World Scientific

Confluentes Mathematici, Vol. 3, No. 3 (2011) 445-470 \\’
www.worldscientific.com

(© World Scientific Publishing Company
DOI: 10.1142/S1793744211000424

SINGULAR SHOCKS
RETROSPECTIVE AND PROSPECTIVE

BARBARA LEE KEYFITZ

Department of Mathematics, The Ohio State University,
Columbus, OH 43210, USA
bkeyfitz@math.ohio-state.edu

Received 22 June 2011

Singular shocks were first devised over 20 years ago as a tool to resolve some otherwise
intractable Riemann problems for hyperbolic conservation laws. Although they appeared
at first to be merely a mathematical curiosity, new applications suggest that they may
have some greater significance. In this paper, I recount the story of their discovery, which
owes much to Michelle Schatzmann, describe some of their old and new appearances, and
suggest intriguing possible connections with change of type in conservation law systems.
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1. Background: Origins of the Story

Because this paper originated in a talk at a conference in honor of Michelle
Schatzman, I would like to start with a story. The story concerns hyperbolic systems
of conservation laws, equations of the form

Ui+ F(U)y = U, + A(U)U, =0, (1.1)

with real characteristic speeds (eigenvalues \{(A(U)) real). Such systems have the
interesting property that the characteristic speeds of propagation depend on the
state variable U, and this leads to various, sometimes paradoxical, phenomena.
The most famous example, Burgers equation, u; + uu, = 0, where A = u, already
has the property that solutions, even with smooth or analytic Cauchy data, lose
all smoothness after a finite amount of time, and can be described only in the
framework of weak solutions. In the case of Burgers equation, the correct space
for Cauchy data turns out to be bounded measurable functions, and the solutions
themselves are not only bounded and measurable but have bounded variation, as
first proved by Kruzkov [28].

Systems, more intricate than a scalar equation, have the possibility of exhibiting
more complicated dependence of the characteristic speeds on the state variable. In
1965, Glimm [13] published a famous result: A system like (1.1), if the Cauchy data
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are close to constant and have small total variation, will have a weak (bounded,
measurable) solution of small total variation for all time. The proof required a
couple of additional conditions, most significantly that the characteristics were sep-
arated (strict hyperbolicity) and that each was either genuinely nonlinear or linearly
degenerate. (“Genuine nonlinearity” can be given a precise definition which we will
not need in this paper. It amounts to a requirement that the characteristic speed
vary monotonically when the state variable varies in the corresponding character-
istic direction.) When strict hyperbolicity is coupled with data close to a constant
state, one consequence is that the characteristic speeds are separated. In this case,
each characteristic family is isolated, and the system behaves in some respects like a
collection of scalar equations. Glimm’s theorem represented the state of the art for
over 30 years; only in the 1990s did Bressan and co-workers improve the result to
include well-posedness for the same class of problems. The classical theory of con-
servation laws is expounded in Smoller’s book [43]. A modern treatment, including
the recent well-posedness results, can be found in Bressan’s treatise [6].

In the 1970s, Herb Kranzer and I became interested in systems where waves
from different characteristic families interact strongly with each other, possibly in
a nonlinear manner. One example occurs in elastic strings, where the speeds of
longitudinal (nonlinear) and transverse (linearly degenerate) waves typically differ
by an order of magnitude, but there is no theoretical reason for this, and in some
materials they may coincide. (The basic system is given by Carrier [7], among oth-
ers.) Such systems could be called “nonstrictly hyperbolic”; that is, they fail to be
strictly hyperbolic. Further classification is possible, as one might have characteris-
tics of constant multiplicity, a case we did not consider, but which has been studied
by Freistithler [12]. In addition, at an eigenvalue coincidence, one might have either
a full set of eigenvectors or an eigenvector deficiency.

It is standard practice, when faced with a new type of conservation law, to
formulate and solve a particularly simple type of initial value problem, the Riemann
problem, consisting of data containing only two constant states, separated by a
discontinuity at the origin:

Uy, x<0,
U(x,O):{U; o0 (1.2)

Understanding Riemann problems helps uncover the structure of discontinuities;
Riemann problems give rise to particularly simple, self-similar solutions that depend
on x/t only; in addition, Riemann solutions are the basis of the existence theorems
of Glimm and Bressan; finally, Riemann solutions often describe the asymptotic
behavior of solutions to the Cauchy problem.

We solved the Riemann problem for some examples [20]. Our initial examples
mimicked the elastic string property of coupling a nonlinear with a linearly degen-
erate family. We found the rather undramatic answer that when the wave speeds
exchange order, an intermediate state in a Riemann solution may change by a large
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amount; however, it does so in a tiny region, so the solution is no longer continuous
in L° but remains continuous in L*.

Motivated by this, we began to look at other examples. A simple case is a
nonlinear wave equation,

Ut = Vg,

. (l 3) (1.3)
v =(3u )

or 92u— 92u3/3 = 0, whose characteristic speeds are A = +|u|. Again, we were able
to solve Riemann problems for a family of equations that included this example
[21], and again the solutions were not dramatic. However, we noticed that our
examples had a property that we named “opposite variation”: if one characteristic
speed increased in a characteristic direction, then the other speed decreased. The
first diagram in Fig. 1 sketches the characteristic speeds for the nonlinear wave
equation (1.3), which are functions of one component (u) only. In this example, the
component u is a satisfactory surrogate for the characteristic direction. Not all the
systems we were able to solve were as symmetric as the nonlinear wave equation, but
all shared this property. Naturally, we were curious about systems with the opposite
property, “same variation”. The second diagram gives an example — again, easy
to construct with characteristic speeds depending on u only. To our surprise, we
were not able to write down solutions to some simple Riemann problems. It was at
that point that I showed our example, as pictured in Fig. 1, to Michelle, and she
commented that it might be considered as a perturbation of a strictly hyperbolic,
“same variation” system. In fact, she drew the superimposed lines in Fig. 1.

It was not difficult to come up with an example whose characteristics looked
like that picture. Our model was

X

Fig. 1. Opposite and same variation, and the superimposed strictly hyperbolic problem.
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Its characteristic speeds are \' = w41, and to our great surprise we could not solve
it either, despite the fact that it is strictly hyperbolic and genuinely nonlinear. For
a large set of Riemann data, (1.2), with U = (u,v) and |ur, —upr| > 4, there was
no combination of shocks and rarefactions that resolved the discontinuity. (Recall
that self-similar shocks look like

Up, =z < st,
U(x’t)_{Ul, T > st,

where Uy, Uy and s satisfy the Rankine-Hugoniot relation
S(Ul —Uo) ZF(Ul) —F(Uo). (1.5)
Self-similar rarefactions connect Uy and U; with A\ (Uy) < Ai(U;) via a smooth
solution U(z,t) = U(x/t) = U (&) of (A(U(E)) — U’ = 0. Thus,
E=X(UE) and (A-X\YU' =0
for some characteristic family, i.)

