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We characterize the lack of compactness in the critical embedding of functions spaces
X C Y having similar scaling properties in the following terms: a sequence (un)n>0
bounded in X has a subsequence that can be expressed as a finite sum of translations
and dilations of functions (¢;);~o such that the remainder converges to zero in Y as the
number of functions in the sum and n tend to +o0o. Such a decomposition was established
by Gérard in [13] for the embedding of the homogeneous Sobolev space X = H* into
the Y = LP in d dimensions with 0 < s = d/2 — d/p, and then generalized by Jaffard
in [15] to the case where X is a Riesz potential space, using wavelet expansions. In
this paper, we revisit the wavelet-based profile decomposition, in order to treat a larger
range of examples of critical embedding in a hopefully simplified way. In particular, we
identify two generic properties on the spaces X and Y that are of key use in building the
profile decomposition. These properties may then easily be checked for typical choices
of X and Y satisfying critical embedding properties. These includes Sobolev, Besov,
Triebel-Lizorkin, Lorentz, Holder and BMO spaces.
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1. Introduction

The critical embedding of homogeneous Sobolev spaces in dimension d states that
for 0 <t <sand1<p<qg<oosuch that d/p—d/q=s—t, one has

WeP(RY) ¢ WHI(RY). (1.1)

The lack of compactness in this embedding can be described in terms of an asymp-
totic decomposition following Gérard [13] who considered the case p = 2 and t = 0,
and Jaffard [15] who considered general values p > 1 with the Riesz potential spaces
H*? in replacement of Sobolev spaces W*?, again with ¢ = 0. Their results can be
formulated in the following terms: a sequence (u,)n>0 bounded in H*?(R%) can be
decomposed up to a subsequence extraction according to

L
Un = B/ g (%) T (1.2)
’ ln

=1

where (¢!);50 is a family of functions in H5?(R%) and where

lim <limsup rmLLq) =0.
L—+oo

n—-+o0o

This decomposition is “asymptotically orthogonal” in the sense that for k # [
[log(hin/hkn)| — +00 or |z, — Tkn|/hin — +00, asn— +oo.

This type of decomposition was also obtained earlier in [5] for a bounded sequence
in Hg(D,R?) of solutions of an elliptic problem, with D the open unit disk of R?
and in [27] and [26] for the critical injections of W?(Q) in Lebesgue space and
of W1P(2) in Lorentz spaces respectively, with  a bounded domain of R?. They
were also studied in [25] in an abstract Hilbert space framework and in [4] in the
Heisenberg group context.

The above-mentioned references treat different types of examples of critical
embedding by different methods. One of the motivations of this paper is to iden-
tify some fundamental mechanisms that lead to such results for a general critical
embedding

Xcy,

in a unified way. Here X and Y are generic homogeneous function spaces which,
similar to the above particular cases, have the same scaling properties in the sense
that for any function f and h >0

R (h)llx = [Ifllx  and A7 (Ro)lly = [ flly, (1.3)

for the same value of r. In a similar way to Jaffard, we use wavelet bases in order
to construct the functions ¢;, yet in a somehow different and hopefully simpler
way. Our construction is based on two basic key properties of wavelet expansions
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in the spaces X and Y, which may then be easily checked on particular pairs of
spaces of interest. In particular, any critical embedding involving Sobolev, Besov,
Triebel-Lizorkin, Lorentz, Holder or BMO spaces is covered by our approach.

The study of the lack of compactness in the critical embedding of Sobolev spaces
supplies us with a large amount of information about solutions of nonlinear partial
differential equations, both in the elliptic frame or the evolution frame. One has,
for example,

e the pioneering works of P.-L. Lions [21] and [22] for the sake of geometric prob-
lems,

e the description of bounded energy sequences of solutions to the defocusing semi-
linear quintic wave equation, up to remainder terms small in energy norm in
2,

e the characterization of the defect of compactness for Strichartz estimates for the
Schrodinger equation in [18],

e the understanding of features of solutions of nonlinear wave equations with expo-
nential growth in [3],

e the sharp estimate of the time life-span of the focusing critical semilinear wave
equation by means of the size of energy of the Cauchy data in [17],

o the study of the bilinear Strichartz estimates for the wave equation in [28].

For further applications, we refer to [10, 12, 14, 23, 20] and the references therein.

Our results which cover a broad spectrum of spaces could be at the origin of
several prospectus of similar types of regularity results for Navier—Stokes systems
(as in [16, 11]), qualitative study of nonlinear evolution equations or estimates of
the span life of focusing semilinear dispersive evolution equations.

1.1. Wavelet expansions

Wavelet decompositions of a function have the form

f=" d, (1.4)

AEV

where A = (j, k) concatenates the scale index j = j(\) and space index k = k(\):
for d = 1, we have with the L? normalization,

ik =y =222 - —k), jE€Z, ke,

where 1 is the so-called “mother wavelet”. In higher dimension d > 1, one needs
several generating functions ¢ for e € E a finite set, so that setting ¢y := (¢f\)g€ E
and dy = (d$)ecr, we can again write (1.4) with dyi, a finite-dimensional inner
product and

Vik =y =292p(27 . —k), jeZ keZ
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The index set V in (1.4) is thus always defined as
V:=ZxZ"
Note that A may also be identified to a dyadic cube
A~ 279 (K + [0, 1]%).
We shall sometimes use the notation
A= ),

for the scale level of A\. In all the sequel, we systematically normalize our wavelets
in X which is equivalent to normalizing them in Y in view of (1.3):

Yk =Ux = 279(27 - —k). (1.5)

It is known that, in addition to be Schauder bases, wavelet bases are unconditional
bases for “most” classical function spaces, including in particular the family of
Besov and Triebel-Lizorkin spaces: for such spaces X there exists a constant D
such that for any finite subset £ C V and coefficients vectors (¢x)acr and (dx)rck
such that |ey| < |dy] for all A, one has

> eata

AEE

<D

> daihy

AEE

(1.6)

X X

We refer to [6, 7, 24] for more details on the construction of wavelet bases and on
the characterization of classical function spaces by expansions in such bases.

