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We show that �p norms are characterized as the unique norms which are both invariant
under coordinate permutation and multiplicative with respect to tensor products. Simi-
larly, the Lp norms are the unique rearrangement-invariant norms on a probability space
such that ‖XY ‖ = ‖X‖ · ‖Y ‖ for every pair X, Y of independent random variables. Our
proof combines the tensor power trick and Cramér’s large deviation theorem.
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1. Introduction

The �p and Lp spaces are among the most important examples of Banach spaces and
have been widely investigated (see e.g. [2] for a survey). In this note, we exhibit a
characterization of the �p/Lp norms by a simple algebraic identity: the multiplicative
property. In the case of �p norms, this property reads as ‖x ⊗ y‖ = ‖x‖ · ‖y‖ for
every (finite) sequences x, y. In the case of Lp norms, it becomes ‖XY ‖ = ‖X‖ · ‖Y ‖
whenever X, Y are independent (bounded) random variables.

There are many examples of theorems showing how special are �p/Lp spaces
among Banach spaces. An early axiomatic characterization of �p/Lp spaces goes
back to Bohnenblust [6]: among Banach lattices, they are the only spaces in which
‖x + y‖ depends only on ‖x‖ and ‖y‖ whenever x, y are orthogonal. Let us also
mention a deep theorem by Krivine [11]: every basic sequence, in any Banach space,
admits a p such that �p is block finitely represented therein.
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Although it did not appear explicitly in the literature, the main result of this
note is not completely new. For example it can be derived from Krivine’s afor-
mentioned theorem (see Sec. 1.3). However, we put emphasis on our method of
proof, which is original and — we believe — elegant, and on the simplicity of the
statement. Shortly after this note was made public, our result was used by Tom
Leinster [13] to provide a new characterization of power means.

Inspiration for the present note comes from quantum information theory, where
the multiplicative property of the commutative and noncommutative �p norms play
an important role; see [12, 3, 4] and references therein. Of great importance in
classical and quantum information theory, Rényi entropies are tightly connected to
�p norms:

Hp(x) =
p

1 − p
log‖x‖p, p ∈ [0,∞].

The multiplicative property of the �p norms translates into additivity for the
corresponding Rényi entropy.

The monograph [1] contains many axiomatic characterizations of such entropies
(especially for p = 1, the Shannon entropy) and many questions remain open (such
as the problem after Proposition (5.2.38)). Note that the results in this work do not
apply directly to characterize nicely Rényi entropies, since the triangle inequality
for norms does not have a natural expression in terms of entropies.

1.1. Discrete case: Characterization of �p norms

Let c00 be the space of finitely supported real sequences. The coordinates of an
element x ∈ c00 are denoted (xi)i∈N∗ .

If x, y ∈ c00, we define x ⊗ y to be double-indexed sequence (xiyj)(i,j)∈N∗×N∗ .
Throughout the paper, we consider x⊗y as an element of c00 via some fixed bijective
map between N∗ and N∗ × N∗.

We consider a norm ‖ · ‖ on c00 satisfying the following conditions

(1) (permutation-invariance) If x, y ∈ c00 are equal up to permutation of their
coordinates, then ‖x‖ = ‖y‖.

(2) (multiplicativity) If x, y ∈ c00, then ‖x ⊗ y‖ = ‖x‖ · ‖y‖.
Because of the invariance under permutation, the specific choice of a bijection

between N∗ and N∗ ×N∗ is irrelevant. Examples of a norm satisfying both condi-
tions are given by �p norms, defined by

‖x‖p =

(∑
i∈N∗

|xi|p
)1/p

if 1 ≤ p < +∞; ‖x‖∞ = sup
i∈N∗

|xi|.

The next theorem shows that there are no other examples.

