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A three-dimensional model of the hydro-elastic waves in the mammalian cochlea is pre-
sented along with numerical simulations. The cochlear fluid is treated as linear, incom-
pressible, and inviscid. The cochlear partition is treated as a massless thin plate loaded
by the fluid. This model is then reformulated by analytically removing the fluid vari-
able with the use of a Dirichlet-to-Neumann operator. The resulting fifth-order nonlocal
PDE for the motion of the partition is simulated using a novel implicit numerical scheme.
Simulations demonstrate that this model exhibits traveling wave characteristics and a
clear place principle. Asymptotic analysis in the small aspect ratio of the cochlea is
performed on the given model equations with energetic concerns in mind. The results of
simulations along with these asymptotic arguments suggest a relationship between the
form and function of the cochlea which we compare to physiological data.
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1. Introduction

The inner ear is one of the most fascinating organs in our body. It converts mechan-
ical vibrations arriving from the ear drum into neural signals that are transmitted
into the auditory cortex. The main body in the inner ear is the cochlea, a com-
plex fluid-filled, coiled organ. The transduction of mechanical information in the
cochlea occurs as follows. Sound pressure waves cause excitation of the eardrum.
The eardrum is mechanically connected to the cochlea at the oval window through
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a set of three small bones (ossicles). Vibrations of the eardrum are thus transferred
directly to the cochlea. The vibration of the oval window causes pressure fluctua-
tions in the cochlear fluid. These pressure waves in turn excite vibrations of a plate
(basilar membrane) which partitions the fluid-filled cavity. These vibrations take a
particular form which is referred to as the “place principle”. That is, a pure tone
input frequency yields a vibration profile highly localized in space at a “character-
istic place” along the partition. This characteristic place is located at the apical
end for low input frequencies and monotonically moves toward the basel end as the
frequency is increased. This place principle induces frequency dependent transduc-
tion of neural signals in hair cells which lie atop the partition. For an exposition on
the mechanics of hearing, see [5, 15].

Numerous models have been proposed for the hydro-elastic waves propagating
in the cochlea. While a complete list is outside the scope of this paper, we do
point out some features of these models which are pertinent to this discussion. The
most widely used and published class of models are those of the transmission line
type [14, 13, 12]. These models assume the cochlear partition is a one-dimensional
object consisting of a collection of point oscillators coupled only through the fluid.
They attempt to capture the passive response of the basilar membrane to waves
in the fluid. However, it is widely believed that a passive response is too weak to
create the observed neural stimulus. Furthermore, nonlinear effects such as tonal
suppression and frequency doubling have been observed in the cochlear response.
Therefore it has been suggested that part of the basilar membrane response is due
to an active internal mechanism that enhances the passive response. To account
for this, a class of active models such as [19, 7] layer nonlinearities on top of these
passive transmission line models.

In order to more accurately capture the mechanics of the partition, others such
as [10, 17] have made attempts to treat it as an elastic plate coupled to a three-
dimensional fluid. Such models subsequently assume a simplistic functional form
for the plate displacement, effectively removing the associated biharmonic operator
from the problem. The most complete treatment of elasticity in the cochlea problem
can be seen in [4]. This treatment considers the cochlear partition to be a fully
elastic structure with curvature. Due to the comprehensive nature of the underlying
model and the explicit numerical treatment of the cochlear fluid inherent in the
immersed boundary method, it requires substantial computational resources and,
to our knowledge, has not been expanded upon.

Our goal in this paper is twofold. We first seek to solve numerically a complete
set of equations describing the water waves in a three-dimensional cochlea, coupled
to the vibrations of a two-dimensional nonhomogeneous plate. We concentrate on
the simple case of a passive cochlea with an inertial fluid, and put our efforts into
extending the existing treatments of the plate. We assume that the vibrations are
of small amplitude and thus use a linear model. Our equations are formulated
in Sec. 2. Then, in Sec. 3 the fluid equations are integrated via a Dirichlet-to-
Neumann (DtN) operator. We are thus left with a nonlocal equation for the plate’s
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deflection function. In addition to the difficulty induced by the nonlocality, the
equation is essentially fifth-order, taking into account the plate nature of the basilar
membrane. An implicit numerical scheme, which appears to be novel in this setting,
for solving the plates equation is described in Sec. 4. It is based on the explicit form
of the DtN operator and on a very efficient and accurate scheme for the biharmonic
operator. The numerical scheme is tested for convergence and accuracy in Sec. 5.
In Sec. 7, we present simulations of the full model. Our solutions exhibit a clear
“place principle” in the sense that as the frequency of the driving force increases,
the maximal deflection of the basilar membrane shifts to the basal end of the
cochlea.