1.2. Main results

Our profile decomposition relies on two key assumptions concerning wavelet decom-
positions and the spaces X and Y.

In addition we always work under the general assumption that our wavelet basis
(¥a)xen is an unconditional basis for both spaces X and Y. We therefore assume
that (1.6) holds with some constant D for both norms.

Our first assumption involves the nonlinear projector that we define for each
M > 0 as follows: if f € X has the expansion in the wavelet basis given by (1.4),
then

Quf = Y ds, (1.7)
AEE N
where Eyy = Epn(f) is the subset of V of cardinality M that corresponds to the
M largest values of |d,|.
Such a set always exists due to the fact that (¢x)rea is a Schauder basis for X,
since this implies that for any > 0 only finitely many coefficients d, are larger
than 7 in modulus. This set may however not be unique when some |dy| are equal,
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in which case we may choose an arbitrary realization of such a set. Recall that we
have assumed the normalization (1.5) making [[¢y||x or ||¢¥a|ly independent of A,
therefore E); also corresponds to the M largest ||data]|x or [[dawa|ly-

Assumption 1.1. The nonlinear projection satisfies

lim max — =0. 1.8
Jim a1 = Qui v (18)

The fact that the convergence of Q,;f towards f in Y holds uniformly on the unit
ball of X is tied to the nonlinear nature of the operator @Q,;: if instead we took
Q@ to be the projection onto a fized M-dimensional space, then (1.8) would be in
contradiction with the fact that the critical embedding of X into Y is not compact.
As will be recalled further, nonlinear approximation theory actually allows for a
more precise quantification of the above property in most cases of interest, through
an estimate of the form

If —Quflly <CM™%, M>0

max

Ifllx<1

for some s > 0 and C' only depending on the choice of X and Y. However, Assump-
tion 1.1 alone will be sufficient for our purpose.

Our second assumption only concerns the behavior of wavelet expansions with

respect to the X norm. It reflects the fact that this norm is stable with respect to

certain operations such as “shifting” the indices of wavelet coefficients, as well as
perturbating the value of these coefficients. This is expressed as follows.

Assumption 1.2. Consider a sequence of functions (f,),>0 which are uniformly
bounded in X and may be written as

In= Z WAL (1.9)

AEV

and such that for all A, the sequence cy, converges towards a finite limit c) as
n — +oo. Then, the series ), ¢ catha converges in X with

> et

AEV

< Climinf || fulx. (1.10)
X

where C' is a constant only depending on the space X and on the choice of the
wavelet basis.

As will be recalled further, for practical choices of X such as Besov or Triebel-
Lizorkin spaces, the X norm of a function is equivalent to the norm of its wavelet
coefficients in a certain sequence space. This allows us to establish (1.10) essentially
by invoking Fatou’s lemma.
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We are now in a position to state the main theorem of this paper. For any
function ¢, not necessarily a wavelet, and any scale-space index A = (j, k) we use
the notation

by =227 - k), (1.11)
for the version of ¢ scaled and translated according to A.

Theorem 1.1. Assume that X and Y are two function spaces with the same scal-
ing (1.3) and continuous embedding X CY, and assume that there exists a wavelet
basis (¥x)aev which is unconditional for both X and Y, and such that Assump-
tions 1.1 and 1.2 hold. Let (up)n>o0 be a bounded sequence in X. Then, up to sub-
sequence extraction, there exists a family of functions (¢!);so in X and sequences
of scale-space indices (A\j(n))n>o for each I > 0 such that

L
Un =D () + Tnls (1.12)
=1
where

lim (hmsupIITn,LY) =0.

L—+o00 \ n—+4oo

The decomposition (1.12) is asymptotically orthogonal in the sense that for any

k1,

li(Ak(n)) —i(Ni(n))| — 400 or
: , (1.13)
k(A (n)) — 20Ok =i (X, ()] — 400, as n — +oo.

Moreover, we have the following for the specific case where X is a Besov or
Triebel-Lizorkin space:

Theorem 1.2. The decomposition in Theorem 1.1 is stable in the sense that, for
some T = 7(X) we have

116"l x)i>oller < CK, (1.14)

where C' is a constant that only depends on X and on the choice of the wavelet basis
and where K := sup,,>q [[un || x-

Remark 1.1. For certain sequences (uy,)n>0, it is possible that for any L > 0 the
decomposition (1.12) only involves a finite number of profiles ¢' for I = 1,..., Lo,
which means that ¢! = 0 for I > L. Inspection of our proof shows that the theorem
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remains valid in such a case, in the sense that

Lo
Un = () + s (1.15)

1=1
where

lim ||r,|ly = 0.

n—-+oo

In particular, the sequence (uy,),>o is compact in Y if and only if ¢' = 0 for all
[>0.

Remark 1.2. Inspection of our proof also shows that in Assumption 1.1, we may
use for Qps a more general nonlinear projector than the one obtained by taking the
M largest values of |dy|. Generally speaking, we may consider a nonlinear projector
Qs that has the general form (1.7), where the sets Epyy = Ep(f) of cardinality M
depend on f and satisfy

Ex(f) C Enva(f)-

Such a generalization appears to be useful when treating certain types of embedding,
see Sec. 3.

1.3. Layout

The effective construction of the decomposition is addressed in Sec. 2, together with
the proof of Theorem 1.1.

