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We consider the gradient flow of a one-homogeneous functional, whose dual involves the
derivative of a constrained scalar function. We show in this case that the gradient flow is
related to a weak, generalized formulation of a Hele–Shaw flow. The equivalence follows
from a variational representation, which is a variant of well-known variational represen-
tations for the Hele–Shaw problem. As a consequence we get existence and uniqueness
of a weak solution to the Hele–Shaw flow. We also obtain an explicit representation for
the Total Variation flow in dimension 1, and easily deduce basic qualitative properties,
concerning in particular the “staircasing effect”.
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1. Introduction

This paper deals with the L2-gradient flow of the functional

Jk(ω) :=
∫
A

|dω| dx, k ∈ {0, . . . , N − 1}
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defined on differential forms ω ∈ L2(A,Ωk(RN )), where A ⊆ R
N is an open set. We

will focus on the particular case k = N−1: in that case, the dual variable is a scalar
and this yields very particular properties of the functional Jk and the associated
flow.

Notice that, when k = 0, the functional J0 reduces to the usual total variation.
When k = N − 1 we can identify by duality ω ∈ L2(A,ΩN−1(RN )) with a vector
field u ∈ L2(A,RN ), so that JN−1 is equivalent to the functional

D(u) :=
∫
A

|divu| dx (1.1)

that is, the total mass of divu as a measure.
The gradient flow of D has interesting properties: we show in particular that

it is equivalent to a constrained variational problem for a function w such that
∆w = divu. Moreover, under some regularity assumption on the initial datum u0,
such a variational problem allows to define a weak formulation of the Hele–Shaw
flow [11, 13] (see also [15] for a viscosity formulation). Therefore, it turns out that
the flow of (1.1) provides a (unique) global weak solution to the Hele–Shaw flow,
for a suitable initial datum u0. But our formulation allows us to consider quite
general initial data u0, for which for instance divu0 may change sign, or be a
measure.

The plan of the paper is the following: in Sec. 2 we introduce the general func-
tional we are interested in, we write the Euler–Lagrange equation for its Moreau–
Yosida approximation and, in Sec. 2.1, we express it in a dual form that will be the
base of our analysis.

In Sec. 3, we focus on the case k = N − 1 which is analyzed in this paper. We
show many interesting properties of the flow: comparison, equivalence with a weak
Hele–Shaw flow if the initial datum is smooth enough, and qualitative behavior
when the initial datum is not smooth. In Sec. 4.1, we observe that, in dimension 2,
the case k = N − 1 also covers the flow of the L1-norm of the curl of a vector field,
which appears as a particular limit of the Ginzburg–Landau model (see [4, 20] and
references therein).

Another interesting consequence of our analysis is that it yields simple but
original qualitative results on the solutions of the Total Variation flow in dimension 1
(see also [5, 7]). We show in Sec. 4.2 that the denoising of a noisy signal with this
approach will, in general, almost surely produce a solution which is “flat” on a
dense set. This undesirable artifact is the well-known “staircasing” effect of the
Total Variation regularization and is the main drawback of this approach for signal
or image reconstruction.

2. Gradient Flow

Given an initial datum ω0 ∈ L2(A,Ωk(RN )), the general theory of [8] guarantees the
existence of a global weak solution ω ∈ L2([0,+∞), L2(A,Ωk(RN ))) of the gradient
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flow equation of Jk:

ωt ∈ −∂Jk(ω), t ∈ [0,+∞), (2.1)

where ∂Jk denotes the subgradient of the convex functional Jk. Given ε > 0 and
f ∈ L2(A,Ωk(RN )), we consider the minimum problem

min
ω :A→Ωk(RN )

Jk(ω) +
∫
A

1
2ε

|ω − f |2 dx. (2.2)

The Euler–Lagrange equation corresponding to (2.2) is

f − ω

ε
∈ ∂Jk(ω),

that is there exists a (k + 1)-form v with |v| = 1 such that v = dω/|dω| if dω �= 0,
and

f − ω

ε
= d∗v in A and (∗v)T = 0 on ∂A. (2.3)

2.1. Dual formulation

Equation (2.3) is equivalent to

ω ∈ ∂J∗
k

(
f − ω

ε

)
, (2.4)

where

J∗
k (η) := sup

w :A→RN

∫
A

η · w dx− Jk(w) =

{
0 if ‖η‖∗ ≤ 1,

+∞ otherwise

and

‖η‖∗ = sup
{∫

A

η · w dx : Jk(w) ≤ 1
}
.