Theorem 1.1. If a norm ‖ · ‖ on c00 is permutation-invariant and multiplicative,
then it coincides with ‖ · ‖p for some p ∈ [1, +∞].
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A more invariant formulation of Theorem 1.1 can be stated without referring to
a particular bijection between N and N2 (this was pointed to us by Tom Leinster).
Assume that, for every finite set I, a norm is given on RI , in such a way that for
any finite sets I, J

(1) If f : I → J is any injective map, then ‖f∗(x)‖ = ‖x‖ for every x ∈ RI , where
f∗ : RI → RJ is the map obtained by re-indexing coordinates according to f ,
and padding with zeros.

(2) For every x ∈ RI , y ∈ RJ , we have ‖x⊗y‖ = ‖x‖ · ‖y‖ for every x ∈ RI , y ∈ RJ

(here x ⊗ y is considered as an element of RI×J).

Then these norms are actually the usual �p norms for some p ∈ [1, +∞].
Our proof of Theorem 1.1 is simple and goes as follows. First, the value of p is

retrieved by looking at ‖(1, 1)‖. Then, for every x ∈ c00, the quantity ‖x‖ is shown
to equal ‖x‖p by examining the statistical distribution of large coordinates of the
nth tensor power x⊗n (n large) through Cramér’s large deviations theorem. We
defer the proof to Sec. 2.

1.2. Continuous case: Characterization of Lp norms

We now formulate a version of Theorem 1.1 in a continuous setting, in order to
characterize Lp norms. Let (Ω,F ,P) be a rich probability space, which means
that it is possible to define on it one continuous random variable. This implies
that we can define on Ω an arbitrary number of independent random variables
with arbitrary distributions; one can think of Ω as the interval [0, 1] equipped
with the Lebesgue measure. A random variable is said to be simple if it takes
only finitely many values. For a random variable X : Ω → R, the Lp norms are
defined as

‖X‖Lp =

{
(E|X |p)1/p if 1 ≤ p < +∞,

inf{M s.t. P(|X | ≤ M) = 1} if p = ∞.

The Lp norms are rearrangement-invariant (i.e. the norm of a random vari-
able depends only on its distribution) and satisfy the property ‖XY ‖ = ‖X‖ · ‖Y ‖
whenever X, Y are independent random variables. Note that product of indepen-
dent random variables correspond to the tensor product in c00. These properties
characterize the Lp norms.

Theorem 1.2. Let (Ω,F ,P) be a rich probability space, and let E be the space of
simple random variables. Let ‖ · ‖ be a norm on E with the following properties:

(1) If two random variables X, Y ∈ E have the same distribution, then ‖X‖ = ‖Y ‖.
(2) If two random variables X, Y ∈ E are independent, then ‖XY ‖ = ‖X‖ · ‖Y ‖.

Then there exists p ∈ [1, +∞] such that ‖X‖ = ‖X‖Lp for every X ∈ E.
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We prove Theorem 1.2 in Sec. 3. We will derive Theorem 1.2 as a conse-
quence of Theorem 1.1. Alternatively one could prove it by mimicking the proof of
Theorem 1.1.

1.3. Connection to previous works

As we mentioned in the introduction, our main result can be derived from much
deeper structural results from Banach space theory, and the point of the present
paper is mostly to provide a simple proof to an easy-to-understand notable fact.

A closely related result appears as [9, Theorem 3.1], where the authors use the
Banach space machinery to study rearrangement invariant norms on tensor prod-
ucts. Alternatively, one can derive our theorem from a proof of Krivine’s theorem
(we thank an anonymous referee for pointing out this to us). Krivine’s theorem
states in particular that for any norm ‖ · ‖ on c00 which is permutation-invariant
and unconditional, there is a p ∈ [1,∞] such that for any ε > 0 and n ∈ N, there
are n vectors x1, . . . , xn ∈ c00 with disjoint supports such that, for any scalars
(α1, . . . , αn),

‖(α1, . . . , αn)‖p ≤
∥∥∥∥∥

n∑
k=1

αkxk

∥∥∥∥∥ ≤ (1 + ε)‖(α1, . . . , αn)‖p.