A second goal of this work, presented in Sec. 6, is to produce a more informative
asymptotic reduction of the three-dimensional model equations. Substantial efforts
in the literature have been dedicated to the production of such models due to
difficulties associated with fully three-dimensional models. Much of the variation in
these models occurs in the treatment of the fluid with little additional consideration
of the mechanics of the plate. We integrate the dynamic elasticity of the cochlear
plate into our model reduction. The resulting asymptotic model effectively treats
the fluid in similar fashion to that of transmission line type models, but retains
information regarding the elastic nature of the plate. In Sec. 7, we use simulations
of the full cochlear model to validate these asymptotics. In Sec. 8, we discuss a novel
physiological result relating the cochlear aspect ratio to the size of the perceptible
hearing range in mammals. This result is initially seen in the presented asymptotic
reduction, verified in simulations of the three-dimensional model equations, and
compared to experimental data.

2. The Model

The cochlea is a long, thin, coiled tube consisting of three fluid-filled cavities and a
complex micro-structure, which is forced at one end by the input from the eardrum.
We make a few simplifying assumptions on the geometry. We first assume that the
cochlea can be unwound without dramatically affecting its function. It is known
that the spiral shape does affect cochlear function at low frequencies [11], however
this is more a tuning effect than a dramatic functional effect. We further assume
that the fluid effects of the two larger cavities (scala vestibula, scala tympani)
dominate those of the third smaller cavity which we neglect. As the two remaining
cavities are roughly equal in area, we take them to be identical rectangular boxes.
We assume these two boxes are separated by a single rectangular partition known as
the basilar membrane which serves as a platform for the motion sensing mechanism
of the cochlea (Organ of Corti). We assume that the partition fully separates the
two cavities, thus neglecting the helicotrema. We neglect the Organ of Corti as it
is believed to play only a minor role in the passive mechanics of the cochlea.
Thus, our physical system consists of a long, thin, fluid-filled rectangular box
with a partition separating it into two cavities. In reality, the cochlea tapers off
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toward the apical end. This feature, together with varying stiffness of the cochlea,
is responsible for the dispersion in the place principle. To simplify the numer-
ical treatment, we neglect the tapering of the cochlea. It is a straightforward
matter to add the tapering feature into the one-dimensional reduction in Sec. 6
through a change of variables. This would effectively augment the form of the
stiffness coefficient but not its decaying feature, which is responsible for the place
principle.

The fluid motions are assumed to be small in relation to the dimensions of the
problem, so we take the fluid model to be linear. For simplicity we further assume
that it is irrotational, inviscid, and incompressible. For the cochlea, compressibility
and viscosity are complicated topics. Evidence suggests compressibility does play
a role in the function of the system [9] and it has been argued that while present,
viscosity is not important [6]. Since our goal is to better understand the role of
elasticity and the cochlear aspect ratio, we make these assumptions as a starting
point. We thus take the fluid to be governed by the simplified Euler equations

pde + P =0, (2.1)
A¢= AP =0, (2.2)

where P(z,y,z,t) is the fluid pressure, ¢(z,v, 2,t) is the fluid velocity potential,
and p is the fluid density which is assumed to be constant. For the moment we defer
the discussion of boundary conditions for the fluid.

We take the cochlear partition to be a thin plate. This is at odds with the term
basilar membrane, but it is known that the partition exhibits plate-like characteris-
tics as opposed to membrane-like characteristics [2]. Consider the cochlear partition
at rest to fill the domain (z,y,0) € [0, L] x [0, Ly] X [-L;, L.] and the two cav-
ities to fill the domains above and below the partition. Further assume that the
input forcing occurs at the z = 0 face of the top cavity. We allow the plate to have
variable friction r(z) and stiffness k(z) where the variation is only present in the
longitudinal direction as is observed [2]. It is also assumed that the energetic effects
of plate friction, stiffness, and fluid inertia dominate the inertial effects of the plate
so we neglect the mass of the plate. While this simplifies the equations, it does
not dramatically alter the analysis or computations. We have observed numerically
that including the plate’s inertia moderately sharpens the response. Thus our plate
is governed by

r(ac)wt + A(kj(ﬂ?)AU}) = _Pu(xay70at) + Pl(xay70at) = p¢tu - p¢tl? (23)

where w(z,y,t) is the vertical displacement of a point on the plate located at
position (x,y) and the subscripts u and [ denote the fluid properties in the upper
and lower cavities respectively. Here we are assuming the plate is loaded by the
pressure difference across the plate and that the bi-harmonic operator represents
the tendency for the thin plate to resist deformation [8]. In assuming that the plate
interacts only with the fluid pressure at z = 0, we are essentially assuming that the
motions of the plate are small in relation to the dimensions of the problem. This
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is in line with the treatment of the plate as thin and the fluid as linear. We take
clamped plate boundary conditions
w,w, =0, x=0,L,,
‘ ¢ (2.4)
w,wy =0, y=0,L,,
as it is assumed to be rigidly attached to the cochlear walls.
Notice that the loading of the plate by the fluid is only dependent on the differ-
ence in pressure across the partition. We decompose P, and correspondingly ¢ as

P.(z,y,2,t) = Pp(z,y,t) + P*(z,y, 2,1), (2.5)
Pl(Jf,y,Z,t):Pm(l’,y,t)—FPl(J?,y,Z,t), (26)

where P,,(x,y,t) is the mean cross-sectional pressure. Let us further assume that
the fluid is antisymmetric about the plate so that P'(z,y, —z,t) = —P%(z,vy, 2,1).
This is a standard assumption taken along with incompressibility and can be seen
in [5] for example. At this point we drop the superscripts and from now on write
P = P* and ¢ = ¢". Then the equation for the motion of the plate can be
reduced to

r(z)ws + A(k(x)Aw) = —2P = 2pgy. (2.7)

Given this reduction we can remove the bottom cavity from the model so that our
model now consists of a single fluid-filled cavity with an elastic plate at the bottom
boundary shown in Fig. 1.