It is interesting to note that although we invented the model (1.4) (now often
called the “Keyfitz—Kranzer model”) from a purely mathematical motivation, it
is related to a familiar system. If one begins with the equations of isentropic gas
dynamics in a single space dimension with a polytropic equation of state,

pt+ (pu)e =0, (
(pu)e + (pu® + ")z = 0, (

)
)

and manipulates them, following a standard practice in mathematical physics (see,
for example, Rosenau [36]), by subtracting u times (1.6) from (1.7), one obtains an
equation for “conservation of velocity”,

1.6
1.7

1 9 1p’y—1’ v > 17
ug + <§u + Q(p)) =0, qlp)=17"
- log p, y=1

This replaces the second equation, (1.7), and we introduce another function of u
and p:

1 1
v = §u2—q:§u2—logp,

in the case v = 1 (there is a corresponding expression if v > 1), to obtain the
system (1.4). Thus, (1.4) is simply the equations of isothermal gas dynamics (this is
the physical meaning of the limit v = 1) with conservation of mass and momentum
replaced by conservation of velocity and a quantity that is an entropy for the original
system.

To summarize, thanks to Michelle Schatzman’s somewhat offhand comment, we
were led to consider the example (1.4), which turned out to have interesting new
pathologies. These have by now been well-studied. Kranzer and I suggested that
by means of a certain new type of wave, which we could describe only vaguely,
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one could produce a unique resolution for every Riemann problem. We looked at
these new waves from a variety of viewpoints, mainly resorting to approximations,
including via a self-similar viscosity. Our approximations differ from each other in
detail but have common properties of unbounded growth in narrow regions. Unlike
classical approximations to conservation laws, they do not converge in L', and the
limit solutions do not satisfy the equation in the classical weak-solution sense. How-
ever, they do converge to limits that can be described precisely, and the residual
error in the equations tends to zero in a standard way. It should be noted that
enlarging the collection of possible structures for weak solutions does not create
problems for classically solvable conservation laws, as the new structures do not
exist for them. Note also that the singular shocks described here are not the same
as “measure-valued solutions”, see for example [11], which are also limits of conven-
tional weak solutions under assumptions of very low regularity, but in a different
context. Our results appeared in several places [22, 23, 27]; a few years ago I wrote a
summary [18].

It would not be correct to say that the new waves are weak solutions of the
system in the standard textbook sense, as the textbook definition requires of weak
solutions that they be L*° functions, typically with bounded or locally bounded
variation. In [41], Sever has given a definition of singular shocks that applies to the
example (1.4). Sever’s insight is that, despite the intricate detail that appears in the
approximations to singular shocks, a definition of the singular shocks themselves
can be given in the framework of classical distribution theory. Sever’s definition is

Definition 1.1. A singular shock solution of (1.1) is a measure of the form

Uz, t) = Ulz,t) + Z M;(t)x1, (£)6(x — @4(t)),

where U is a weak solution of (1.1) in the complement of Uz;(t); the curve segments
{z;} supporting the singularities are W1>° functions defined on time intervals I;;
and the singular masses M; are L™ (vector-valued) functions. In addition, U is the
limit of approximations U¢ satisfying

(1) U® € L], uniformly in e, pointwise in ¢

(2) U=(-,t) — U(-,t) weakly in the space of measures on R, pointwise in ¢

(3) for some positive definite matrix A,

Ui (1) + F(U(+,1)a — e(AUZ(,t))e — 0
weakly in the space of measures on R, pointwise in ¢.

Thus, singular shock solutions differ from classical solutions by containing delta-
function measures supported on line segments. They differ also in the way they can
be approximated, as approximations to classical weak solutions converge boundedly
almost everywhere.
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Returning for a moment to the motivating problem, the model (1.4), one finds
that the singular part is confined to the component v. That is, the singular masses
M, are all parallel to the vector (0, 1). In the physical derivation of that model, u
represents velocity and v = u?/2 —log p contains the density variable, thus partially
justifying the term “mass” for the M;. (Note however that in the actual singular
shocks for (1.4) M appears with a positive coefficient, corresponding to p = 0, or
the appearance of vacuum, rather than mass, in the singular shock.)

It should also be noted that while Sever’s theory is more general than the model
and its solution studied by Kranzer and myself, he abstracts one important detail
from the model: the fact that there is a variable (v in our example) that can be
identified with a velocity. This motivates the introduction of a particular type of
entropy condition, which is the basis of many of the results in [41].

There remain unanswered questions, such as finding a context in which one
might expect to find singular shock solutions to a system. A physical interpretation
of their significance is also lacking at present, as is a satisfactory connection between
approximations to singular shocks and approximations to exact conservation laws.
And, as stated earlier, it is clear that distributions cannot in general satisfy a
nonlinear equation like (1.1), and hence an explanation of the sense in which they
solve the equation is still lacking.

Finally, it now appears, following the appearance of singular shocks in a model
for two-phase flow and, more important, some recent work by Mazzotti [30-32],
which is outlined a later section of this paper, that the framework suggested by the
example (1.4), upon which Sever’s theory is based, may as yet lack the elements
needed to describe some wider collection of examples. Specifically, Mazzotti has
studied the system of conservation laws arising in two-component chromatography.
In this system, the conserved quantities are the masses of the two components.
There is no velocity variable and no Newtonian dynamics (that is, the system is
kinematic), so a unifying assumption made by Sever appears to be absent. (Of
course, since x and t represent space and time, it is always possible to construct
variables that have the dimensions of velocity by dividing a component of F' by
the corresponding component of U. Sever’s unifying hypothesis, in [41], that at
least one of these variables is constrained by a one-sided bound, may not always be
natural, however.)

It is intriguing that Mazzotti’s example, as well as the other example we have
studied in detail, a two-fluid model for incompressible two-phase flow, appear to
be connected with loss of hyperbolicity of the governing equations in some subset
of phase space. Some time ago, in a different context, I speculated on the possible
relationship between kinematic systems, change of type and pathological behavior
of solutions of conservation laws [17]. Mazzotti’s new applications of singular shocks
raises this issue again.

Thus, it seems timely to review what is known about singular shocks, to outline
the common elements of the known examples, and to summarize the techniques
presently used for studying them. This we do in the remainder of the paper.
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2. Structure and Properties of Singular Shocks

We begin by recalling some details of the model example, (1.4), as a way of illus-
trating the general statements made in Sec. 1. The salient fact is that although
(1.4) is strictly hyperbolic and genuinely nonlinear, the Hugoniot locus H(Up) —
the set of points U such that s(U — Uy) = F(U) — F(Up) for some value s — is
bounded. Its equation is

_ 2
v—’UQZ(U—uo)<u—;uoﬂ: 1_7(u 1;0) )

If Uy = Uy is taken to be the state on the left side of a wave, then the set of
states U that can be joined to Uy via a shock is indicated by the curves S; and
Sy in Fig. 2. The subscripts refer to slow (1) or fast (2) waves. The rarefaction
curves are parabolas extending to infinity. The Riemann problem can be solved in
the standard way for any point Ugr within the region bounded by J, J; and Ja,
and for none outside it. (We were not the first to discover that a system of strictly
hyperbolic conservation laws can have a bounded Hugoniot locus. Other examples
are given in an early paper of Borovikov [4].)