Moreover, the vectors (xk) can be chosen to be equal up to permutation (this
is clear if we follow the proof in [14, Sec. 12.3.1]). The multiplicativity property
implies then that

‖(α1, . . . , αn)‖p‖x1‖ ≤ ‖(α1, . . . , αn)‖ ≤ (1 + ε)‖(α1, . . . , αn)‖p‖x1‖.
It follows easily that ‖ · ‖ is equal to the �p norm.

2. The Case of �p Norms: Proof of Theorem 1.1

Let ‖ · ‖ be a norm on c00 which is permutation-invariant and multiplicative.

Step 1. We first show that the norm of an element of c00 depends only on the
absolute values of its coordinates.

Lemma 2.1. A norm on c00 which is permutation-invariant and multiplicative is
also unconditional: if x, y ∈ c00 have coordinates with equal absolute values (|xi| =
|yi| for every i), then ‖x‖ = ‖y‖. As a consequence, if a, b ∈ c00 and 0 ≤ a ≤ b

(coordinate-wise), then ‖a‖ ≤ ‖b‖.

Proof. If x, y have coordinates with equal absolute values, then the vectors
x ⊗ (1,−1) and y ⊗ (1,−1) are equal up to permutation of their coordinates.
Permutation-invariance and multiplicativity imply that ‖x‖ = ‖y‖. For the sec-
ond part of the lemma, note that 0 ≤ a ≤ b implies that a belongs to the convex
hull of the vectors {(εibi); εi = ±1} and use the triangle inequality to conclude.
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Remark 2.2. In the literature, unconditional and permutation-invariant norms
are sometimes called symmetric norms.

Step 2. We now focus on sequences whose nonzero coefficients are equal to 1. We
write 1n for the sequence formed with n 1’s followed by infinitely many zeros and
we put un = ‖1n‖. By Lemma 2.1, the sequence (un)n is nondecreasing. Moreover,
the multiplicativity property of the norm implies that the sequence (un)n itself
is multiplicative: ukn = ukun. It is folklore that a nonzero nondecreasing sequence
(un)n such that ukn = ukun must equal (nα)n for some α ≥ 0 (for a proof see [10] or
[1, Corollary 0.4.17]). We set p = 1/α (p = +∞ if α = 0). By the triangle inequality,
un+k ≤ un + uk, which implies that p ≥ 1. At this point we have proved that

‖1n‖ = n1/p.

To prove Theorem 1.1, we need to show that ‖x‖ = ‖x‖p for every x ∈ c00.
The case p = +∞ is easily handled, so we may assume that 1 ≤ p < +∞. By
Lemma 2.1, without loss of generality, we may also assume that the coordinates
of x are nonnegative and in nonincreasing order. Let k be the number of nonzero
coordinates of x; then xi = 0 for i > k. We will separately show the inequalities
‖x‖ ≥ ‖x‖p and ‖x‖ ≤ ‖x‖p. In both cases, we compare x⊗n with simpler vectors
and apply Cramér’s theorem (which we now review) to estimate the number of
“large” coordinates of x⊗n when n goes to infinity.

Cramér’s theorem. Fix x ∈ c00 with nonnegative nonincreasing coordinates, and
let k be the number of nonzero coordinates of x. For a > 0, let N(x, a) be the
number of coordinates of x which are larger than or equal to a. To estimate this
number, we introduce the convex function Λx : R → R

Λx(λ) = ln

(
k∑

i=1

xλ
i

)

and its convex conjugate Λ∗
x : R → R ∪ {+∞}

Λ∗
x(t) = sup

λ∈R
λt − Λx(λ).

The Fenchel–Moreau theorem (see e.g. [7]) implies that convex conjugation is
an involution: we have, for any λ ∈ R,

Λx(λ) = sup
t∈R

λt − Λ∗
x(t).