A brief note on the meaning of plate friction r is in order. This feature is at best
not well understood and at worst unphysical. While it is known that the cochlear
fluid provides a significant source of energy dissipation, it is unknown what effects,
if any, the mechanics of the basilar membrane have on energy dissipation. Due to
our treatment of the cochlear fluid as inviscid, it is however necessary to include
it. This is a widely used assumption [14, 1, 12] due to the difficulty in dealing with
more complicated fluid mechanical models.

Before writing down the boundary conditions for the fluid, we need to choose
whether to work with a potential-based formulation or a pressure-based formula-
tion. On the surface, these appear different, but these differences are superficial in

L,
Y

Fig. 1. The geometrically simplified single cavity cochlea. The forcing is understood to occur at
the x = 0 boundary and the cochlear partition fills the z = 0 face.
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nature. The fluid used in this model acts only to distribute the forcing at the oval
window to the length of the plate which is the object of interest. To this end, the
fluid is coupled to the plate in two ways. First, the pressure of the fluid in contact
with the plate produces a load. Second, the continuity condition implies the plate’s
velocity must equal the fluid velocity at each point. The underlying form of these
couplings is independent of the formulation of the fluid used. That said, the poten-
tial formulation does produce a model which is more symmetric in the sense that
time derivatives of both w and ¢ appear. This feature will be of use when discussing
an asymptotic model. We thus choose to use the velocity potential formulation.
We now take the following set of boundary conditions for ¢

¢(an727t) :F(y7z7t)a QS(LZay:Z)t): 07 (28)
¢y(xa07z7t)zoa d)y(x)LyVZ)t):O? (29)
¢2(2,9,0,t) = we(z,y,t), ¢:(2,y,L:,1) =0, (2.10)

where —pF; = f and [ is the force applied by the oval window. The boundary
conditions at the x = 0, L, faces are force-matching or pressure boundary conditions
while the remaining faces take velocity-matching conditions. Note that in moving
from a pressure condition at the z = 0, L, faces to a potential condition, the
time integration yields constants. These constants simply induce extraneous time
independent solutions of the Laplace problem which do not interact with the plate.
So they are not included. From a physical perspective, it would be sensible to
prescribe Neumann velocity conditions on all faces. Such boundary conditions allow
reference pressures to creep into the problem which interact with the plate however.
At least one pressure condition is necessary to avoid this issue. The basal (x = 0)
pressure condition is a natural choice. The apical (z = L) pressure condition is
chosen as representative of the helicotrema. However, it has been observed that in
past models, the specific form of the apical boundary condition has little effect on
the function of the model [12]. Further, the computational model to be discussed
can handle either case. Thus we take our model to be

Ao(z,y,z,t) =0, (2.11)
r(x)we(z,y,t) + A(k(z)Aw(z,y,t) = 2pd:(2z,y,0,t), (2.12)

along with boundary conditions for the plate and pressure given by (2.4) and
(2.8)-(2.10). We shall comment on the initial conditions later when discussing
numerics.

3. Dirichlet to Neumann Formulation

At this juncture we reformulate the model in a way that will make the numerical
solution simpler. Recall that we are primarily interested in observing the motion
of the plate. It is seen in (2.10) and (2.12) that the plate interacts only with the
potential and its normal derivative at the z = 0 face. So it is unnecessary to carry
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the full-fluid equations throughout the problem. Instead we analytically eliminate
the potential and end up with a nonlocal equation for the plate’s deflection w. Before
proceeding further, let us assume that the forcing to the system F(y, z,t) = F(t)
is time-dependent only. This piston-like treatment of the forcing is not strictly nec-
essary. However, it simplifies the resulting model and there is little reason to think
that the spatial profile of the forcing effects the function of the system, particularly
so in light of the small aspect ratio of the cochlea. Under this assumption, we can
restate (2.10) as

wy(z,y,t) = To(x,y,0,t), (3.1)

where T is a Dirichlet-to-Neumann (DtN) operator for the given potential Laplace
problem.