The philosophy underlying the construction of singular shocks is that the stan-

dard formulation for weak solutions — U € L _ satisfies (1.1) if

/qut + F(U)és =0 (2.1)

for all test functions ¢ € C§° — may not suffice to define all functions one might
want to accept as solutions. In particular, (2.1) is the genesis of the Rankine—
Hugoniot relation

_dx

S[U] = [F(U)]7 [U] = U(x(t)+7t) - U(:L‘(t)ij), §= E

if the limits U(z(t)™,t) and U(x(t)~,t) exist. But what if they do not?

Fig. 2. Components of state space for the Riemann solution for the model problem.
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The answer is not obvious and we (and Sever following us) resorted to looking at
limits of approximations. We considered several specific approximations and their
limits; Sever was able to formulate a more general theory by showing that all that
was needed was to consider a reasonable class of approximations. In practice, it
may be simplest to prove the existence of a sequence of approximate solutions by
choosing a specific approximation, although a concrete choice has both advantages
and disadvantages. Let me illustrate, with reference to (1.4), using the self-similar
Dafermos-DiPerna viscous regularization:

U+ F(U)y = etUsy, (2.2)

a popular choice when one wants to study self-similar solutions, as it is easily seen
to allow solutions of the form U = U(§) = U(z/t), which may approach Riemann
solutions as € — 0. (See [10] for more on this type of approximation.) The insight
that led Kranzer and myself to the discovery of singular shocks was to seek solutions
of (2.2) for the system (1.4) that were unbounded, as ¢ — 0, in the neighborhood
of a value, the “singular shock speed”, & = s. A specific € dependence (this is not
unique) that proved fruitful was

U(€) = (éa (5;3)6%5(5;3)) (2.3)

Now, the point is that such an e-dependence cannot tell the whole story, but can
describe only the singular part of the solution. Specifically, both u and v must tend
to zero as their arguments tend to +oo. Substituting into (1.4), one finds that (u, )
must be a homoclinic orbit of the planar dynamical system

o =a? -y,
y - % s (2.4)
This singular equation does indeed possess homoclinic orbits. Its behavior near
the origin is illustrated in Fig. 3. In particular, it becomes clear, comparing the
scaling in Eq. (2.3) with the homoclinic orbits of the system (2.4), that a singular
part of the approximate solution that appears like an approximate delta-function
is plausible: That is what the singular part of the second component, v, looks
like. On the other hand, the singular part of the first component, u, tends to zero
in the space of measures as € — 0. This reasoning — approximating the system
with self-similar viscosity and then seeking a singular solution concentrated near
the shock — was what led to the theory fleshed out by Sever that culminated
in Definition 1.1. However, neither the recourse to a singular approximation nor
the abstract definition answers the question of when such approximations, or their
limits, actually exist. Nor is there at present a completely satisfactory answer to
the question of the sense in which singular solutions “satisfy” the equation.
One simple conclusion can be drawn from regarding the function (2.3) as an
inner approximation (in the sense of perturbation theory) to the viscous conserva-
tion law. Assuming that (2.3) takes care of the unbounded part of the approximate
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Fig. 3. A rendering, using John Polking’s pplane, of orbits of (2.4).
solution, then away from the shock, one anticipates an outer approximation of the

form
U:U(S_s)
€

This is now a bounded function, and applying the usual conservation law reasoning
(and the usual perturbation theory reasoning) yields a standard expression:

aa
—- —F(O) +sU = Cs, (2.5)

where, unlike in the standard conservation law theory, the constant (that comes
from integrating (2.2) once) may be different on the right and left sides of the
singular shock. In the standard theory, where C'y = C_, the Rankine-Hugoniot
relation for values of U on the two sides of the shock appears to be a consequence
of assuming that the approximate solution to (2.2) approaches constant values Uy
outside a shock profile of width e. But if singular shocks are present, then integrating
across the unbounded part of the shock produces a contribution, and one finds that

cy—-C_ = —/TU—,-dT.
Again assuming that the approximate solution approaches constant values outside

the shock profile, this replaces the Rankine-Hugoniot relation with a generalized
relation

sU] - [FU)] = — / U, dr, (2.6)

where the integral is taken over the singular part of the solution.
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3. Further Developments

At this point, I have described a formal calculus that Kranzer and I found useful in
analyzing the model equation. Unsurprisingly, in our example, the first component
of the singular contribution to (2.6) is zero — corresponding to the property that
the singular part of the first component u is small, and tends to zero as a measure.
Thus, the first Rankine-Hugoniot relation is satisfied. What this means is that
given any two states, U_ and Uy, there is a unique speed s for which they can
be joined by a singular shock. What, then, prevents this from happening for any
states, including those for which an ordinary shock could be constructed? Further
asymptotic analysis of the singular solution suggests that a necessary condition for
approximate solutions of (2.2) of the conjectured form to exist is that the singular
shock be overcompressive. That is, we must have

M(UZ) > s> N(Uy) (3.1)

for i = 1 and ¢ = 2. More generally, Sever [41] shows this to be a necessary condi-
tion for a general approximation U¢ of the form (3) in Definition 1.1 to converge.
This in turn implies that systems that admit singular shocks must have a special
characteristic structure, roughly described as overlapping characteristic speeds —
something that generalizes the obvious feature of (1.4), with characteristic speeds
u+ 1 and u — 1, that the slow speed at some states is faster than the fast speed
at others. (One should note, however, that there is more to the story than this, as
the system for isothermal gas dynamics — (1.6) and (1.7) with v = 1 — has the
same characteristic speeds yet all Riemann problems have classical solutions.) One
could say that systems that admit singular shocks “fail to be strictly hyperbolic in
the large” (with the same caveat as the preceding parenthetical warning).

Kranzer and I verified some of these conjectures for the model system (1.4),
showing that a number of different methods of approximating the system lead to
approximations to singular shocks, always satisfying the same generalized Rankine—
Hugoniot relation, and always admitting a construction as a limit of approximations
only under the overcompressive condition (3.1). It should be mentioned that the
strict inequalities in (3.1) must be relaxed in order to produce solutions to all
possible Riemann problems. For example, only in the open region labeled @7 in
Fig. 2 are the singular shocks strictly overcompressive; on the boundary curves D
and FE one obtains equalities in one of the relations in (3.1). And in order to solve
Riemann problems for data in the regions between D and J and between E and Js,
where the singular shock is joined to a rarefaction wave, one must use intermediate
states on D or E. Obtaining viscous profiles for these limiting waves proves to be
more subtle than for states in the open regions.