Proposition 2.3. (Cramér’s large deviation theorem) Let x ∈ c00 such that xi > 0
for 1 ≤ i ≤ k and xi = 0 for i > k. Let t be a real number such that exp(t) ≤ ‖x‖∞.
Then,

lim
n→∞

1
n

ln N(x⊗n, exp(tn)) =

{
ln k if exp(t) ≤ (

∏k
i=1 xi)1/k

−Λ∗
x(t) otherwise

}
≥ −Λ∗

x(t).
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Proof. To see how Proposition 2.3 follows from the standard formulation of
Cramér’s theorem, let (Xn) be independent random variables with common dis-
tribution given by

1
k

k∑
i=1

δlnxi .

Then P( 1
n (X1+· · ·+Xn) ≥ t) = 1

kn N(x⊗n, exp(tn)). The usual Cramér theorem
(see [8] for a short proof) asserts that

lim
n→∞

1
n

lnP
(

1
n

(X1 + · · · + Xn) ≥ t

)
=




0 if t ≤ EX1,

− sup
λ∈R

(λt − lnEeλX1) otherwise.

This is equivalent to the equality in Proposition 2.3. The last inequality follows
easily since Λ∗

x(t) ≥ − lnk for every real t.

We now complete the proof of the main theorem by comparing x⊗n with simpler
vectors, as shown in Fig. 1.

Step 3. The lower bound ‖x‖ ≥ ‖x‖p For t ∈ R, we have the lower bound

‖x‖ = ‖x⊗n‖1/n ≥ ‖exp(tn)1N(x⊗n,exp(tn))‖1/n = exp(t)N(x⊗n, exp(tn))1/np.

Proposition 2.3 asserts that

lim
n→∞ N(x⊗n, exp(tn))1/n ≥ exp(−Λ∗

x(t)).

Fig. 1. Bounding the vector x⊗n by vectors with simpler profiles. The coordinates of the tensor

power x⊗n are represented by dark circles, the vector used in for the lower bound has only one
nonzero value exp(tn) and the upper-bounding vector has values exp(tdn) ≥ · · · ≥ exp(t1n) ≥ 0.



February 23, 2012 17:39 WSPC/S1793-7442 251-CM 00048

The Multiplicative Property Characterizes �p and Lp Norms 643

We have therefore

‖x‖ ≥ exp(t − Λ∗
x(t)/p) = exp(pt − Λ∗

x(t))1/p

for any t ∈ R. Taking the supremum over t and using the Fenchel–Moreau theorem
shows that

‖x‖ ≥ exp(Λx(p))1/p = ‖x‖p.

Step 4. The upper bound ‖x‖ ≤ ‖x‖p. Fix ε > 0 and choose t0 < · · · < td such that

exp(t0) = min
1≤i≤k

xk, exp(t1) =

(
k∏

i=1

xi

)1/k

,

exp(td) = ‖x‖∞ and sup
2≤i≤d

|ti − ti−1| < ε.

For n ∈ N∗, we define a vector yn ∈ c00 as follows: the coordinates of yn belong to
the set

{0, exp(nt1), exp(nt2), . . . , exp(ntd)}
and are minimal possible such that the inequality x⊗n ≤ yn holds coordinatewise.
Lemma 2.1 implies that ‖x⊗n‖ ≤ ‖yn‖. On the other hand, for 1 ≤ i ≤ d, the num-
ber of coordinates of yn which are equal to exp(nti) is less than N(x⊗n, exp(nti−1)).
The triangle inequality implies that

‖yn‖ ≤
d∑

i=1

‖exp(tin)1N(x⊗n,exp(ti−1n))‖

≤
d∑

i=1

exp(tin)N(x⊗n, exp(ti−1))1/p

≤ d max
1≤i≤d

{exp(tin)N(x⊗n, exp(ti−1n))1/p}.
This gives an upper bound for ‖x‖
‖x‖ = ‖x⊗n‖1/n ≤ ‖yn‖1/n ≤ d1/n max

1≤i≤d
{exp(ti)N(x⊗n, exp(ti−1n))1/np}. (2.1)

For 2 ≤ i ≤ d, Proposition 2.3 implies that

lim
n→∞ exp(ti)N(x⊗n, exp(ti−1n))1/np = exp(ti) exp(−Λ∗

x(ti−1))1/p

≤ exp(ti) exp(−(pti−1 − Λx(p)))1/p

≤ exp(ε)‖x‖p.