In order to compute this operator T', let us first homogenize the forcing boundary
condition at the x = 0 face. Define

dlant) = F() " (3:2)
and
O (x,y,2,t) = d(x,y, 2, t) + q(x, t). (3.3)

Then ¢* is harmonic and inherits all of the boundary conditions of ¢ with the
exception of the forcing boundary condition at z = 0 which is now homogeneous
Dirichlet. Consider the Laplace problem for ¢* with fictitious boundary conditions
given by

¢*(07y727t) = 07 ¢*(Lw7yvzvt) = 07 (34)
¢y (2,0, 2,t) =0, ¢y (x, Ly, 2,t) =0, (3.5)
o*(2,y,0,t) = g(z,y,t), ¢(z,y,L:,t) =0, (3.6)

where ¢ is an arbitrary function. It can be found directly through the use of
separation of variables that

&5 (x,y,0,t) = — Z Brm () Sn,mm tanh(sy, L, ) sin n;x cos Trzry’ (3.7)
m,n=0 x Y

where

wee ()4 ()

and 3, are the expansion coefficients of g in the basis {sin 2% cos ZZ% 1 Define
; L L
z y

Tg(z,y,t) = ¢%(2,y,0,t). (3.9)

This operator T converts Dirichlet data at the z = 0 face into Neumann data in a
manner which is compatible with the Laplace problem and boundary conditions at
the remaining faces.
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We can now repose the problem in the following way
we = ¢:(2,y,0,t) = T¢*(2,y,0,t), (3.10)
r(x)wy + Alk(z)Aw) = 2pd; — 2pqi(x, t). (3.11)

Applying T to Eq. (3.11) and substituting for ¢*, we can reduce this to a single
wave type equation involving only w

2pwyy — T(r(x)ws + A(k(z)Aw) + 2pqi(x,t)) = 0. (3.12)

The wave nature of Eq. (3.12) is clear. A slightly less clear observation is that this
is a fifth-order PDE. This is a result of the presence of the fourth-order biharmonic
operator along with T which encodes a derivative and is linearly unbounded. As
expected, in the absence of true plate inertia, the fluid inertia supplies the necessary
resonance structure for wave-type characteristics to exist. The expected nonlocality
due to the fluid is expressed in the operator 7. The fluid equations are fully encoded
in the operator T and in ¢;(x,t). This also means that it is straightforward to replace
our fluid model by another model such as Stokes equations.

It is possible at this point to make a shallow water approximation to the
operator T

T x LD y)- (3.13)

While this approximation is well founded, it is not beneficial in this case. The
shallow water operator is essentially quadratically unbounded while T is linearly
unbounded. Further, as will be discussed, T' can be computed efficiently so that it
is comparable in computation time to A.

4. Numerical Implementation

Suppose the plate fills (z,y) € [0 : L;,0 : L,] and the computational domain
is discretized into (N + 1) x (M + 1) points. Let Az = L& Ay = %, and
v = w(w,y;,t,) where t, = nAt. The close relation of (3.12) to the wave
equation inspires the numerical scheme to be discussed. As a first pass, an explicit
scheme using a leapfrog treatment of the time derivatives was used. This scheme
was successful but suffered from a stringent stability condition of O(Az°/2). This
is due to the essentially fifth-order nature imposed by the biharmonic operator and
the linearly unbounded T representing a fifth spatial derivative.

In order to remove this stability issue, a fully implicit scheme was developed for
this system. For the purposes of this formulation, we will utilize matrix forms of the
given operators. Along these lines, let us denote the DtN by the matrix operator T’
and the non-constant stiffness operator by L. As well, let R be the diagonal friction
matrix. Then upon discretization of the spatial part of the problem, (3.12) can be
reposed as

w

2pwy — T(Rwy + Lw + 2pq.(t)) = 0. (4.1)
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We use a standard Crank—Nicolson procedure for the temporal part of the problem
yielding

2 2
<2pT—1 — %R — ATLLL)W”+1 =— <2pT—1 + %R - %L)w"‘l

HApT W + AP (pai ™ +pap ™). (42)

All operators present are time independent. Thus, the LU decomposition of the
operator attached to w" ! can be pre-computed and the computational cost of each
time step is quadratic in the number of grid variables. Further, as will be demon-
strated, this scheme is unconditionally stable leading to significantly improved com-
putation times. For simplicity, we supply initial conditions of the form w(z,y,0)
and w(z,y, At). In light of (2.12), it would be sufficient to supply P(x,y,0) in place
of w(x,y, At).

There are two primary computational difficulties associated with any computa-
tional procedure dealing with Eq. (3.12). First, one has to be able to compute the
non-constant biharmonic operator A(k(x)Aw) efficiently. Consider the expanded
form of

A(k(2)Aw) = AkAw + 2(ky Awy + kyAwy) + kA w, (4.3)

where for our purposes k, = 0. For the constant stiffness biharmonic operator, we
use a second-order compact scheme due to Stephenson [18]

L

(D2w); ;= X

(56wi,j — 16(wit1,j + wio1j + wije1 + wij1)

+2(Wit 141 + Wit1,j-1 + Wim1 1 + Wim1-1)

ow ow ow ow
+3h| — - + = - = , 4.4
(833 i+1,j  OTi-1; ayi,j—H 8yi,j—1>) 44

where h = Az = Ay. This discretization requires values of not only w, but also of
w; and wy. These values are computed via

ow 3 1 <8w ow )