We formulated our approximations using piecewise constant “box” approxi-
mations to the singular perturbation approximations we had found formally, and
through this we discovered that the system was not sensitive to “inner” and “outer”
approximations. The notion that the singular part of the shock is in some sense
narrower than the regular profile is a convenient way to visualize an approximate
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solution but seems not to be a part of the basic structure of these waves. In addi-
tion, we found that we could describe the singular solutions in the language of
Colombeau’s generalized distribution theory [9], which allows one, for example, to
talk about functions whose squares are delta functions. At the time we first thought
about this, Colombeau’s theory was not very accommodating to applications that
required some notion of metric (as we needed to justify our candidates as approxi-
mations). However, more recent developments of the theory have greatly extended
its usefulness here. See Nedeljkov’s recent paper [33], and the references therein for
details.

Eventually, we synthesized all these approximations by creating a space of
weighted measures, and in [23] we showed that all the approximations were equiv-
alent, and that all of them led to the same conclusion: Approximations to singular
shock solutions were indeed approximate solutions to the model equation (1.4),
and they converged (weakly or strongly according to how one chose the function
space) to measures that could be precisely described. However, the sense in which
they satisfy the equation remained (and still remains) mysterious. At that point,
we dropped the subject.

Schaeffer, Schecter and Shearer picked it up in [37] to show that the same kind
of singular shocks could be used to solve nonstrictly hyperbolic problems of “same
variation” type (as in the second picture in Fig. 1), the problem that had motivated
this study of the model equation (1.4). Somewhat later, Stephen Schecter [39] was
able to prove the existence of the Dafermos profiles we had sought via (2.2) for
our model system (1.4). (Recall that we produced approximations in a number of
creative ways but we did not show that the system admitted solutions that looked
like our formal perturbation approximations.) Michael Sever had begun working
on alternative methods of approximation, including via regular viscosity, somewhat
earlier [40], and eventually produced a full theory, published in [41]. Sever’s book
clarifies the distinction between the singular shocks that Kranzer and I invented
and the “delta-shocks” that were used by a number of authors (see for example
[5, 45]) to solve a number of Riemann problems, notably for the equations of zero
pressure gas dynamics, around the time we did our original study [19]. Sever shows
that his definition of singular shocks, Definition 1.1, is quite natural under a set of
reasonably general assumptions (including, as we mentioned earlier, the assumption
that there is a variable that behaves like a velocity in satisfying certain bounds),
and establishes the generalized Rankine-Hugoniot relation as a basis for calculat-
ing the rate of growth (or possibly decay) of the amplitude, M;(¢), of the singular
part of the shocks in Definition 1.1. In fact, it is an interesting feature of singular
shocks that once one goes beyond self-similar solutions a new possibility emerges:
singular shocks that interact with the flow outside the shock, decrease in amplitude
and, eventually, disappear completely, resolving as classical shocks. This behav-
ior, along with other observations on the model equation, is described in Sever’s
recent paper [42], which succeeds in solving the Cauchy problem for the model
equation (1.4).
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As another comment on the model equation (1.4) and its relation to Colombeau’s
theory, let me mention the work of Cauret, Colombeau, and LeRoux [15], which
appeared at about the same time as our first investigations. These researchers wrote
the same system (derived as a model for a different phenomenon) in a nonconserva-
tive form, justified by one of their modeling assumptions. Now, in order to discuss
weak solutions they needed to define what is meant by a product of distributions
(step functions and their delta-function derivatives), and once again they were able
to use the Colombeau calculus to explain their solutions. That some equations mod-
eled by conservation laws (or by their cousins, in which some equations are not in
conservation form) lead in different ways to a study of the Colombeau calculus is
interesting. It draws attention to the singularities that appear in these problems.

4. The Two-Fluid Model for Two-Phase Flow

Meanwhile, I was pursuing another train of thought, which appeared to be inde-
pendent and distinct. Only recently are connections with singular shocks beginning
to appear. I have long been interested in change of type in conservation laws. The
context relevant for this discussion is systems of conservation laws in space and
time which are not everywhere hyperbolic. That is to say, the characteristic speeds,
which depend on the state variables, are complex for some physically reasonable
states. Such systems appear frequently in modeling, where they are often rejected
on the grounds that their linearized versions imply catastrophically unstable behav-
ior. Two well-known examples are the two-fluid single-pressure model for two-phase
flow [44], and a model for three-phase porous medium flow that at one time was
widely used in petroleum reservoir simulation [2]. Neither model is in common use
today, but at the time they were used it was noted that the catastrophic instabil-
ity did not materialize in numerical simulations. There was no general agreement
about why this was the case, and current research has moved on to models that
avoid averaging over the phases (this is the origin of the “two-fluid” reduction).
However, one can argue heuristically that, following some initial growth in ampli-
tude of unstable modes, nonlinear effects will dominate the picture and one will
not see exponential growth. Furthermore, one can argue, nonlinear effects, such as
shock propagation, can mimic wavelike behavior, and if one allows weak solutions
with shocks satisfying some plausible admissibility condition, then one might expect
reasonable looking solutions from some nonhyperbolic or change-of-type models. 1
had been thinking about this for some time, and had published some preliminary
results, see [17] for an example, when I was challenged to apply this thinking to a
model for incompressible two-phase flow.

A standard equation for the continuum model for two-phase flow takes the form,
see [44],

(4.1)

O¢(aipi) + Ox(aipiug) =0, 19
Z — b b
O (aipiug) + Oy (aipiu?) + ;0yp; = F;
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FLUID ONE Gy Py Py

Fig. 4. Variables in the two-fluid model: Separated fluids.

where densities p;, velocities u;, pressures p; and volume fractions «; are illustrated
in Fig. 4. In principle, this model applies both to separated fluids and to mixtures.
The continuum equations represent conservation of mass, while in the momentum
equations the terms F; take account of momentum transfer between the fluids,
with F} = —Fy if overall momentum is conserved. If the fluids are separated, then
the only contribution to the F;, neglecting viscosity, is surface tension, a higher-
order effect proportional to the curvature of the surface. Of course, in formulating
a one-dimensional model one has already made the approximation of neglecting the
vertical component of motion. I have also neglected thermal effects by considering
the isentropic case; this is merely for simplicity. To obtain a closed system, one
requires some additional constraints. For a compressible fluid, one relates density
and pressure by constitutive equations, for example

1/
— o) = [ P
Pi = p’t(pl) <Az) .

For the purposes of this exposition it is sufficient to consider the case that the
medium is saturated by the two fluids, so that

o+ as = 1.
The interesting situation occurs when one assumes that each fluid (or component
in a mixture) maintains its own velocity, so that
Ug 7 Uj.

Finally, there is the question of pressures. This is the most controversial issue
(see, for example [8] and references therein), and the classical single-pressure
assumption,

P2 = P1,

has aroused strong objections, as there is no doubt that it contributes to difficulties
that arise in this model, such as its well-known failure to maintain hyperbolicity
throughout state space [44]. However, it is useful to explore the mathematical behav-
ior of the model under this constraint, in view of the fact that the system was at one
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time widely used in numerical simulations, including those of industrial importance
for the design of nuclear reactors, without such bad consequences as instability or
blow-up.