Similarly, for i = 1,

exp(t1)N(x⊗n, exp(t0n))1/np ≤ exp(t1)k1/p ≤ ‖x‖p,

where the last inequality follows from the inequality of arithmetic and geometric
means. Therefore, taking the limit n → ∞ in inequality (2.1) implies that ‖x‖ ≤
exp(ε)‖x‖p, and the result follows when ε goes to 0.
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3. The Case of Lp Norms: Proof of Theorem 1.2

Let ‖ · ‖ be a norm on the space E of simple random variables which satisfies
the hypotheses of Theorem 1.2. Throughout the proof, we denote by Bn ∈ E a
Bernoulli random variable with parameter 1/n, i.e. such that P(Bn = 1) = 1/n and
P(Bn = 0) = 1 − 1/n. Moreover, we assume that the random variables (Bn)n∈N

are independent.
We will define a norm � ·� on c00 which will satisfy the hypotheses of Theo-

rem 1.1. It is convenient to identify c00 with the union of an increasing sequence of
subspaces

c00 =
⋃

n∈N

Rn. (3.1)

For x = (x1, . . . , xn) ∈ Rn, we define

|||x||| =
‖X‖
‖Bn‖ ,

where X ∈ E is a random variable with distribution 1
n (δx1 + · · · + δxn).

This defines a norm on c00 provided the construction is compatible with the
union (3.1). To check this, consider x as an element of Rm for m > n, obtained
by padding x with m − n zeros. Let X ′ be a random variable with distribution
1
m (δx1 + · · · + δxn + (m − n)δ0). If we moreover assume that the random variables
X, X ′, Bn, Bm are independent, it is easily checked that XBm and X ′Bn both have
the distribution 1

nm (δx1 + · · · + δxn)+ (1− 1
nm )δ0. By the hypotheses on the norm,

this implies that ‖X‖ · ‖Bm‖ = ‖X ′‖ · ‖Bn‖ and therefore

‖X‖
‖Bn‖ =

‖X ′‖
‖Bm‖ .

This shows that |||x||| is properly defined for x ∈ c00. It is easily checked that
� ·� is a norm on c00 which is both permutation-invariant and multiplicative (for
the latter, use the fact that BnBm and Bnm have the same distribution).

By Theorem 1.1, the norm � ·� equals the norm of �p for some p ∈ [1, +∞].
To compute ‖Bn‖, consider the vector x ∈ R2n given by n 1’s followed by n 0’s.
We have

n1/p = ‖x‖p = |||x||| =
‖B2‖
‖B2n‖ =

1
‖Bn‖ ,

where the last equality follows from the aforementioned property of Bernoulli ran-
dom variables. This implies that the equation

‖X‖ = ‖X‖Lp. (3.2)

Holds for every X ∈ E with rational weights, i.e. with distribution 1
n (δx1 + · · ·+

δxn) for some n. The extension to all random variables in E follows by an approx-
imation argument. Indeed, for every positive random variable X ∈ E , there exist
sequences (Yn), (Zn) of positive random variables, with rational weights, such that

Yn ≤ X ≤ Zn
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and

lim
n→∞ ‖Yn‖Lp = lim

n→∞ ‖Zn‖Lp = ‖X‖Lp.

Therefore, we may use the following lemma (a continuous version of Lemma 2.1)
to extend formula (3.2) to every X ∈ E .

Lemma 3.1. Let ‖ · ‖ be a norm on E which satisfies the hypotheses of Theorem 1.2.
If X ∈ E , then the random variables X and |X | have the same norm. If X, Y ∈ E
are two random variables such that 0 ≤ X ≤ Y, then ‖X‖ ≤ ‖Y ‖.

