, for all w ∈ T (K(t), u(t)) and for all α ∈
J2(t, u(t)), we have

〈∇ufα(t, u(t)), w − u̇(t+)〉 = (∂tfα(t, u(t)) + 〈∇ufα(t, u(t)), w〉)
− (∂tfα(t, u(t)) + 〈∇ufα(t, u(t)), u̇(t+)〉)

= ∂tfα(t, u(t)) + 〈∇ufα(t, u(t)), w〉
≥ 0.

Hence

〈u̇(t−) − u̇(t+), w − u̇(t+)〉 ≤ 0 ∀w ∈ T (K(t), u(t))

which allows us to conclude since T (K(t), u(t)) is a closed convex subset of R
d.

Finally we observe that the limit trajectory satisfies the initial data. Indeed, with
(3.2) we have immediately u(0) = u0. Moreover, recalling that v0 ∈ T (K(0), u0) we
can prove that

u̇(0+) = v0 = Proj(T (K(0), u0), v0)

by the same kind of computations. Indeed, if t = t0 = 0, we may define rt0 ∈
(0, min(r, T )) such that

J(s, y) ⊂ J(t0, u(t0)) ∀ s ∈ [t0 − rt0 , t0 + rt0 ] ∩ [0, T ], ∀ y ∈ B̄(u(t0), rt0)

and we define ht0 (respectively, r̃t0 and h̃t0 if J(t0, u(t0)) �= ∅) in the same way
as previously. Then, for all r̃ ∈ (0, rt0 ] and for all h ∈ (0, ht0 ] (respectively, for all
r̃ ∈ (0, r̃t0 ] and for all h ∈ (0, h̃t0 ] if J(t0, u(t0)) �= ∅) we define

n− = 0, n+ =

⌊
t0 + r̃

4(C+1)

h

⌋
.

We get

V n−−1 = V −1 = v0, V n+ = vh

(
t0 +

r̃

4(C + 1)

)
and the rest of the computation is straightforward.
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