4.1. A system for incompressible flow in simplified coordinates

It was in looking at the simple model for incompressible two-phase flow that I
discovered a connection with singular shocks [19, 24, 25]. To arrive at the simplified
equations, one assumes both that the fluids are incompressible and that the density
in each phase is constant. The equations immediately reduce to

Orv; + O (ayu;) = 0,
“ (au:) } i=1,2. (4.2)

piOsui + piuiOzu; + Oxp = Fifay
Recalling that a; + as = 1, the first two equations can be added and integrated. If
one chooses a velocity coordinate moving with the flow, and then introduces new
scaled coordinates
B = paa1 + proz,

U = p1ul — p2u2,

(4.3)

one gets an equivalent system of two equations that represent conservation of mass
and transfer of momentum:

Gr + (vB1(06))z = 0, (4.4)
v+ (V2 B2(B))s = G, (4.5)
with
_ (5—01)(5—02) o 52—0102
Bi(B) = 5 By(B) = TR

and po < 0 < p1. These functions, and the state space, are shown in Fig. 5.
Now, the characteristics of the system (4.4), (4.5) are

A= 2’[)BQ(ﬂ) + U/ BlBé

and they are clearly complex for ps < 8 < p1, since By < 0 and B} > 0 there. The
system is “weakly hyperbolic” only on the H-shaped set H = { = p;} U {v = 0},
and linearly unstable everywhere else.

To shed some light on the behavior of this instability in the nonlinear system, we
drop the term G, which typically includes lower-order effects of drag and gravity, as
well as higher-order terms arising from viscosity or surface tension. Then, when we
formulate a Riemann problem for the incompressible system, we discover singular
shocks which, in this example, appear to be phase boundaries. Writing the Riemann
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State Space

P, Py
complex
v eigenvalues
B 1:0 —
— H
B H—
complex
eigenvalues
B 1<0
«— B 1:0

Fig. 5. State space and the functions By and B> in the incompressible model.

problem for a system w; + q(w), = 0 as

w_, x <0,
w(x,O)z{w x>0
+> )

taking the self-similar viscosity approximation

gl = e, w= () = w+F) (46)

and seeking a singular shock near £ = s, one finds a nontrivial solution by choosing
an inner expansion of width O(e?) of the form

() ()
_ 3 €P € €
(v) 1 (e—s\ | |1.7¢-s

() ()

The details of the solution are given in [19, 24, 25]. Note that in this case
formal asymptotics give a singularity of much less strength than for the hyperbolic
problem we examined earlier. There is no component that contains a delta-function,
and the S-component contains no singularity at all. But by way of compensation,
the strength of the singularity grows much more rapidly with 1/e: Asymptotics
show it to be exponential in 1/€ as € — 0.

An illustration of the singular solution is given in Fig. 6, which is presented as
though the two fluids were separated (for ease of viewing). In this case, the Riemann

problem for an initial state consisting of two mixtures is resolved by the formation
of two regions where the flow separates into the two components. Singular shocks
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Two Phase Separated Incompressible Flow

- Fluid Two

Fluid Two

ey Ut

-0.5 0 0.5 1 1.5

Axis of Pipe; Units are x/t

Fig. 6. Illustration of singular shocks in the stratified pipe flow model: Flow separation.

appear at the phase boundaries between mixed and pure states. The separation into
pure states can be seen as a manifestation of the Bernoulli effect, which dominates
the flow in the absence of surface tension or drag. One could now include those
influences as perturbations. I should confess that considering Riemann problems is
a mildly dishonest way of avoiding the catastrophic ill-posedness of a non-hyperbolic
initial value problem, as the terms “hyperbolic” and “nonhyperbolic” do not retain
any significance when one reduces the partial differential equation to an ordinary
differential equation. In fact, as evidence of ill-posedness one might note that trivial
Riemann data (with w_ = wy) will produce a nonconstant solution similar to
the picture above. All this tends to limit the value of the solutions produced by
this model. Nonetheless, the mathematical analysis, as far as it goes, appears to
be correct. My colleague Richard Sanders at the University of Houston did some
careful numerical simulations of the perturbed system (4.6), solving it as a two-
point boundary value problem for /¢, and found solutions very much like what
the asymptotics predicts, as in Fig. 7, which gives two views of the profiles when
e = 0.01. The first graph in Fig. 8 shows the profiles at a larger value of € (e = 0.05),
while the second confirms the predicted exponential rate of growth of singular shock
strength with 1/e by plotting logv(0) against 1/e for a range of e between 0.05
and 0.01.
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Fig. 7. Profiles of 8 and v vs. z /et for e = 0.01: overview and detail.
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Fig. 8. Profiles of § and v, € = 0.05; log(v¢(0)) vs. €.

5. A Brief History of Systems that Change Type

The example just discussed, as well as Mazzotti’s intriguing example which will be
discussed below, suggest that there may be some connection between change of type
in conservation laws and solution of Riemann problems using singular shocks. The
example (1.4), although it motivated development of such theory as exists, may in
fact be atypical in being strictly hyperbolic throughout state space. It is possible
that the incompressible two-phase flow example is also atypical in its property that
one must assume that nonhyperbolic states have some physical meaning in order
to discuss solutions at all. To indicate the variety of examples that have appeared,
in this section I give a list, in rough chronological order, of models that have been
proposed in which change of type occurs. (Most of these have not been examined
for singular shocks.)
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5.1. Two-way traffic flow

In 1960, Bick and Newell [3] published a continuum model, based on the familiar
Lighthill-Richards—Whitham model for one-way traffic, for traffic on a two-way
highway. The one-way model is u; + (¢(u)); = 0, where u(z, t) is the density of cars
and ¢ = wv is the flux. The modeling assumption is that the velocity at any point
depends only on the local density, v = v(u), and the equation simply expresses a
“law of conservation of cars”. (See Fig. 9.) Bick and Newell suggested that two-way
traffic, with the two lanes having densities of p(z,t) and ¢(z,t), might be similarly
modeled, with velocities U and V in either direction, as in the second sketch in
Fig. 9. Conserving mass in each direction then yields

Dt + (pU)w - 07

They further hypothesized that the local velocity should be a decreasing function of
both densities. For real traffic, the velocity function would need to be determined
empirically, as has been done for the one-way model, but to get a sense of the
qualitative properties of the model, the authors assumed a simple linear relation:

U=1-p—0q, V=-14q+ Bp.

Here the signs are dictated by the flow directions. Some of the coefficients have
been taken to be unity by normalizing the density, time and spatial scales, so,
assuming symmetry between the two directions, there remains a single non-negative
parameter, 3, which measures the extent to which traffic density in one direction
hinders flow in the other. When 3 = 0, the two lanes are uncoupled, and one is
dealing with the simple one-way equation again. The uncoupled system is easy to
solve, though it is noteworthy that the uncoupled system is, formally, nonstrictly
hyperbolic, with an eigenvalue coincidence along p + ¢ = 1, a diagonal of the
physically feasible region, see Fig. 10. (The feasible region consists of those states
(p, q) for which p, ¢, and U are nonnegative, and V' is non-positive.) However, once
one considers the case § > 0, Bick and Newell found a region in state space in
which the eigenvalues of the Jacobian matrix are complex, as indicated in Fig. 10.
They could not offer a reason for this behavior; after solving Riemann problems for
some initial conditions, they recommended abandoning the model.