(Wit1,5 — Wwi—1,5) —

8_961‘,3':@ 4 0Ti+1,j %ifl,j

(4.5)
w3 e
ayi,j_4h w W 4 8yi,j+1 ayi,j—l '

The remaining terms in (4.3) are dealt with using standard centered difference
approximations for the Laplace operator. This is reasonable as values of wg,w,
are already being utilized by the Stephenson scheme. The primary downside to this
discretization is that it requires Az = Ay. This will become a significant restriction
in the presence of small geometric aspect ratios. We use this descriptive definition
of the biharmonic discretization to produce the matrix L.
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The second computational difficulty associated with this model is the DtN oper-
ator T'. An interesting feature of this operator is that it can be computed efficiently
with the use of an FFT through the decomposition

T=r"'DF, (4.6)

where F is a sin—cos Fourier transform, and D is a diagonal weighting operator.
While this description provides an efficient manner of computing 7" in an explicit
scheme, it is not used in the current implicit scheme as the matrix T is lumped
with other operators before computations occur. As stated earlier, the downside of
this operator is that it is linearly unbounded. This cannot, under any reasonable
circumstances, be avoided as the normal derivative in Eq. (2.10) must be represented
in some form. To compute with this operator we truncate it so that only N and M
Fourier modes are considered in the x and y directions respectively. The resulting
truncated operator has norm

|T|| o< sn a7 tanh(sy armLs), (4.7)

where sy a were defined as in Eq. (3.8).

This scheme is unconditionally stable and runs in reasonable amounts of time
on a standard PC. A few bottlenecks still exist in this scheme however. From a
mathematical standpoint, the matrix L is sparse and T can be dealt with efficiently
with an FFT. However, the given scheme requires the inversion of a matrix which
lumps these together, thus negating these properties. From a practical standpoint,
when computing at aspect ratios of roughly 0.015, storage of the given matrix
operators becomes an issue on the standard PC system and clusters on which we
work. Due to this limitation, at physiological aspect ratios, we have been limited
to computations with N + 1 = 7 points in the lateral (y) direction. However, even
at these grid sizes, computation times are still not a substantial issue and the
performance of this implicit scheme is far superior to that of the aforementioned
explicit scheme.

5. Convergence Results

For test purposes, we consider a modified form of the problem (3.12) given by
2pwtt - T(r(m)wt + A(k(x)Aw) + Bl(xv Y, t)) = BQ(xv Y, t) (51)

and take p = 1. We use the method of manufactured solutions to test the code. A
known test function w is chosen, By is then selected so that the compound term
r(z)wy + A(k(x)Aw) + By has the appropriate spectral representation, and finally
B5 is chosen to balance the equation. The choice of B; serves a twofold purpose
here. Recall that 7" must act on functions which are expandable in a particular
Fourier basis. In simulations, we guarantee this by imposing the necessary bound-
ary conditions inherited from the potential problem. However, when non-constant
mechanical coefficients r(z) and k(z) along with w are chosen for the test problem,
the resulting compound term will not in general be naturally representable in the
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spectral basis associated with 7. We use the inhomogeneity B; to guarantee that
in (5.1), the compound term on which 7" acts can be naturally represented in the
basis {sin “7* cos mL—’:/} Moreover, we choose Bj in such a way that this compound
term is known in an exact form so that after T' is applied, By can be analytically
determined.

Tests of the numerical scheme (4.2) are performed in the context presented in

Sec. 6. That is, we take

k(z) = eko exp <—/\i) , r(x) = 1 (5.2)
L, €2
in order to match the scalings present in the asymptotics. The exponential decay of
stiffness is chosen to match the profile seen in experimental data. We use a decay
coefficient of A\ = 4 per unit length yielding two orders of magnitude of decay.
There seems to still be debate over the precise value of this constant. However, its
particular value serves primarily as a tuning constant. As we are primarily interested
in qualitative results, we do not seek to precisely match this parameter. Friction is
taken to be constant over the length of the plate for lack of any specific knowledge
on its form. Data not presented suggests that any nonincreasing r will lead to the
same salient features to be presented with only tuning differences.
Numerous tests of this numerical scheme were performed with similar results.
One representative set of tests is presented at an aspect ratio of ¢ = 1/32 with
input test function

w(z,y,t) = sintsin(3rx) cos(37r—y>. (5.3)
€

All tests presented were performed as discussed above with exact initial data sup-
plied at ¢t = 0,At. The code was run until it was clear that transients due to
initial data were damped out and L™ errors were recorded. Results of these tests
are shown in Table 1. Similar tests were performed with different initial data. As
expected, this did not affect the long term errors. Additionally, L' and L? errors
exhibit the same characteristics as the L> errors.

Table 1. Errors for the numerical scheme
(4.2). For this test, mechanical coefficients are
prescribed as (5.2). The exact solution is taken
to be w(z,y,t) = sintsin(3wx) cos(3my/e). All
errors are L™ errors measured at ¢ = 10e.

At N=6 N =12
1

m 2.63E(—1) 2.97E(—1)
1

— 5.25F(—2) 6.03E(—2)
?