Note that

Jk(w) + J∗
k (η) ≥

∫
A

w · η dx

for all w, η. The equality holds if and only if
∫
A η · w dx = Jk(w), and in such case

we have ‖η‖∗ ≤ 1.
Letting u be a minimizer of (2.2) and η = (f − u)/ε we get from (2.4)

η − f

ε
+

1
ε
∂J∗

k (η) 	 0 (2.5)

which shows that η is the unique minimizer of

min
η
J∗
k (η) +

ε

2

∫
A

∣∣∣∣η − f

ε

∣∣∣∣
2

dx =
ε

2
min

‖η‖∗≤1

∫
A

∣∣∣∣η − f

ε

∣∣∣∣
2

dx. (2.6)
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This corresponds to the dual problem of (2.2), which can be interpreted as the L2-
projection of f on the convex set {‖η‖∗ ≤ ε}. In particular, we deduce the following
(see also [17] for the same result in the case of the Total Variation).

Proposition 2.1. The function u = 0 is a minimizer of (2.2) if and only if

ε ≥ εc := ‖f‖∗. (2.7)

Note that ‖η‖∗ <∞ implies that∫
A

ηw = 0

for all w such that dw = 0. By Hodge decomposition, this implies that η = d∗g for
some (k + 1)-form g, with gN = 0 on ∂A. It follows that

‖η‖∗ = supR
A

|dw|≤1

∫
A

d∗g · w dx

= supR
A

|dw|≤1

∫
A

g · dw dx+
∫
∂A

w ∧ ∗gN = supR
A
|dw|≤1

∫
A

g · dw dx. (2.8)

We then get

‖η‖∗ = inf
d∗g=η
gN |∂A=0

‖g‖L∞(A : Ωk+1(RN )). (2.9)

Indeed, it is immediate to show the ≤ inequality. On the other hand, by Hahn–
Banach theorem, there exists a form g′ ∈ L∞(A; Ωk+1(RN )), with d∗g′ = d∗g = η

(in the distributional sense) such that

‖η‖∗ = supR
A

|dw|≤1

∫
A

g · dw dx = supR
A

|ψ|≤1

∫
A

g′ · ψ dx = ‖g′‖L∞(A;Ωk+1(RN )).

Fix now φ0 such that d∗φ0 = η. We can write g = φ0 + d∗ψ, so that (2.9) becomes

‖η‖∗ = min
ψ : (φ0+d∗ψ)·νA=0

‖φ0 + d∗ψ‖L∞(A). (2.10)

The Euler–Lagrange equation of (2.10) is a kind of generalization of the infinity
Laplacian equation

d∞(φ0 + d∗ψ) = 0.

Indeed when k = N − 2, by duality problem (2.10) becomes

min
ψ∈W 1,∞

0 (A)
‖∇ψ + φ0‖L∞(A), (2.11)

whose corresponding Euler–Lagrange equation is

〈(∇2ψ + ∇φ0)(∇ψ + φ0), (∇ψ + φ0)〉 = 0, (2.12)

which is a nonhomogeneous ∞-Laplacian equation.
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3. The Case k = N − 1

In this case, we recall that we are considering the gradient flow of the func-
tional (1.1), which is defined, for any u ∈ L1

loc(A; RN ), as follows:

D(u) = sup
{∫

A

−u∇v dx : v ∈ C∞
c (A), |v(x)| ≤ 1 ∀x ∈ A

}
. (3.1)

This is finite if and only if the distribution divu is a bounded Radon measure
in A. We now see it as a (convex, l.s.c., with values in [0,+∞]) functional over
the Hilbert space L2(A; RN ): it is then clear from (3.1) that it is the support
function of

K = {−∇v : v ∈ H1
0 (A; [−1, 1])}

and in particular p ∈ ∂D(u), the subgradient of D at u, if and only if p ∈ K and∫
A
p · u dx = D(u) =

∫
A
|divu|:

∂D(u) =
{
−∇v : v ∈ H1

0 (A; [−1, 1]),
∫
A

−∇v · u dx =
∫
A

|divu|
}
.