Vinod studied this model in his thesis, because of its mathematical interest [46],
and was able to solve some additional Riemann problems using classical shocks in

q+ "+ »U
X

q, V «-——
x+h

Fig. 9. One-way and two-way continuum traffic models.
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Fig. 10. State space for the two-way traffic system.

some novel configurations. To date, no one has examined this model for possible
solutions involving singular shocks.

5.2. Two-phase compressible flow

The system of four equations for isentropic flow was given in Sec. 4. This system, as
well as the full version with energy equations, has the well-known property that it
fails to be hyperbolic for a range of states [44]. Typically, it has been solved numer-
ically, and the assumption is that the addition of viscosity regularizes the system
sufficiently to produce stable solutions. In addition, higher- and lower-order terms
(representing drag, surface tension and other physical influences) are important
and are always included in serious simulations. It is the case that one can produce
the two-way traffic model as a naive asymptotic limit of these equations [16]. This
might be a reason to try to understand that system. We do not pursue this model
further here.

5.3. Three-phase porous medium flow

In numerical simulation of petroleum reservoirs, researchers have had to deal with
situations where three phases (oil, water and gas) are simultaneously present. A
standard approach to porous medium flow has been to take a continuum model
for the phases and to assume that the flow velocity in each phase is a function of all
three phases and the pressure. In a single space dimension, one can further eliminate
the pressure term, and (assuming a saturated medium, so that it is necessary to
track only two of the phases) the resulting equations take the form

uf + f°(u®u?)e = D,

uf + 2, uf), = DY,
where u’ are the saturations of the phases (oil and gas) and f? the fluxes. The
terms D° and DY represent dispersion, and in the case of convection-dominated

flow they are small, analogous to viscous perturbations in the conservation laws
of gas dynamics. Thus, one is led to consider the hyperbolic system, with the D?



464 B. L. Keyfitz

set to zero. The fluxes are modeled semi-empirically. Typically, engineers have a
good understanding of these functions when only two phases are present, but they
can determine the three-phase versions only by interpolation. In [2] (see also [1] for
more detail on the model), the authors examine a particular model and report that
change of type occurs here, too, at least for some values of the parameters used
in the model. In this case, the equations are hyperbolic in most of phase space,
with only a tiny region where the characteristics appear to be complex. Again,
the numerics do not indicate any catastrophic instability. On the other hand, in
this case dispersion is present and is often included in the numerical schemes. In
addition, when the system is simulated in more than one space dimension, the
saturation equations are supplemented with an equation for the pressure, and the
significance of the change of type is obscured. Because of the almost circular shape
of the nonhyperbolic region in phase space, a number of researchers experimented
with modeling it as an umbilic point in a system with a quadratic flux function,
see [14, 38] and related references. Interesting qualitative behavior was found, in
the form of complex shock-rarefaction patterns. There was no evidence of singular
shocks; on the other hand, the reported research did not include complete solutions
for all Riemann problems.

5.4. Gas dynamics with v > 1, conserving velocity and entropy

It was mentioned earlier that the same reduction that generates the model system
(1.4) can also be applied to the isentropic gas dynamics equations with v > 1 — a
more realistic parameter range. In this case, the resulting system is not everywhere
hyperbolic. The analogue of (1.4) is the system

3_
ut—|—< 2Wu2—v> =0,

(—(2 — 7)25 “30 54y - l)uv)m =0,

vt +

and it is hyperbolic below the parabola

v < (1 — %)uz,

a region that corresponds to positive density. When v < 5/3, this system shares
with the prototype model (1.4) the property of having a bounded Hugoniot locus,
and hence lacks classical Riemann solutions for a large set of data (corresponding
to hyperbolic states and hence positive density — we assume that nonhyperbolic
data are not interesting). Recently, Charis Tsikkou and I have solved the Riemann
problem for this system [26]. By and large, the solutions follow the pattern estab-
lished by (1.4), although there are some interesting variants. For example, vacuum
states appear, as they do in the usual form of the gas dynamics equations. We also
find that the singular shocks in this example do not correspond to the appearance
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of vacuum states. In addition, both viscous approximations to and numerical simu-
lations of Riemann solutions (numerical simulations are of course a type of viscous
approximation), take values in the nonhyperbolic region.

5.5. A model for chemotaxis

This example appeared in a paper by Levine and Sleeman [29]. T will not explain the
derivation of the equations, since it is rather long. In summary, there are a number
of models for chemotaxis (the transport of a substance that follows the gradient of
an active chemical concentration). Using a model of Othmer and Stevens [34] as
their starting point, Levine and Sleeman work with a system

up — a(uv)y = Ugy, (5.1)

Vy — Uy = 0,

in which w > 0 is the density of the substance of interest and v the (scaled) gradient
of the active agent. The parameter a is a constant which can be scaled to be 1, with
sign depending on how the agent affects the substance. Assuming that the term u..,
can be neglected (again by scaling), Levine and Sleeman observe that when a < 0,
system (5.1) exhibits change of type in the region of interest (v > 0). This example
was the focus of the research in [29]. The authors do not analyze their model from
the viewpoint of conservation laws. In fact, getting the correct boundary conditions
for (5.1) is quite important and it is not clear what would be the significance of a
Riemann problem for this system. However, the phenomena found by the authors,
using linearization, Fourier analysis and numerical simulations, include pointwise
blow-up. It is thus possible that singular shocks appear in this model. As with the
other examples presented in this brief summary, it would be interesting to discover
a relationship between change of type and singular solutions.

5.6. The generalized Langmuir isotherm in chromatography

In the introductory section of this paper, I mentioned recent work of Marco Maz-
zotti. To a great extent, his work has revived my interest in the phenomenon.
Mazzotti began with a classical model: a binary (two-phase) system in chromatog-
raphy. The underlying physical situation involves two fluids, with concentrations u
and us, flowing at constant speed along a column, which are differentially adsorbed,
in amounts v; and vs. Under a standard set of assumptions — that convection and
adsorption dominate the system, that the mixture is locally in thermodynamic equi-
librium, and that v; depend only on u — one obtains a pair of equations expressing
conservation of mass of each component.

g(u + ,UA) + aui
ot " ox

(It is natural to process engineers to write the equations in this form: u; 4+ v; is the