In Sec. 3, we discuss examples of X and Y with critical embedding for which
Assumptions 1.1 and 1.2 can be proved. This includes all previously treated cases,
and many others such as the embedding of Sobolev, Besov and Triebel-Lizorkin
spaces into Lebesgue, Lorentz, BMO and Holder spaces, or into other Sobolev,
Besov and Triebel-Lizorkin spaces.

Finally, in Sec. 4, we prove the stability Theorem 1.2 for both setting of Besov
and Triebel-Lizorkin spaces.

2. Construction of the Decomposition and Proof of Theorem 1.1
In this section, we place ourselves under the assumptions of Theorem 1.1. Let

(un)n>0 be a bounded sequence in the space X and define

K :=sup ||uy||x < +o0.
n>0

The decomposition construction and the proof of Theorem 1.1 proceed in several
steps.
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Step 1. Rearrangements. We first introduce the wavelet decompositions

Up = Z d)\,nw)\. (2.1)

AEV

For each m > 0, we consider the non-increasing rearrangement (dp,.n)m>0 of
(dxn)aev according to their moduli. We may therefore write

m>0

Using the nonlinear projector Qs defined by (1.7), we further split this expansion
into

M
Uy, = Z im0 (mon) + Bartin, (2.3)

m=1

with Ryun, = up — Q. Combining Assumption 1.1 with the boundedness of
(Un)n>o0 in X, we infer that

A sup || Rasun |y = 0. (2.4)

—+oon>0

Our next observation is that if (¢))rev is an unconditional basis of X, then the
coefficients d,, ,, are uniformly bounded: indeed, (1.6) implies that the rank one
projectors

Py f = dxtx = Puf i=duiby,
AEA

satisfy the uniform bound
IPullx-x <D, pev.

Since we have assumed that our wavelets are normalized in X, for example according
to ||¥ullx =1 for all u € V, we thus have

sup |dx n| = sup |dm.n| < DK.

A,n m,n
Up to a diagonal subsequence extraction procedure in n, we may therefore assume
that for all m > 0, the sequence (dpm,n)n>0 converges towards a finite limit that
depends on m,

dp = lim dp,p.
n—-+4oo ’

Note that (|dm|)m>0 is a non-increasing sequence since all sequences (|dy,pn|)m>0
are non-increasing. We may thus write

M
Un = Z dm¢A(m,n) + ln, M,

m=1
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where

Mz

m=1

Step 2. Construction of approximate profiles. We construct the profiles ¢!
as limit of sequences ¢"* obtained by the following algorithm. At the first iteration
1 =1, we set

ol =dip,  Ai(n):=A1,n), @i(n):=n. (2.5)
Assume that after iteration 7 — 1, we have constructed L — 1 functions
(¢, ..., ¢¥~17) and scale-space index sequences (A (n),..., A\r_1(n)) with L <1,

as well as an increasing sequence of positive integers p;_1(n) such that

Z dm¢>\ (m,pi—1(n)) — Z ¢>\l(<ﬁz 1(n))

At iteration 7 we shall use the ith component d;¥y¢ o, ,(n)) to either modify one
of these functions or build a new one according to the following dichotomy.

(i) First case: assume that we can extract o;(n) from ¢;_1(n) such that for | =
1,...,L — 1 at least one of the following holds:

lim [j(N(pi(n)) = J(AG @i(n)))] = +oo (2.6)

n—

or

lim |k(A(i, ps(n))) — 2J(A(i,w(n)))—j(kz(w(n)))k()\l(%(n))” = +4o0. (2.7)

n—-+0o0o

In such a case, we create a new profile and scale-space index sequence by
defining

¢L7i = dl¢a AL (TL) = )‘(Za Tl)

and we set ¢b* = @bt for i =1,...,L — 1.

(ii) Second case: assume that for some subsequence ¢;(n) of ¢;_i(n) and
some | € {1,...,L — 1} both (2.6) and (2.7) do not hold. Then it
is easily checked that j(\(@i(n))) — j(A(4,0i(n))) and k(A(Z, ¢i(n))) —
27 A (m)) =i (M (@im)) B\ (p4(n))) only take a finite number of values as n
varies. Therefore, up to an additional subsequence extraction, we may assume
that there exist numbers a and b such that for all n > 0,

JAGE @i(n)) — i(Nilpi(n))) = a (2.8)
and

E(A(i, ps(n))) — 2j(>‘(i7@i(n)))_j(Al(@i(")))k(Al(@i(n))) —b. (2.9)
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We then update the function ¢!*~! according to
¢l,i _ ¢l,i—1 + dizarw(2a . —b) (210)

and ¢!t = ¢! for ' e {1,...,L—1} and I’ #1.

From this construction, and after extracting a diagonal subsequence which even-
tually coincides with a subsequence of ¢;(n) for each i, we see that for each value
of M there exists L = L(M) < M such that

M L

More precisely, for each [ =1, ..., L, we have
LM
¢Az(’ﬂ) - Z dmwk(m,n)a
meE(l,M)

where the sets E(l, M) fori = 1,..., L constitute a disjoint partition of {1,..., M}.
Note that E(I, M) C E(l, M +1) with #(E(,M +1)) < #(E(l, M)) + 1. Similarly,
the number of profiles L(M) grows at most by 1 as we move from M to M + 1.
As explained in Remark 1.2, it is possible that L(M) terminates at some maximal
value L. Finally, note that for any m, m’ € Ej ps, we have that

J(A(m, n)) = j(A(m',n)) = a(m,m’) (2.11)
and
k(A(m,n)) — 27O mm) =i m) g\ (m! ) = b(m, m'), (2.12)
where a(m,m’) and b(m, m’) do not depend on n.