We can define, for u ∈ domD, the Radon–Nikodym density

θdivu(x) =
divu
|divu|(x) = lim

ρ→0

∫
B(x,ρ)

divu∫
B(x,ρ)

|divu| ,

which exists |divu|-a.e. (we consider that it is defined only when the limit exists
and is in {−1, 1}), and is such that divu = θdivu|divu|. We can also introduce the
Borel sets

E±
u = {x ∈ A : θdivu(x) = ±1}.

Then, we have the following lemma.

Lemma 3.1.

∂D(u) = {−∇v : v ∈ H1
0 (A; [−1, 1]), v = ±1 |divu|-a.e. on E±

u }.

Proof. Consider v ∈ H1
0 (A; [−1, 1]). Then we know [1] that it is the limit of smooth

functions vn ∈ C∞
c (A; [−1, 1]) with compact support which converge to v quasi-

everywhere (that is, up to a set of H1-capacity zero).
We recall that when u ∈ L2(A; RN ), the measure divu ∈ H−1(A) must vanish

on sets of H1-capacity 0 [1, §7.6.1]: it follows that vn → v |divu|-a.e. in A. Hence,
by Lebesgue’s convergence theorem,

−
∫
A

∇v(x)u(x) dx = lim
n→∞

∫
A

vn(x)θdivu(x)|div u|(x) =
∫
A

v(x)div u(x).

It easily follows that if v = ±1 |divu|-a.e. on E±
u ,−∇v ∈ ∂D(u), and conversely.
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We now define, provided u ∈ dom ∂D (i.e. ∂D(u) �= ∅),

∂0D(u) = argmin
{∫

A

|p|2 dx : p ∈ ∂D(u)
}

:

it corresponds to the element p = −∇v ∈ ∂D(u) of minimal L2-norm. Using
Lemma 3.1, equivalently, v is the function which minimizes

∫
A
|∇v|2 dx among all

v ∈ H1
0 (A) with v ≥ χE+

u
and v ≤ −χE−

u
, |divu|-a.e.: in particular, we deduce that

it is harmonic in A \ E+
u ∪ E−

u .
Let us now return to the flow (2.1). In this setting, it becomes{

ut = ∇v,
u(0) = u0,

(3.2)

where v satisfies |v| ≤ 1 and

D(u) +
∫
A

u · ∇v = 0.

It is well known, in fact, that the solution of (3.2) is unique and that −∇v(t) =
∂0D(u(t)) is the right-derivative of u(t) at any t ≥ 0 [8]. Given the solution
(u(t), v(t)) of (3.2), we let

w(t) :=
∫ t

0

v(s) ds,

which takes its values in [−t, t]. We have

u(t) = u0 + ∇w(t).

Theorem 3.1. Assume u0 ∈ L2(A; RN ). The function w(t) solves the following
obstacle problem

min
{

1
2

∫
A

|u0 + ∇w|2 dx :w ∈ H1
0 (A), |w| ≤ t a.e.

}
. (3.3)

Observe that in case we additionally have divu0 ≥ α > 0, this obstacle prob-
lem is well known for being an equivalent formulation of the Hele–Shaw problem,
see [11, 13].

Proof. Given u0 ∈ L2(A; RN ), we can recursively define un+1 ∈ L2(A; RN ) as the
unique solution of the minimum problem

min
u∈L2(A,RN )

Dε(u, un),

where

Dε(u, v) = D(u) +
∫
A

1
2ε

|u− v|2 dx.