=0, i=1,2 (5.2)

total amount of component i at point x, while u; is the corresponding flux — the
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amount of this component still in the fluid phase.) Furthermore, it is also standard
to use the Langmuir isotherm to describe the equilibrium:

a;Uj

=— =12 5.3
1+ up + us ( )

v;
The text of Rhee, Aris and Amundson [35], is an excellent reference for background
on this topic. In writing (5.2) and (5.3) I have nondimensionalized the system with-
out further comment, setting to unity all constants that do not alter the mathemat-
ical properties of the system. All quantities are physically meaningful only when
they take non-negative values, so the fact that Eq. (5.2) is not hyperbolic inside
a parabola in the second quadrant (unless a; = ag, an exceptional case) was not
considered important. (In fact, assuming a1 < as for definiteness, the system does
fail to be strictly hyperbolic at the point on the us-axis. However, the characteristic
structure of this system is extraordinarily transparent: It is of what is now called
“Blake Temple” type, so the characteristics of different families do not interact, and
solutions to the Riemann problem can be written down in a straightforward way.)
Mazzotti, motivated by intellectual curiosity, began to examine (mathemati-
cally) systems where the Langmuir isotherm was replaced by different combinations

of plus and minus signs in the denominator:
AU

=—""  i=1,2, < as. 5.4
Ttu fuy s az (5-4)

Vg
In principle, this can make physical sense: The plus sign represents a situation where
the two substances compete for adsorption sites, and in the case of a minus sign,
they cooperate. The most interesting case is a denominator of the form 1 —wuy + uo,
for then the nonhyperbolic region lies in the physical region, as in Fig. 11. Since v;
as well as u; must be positive, one considers only states with 1 — uy + us > 0, and
Mazzotti also considered only data in the hyperbolic part of state space, and only in
the closure of the open component neighboring the origin. The behavior he found is
quite remarkable. For a large set of data, the Riemann problem cannot be solved by

U,

Fig. 11. State space for the chromatography model: Anti-Langmuir kinetics.
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classical shocks and rarefactions, and numerical simulations seem to indicate sin-
gular shock solutions. In this example, neither of the Rankine-Hugoniot equations
is satisfied, but Mazzotti was able to identify a linear combination that satisfied
the relation (consistent with Sever’s theory) by an ingenious use of approximate
delta-functions. His idea, which is to displace the origin of the smoothed delta-
function by different amounts for the different components, is consistent with the
Colombeau theory of generalized distributions, but is of quite a different character
from the choice that Kranzer and I made in [23]. Mazzotti was also able to show
that with his choice he obtained approximate solutions to the system, with an error
that converged to zero. It is interesting that, up to the present, we have not been
able to obtain any useful information from the Dafermos-DiPerna regularization
(or from any regularization) of this system.

Mazzotti then set out to confirm this behavior experimentally, and eventually
succeeded [32]. It was not trivial to find substances that exhibited the right com-
bination of cooperative and competitive behavior in their adsorption patterns, and
in addition actually followed Langmuir kinetics (which are only an approximation
to nonlinear equilibrium behavior). However, the experiments, performed by two
different groups, exhibit a gratifying spike in concentration. At least as far as these
two compounds are concerned, the singular shock really does represent “mass piling
up in the shock”.

6. Conclusions

The three change-of-type models for which there is now conclusive evidence for
the existence of singular shocks are the incompressible two-phase flow model, the
velocity-entropy model of isentropic gas dynamics with 1 < ~ < 5/3, and the
binary chromatography model with a particular combination of Langmuir and anti-
Langmuir kinetics. The gas dynamics model with v > 1 resembles closely the hyper-
bolic model equation originally studied by Kranzer and myself, while the other two
appear quite different. Meanwhile, there are a number of other model systems in
which change of type occurs and not all Riemann problems have classical solutions,
but not enough research has been done to demonstrate the existence (or not) of
singular shock solutions. It is possible that, in the end, “change of type” will have
no more to do with the formation of singular shocks than the basic fact that we are
considering state variables on a particular domain, outside of which the properties
of the system are immaterial. In one of our examples, incompressible flow, it is in
fact important to look at data outside the hyperbolic region. In some of the others,
such as chromatography, the model for those states (or for the corresponding flux
functions) breaks down, and an explanation of what one means by an “approxima-
tion” (for example, the solution produced by viscous regularization), which seems
to involve a physically impossible situation, is still incomplete.

On returning to study these problems again, I have found Schecter’s proof of
existence of Dafermos profiles compelling. Not only does Schecter show that our
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asymptotic expressions are approximations to an actual solution, he also demon-
strates how the “inner” and “outer” or “singular” and “nonsingular” or, more
precisely, “singular in amplitude” and “singular only in rate of change” parts of the
solution relate to each other. Although there is no physical basis for selecting a self-
similar artificial viscosity, I would hazard a guess that one could relate the solutions
found this way to other viscous approximations, either by adapting the geometric
singular perturbation methods to a different system, or by scaling the variables
appropriately. Thus it seems worthwhile to explore this technique for other exam-
ples. A preliminary examination of the two-phase flow model did not lead to a
positive result, but it is probable that one must tailor the coordinate changes to
the example at hand. We are not close to a general theory yet.

Acknowledgments

This research was supported in part by the National Science Foundation, Grant
DMS-09-68254 and by the Department of Energy, Grant DE-SC0001285. The
author is grateful to the organizers of the “Colloque Michelle Schatzman” for the
opportunity to present a talk on this subject.

References

1. M. B. Allen III, G. A. Behie and J. A. Trangenstein, Multiphase Flow in Porous
Media: Mechanics, Mathematics and Numerics (Springer-Verlag, 1988).

2. J. B. Bell, J. A. Trangenstein and G. R. Shubin, Conservation laws of mixed
type describing three-phase flow in porous media, STAM J. Appl. Math. 46 (1986)
1000-1023.

3. J. H. Bick and G. F. Newell, A continuum model for two-directional traffic flow,
Quart. Appl. Math. XVIII (1960) 191-204.

4. V. A. Borovikov, On the decomposition of a discontinuity for a system of two quasi-
linear equations, Trans. Moscow Math. Soc. 27 (1972) 53-94.

5. F. Bouchut, On zero pressure gas dynamics, in Advances in Kinetic Theory and Com-
puting, Selected Papers, Advances in Mathematics for Applied Sciences, Vol. 22 (World
Scientific, 1994), pp. 171-190.

6. A. Bressan, Hyperbolic Systems of Conservation Laws: The One-Dimensional Cauchy
Problem (Oxford Univ. Press, 2000).

7. G. F. Carrier, On the nonlinear vibration problem of the elastic string, Quart. Appl.
Math. 3 (1945) 157-165.

8. Y. Chen, J. Glimm, D. H. Sharp and Q. Zhang, A two phase flow model of the
Rayleigh—Taylor mixing zone, LASL preprint, LA-UR 95-3526.

9. J.-F. Colombeau, Multiplication of distributions, Bull. Amer. Math. Soc. 23 (1990)
251-268.

10. C. M. Dafermos and R. J. DiPerna, The Riemann problem for certain classes of
hyperbolic systems of conservation laws, J. Differential Equations 20 (1976) 90-114.

11. R. J. DiPerna, Measure-valued solutions to conservation laws, Arch. Rational Mech.
Anal. 88 (1985) 223-270.

12. H. Freistiihler, Rotational degeneracy of hyperbolic systems of conservation laws,
Arch. Rational Mech. Anal. 113 (1991) 39-64.



13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Singular Shocks 469

J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Comm.
Pure Appl. Math. 18 (1965) 95-105.