Step 3. Construction of the exact profiles. We now want to define the functions
#" as the limits in X of ¢ as M — +oo. For this purpose, we shall make use
of Assumption 1.2, combined with the scaling property (1.3) of the X norm and
the fact that (¢))rev is an unconditional basis. For some fixed { and M such that
[ < L(M), let us define the functions

g M= 3" dmtham)s

meB(l,M)
fl7M7n = Z dm,n"/})\(m)7
meE(l,M)

with A(m) := A(m, 1). From the scaling property (1.3) and the properties (2.11)
and (2.12), we find that

I = D dmantrgmn

meE(l,M) x
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Since EmeE(l,M) dym.nx(m,n) is a part of the expansion of u,, we thus find that
175" x < DK,

where D is the constant in (1.6) and K := sup,,~¢ ||un|| x. Invoking Assumption 1.2,
we therefore find that ¢" converges in X towards a limit ¢' as M — +oo. We
finally notice that, by construction, the g™ are rescaled versions of the ¢"*: there
exists A > 0 and B € R? such that

¢Z,M — 2A7‘gl,M(2A . —B)

By (1.3), we therefore conclude that ¢ converges in X towards a limit ¢' :=
247gL(24 . —B) as M — +o0.

Step 4. Conclusion of the proof. For any given L > 0, we may write

L
Un = Z d)l)\l(n) +7n,L
=1

where, for any value of M such that L < L(M), the remainder r,, 1, may be decom-

posed into
L L
) (Qﬁ%l) - ¢lAz<n>> D0 D ([ — dn)¥rimn)
=1 I=1 meE(l,M)
L(M)
+ 3 Y dna¥aimmn + Rartn. (2.13)

I=L+1meE(l,M)

Note that each of these terms depends on the chosen value of M but their sum 7, 1,
is actually independent of M. We rewrite this decomposition as

Tn,r =71(n, L, M)+ ro(n, L, M),

where r; and ro stand for the first and last terms in (2.13), respectively. By con-
struction, all values of m which appear in the third term of (2.13) are between L+ 1
and M. Therefore the last two terms in (2.13) may be viewed as a partial sum of

Rru, = Z dm,nw/\(m,n)'

m>L

Since we have assumed that (¢))xev is an unconditional basis for Y, we may
therefore write

lr2(n, L, M|y < DI|Rpun|y-
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According to Assumption 1.1, which is expressed by (2.4), the right-hand side con-

verges to 0 as L — o0 uniformly in n and therefore

LEEI} sup [lra(n, L, M)||y = 0.

We now consider the first two terms in (2.13). For the first term, we have

L L L
Z ¢>\z(n) ZH¢A1(n Az(n) ZHQSLM _¢l”X'
=1 =1 =1

Therefore, for any fixed L, this term goes to 0 in X as M — +oc0. For the second
term, we first notice that for any fixed L and M such that L < L(M), all values of
m which appear in this term are less than or equal to M. Since we have assumed
that (x)rev is an unconditional basis for X, it follows that

L M
ST (dmn = dn)Urimay | < DD (i — dim)x(min)
=1 meE(l,M) m=1 X

X

M
S CD Z |dm,n _dm|7
m=1
where C' = ||¢||x = ||a]|x for all A € V. Therefore for any fixed L and M such that
L < L(M), this term goes to 0 in X as n — 4o00. Combining these observations,
we find that for any fixed L and any € > 0, there exist M and ng such that for all
n > no,

Hrl(nv L, M)“X <e.

By continuous embedding, the same holds for ||r1(n, L, M)||y. Since M was arbi-
trary in the decomposition (2.13) of r,, 1, we obtain that

lim <limsup7‘n,LY) =0,
L—+00\ n—+4oco

which concludes the proof of the theorem.

3. Examples

Our main result applies to a large range of critical embedding. Specifically, we
consider

(i) For the space X: spaces of Besov type stua or Triebel-Lizorkin type F;a with
1<p<ooand 1 <a < o0.

(ii) For the space Y': spaces of Besov type B;’b, Triebel-Lizorkin type th,w Lebesgue
type L9, Lorentz type L%°, and the space BMO, with 1 < ¢ < oo and
1<b< 0.
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Note that Lebesgue spaces may be thought of as a particular case of Triebel-Lizorkin
spaces since L7 = Fg,z, yet we treat them separately since several results that we
invoke further have been proved in an isolated manner for the specific case of
Lebesgue spaces.

The critical embedding for such spaces imposes that ¢ < s together with the
scaling

r:C—l—s:é—u (3.1)
p q
where ¢t = 0 if Y'is of Lebesgue or Lorentz type, and ¢t = 0 and ¢ = c0 if Y = BMO.
It also imposes some relations between the fine-tuning indices a and b. For example
for s > 0 and p, ¢ such that I%l —s5 = %, the space B;a embeds continuously into
LoYif b > a.

Note that for non-integer ¢ > 0 the Holder space C? coincides with the Besov
space Béc,oc, and that for all integer m > 0, the Sobolev space WP coincides
with the Triebel-Lizorkin space F;’Q when 1 < p < oo. In particular, L? = F;Q for
1 < p < oo. For p =1, it is known that FR 5 coincides with the Hardy space H!
which is a closed subspace of L!. We refer to [1] and [29] for an introduction to all
such spaces.

It is known that properly constructed wavelet bases are unconditional for all
such spaces, see in particular [24]. In addition, Besov and Triebel-Lizorkin spaces,
as well as BM O, may be characterized by simple properties on wavelet coefficients.
More precisely, for f = 3, .y dxx and wavelets normalized according to (1.5)
with r given by (3.1), we have the following norm equivalences (see [6, 7, 24]):

(i) For Besov spaces,

A1, ~ | 30| S ldal , (32)

JEL \|Al=j

with the standard modification when ¢ = oo or b = cc.
(ii) For Triebel-Lizorkin spaces,

1/b
1l e, ~ (Z |d,\XA|b> ; (3.3)
AEV L
where X, = 2%4/9X(27 - —k) with X = Xjo7¢ for A ~ (j,k). When b = oo,
(X rev |dxXx|?)Y/? should be replaced by SUP ez Do =i [AAXAl.
(iii) For BMO,
1/2

| £llmao ~ max 291 7 jd, P27l ) (3.4)
pCA
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where by definition ¢ C A means that 27709([0, 1] + k(u)) € 277X ([0, 1]¢ +
k(A).