February 23, 2012 17:38 WSPC/S1793-7442 251-CM 00046

On the Gradient Flow of a One-Homogeneous Functional 623

Then, there exists −∇vn+1 ∈ ∂D(un+1) such that

un+1 − un − ε∇vn+1 = 0. (3.4)

It follows that vn+1 ∈ H1
0 (A) minimizes the functional∫

A

|un + ε∇v|2 dx (3.5)

under the constraint v ∈ H1
0 (A), |v| ≤ 1. Indeed, for such a v,−∇v ∈ K and one has∫

A

|un + ε∇v|2 dx =
∫
A

|un+1 + ε∇(v − vn+1)|2 dx

=
∫
A

|un+1|2 dx+
∫
A

un+1(−∇vn+1) dx

−
∫
A

un+1(−∇v) dx+
∫
A

|ε∇(v − vn+1)|2 dx

≥
∫
A

|un+1|2 dx =
∫
A

|un + ε∇vn+1|2 dx

(and strictly larger if ∇v �= ∇vn+1), since
∫
A
un+1(−∇vn+1) dx = D(un+1) and∫

A
un+1(−∇v) dx ≤ D(un+1) whenever −∇v ∈ K. Equation (3.5) is the particular

form, for k = N − 1, of the dual problem (2.6).
Let now

wn := ε

n∑
i=1

vi.

Then from (3.4) we get

un = u0 + ∇wn, (3.6)

and wn minimizes the functional∫
A

|u0 + ∇w|2 dx (3.7)

under the constraint |w−wn−1| ≤ ε. Notice that |wn−wn−1| ≤ ε for all n implies

|wn| ≤ nε. (3.8)

We now show that wn minimizes (3.7) also under the weaker constraint (3.8).
Indeed, letting ŵn be for each n the minimizer of (3.7) under the constraint (3.8),
we can show for all n ≥ 1 that

ŵn−1 − ε ≤ ŵn ≤ ŵn−1 + ε. (3.9)

The left-hand side is shown by adding the energy of min{ŵn−1, ŵn + ε} (which
satisfies the constraint for ŵn−1) to the energy of max{ŵn−1 − ε, ŵn} (which sat-
isfies the same constraint as ŵn) and checking that this is the sum of the energies
of ŵn−1 and of ŵn: by uniqueness it follows that min{ŵn−1, ŵn + ε} = ŵn−1 and
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max{ŵn−1 − ε, ŵn} = ŵn; the proof of the right-hand side inequality in (3.9) is
identical (see also (3.12) for a similar statement). By induction, we get wn = ŵn
for all n ≥ 0.

By standard semigroup theory [8], we know that u(t) is the limit of un as
n → ∞, ε → 0 and nε → t, which yields the desired result. Observe however that
we have shown, here, that

(I + ε∂D)n(u0) = u(nε), (3.10)

for all n ≥ 1 and ε > 0, without even having to pass to the limit.

Remark 3.1. In other words, for any initial u0 ∈ L2(A; RN ), u(t) = u0 + ∇w(t)
is the unique minimizer of∫

A

|divu| + 1
2t
|u− u0|2 dx. (3.11)

We recall that obviously, such property does not hold for general semigroups gener-
ated by the gradient flow of a convex function. It is shown in [3] to be the case for
the Total Variation flow, in any dimension, when the initial function is the charac-
teristic of a convex set. It is also obviously true for the flow of the L1-norm. It is not
true, though, for the Total Variation flow starting from an arbitrary datum (such
as the characteristics of two touching squares, see, for instance, [2]). An interest-
ing question is whether the one-homogeneity of the convex function is a necessary
condition for this behavior.

3.1. Some properties of the solution

A first observation is that t �→ w(t) is continuous (in H1
0 (A), strong), as follows

both from the study of the varying problems (3.3) and from the fact that the flow
u(t) = u0 +∇w(t) is both continuous at zero and L2(A)-Lipschitz continuous away
from t = 0 (and up to t = 0 if u0 ∈ dom∂D).