E. L. Isaacson, D. Marchesin, B. Plohr and J. B. Temple, The Riemann problem near
a hyperbolic singularity, I, STAM J. Appl. Math. 48 (1988) 1009-1032.

J. J. Cauret, J. F. Colombeau and A. Y. Le Roux, Discontinuous generalized solutions
of nonlinear nonconservative hyperbolic equations, J. Math. Anal. Appl. 139 (1989)
552-573.

B. L. Keyfitz, Change of type in simple models of two-phase flow, in Viscous Pro-
files and Numerical Approzimation of Shock Waves, ed. M. Shearer (SIAM, 1991),
pp. 84-104.

B. L. Keyfitz, Multiphase saturation equations, change of type and inaccessible
regions, in Proc. Oberwolfach Conf. on Porous Media, eds. J. Douglas, C. J. van
Duijn and U. Hornung (Birkh&user, 1993), pp. 103-116.

B. L. Keyfitz, Conservation laws, delta shocks and singular shocks, in Nonlinear
Theory of Generalized Functions, eds. M. Grosser, G. Hérmann, M. Kunzinger and
M. Oberguggenberger (Chapman & Hall/CRC Press, 1999), pp. 99-111.

B. L. Keyfitz, Mathematical properties of nonhyperbolic models for incompressible
two-phase flow, in Proc. Fourth Int. Conf. Multiphase Flow, New Orleans (CD ROM),
ed. E. E. Michaelides, ICMF 2001, Tulane University, 2001.

B. L. Keyfitz and H. C. Kranzer, A system of hyperbolic conservation laws arising in
elasticity theory, Arch. Rational Mech. Anal. 72 (1980) 219-241.

B. L. Keyfitz and H. C. Kranzer, The Riemann problem for a class of hyperbolic con-
servation laws exhibiting a parabolic degeneracy, J. Differential Equations 47 (1983)
35-65.

B. L. Keyfitz and H. C. Kranzer, A viscous approximation to a system of conser-
vation laws with no classical Riemann solution, in Nonlinear Hyperbolic Problems,
eds. C. Carasso et al., Lecture Notes in Mathematics, Vol. 1402 (Springer, 1989),
pp. 185-197.

B. L. Keyfitz and H. C. Kranzer, Spaces of weighted measures for conservation laws
with singular shock solutions, J. Differential Equations 118 (1995) 420-451.

B. L. Keyfitz, R. Sanders and M. Sever, Lack of hyperbolicity in the two-fluid
model for two-phase incompressible flow, Disc. Cont. Dynam. Syst. 3 (2003)
541-563.

B. L. Keyfitz, M. Sever and F. Zhang, Viscous singular shock structure for a nonhy-
perbolic two-fluid model, Nonlinearity 17 (2004) 1731-1747.

B. L. Keyfitz and C. Tsikkou, Conserving the wrong variables in gas dynamics: A
Riemann solution with singular shocks, Quart. Appl. Math. in preparation.

H. C. Kranzer and B. L. Keyfitz, A strictly hyperbolic system of conservation laws
admitting singular shocks, in Nonlinear Evolution Equations that Change Type, eds.
B. L. Keyfitz and M. Shearer, IMA, Vol. 27 (Springer, 1990), pp. 107-125.

S. N. Kruzkov, First-order quasilinear equations in several independent variables,
Math. USSR — Sbor. 10 (1970) 217-243.

H. A. Levine and B. D. Sleeman, A system of reaction diffusion equations arising in
the theory of reinforced random walks, SIAM J. Appl. Math. 57 (1997) 683-730.

M. Mazzotti, Local equilibrium theory for the binary chromatography of species
subject to a generalized Langmuir isotherm, Indust. Eng. Chem. Res. 45 (2006)
5332-5350.

M. Mazzotti, Non-classical composition fronts in nonlinear chromatography — Delta-
shock, Indust. Eng. Chem. Res. 48 (2009) 7733-7752.



470 B. L. Keyfitz

32.

33.

34.

35.

36.

37.

38.

39.

40.
41.

42.

43.
44.

45.

46.

M. Mazzotti, A. Tarafder, J. Cornel, F. Gritti and G. Guiochon, Experimental evi-
dence of a delta-shock in nonlinear chromatography, J. Chromatography A 1217
(2010) 2002-2012.

M. Nedeljkov, Shadow waves: Entropies and interactions for delta and singular shocks,
Arch. Rational Mech. Anal. 197 (2010) 489-537.

H. G. Othmer and A. Stevens, Aggregation, blowup, and collapse: The ABC’s of taxis
in reinforced random walks, STAM J. Appl. Math. 57 (1997) 1044-1081.

H.-K. Rhee, R. Aris and N. R. Amundson, First-Order Partial Differential Equations:
Vol. 11, Theory and Application of Hyperbolic Systems and Quasilinear Equations
(Prentice-Hall, 1989).

P. Rosenau, Evolution and breaking of ion-acoustic waves, Phys. Fluids 31 (1988)
1317-1319.

D. G. Schaeffer, S. Schecter and M. Shearer, Nonstrictly hyperbolic conservation laws
with a parabolic line, J. Differential Equations 103 (1993) 94-126.

D. G. Schaeffer and M. Shearer, The classification of 2 x 2 systems of non-strictly
hyperbolic conservation laws, with application to oil recovery, Comm. Pure Appl.
Math. XL (1987) 141-178.

S. Schecter, Existence of Dafermos profiles for singular shocks, J. Differential Equa-
tions 205 (2004) 185-210.

M. Sever, Viscous structure of singular shocks, Nonlinearity 15 (2002) 705-725.

M. Sever, Distribution solutions of nonlinear systems of conservation laws, Mem.
Amer. Math. Soc. 190 (2007) 1-163.

M. Sever, The Cauchy problem for a model problem with singular shocks, J. Hyperbolic
Differential Equations 7 (2010) 1-66.

J. A. Smoller, Shock Waves and Reaction-Diffusion Equations (Springer-Verlag, 1983).
H. B. Stewart and B. Wendroff, Two-phase flow: Models and methods, J. Comput.
Phys. 56 (1984) 363-409.

D. Tan, T. Zhang and Y .-X. Zheng, Delta-shock waves as limits of vanishing viscosity
for hyperbolic systems of conservation laws, J. Differential Equations 112 (1994) 1-32.
V. Vinod, Structural stability of Riemann solutions for a multiphase kinematic con-
servation law model that changes type, PhD thesis, University of Houston, Houston,
Texas, 77204-3476, 1992.



	1 Background: Origins of the Story
	2 Structure and Properties of Singular Shocks
	3 Further Developments
	4 The Two-Fluid Model for Two-Phase Flow
	4.1 A system for incompressible flow in simplified coordinates

	5 A Brief History of Systems that Change Type
	5.1 Two-way traffic flow
	5.2 Two-phase compressible flow
	5.3 Three-phase porous medium flow
	5.4 Gas dynamics with > 1, conserving velocity and entropy
	5.5 A model for chemotaxis
	5.6 The generalized Langmuir isotherm in chromatography

	6 Conclusions