Note that due to the discretization of the scale-space index dy, the above equivalent
norms do not exactly satisfy the scaling relation (1.3). These norm equivalences
readily imply that (¢)x)xea is an unconditional basis for such spaces. Note that
there exists no simple wavelet characterization of Lorentz spaces L%® when b # q.
However, the unconditionality of (1y)xea in such spaces follows by interpolation of
Lebesgue spaces for any 1 < b, q < oo.

We now need to discuss the validity of Assumptions 1.1 and 1.2, for such choices
of spaces. We first discuss Assumption 1.2 which is only concerned with the space

X. Since we assumed here that X is of Besov type Bfm or Triebel-Lizorkin type

F; ., we may use equivalent norms given by (3.2) and (3.3). Therefore, the X norm
of fn =3 \ev Crn¥a is either equivalent to
a/p 1/a
D D leaal”
€L \|\=j
or
1/a
(Z |C)\,nX)\|a>
AEV v

In both cases, we may invoke Fatou’s lemma to conclude that for the limit sequence
(ca), we have

1/a 1/a

a/p a/p

S(Ser] | st S5 e

JEZ \|IX=j JEZ \|IX=j

and

1/a 1/a
(Z |c,\X,\|“> < lim inf (Z |c>\,nX,\|a>
Aev v e AEV Lp

Therefore, Assumption 1.2 holds for all Besov and Triebel-Lizorkin spaces.

We next discuss Assumption 1.1, for some specific examples of pairs X and Y
which satisfy the critical embedding property. The study of the nonlinear projector
Q@) is an important chapter of approximation theory. The process of approximating
a function

f=> dn,

AEV
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by a function of the form

Z C)\¢>\7

AeEnm

with #(Ey) < M is sometimes called best M-term approximation, and has been
studied extensively. The most natural choice is to take for Ej; the indices corre-
sponding to the largest coefficients |dy| and to set ¢y = dy, which corresponds to
our definition of @ ;. However as already mentioned in Remark 1.2, other more rel-
evant choices could be used if necessary for proving the validity of Assumption 1.1
for certain pairs (X,Y") and a specific instance will be mentioned below.

The study of the convergence of Qs f towards f is particularly elementary in
the case where X = Bz,p and Y = B(’;q, with % — % = ST’t. Indeed, according to
(3.2), we have for such spaces

1 llps, ~ I )revller and [[fllz:  ~ [l(d3)rev e,

and therefore for any f € X, using the decreasing rearrangement (d,,)m>o of the
|dx|, we obtain

1/q
If = Quefllpy, ~ | D ldal?
1/q
m>M
1/q
< dM|1p/q< Z |dm|p>
m>M
M 1/p—1/q 1/q
< (M‘l > |dm|P> (Z |dm|P>
m=1 m>M
1/p
< M—/r=1/9) (Z |dm|p>
m>0
< M@ )revller ~ M7T £ 5, -
We have thus proved that
. s—1
swp_f = Quiflly,, SCM™7, o=""2 >0, (3.5)

ILf 35717_

which shows that Assumption 1.1 holds in such a case.
For other choices of X and Y, the study of best M-term approximation is more
involved and we just describe the available results without proof.
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The case of the embedding of the Besov space X = Bf,,p into the Lebesgue space

Y = L9, with ¢ < co and 11—) - % = 5 > 0 has first been treated in [9] — see also [6]
and [8] — where it was proved that
s
sup  ||f —Qumfllpe <CM™7, U:ZE>O' (3.6)

.o <1
1l <

Therefore Assumption 1.1 also holds in such a case. Note that when ¢ < 2, one
has continuous embedding of ng in L9 and therefore (3.6) may be viewed as a
consequence of (3.5), however this is no longer the case when 2 < ¢ < oo, yet (3.6)
still holds.

A finer result, that may be obtained by interpolation techniques, states that,
with the same relations between p and ¢, the Besov space Bf,, 4 — which is strictly
larger than Bf,,p is continuously embedded in L%, and one may therefore ask if

Assumption 1.1 is still valid in such a case. A positive answer was given in [19] for

the more general embedding of X = thq into Y = F;b with 11—) — % = ST_t, where
b €10, 00] is arbitrary: we have the convergence estimate
Y s—t
sup Hf_QMfHF;_b <CM™°, o:= y >0, (3.7)

: <
1155 <

and therefore Assumption 1.1 is again valid. Note that LY = F(RQ is a particular
case.
For Besov spaces, the critical embedding of X = B; , into YV = Bé,b with
% — % = ==L is known to hold whenever a < b (it is an immediate consequence
of the norm equivalence (3.2)). The study of best M-term approximation in this
context was done in [19], where the following result was proved: there exists a
nonlinear projector Qs of the form (1.7), such that when & — 1 > 5= one has
. s—1
sup Hf_QMfHBtbSCM , 0= > 0. (3.8)
1l <1 “

The set Ep(f) used in the definition of Qs is however not generally based on
picking the M largest |dy|, which is not a problem for our purposes as already
mentioned in Remark 1.2. Therefore, Assumption 1.1 is valid for such pairs.