In fact, one can check that w is also L∞-Lipschitz continuous in time: indeed,
it follows from the comparison principle that for any s ≤ t,

w(s) − t+ s ≤ w(t) ≤ w(s) + t− s (3.12)

a.e. in A, hence ‖w(t)−w(s)‖L∞(A) ≤ |t− s|. The comparison (3.12) is obtained by
adding the energy in (3.3) of min{w(t), w(s) + t − s} (which is admissible at time
t and hence should have an energy larger than the energy of w(t)) to the energy of
max{w(t)− t+ s, w(s)} (which is admissible at time s), and checking that this sum
is equal to the energy at time t plus the energy at time s. This is quite standard,
see [9, 15].

In particular, we can define for any t the sets

E+(t) = {w̃(t) = t} and E−(t) = {w̃(t) = −t}, (3.13)
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where w̃(t) is the precise representative of w(t) ∈ H1(A), defined quasi-
everywhere by

w̃(t, x) = lim
ρ→0

1
ωNρN

∫
B(x,ρ)

w(t, y)dy (3.14)

(ωN is the volume of the unit ball). It follows from (3.12) and (3.14) that if w̃(t, x) =
t, then for any s < t, x is also a point where w̃(s, x) is well defined, and its value
is s; similarly if w̃(t, x) = −t then w̃(s, x) = −s. Hence, the functions t �→ E+(t),
t �→ E−(t) are nonincreasing.

Also, if s < t, one has from (3.12)

1
ωNρN

∫
B(x,ρ)

w(s, y)dy − t+ s

≤ 1
ωNρN

∫
B(x,ρ)

w(t, y)dy ≤ 1
ωNρN

∫
B(x,ρ)

w(s, y)dy − s+ t

so that if x ∈ E+(s),

2s− t ≤ lim inf
ρ→0

1
ωNρN

∫
B(x,ρ)

w(t, y)dy ≤ lim sup
ρ→0

1
ωNρN

∫
B(x,ρ)

w(t, y)dy ≤ t

and sending s to t, we find that if x ∈ ⋂
s<t E

+(s), w̃(t, x) = t and x ∈ E+(t):
hence these sets (as well as E−(·)) are left-continuous.

We define

E+
r (t) =

⋃
s>t

E+(s) ⊆ E+(t) and E−
r (t) =

⋃
s>t

E−(s) ⊆ E−(t), (3.15)

as well as E(t) = E+(t) ∪ E−(t), Er(t) = E+
r (t) ∪ E−

r (t). Then, there holds the
following lemma.

Lemma 3.2. If s ≤ t, then

E−(t) ⊆ E−(s) and E+(t) ⊆ E+(s),

E−
r (t) ⊆ E−

r (s) and E+
r (t) ⊆ E+

r (s).

Moreover, for t > 0, v(t) = ±1 quasi-everywhere on E±
r (t) and E±

u(t) ⊆ E±
r (t), up

to a set |divu(t)|-negligible. In particular

divu(t) (E−
r (t))c ≥ 0, divu(t) (E+

r (t))c ≤ 0,

divu(t) (E+
r (t) ∪E−

r (t))c = 0.

Here, for a Radon measure µ and a Borel set E, µ E denotes the measure
defined by µ E(B) := µ(E ∩B).

Proof of Lemma 3.2. The first two assertions, as already observed, follow
from (3.12) and the definition of E±

r . We know that the solution of Eq. (3.2)
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satisfies ∂+
t u = −∂0D(u(t)) = ∇v(t) for any t > 0, but the right-derivative of

u = u0 + ∇w(t) is nothing else as limh→0 ∇[w(t + h) − w(t)]/h. We easily deduce
that v(t) = limh→0[w(t+ h)−w(t)]/h (which converges in H1

0 -strong). Since when
x ∈ E+

r (t), w̃(t, x) = t and w̃(t+ h, x) = t+ h for h small enough, we deduce that
v(x) = 1 on that set, in the same way v = 1 on E−

r (t).
Observe that the Euler–Lagrange equation for (3.3) is the variational inequality∫

A

(u0 + ∇w(t)) · (t∇v −∇w(t)) dx ≥ 0,

for any v ∈ H1
0 (A; [−1, 1]). In other words since u(t) = u0 + ∇w(t),

−
∫
A

u(t) · ∇w(t)
t

≥ −
∫
A

u(t) · ∇v

for any |v| ≤ 1, and we recover that −∇w(t)/t ∈ ∂D(u(t)).
Hence (using Lemma 3.1), E±

u(t) ⊆ E±(t). Now, if ṽ ∈ H1
0 (A; [−1, 1]) with ṽ = ±1

on E±
r , one deduces that for any s > t,

−
∫
A

∇ṽ · u(s) dx = D(u(s)).