— 2.68F(—2 3.02F(—2
100 (-2) (-2)

— 1.34E(—2 L51E(—2

200 (-2) (-2)

— 6.68E(—3) 7.54E(—3)
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This data shows the scheme is indeed O(At) and unconditionally stable as
expected. Further, plots of error versus time show that errors oscillate in phase
with velocity w;. This data additionally shows an increase in errors when moving
from N = 6 to N = 12 lateral intervals. Additional tests not presented show that
while grid refinement does sometimes increase errors, the errors converge to a time
step dependent constant which exhibits the discussed linear order of convergence.
It is of course necessary to use more grid points when the spatial profile becomes
more complex. We will use a value of N = 12 for all future simulations at € = 31—2
This is sufficient to capture a relatively simple lateral displacement profile. Further,
this yields 385 grid points in the longitudinal direction which should be sufficient
for passive simulations.

6. An Asymptotic Reduction

Due to the mathematical and computational complexities associated with three-
dimensional cochlear models, much work has been done on producing and
understanding reduced models. Some discussion of them can be seen in [9]. We
will concentrate on the treatment of plate stiffness in such models. The most widely
studied class of reduced models are those of the transmission line type [14, 13]. Such
models effectively assume that the basilar membrane is a collection of uncoupled
point oscillators coupled through one-dimensional fluid movements. These models
can be arrived at through asymptotic reductions of three-dimensional models as in
[13]. This particular reduction, due to Peskin, includes plate stiffness (with clamped
boundary conditions) in a static fashion only however. Asymptotics are performed
on a static plate problem and dynamics are later added.

Similar issues are present with two-dimensional models. The plate treatment
in some, such as [12] due to Neely, is similar to that of a transmission line model
with a two-dimensional fluid attached. Allen and Sondhi [1] maintain longitudinal
(z-direction) stiffness in their treatment but remove lateral stiffness (y-direction) by
assuming the y dependence of w is a centered half cosine. This is backward in some
sense as the lateral direction is more energetic than the longitudinal one due to
the small aspect ratio present. Similar use of a simplified lateral dependence of w is
utilized even in the three-dimensional WKB model due to Steele and Lim [10]. This
is by no means a comprehensive list, but it is representative of the manner in which
stiffness, particularly lateral stiffness, is treated in reduced models. Such treatments,
while successful, overlook valuable information relating to the stiffness and aspect
ratio. We present an asymptotic reduction which does not utilize such methods.

Consider the cochlear model given by (2.11) with boundary conditions (2.12),
(2.8)-(2.10) and let L, = 1, L, = L, = ¢, where ¢ < 1. This is a reasonable
assumption given the dimensions of the human cochlea which are roughly 35 x 0.3 x
2mm. Again assume that the input forcing is piston-like so that F(y, z,t) = F(t).
Now make the canonical independent variable scalings

t
y*:g7 z*zi = - (6.1)
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along with
w = 2w (6.2)

The purpose of the spatial scalings is clear. The temporal scaling is made out
of necessity and will be discussed in further detail later, and the scaling of the
deflection w is a statement that the plate deflection must be much smaller than the
depth of the cochlea. Let us now assume that ¢ takes the form

¢ =" + 2t (6.3)

Upon making these substitutions in (2.11), dropping the % and considering the O(1)
terms, it is found that

0" = (x,1), ¢°(0,t) = F(t), ¢°(1,1)=0. (6.4)
Further considering the O(¢?) terms yields the relation
vo = —(Byy +02.),  ¢:(2,9,0,8) = wy (6.5)

with homogeneous Neumann conditions for ¢' on the y = 0,1 and z = 1 faces.
Integrating this with respect to y and z and applying the divergence theorem
yields

1
0 (x,t) = wy(z, Yy, . .
0, (1) / (2,5, 1) dy (6.6)

Now consider the elasticity equation (2.12). Upon making the above-mentioned
substitutions and dropping the *, the meaningful (in a dominant balance sense)
terms that persist are

1 1
r(x)ew; + G—Qk’(ac)wyyyy = EQQS?. (6.7)

We now make the following scalings for k£ and r

*

r
k = ek*, r= (6.8)
Here the stiffness scaling is made with energetic concerns in mind. Consider a thin
clamped rod. In order to produce meaningful deflections in such a rod, it is necessary
to have a large forcing, a small stiffness, or both. As this system is set up, both
are present. Consider the forcing to this system F'(t). The relation (2.1) along with
the given time scale shows that the forcing to the system is of size O(1/¢). The
friction scaling was originally made in order for dominant balances to work out.
However, there is a physical grounding behind this scaling as well. Due to the use
of an inertial fluid, the only source of energy dissipation is the plate friction. Due
to the large forcing present, a large friction coefficient must also be present in order
for the power-in to match the power-out at the given deflection levels. Upon making
these substitutions and again dropping the %, the dominant balance becomes

r(@)we(z,y, 1) + k(@) wyyyy (2,9, 1) = 26} (2,1). (6.9)
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A complete asymptotic model is now defined by (6.4), (6.6), (6.9) with clamped
boundary conditions at the y = 0,1 edges for the w. Notice that unlike quantum
graph models [16] where the lateral coordinate is integrated out of the reduced
model, the boundary conditions in the present case imply that we must maintain
the y coordinate. However, in the reduced model we are able to separate the x and y
coordinates, and thus the model is structurally simpler than the original equations.