In this last example, the restriction % — % > %t is stronger than a < b which
is sufficient for the critical embedding. However, we may still obtain the validity
of Assumption 1.1 when a < b by a general trick which we shall re-use further:

introduce an auxiliary space Z with continuous embedding
Xczcy, (3.9)

such that Assumption 1.1 either holds for the embedding between X and Z,
or between Z and Y, which immediately implies the validity of Assumption 1.1
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between X and Y. In the present case we take

- 1
Z=B;, wtht<s<s, —-—
' p

The continuous embeddings (3.9) clearly hold. In addition, when § is sufficiently

close to ¢, we have that 1 — 3 > 221 so that Assumption 1.1 is valid for the pair

(Z,Y) according to (3.8), and thus also for (X,Y).

Remark 3.1. It is not difficult to check that Assumption 1.1 does not hold for
the embedding of X = B;a intoY = Bé,cu and we also conjecture that the profile
decomposition does not generally exist for such an embedding. As an example,
consider a = oo, and a sequence (u,)n>0 obtained by piling up one wavelet at each

scale j =0,...,n at position k = 0:
un =279 (27-).
§=0

All wavelets in u,, contribute equally to the X and Y norm (which is equivalent
to the supremum of the coefficients, equal to 1) and the extraction of profiles with
asymptotically orthogonal scale-space localization seems impossible.

The above trick based on the intermediate space Z may be used to prove
Assumption 1.1 for other types of critical embeddings:

e Embedding of Besov spaces into BMO:

. d
B, © BMO, s=">0,

which includes as a particular case the well-known embedding HY2 « BMO, and
may be easily proved from the wavelet characterization (3.2) and (3.4). Choosing
Z = Bgﬁ for any 0 < § < s and p such that 5§ = %, we clearly have the
continuous embeddings (3.9). In addition, Assumption 1.1 is valid for the pair
(X, Z) according to (3.5), and thus also for (X,Y).
e Embedding of Besov spaces into Lorentz spaces:
1 1 S

Bs,C LY ——==->0,
. p q d

which is valid for any a < b. If a < b, we may introduce for any 0 < 5 < s

- 1 1 3
Z =B, —-——-=-=>0,

P p g d
so that we have the continuous embeddings (3.9). In addition, we have already
proved that Assumption 1.1 holds for the pair (X, Z). It therefore holds for
the pair (X,Y). One may easily check that Assumption 1.1 does not hold for

the embedding of X = B, into Y = L%% and conjecture that the profile
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decomposition does not generally exist for such an embedding, by an argument
analogous to the one in Remark 3.1.
e Embedding of Triebel-Lizorkin spaces into Triebel-Lizorkin or Besov spaces: for

any a,b > 0, consider X = sz,a and Y = F;b with % = % = =L Tt is known, see
[29], that X is continuously embedded into
- 1 1 s—3
Z=B;; §<s and ———~=3 5
’ p P d

If we assume t < § < s, we have the continuous embeddings (3.9). Moreover,

we have already proved that Assumption 1.1 holds for the pair (Z,Y). It there-

fore holds for the pair (X,Y). The same type of reasoning allows one to prove

Assumption 1.1 for the embedding of X = F;a into Y = B;b with b > p.
Remark 3.2. It is easily seen that if X and Y are a pair of spaces such that both
Assumptions 1.1 and 1.2 hold for a certain wavelet basis (1), then the correspond-
ing vector fields spaces (X)? and (Y)? also satisfy the same assumptions for the
vector-valued wavelet basis

Y i=Yre;, AEV, i=1,...,d,

where e¢; = (0,...,0,1,0,...,0) is the canonical basis vector, and the wavelet coef-
ficients d) are defined accordingly as vectors.

4. Stability of the Decomposition

Finally we want to show that the decomposition is stable in the sense that the sum
of the ||¢'||x raised to an appropriate power remains bounded. In our discussion,
we distinguish between the cases where X is a Besov or Triebel-Lizorkin space. We
first address the Besov case.

Theorem 4.1. Assume that X = B;a with 1 <p < oo and 1 < a < oo. We then

have

1" Ix)i0ller < CK, 7 := max{p,a}, (4.1)

where C' is a constant that only depends on X and on the choice of the wavelet basis
and where K := sup,,> [[un|x-

Proof. Fix an arbitrary L > 0 and let M be such that L < L(M) as in Step 4 of
Sec. 2. For [ =1,..., L, we recall the approximate profiles

LM
¢Az(n) - Z dmw)\(m,n)

meE(L,M)
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and we also define
P S ity
mEE(l,M)

which are disjoint part of the wavelet expansion of u,,. More precisely, we have

L
Up = Z ¢Z,M,n + Z dm,nw/\(m,n)-
=1 m>M
We next claim that if F1, ..., Er, are disjoint finite sets in V, then for any coefficient

sequence (dy ), one has

>

=1

1/7
) (4.2)

Z dA¢A

AEE;

Z Z dA¢A

I=1 \€E,

where C'is a constant that only depends on X and on the choice of the wavelet basis,
and with the standard modification of the sum to the power 1/7 by a supremum
on the left-hand side when 7 = co.

Before proving this claim, we first show that it leads to the conclusion of the
proof. Indeed, for | = 1,...,L, the functions ¢"M"
wavelets with indices in disjoint finite sets Ei,..., Er (that vary with n), and
therefore according to (4.2), when 7 < oo,

L 1/7
(Z ¢I’M’"||§c> <C
=1

Using the unconditionality inequality (1.6), we thus find that for all n > 0

L 1/7
(Z Tx) < CK,

up to a multiplication of the constant C' by D. Since ||¢/\ (n) — "M x — 0 as
n — o0, it follows that for any ¢ > 0 we have

1/7
(Z ||¢>\l n)X) < CK +e¢,

for n sufficiently large. By the scaling invariance (1.3) we thus find that

I 1/7
(Z ¢l’MTx> < CK.
=1

Letting M go to +o00, we obtain the same inequality for the exact profiles

L 1/7
<Z¢lTx> <CK

are linear combinations of

L

ZQSZ,MJL

=1

X
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and we thus conclude that (4.1) holds, by letting L — +oo. The case 7 = oo is
treated in an exact similar way, replacing the sum to the power 1/7 by a supremum.