Sending s→ t, it follows

−
∫
A

∇ṽ · u(t) dx ≥ D(u(t)),

hence ṽ ∈ ∂D(u(t)). We deduce that E±
u(t) ⊆ E±

r (t), invoking Lemma 3.1.

Remark 3.2. We might find situations where |v(t)| = 1 outside of the contact
set. For instance, assume the problem is radial, div u0 is positive in a crown and
negative in the center. Then one may have that E+ is a crown (w should be less
than t at the center) and E− is empty. In that case, v should be equal to one also
in the domain surrounded by the set E+.

We show now another simple comparison lemma.

Lemma 3.3. Let u0 and u′0 in L2(A; RN ) such that

divu′0 ≤ divu0

in H−1(A). Then for any t ≥ 0, w′(t) ≤ w(t), where w′(t) and w(t) are the solutions
of the contact problem (3.3), the first with u0 replaced with u′0.

Proof. Let t > 0, ε > 0, and wε be the minimizer of

min
|w|≤t

1
2

∫
A

|∇w|2 dx−
∫
A

w(div u′0 − ε)
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which of course is unique. We now show that wε ≤ w(t) a.e., and since wε → w′(t)
as ε→ 0 the thesis will follow.

We have by minimality∫
A

|∇w(t)|
2

2

dx−
∫
A

w(t)(div u0)

≤
∫
A

|∇(w(t) ∨ wε)|
2

2

dx−
∫
A

(w(t) ∨ wε)(divu0),

∫
A

|∇wε|
2

2

dx−
∫
A

wε(divu′0 − ε)

≤
∫
A

|∇(w(t) ∧ wε)|
2

2

dx−
∫
A

(w(t) ∧ wε)(divu′0 − ε),

where we denote w(t) ∨ wε := max{w(t), wε} and w(t) ∧ wε := min{w(t), wε}.
Summing both inequalities we obtain∫

A

(w(t) ∨ wε − w(t))div u0 ≤
∫
A

(wε − w(t) ∧ wε)(div u′0 − ε),

from which it follows ε
∫
A(wε − w(t))+dx ≤ 0, which is our claim.

Corollary 3.1. Under the assumptions of Lemma 3.3,

E−(t) ⊆ E′−(t) and E′+(t) ⊆ E+(t), (3.16)

and it follows that v′(t) ≤ v(t), for each t > 0.

Proof. Equation (3.16) follows at once from the inequality w′(t) ≤ w(t)
(Lemma 3.3). We deduce, of course, that also E−

r (t) ⊆ E′−
r (t), and E′+

r (t) ⊆ E+
r (t).

Consider the function v = v′(t) ∧ v(t) = min{v′(t), v(t)}. As it is ±1 on E′±
r (t),

it follows from Lemmas 3.2 and 3.1 that −∇v ∈ ∂D(u′(t)). In the same way,
v′ = v′(t) ∨ v(t) = max{v′(t), v(t)} is such that −∇v′ ∈ ∂D(u(t)). Since∫

A

|∇v|2 dx+
∫
A

|∇v′|2 dx =
∫
A

|∇v(t)|2 dx+
∫
A

|∇v′(t)|2 dx,

either
∫
A
|∇v|2 dx ≤ ∫

A
|∇v(t)|2 dx or

∫
A
|∇v′|2 dx ≤ ∫

A
|∇v′(t)|2 dx. By minimality

(as −∇v(t) = ∂0D(u(t))) it follows that v = v(t) and v′ = v′(t).

3.2. The support of the measure div u

Throughout this section we will assume that divu0 is a bounded Radon measure
on A.