Due to the removal of clamped conditions for the plate at x = 0,1 in this
reduction, an associated boundary layer for w will be present. The size of such
boundary layers can be analytically determined to be O(e). This is also observed
in Fig. 4 showing simulation results of the full cochlear problem over a range of
aspect ratios. These boundary layers do not substantially effect the model and
their discussion is left for future work.

This reduced model is similar in structure to a transmission line type model with
the exception that the lateral direction and its associated elasticity are maintained.
The dimensional reduction of ¢ seen in the transmission line type models is seen
here as well and the shallow water approximation explicitly performed in previous
reductions shows up in the form of the ¢2, term. A strength of this reduction is
that it does not impose an artificial functional form on the displacement w. This
does unfortunately come at the expense of an increased model complexity. Further,
these asymptotics naturally separate the longitudinal complexities imposed by the
fluid and variation of mechanical coefficients from the lateral complexity associated
with the primary plate stiffness. In later sections we provide validation of these
asymptotics and discuss a physiological result which is found during this reduction
and is testable against experimental data.

7. Simulations of the Cochlea

We now present simulations of the full cochlear model (3.12) with a twofold pur-
pose. First, we will show that this model does exhibit a crude place principle where
higher input frequencies push deflections closer to the x = 0 end. Second, we will
use simulations of the full model to validate the asymptotic reduction previously
discussed. All simulations will be run in the setting discussed in the above asymp-
totics. Since the cochlea has a small aspect ratio, we assume the spatial dimensions
are scaled so that L, =1 and set L, = L, = ¢, as discussed previously. We choose
the plate’s mechanical coefficients as shown in (5.2) with A = 4. Finally, we express
the forcing at the oval window in the form

F(t) = lsin<2mt> (7.1)

€ €

to match the setting discussed previously where it is assumed that time is scaled
to seconds.

A successful model of the cochlea must at the very least exhibit a place principle.
That is, it must exhibit the dispersive relation where low input frequencies produce
maximum response near the apical (x = 1) end of the partition and high frequencies
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Fig. 2. These figures represent maximal deflection of the centerline of the cochlear plate as a
function of location over a range of input frequencies. Computations are performed on the domain
[0,1] x [0,€¢] with r =1, p=1/2, A\ =4, and ko = 1.

produce maximum response near the basal (z = 0) end of the partition. The first
set of simulations depicted in Fig. 2 shows this model does indeed exhibit a crude
place principle. These simulations at € = 1/32 show the effect of varying the scaled
input frequency €). Based on the data in Table 1, the time step is taken to be four
percent of the characteristic time scale €¢/€. All simulations are run for 10 time
units. After initial transients are dissipated, maximal deflections as a function of
position are determined. As expected, deflection profiles are symmetric about the
center-line y = €/2. Plots of maximal deflection of the center-line as a function of
the longitudinal position = are presented in Fig. 2.

There is an additional fact not shown in the presented data. Although not
apparent in the given figures, animations associated with these simulations show a
clear traveling wave character with envelopes shown in Fig. 2. But for lower values
of Q = 1,2, the entire membrane vibrates as a single entity. While this is not in
line with the place theory, it is in agreement with a phase locking theory. Such a
theory asserts that at low input frequencies (in the range of the firing rate of the
auditory nerve and below), the entire basilar membrane vibrates as a single entity
and the neural firing rate encodes the signal. It is only at higher input frequencies
that the place principle becomes the primary transduction mechanism. Simulation
results are in line with this melding of theories.

A second set of simulations, depicted in Fig. 4 considers the effect of varying
€. All simulations are run in similar fashion to those already discussed. A value of
N = 12 is used for all simulations except ¢ = 1/64, where N = 6 is used due to
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Fig. 3. These figures represent maximal deflection as a function of x for the full and reduced
cochlear problems. Dashed lines represent asymptotic model simulations and full lines represent
full model simulations. Full model simulations are scaled by w/e? as in the performed asymptotics.
Full model simulations are run on the domain [0, 2] x [0, 2¢] and reduced model simulations on the
domain [0, 2] x [0,2] for computational reasons associated with the reduced model not discussed
here. Friction and stiffness are chosen so that the full model simulations scale to the reduced model
simulations with respect to €. In the reduced model, we take p =1, r =1, kg = 4, and X\ = 4.

memory constraints. This data suggests the asymptotics discussed in Sec. 6 hold
at least at a cursory level. The four presented plots show nearly identical profiles.
They do differ in scale as expected due to the w = €2w* scaling followed closely by
this data. Further differences are seen near = 0. This is the result of a boundary
layer caused by the clamped condition discussed briefly in Sec. 6.