It remains to prove (4.2). We actually claim that this property holds with con-
stant C' = 1 if we take for || - || x the equivalent norm given by (3.2). This is obvious
when p = a = 7 since this equivalent norm is then simply the /7 norm of the wavelet
coefficients. When p # a, we distinguish between the cases p < @ and p > a. We
denote by

Eji:={ € E; |\ =3},
so that
E =] E,
JEZ

First consider the case 7 = a > p. We then have, when a < oo,

33 dun

I=1 \€E,

a a/p

Y (X Y

v €L \I=1 By,

a

X

where for the inequality we have simply used the fact that a/p > 1. Therefore (4.2)
holds. When a = oo, we obtain the same result by writing

L
=sup| > D |

v TP \i=1 xeEy,

1
I /p

DN dan

=1 \eE;

1/p

> sup | sup E |dx|?
A

1/p

=supsup( Y |dal”
ISLjeZ\ \EF, .

> daiha

AEE,;

= sup
I<L

X
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We next consider the case 7 = p > a. To treat this case where p < oo by hypothesis,
we introduce the notation

a/p

b= 1|

AEE,
and we remark that (4.2) is then equivalent to

p/a\ /P

a/p
S(Sw] | e (Swer)
1 j j 1
which trivially holds by applying the triangle inequality in 7/ |

Our last result addresses the Triebel-Lizorkin case.

Theorem 4.2. Assume that X = F;a with 1 <p < oo and 1 < a < oo. We then

have

116"l x)i>oller < CE, (4.3)

where C' is a constant that only depends on X and on the choice of the wavelet basis
and where K := sup,,>q [|un| x -

Proof. We only give the proof in the case a < oo, the case a = oo being treated
by the same type of arguments up to notational changes. Fix an arbitrary L > 0
and let M be such that L < L(M) as in Step 4 of Sec. 2. By the unconditionality
(1.6) of the wavelet basis with respect to X, we first observe that

M

Z dm,n¢A(m,n)

m=1

< DK.
X

It follows that for any € > 0, we have

mwk(m,n) < DK +¢

X

for n sufficiently large. Recall that the sum inside the norm may be rewritten in
terms of the approximate profiles:

Z dm"/}A(m n) = Z Z m"/}A(m,n) Z(b/\l (n)"

1=1 meE(l,M)
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We associate to the approximate profile "™ a piecewise constant function x“™
defined by

l,M . a
X = D ldaXogmml®
meE(l,M)

where X = 24/PX(27 - —k) with X = Xjo1j¢ for A ~ (j, k). Thus according to the
wavelet characterization (3.3) of Triebel-Lizorkin spaces, we have

o [ W @i < 6 < € [ G @l

as well as
p/a M P p/a
/ ZXAZ n) dz S Z dm,nwk(m,n) Z XAl(n dxa
m=1 X

where 0 < ¢ < C only depends on the choice of the wavelet basis. In the case where
a < p, we obviously have

p/a
Z / XK (@) [P/ < / dz.
It therefore follows that
M p
1,M ||p C c
Z M8 = Z 653 1% < SIS dmtbrmm|| < S (DK +2p
m=1 X

Since this holds for any € > 0, and L > 0 and M such that L < L(M), we therefore
obtain (4.3) by a limiting argument, up to renaming (C/c)*/?D into C.

In order to reach the same conclusion in the case p < a, we need to exploit
the “asymptotic orthogonality” of the scales A\;(n) as expressed by (1.13) in the
statement of Theorem 1.1. For this purpose, let us define

= Supp (Z X/\l(n ) U Supp( X)\l(n

For any = € 2, we denote by [* the number in {1,..., L} such that

M B
Xt (my (%) = mmax X3 (3)-

Note that I* depends on both z and n. We claim that a consequence of (1.13) is that
the function Xl/\lf\(/fn) tends to dominate all other Xl)ij\{n) at the point = as n — +o0
in the following uniform sense:

"M
lim min X)\l*(n)( ?)
n—-—+o00 x e, LM
Y 1 X0 () (%) — X5 n)( )

= +o00. (4.4)
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Before proving this claim, let us show how it leads ub to the conclusion of the
theorem. We observe that (4.4) also means that |X/\ ) |p/ % tends to dominate all

other |X/\l(n)|p/“ at the point x as n — +oo. Therefore, for any € > 0, we have for
n large enough

p/a

Zml(n @)P/* < (1 +e)X5 Ty @/ < (1+e)

Z XAZ(”)

for all x € ©,,, and thus

Z/ |X>\L(" |p/adx< 1+€/ Zxkz(n)

We may then conclude the proof as in the case a < p.

It remains to prove (4.4). Our first observation is that the asymptotic orthogo-
nality of the scales A\;(n) expressed by (1.13), shows that for a given x, the profile
scales |A;(n)| for those [ € {1,...,L} such that = € Supp(X/\ (n)) tend to get far
apart as n grows. Indeed, these A;(n)’s do not get far apart in space since the
supports of Xl)\l]\(/ln all contain the same point .

We introduce l. the number that maximizes |A\/(n)| among all those [ €
{1,..., L} such that z € Supp(X)\ ))- Similar to I, the number /. depends both
of x and n. From the previous observatlon we know that for any arbitrarily large
B > 0, there exists ng such that for all n > ng, we have

p/a

dx.

AL (n)] > [Ni(n)| + B, (4.5)

for all I € {1,...,L} such that x € Supp(X/\ (n)) and [ # l,. Moreover, we may
choose this ng 1ndependent of the selected point = for the same B > 0.