Lemma 3.4. Let u0 ∈ L2(A; RN ) ∩ domD, δ > 0 and u = (I + δ∂D)−1(u0).
Then for a positive Radon measure µ ∈ H−1(A), the Radon–Nikodym derivatives
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of divu and divu0 with respect to µ satisfy (divu/µ)(x) ≤ (divu0/µ)(x) for µ-
a.e. x ∈ E+

u , and (divu/µ)(x) ≥ (divu0/µ)(x) for µ-a.e. x ∈ E−
u . In particular,

divu� divu0 and (divu)± ≤ (divu0)±.

Remark 3.3. It follows from the lemma that divu = θdivu0 (E+
u ∪ E−

u ) for some
weight θ(x) ∈ [0, 1]. We can build explicit examples where 0 < θ < 1 at some point.
Consider for instance, in dimension 1, A = (0, 1) and the function u0(x) = 0 if x <
1/3 and x > 2/3, and 2−3x if 1/3 < x < 2/3. Then, one shows that u(t) is given by

u(t, x) =




3t if x <
1
3
,

1 − 2
√

3t if
1
3
< x < a(t) :=

1
3

+
2t√
3
,

2 − 3x if a(t) < x < b(t) := 1 −
√

1 + 6t
3

,

√
1 + 6t− 1 if x > b(t)

until t = 1 − 2
√

2/3. We have divu(t) = u(t)x = (1 − 2
√

3t− 3t)δ1/3 − 3χ(a(t),b(t))

for such t :E+
u(t) = {1/3} stays constant for a while (and disappears suddenly right

after t = 1 − 2
√

2/3), while the density of the measure divu(t) goes down mono-
tonically until it reaches zero (notice that v(t) will jump right after 1 − 2

√
2/3),

while E−
u(t) = (α(t), β(t)) shrinks in a continuous way, and carries the constant

continuous part of the initial divergence (−3).

Proof of Lemma 3.4. We have u = u0 + δ∇v with −∇v ∈ ∂D(u). Let x ∈ E+
u .

Recall that the precise representative of v is defined by

ṽ(x) = lim
ρ→0

∫
B(x,ρ)

v(y) dy

ωNρN
,

where ωN = |B(0, 1)|, and that this limit exists quasi-everywhere in A. We assume
also that ṽ(x) = 1.

Then, for a.e. ρ > 0, one may write∫
B(x,ρ)

divu =
∫
∂B(x,ρ)

u · ν dH1

=
∫
∂B(x,ρ)

u0 · ν dH1 + δ

∫
∂B(x,ρ)

∇v · ν dH1

=
∫
B(x,ρ)

divu0 + δ

∫
∂B(x,ρ)

∇v · ν dH1. (3.17)

Now, let f(ρ) = (1/ρN−1)
∫
∂B(x,ρ) v dH1 (which is well defined for any ρ). Then,

since ṽ(x) = 1 and v ≤ 1 a.e.,

lim sup
ρ→0

f(ρ) = NωN .
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One can also show that for a.e. ρ > 0, f ′(ρ) = (1/ρN−1)
∫
∂B(x,ρ)

∇v · ν dH1, in fact
f is locally H1 in some small interval (0, ρ0).

Since v ≤ 1 a.e., f(ρ) ≤ NωN a.e., so that

lim inf
ε→0

∫ ρ

ε

1
rN−1

∫
∂B(x,r)

∇v · ν dH1 dr = lim inf
ε→0

∫ ρ

ε

f ′(r) dr

= lim inf
ε→0

f(ρ) − f(ε) ≤ 0

for any ρ. If follows that for any ρ small, the set I+
ρ = {r ∈ [0, ρ] :

∫
∂B(x,r) ∇v ·

ν dH1 ≤ 0} has positive Lebesgue measure, and for any r ∈ I+
ρ , we deduce

from (3.17) that
∫
B(x,r) divu ≤ ∫

B(x,r) divu0.
Now consider µ a positive Radon measure: µ-a.e., we know that the limits

divu
µ

(x) = lim
r→0

∫
B(x,r)

divu

µ(B(x, r))
and

divu0

µ
(x) = lim

r→0

∫
B(x,r)

divu0

µ(B(x, r))

exist. If moreover, as before, x ∈ E+
u and ṽ(x) = 1 (which holds µ-a.e., since

µ ∈ H−1(A)), we can find a subsequence rn such that
∫
B(x,rn)

divu ≤ ∫
B(x,rn)

divu0

for each n, and it follows (divu/µ)(x) ≤ (divu0/µ)(x).