Proof. To prove the first part, note that if ε is a random variable which is inde-
pendent from X and such that P(ε = 1) = P(ε = −1) = 1/2, then εX and ε|X |
are identically distributed. Assume now that 0 ≤ X ≤ Y . There exists a finite
measurable partition (Ω1, . . . , Ωn) of Ω such that X and Y are constant on each
set Ωi. Let xi (respectively, yi) be the value of X (respectively, Y ) on Ωi; then
xi ≤ yi. For any ε = (ε1, . . . , εn) ∈ {±1}n, one may define a random variable Zε by
setting Zε(ω) = εi for ω ∈ Ωi. The random variable X can be written as a convex
combination of the random variables {ZεY }ε∈{±1}n (this is a consequence of the
fact that (x1, . . . , xn) is in the convex hull of (±y1, . . . ,±yn) — a fact already used
in the proof of Lemma 2.1). We now conclude by the triangle inequality and the
fact that ‖ZεY ‖ = ‖Y ‖ since both variables are equal in absolute value.

4. Extensions

4.1. Extension to the complex case

Theorems 1.1 and 1.2 extend easily to the complex case. We only state the discrete
version. Up to a small detail, the proof is the same as in the real case.

Theorem 4.1. Let ‖ · ‖ be a permutation-invariant and multiplicative norm on the
space of finitely supported complex sequences. Then, there exists some p ∈ [1, +∞]
such that ‖ · ‖ = ‖ · ‖p.

Proof. We argue in the same way as we did for real sequences. The proof adapts
mutatis mutandis, except for the first part of Lemma 2.1 whose proof requires
a slight modification. Let ω be a primitive kth root of unity. If the coordinates
of x and y differ only by a power of ω, then the vectors x ⊗ (1, ω, . . . , ωk−1) and
y⊗(1, ω, . . . , ωk−1) are equal up to permutation of coordinates, and therefore ‖x‖ =
‖y‖. The case of a general complex phase follows by continuity.

4.2. Noncommutative setting

Theorem 1.1 can be formulated to characterize the Schatten p-norms.
Let H be an infinite-dimensional (real or complex) separable Hilbert space and

F (H) be the space of finite rank operators on H . Let ‖ · ‖ be a norm on F (H) which
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is unitarily invariant: whenever U, V are unitary operators on H and A ∈ F (H), we
have ‖UAV ‖ = ‖A‖. Assume also that the norm is multiplicative in the following
sense: for any A, B ∈ F (H),

‖A ⊗ B‖ = ‖A‖ · ‖B‖.
As in the commutative case, we fix a isometry between H and the Hilbertian

tensor product H ⊗ H to define ‖A ⊗ B‖ — the particular choice we make is
irrelevant because of the unitary invariance. The next theorem asserts that the
only norms which are unitarily invariant and multiplicative are the Schatten p-
norms defined as ‖A‖p = (tr|A|p)1/p for 1 ≤ p < +∞, while p = ∞ corresponds to
the operator norm.

Theorem 4.2. Let ‖ · ‖ be a norm on the space of finite-rank operators on an
infinite-dimensional Hilbert space which is both multiplicative and unitarily invari-
ant. Then, there exists some p ∈ [1, +∞] such that ‖ · ‖ is the Schatten p-norm.

Proof. By a result of von Neumann (see [5, Theorem IV.2.1]), a norm N on F (H)
is unitarily invariant if and only if N(·) = ‖s(·)‖ for some symmetric norm ‖ · ‖ on
c00 — here s(A) ∈ c00 denotes the list of singular values of an operator A ∈ F (H).
The result follows then from the commutative case (Theorem 1.1 or Theorem 4.1).
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ment invariant structure on tensor products, J. Math. Anal. Appl. 343 (2008) 40–47.



February 23, 2012 17:39 WSPC/S1793-7442 251-CM 00048

The Multiplicative Property Characterizes �p and Lp Norms 647
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