We claim that as n grows Xl)f,;]\{n) tends to dominate all other Xl/\’l]\{n) at the point
T as n — 400, in the sense that

Xl*,M ( )
lim min = +o0. (4.6)

n—+o0o x Lo, M
+ € El IXAl(n)( ) XAZ (n)( )

This clearly implies (4.4) (and shows that I* = [, for n large enough).
In order to prove (4.6), we observe that if © € Supp(X&f\fn)) for some [ €

{1,..., L}, we may then frame X)\ (n) () according to

adjy(n) adjy (n)
27 » SXl):f\(/In)(x)gC2 B

where

gi(n) == merg%lr}M) [A(m,n)] and Ji(n):= merrée(xl{(M) [A(m, n)|,
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and where
M
c:=ldy|* and C:= Z |dm|®.
m=1

The constants ¢ and C' of course depend on L and M which are fixed at that stage.
Note that from the construction of the profile there exists A > 0 (that also depends
on L and M) such that for all I € {1,..., L}

Ni(n)] = A < ji(n) < Ji(n) < [Ni(n)| + A,

and therefore, up to a modification in the constants ¢ and C' we may write

ad|X;(n)| ad|Xj(n)|
27 < Xl/\l]\{n)(x) <Cc2 .
Combining this observation with (4.5), we easily obtain (4.6). |

Acknowledgment

G.K. was supported by the EPSRC Science and Innovation award to the Oxford
Centre for Nonlinear PDE (EP/E035027/1).

References

1. R. Adams, Sobolev Spaces, Pure and Applied Mathematics, Vol. 65 (Academic Press,
1975).

2. H. Bahouri and P. Gérard, High frequency approximation of solutions to critical
nonlinear wave equations, Amer. J. Math. 121 (1999) 131-175.

3. H. Bahouri, M. Majdoub and N. Masmoudi, On the lack of compactness in the 2D
critical Sobolev embedding, J. Funct. Anal. 260 (2011) 208-252.

4. J. Ben Ameur, Description du défaut de compacité de I'injection de Sobolev sur le
groupe de Heisenberg, Bull. Soc. Math. Belgique 15 (2008) 599-624.

5. H. Brezis and J. M. Coron, Convergence of solutions of H-Systems or how to blow

bubbles, Arch. Rational Mech. Anal. 89 (1985) 21-86.

A. Cohen, Numerical Analysis of Wavelet Methods (Elsevier, 2003).

I. Daubechies, Ten Lectures on Wavelets (STAM, 1992).

R. DeVore, Nonlinear Approximation, Acta Nume. 7 (1998) 51-150.

R. DeVore, B. Jawerth and V. Popov, Compression of wavelet decompositions, Amer.

J. Math. 114 (1992) 737-785.

10. I. Gallagher and P. Gérard, Profile decomposition for the wave equation outside convex
obstacles, J. Math. Pures Appl. 80 (2001) 1-49.

11. I. Gallagher, G. S. Koch and F. Planchon, A profile decomposition approach to the
L§®(L3) Navier-Stokes regularity criterion, arXiv:1012.0145.

12. I. Gallagher, Profile decomposition for solutions of the Navier—Stokes equations, Bull.
Soc. Math. France 129 (2001) 285-316.

13. P. Gérard, Description du défaut de compacité de l'injection de Sobolev, ESAIM

Control Optim. Calc. Var. 3 (1998) 213-233.

© 0N o



14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.

A General Wavelet-Based Profile Decomposition 411

S. Ibrahim, Comparaison des ondes linéaires et non linéaires a coefficients variables,
Bull. Soc. Math. Belgique 10 (2003) 299-312.

S. Jaffard, Analysis of the lack of compactness in the critical Sobolev embeddings,
J. Funct. Anal. 161 (1999) 384-396.

C. E. Kenig and G. S. Koch, An alternative approach to the Navier—Stokes
equations in critical spaces, Ann. [’Inst. Henri Poincaré, Anal. Non Linéaire,
DOI:10.1016/j.anihpc.2010.10.004.

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the
energy critical focusing nonlinear wave equation, Acta Math. 201 (2008) 147-212.

S. Keraani, On the defect of compactness for the Strichartz estimates of the
Schrodinger equation, J. Differential Equations 175 (2001) 353-392.

G. Kyriasis, Nonlinear approximation and interpolation spaces, J. Approx. Theory
113 (2001) 110-126.

C. Laurent, On stabilization and control for the critical Klein-Gordon equation on a
3-D compact manifold, to appear in J. Funct. Anal.

P.-L. Lions, The concentration-compactness principle in the calculus of variations.
The limit case. I, Rev. Mat. Iber. 1 (1985) 145-201.

P.-L. Lions, The concentration-compactness principle in the calculus of variations.
The limit case. II, Rev. Mat. Iber. 1 (1985) 45-121.

M. Majdoub, Qualitative study of the critical wave equation with a subcritical per-
turbation, J. Math. Anal. Appl. 301 (2005) 354-365.

Y. Meyer, Ondelettes et Opérateurs (Hermann, 1990).

I. Schindler and K. Tintarev, An abstract version of the concentration compactness
principle, Rev. Math. Complut. 15 (2002) 417-436.

S. Solimini, A note on compactness-type properties with respect to Lorentz norms of
bounded subset of a Sobolev space, Ann. I’THP Anal. Non linéaire 12 (1995) 319-337.
M. Struwe, A global compactness result for boundary value problems involving lim-
iting nonlinearities, Math. Z. 187 (1984) 511-517.

T. Tao, An inverse theorem for the bilinear L? Strichartz estimate for the wave equa-
tion, arXiv:0904.2880.

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, 2nd edn.
(Johann Ambrosius Barth, 1995).



	1 Introduction
	1.1 Wavelet expansions
	1.2 Main results
	1.3 Layout

	2 Construction of the Decomposition and Proof of Theorem 1.1
	3 Examples
	4 Stability of the Decomposition