In addition, we make a direct comparison between simulations of the full and
reduced models in Fig. 3. These plots overlay deflection envelopes found in full
model (scaled by €?) and reduced model simulations. Reduced model simulations
are performed using a Chebyshev collocation method [3] not discussed here. For
computational simplicity associated with this method, we work on the domain
[0,2] x [0,2] and scale the domain in full model simulations accordingly. Deflection
levels and shapes over the range of frequencies show good agreement given the
complexity of the problem being discussed. This provides more direct validation of
these asymptotics.

8. A Discussion of € as a Time/Frequency Scale

We now return to an issue which has been avoided to this point. Recall that in the
asymptotic derivation, the time scaling t* = t/e was necessary. This scaling is now
used to provide more qualitative support for the asymptotics performed as well as
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Displacement

Fig. 4. These figures represent maximal deflection of the centerline of the cochlear plate as a
function of location for a fixed input frequency 2 = 20 over a range of aspect ratios. In all cases
w is scaled by €2 as in the presented asymptotics for comparison purposes. Computations are
performed with r =1, p=1/2, A =4, and ko = 1.

an interesting result relating the form and function of the cochlea. Consider Fig. 4.
Here, the full model is simulated with all input scalings accounted for as in the
reduced model with only € varying. It is clear that the structure of these solutions
is independent of this parameter, thus lending support for the proposed asymptotic
reduction.

There is more to be said about the proposed time scaling. View this instead as a
frequency scaling; the effective input frequencies for the simulations shown in Fig. 4
are /e as opposed to simply 2. While the four deflection plots presented all have
the same value for €, their true frequencies take the values 160, 320, 640, 1280 Hz.
Thus, as the aspect ratio € is decreased, the size of the input frequency necessary
to produce a specific deflection map (or to excite a particular characteristic place)
increases. This suggests the size of the effective hearing band, denoted |HB]|, is
inversely related to the aspect ratio

1
|HB| o —. (8.1)
€

In order to test this we have found data relating to five mammals with compa-
rably sized hearing bands. Table 2 shows that for these five mammals, the cochlear
aspect ratios are in the same range. It is difficult to make a strong statement about
the validity of (8.1) based on this data alone as there is a good deal of spread.
However, the fact that all five species have aspect ratios in the same range lends
some credence to this statement. When considering this data, keep in mind that
the stated aspect ratios relate to the width of the basilar membrane at the apex
only. Given the tapered nature of the basilar membrane, it is likely that a result of
this form would require some form of an effective aspect ratio for tight comparison.
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Table 2. This table represents hearing band and aspect ratio data for five mammal
species. Aspect ratio data was taken directly from [11].

|HB| (Octaves)  BM length (mm) BM apex width (pm) €
Gerbil 10 12.1 250 0.0207
Chinchilla 9 18.5 310 0.0168
Cat 10 25.8 420 0.0163
Guine Pig 10 18.5 245 0.0132
Human 9+ 33.5 504 0.0150

9. Concluding Remarks

We presented a numerical solution of the three-dimensional hydro-elastic equations
of a model cochlea. Due to the small aspect ratio and the clamped nature of the
basilar membrane, its deflection is small. We therefore used a linear fluid model and
linear coupling between the fluid and the plate. Although our fluid model is inviscid
and irrotational, our formulation is quite general. One can replace the fluid model
by another model simply by changing the DtN operator used here to another DtN
operator that fits a different fluid model.

A key idea in our work is that we model the basilar membrane as a nonhomo-
geneous plate in which stiffness is decaying as one proceeds from the basal end to
the apical end of it. This variable elastic coefficient is responsible for the dispersion
effects observed in the cochlea, and thus the place principle whereby inputs with
higher frequencies give rise to maximal deflections closer to the basal end. Indeed
our numerics exhibit such a place principle.

It is well known that the passive mechanics of the cochlea cannot fully account
for its observed behavior [2, 15]. It is believed that the complex microstructure
(Organ of Corti) sitting atop the basilar membrane provides an active feedback on
its motion [15]. There is still much debate over the form and function of this feed-
back, but there is compelling evidence that cochlear hair cells are responsible. The
Organ of Corti has four rows of hair cells running the length of the cochlea consist-
ing of one row of inner hair cells (THC) and three rows of outer hair cells (OHC).
The THC’s are passive and serve primarily as a neural transducer. The OHC’s are
known to be motile. It is believed that this motility acts as a mechanical amplifier
by feeding energy into the passive traveling wave [15]. The specific manner in which
this occurs is not well understood. While the place principle seen in our numerical
model is not highly localized, we believe that including an active ingredient in the
model, a more localized response will ensue.

In addition, we provide an asymptotic reduction of the model equations with
energetic concerns in mind. We provided evidence (both indirect and direct) that
these asymptotics are valid. In the process of performing this asymptotic analysis,
it was found that a time scale related to the cochlear aspect ratio appeared in the
problem. The presence of this time/frequency scale is verified with full model sim-
ulations. We further proposed a physiological result relating the form and function



Hydro-Elastic Waves in a Cochlear Model 541

of the cochlea which was compared to physiological data. While this comparison
lent credence to the stated result, further verification is necessary.
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