The following corollaries follow.

Corollary 3.2. Let t > s ≥ 0; then (divu(t))± ≤ (div u(s))±. In particular, E±
u(t) ⊆

E±
u(s), |divu(s)|-a.e. in A.

Proof. Indeed, if t > s, then u(t) = (I + (t − s)∂D)−1(u(s)). We deduce that for
quasi-every x ∈ E+

u(t), 1 = θdivu(t)(x) ≤ (divu(s)/(divu(t))+)(x), and it follows
(divu(t))+ ≤ (divu(s)/(divu(t))+)(divu(t))+ ≤ (divu(s))+.

Corollary 3.3. We have that (divu(t))± ∗
⇀ (divu0)± as t → 0, weakly-∗ in the

sense of measures. Moreover, E±
u0

⊂ E±
r (0) (up to a |divu0|-negligible set), and

divu0 (E+
r (0)) ≥ 0, divu0 (E−

r (0)) ≤ 0.

Proof. We know that as t → 0, u(t) → u0 in L2(A; RN ), and thanks to the
boundedness of divu(t) it follows that divu(t) ∗

⇀ divu0 in the sense of measures.
Now consider a subsequence (tk) such that (divu(tk))+

∗
⇀ µ, (divu(tk))−

∗
⇀ ν.

Since µ− ν = divu0, it follows that µ ≥ (divu0)+ and ν ≥ (divu0)−. The reverse
inequalities follow from Lemma 3.4 and the first part of the thesis follows.

From the previous results we obtain that for each t, one can write

(divu(t))+ = θt(x)(div u0)+.

The function θt(x) = lim infρ→0(
∫
B(x,ρ) divu(t)+)/(

∫
B(x,ρ)(divu0)+) is well defined

on the set E+
u0

which supports the measure (div u0)+, and we find that θt(x) ≤ 1
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is nonincreasing in t. Hence there exists for all x ∈ E+
u0

the limit limt→0 θt(x) =
supt>0 θt(x), and this limit must be 1 (divu0)+-a.e., otherwise this would contradict
that (divu(t))+ ∗

⇀ (divu0)+. It follows that up to a (div u0)+-negligible set, E+
u0

⊆⋃
t>0{x ∈ E+

u0
: θt(x) > 0}.

Now, if x ∈ E+
u0

and θt(x) > 0, then x ∈ E+
u(t): indeed,∫

B(x,ρ)
divu(t)∫

B(x,ρ) |divu(t)| =
(divu(t))+(B(x, ρ)) − (div u(t))−(B(x, ρ))
(divu(t))+(B(x, ρ)) + (div u(t))−(B(x, ρ))

ρ→0→ 1,

since

(divu(t))−(B(x, ρ)) ≤ (divu−0 )(B(x, ρ))

= o((div u+
0 )(B(x, ρ))) ≤ o((div u(t))+(B(x, ρ)))

(the equality is because x ∈ E+
u0

, the last inequality because θt(x) > 0). It follows
that

E+
u0

⊆
⋃
t>0

E+
u(t)

and the conclusion follows from Lemma 3.2.

3.3. The regular case

Let us now assume that divu0 = g ∈ Lp(A), p > 1. The obstacle problem which is
solved by w(t) can be written

min
w∈H1

0 : |w|≤t
1
2

∫
A

|∇w(x)|2 dx−
∫
A

g(x)w(x) dx.

Standard results show that w(t) ∈W 2,p(A) (see [12, Theorem 9.9]). In particu-
lar, we have that in the Lp sense,

−∆w(t) = gχ{|w(t)|<t}

and, since u(t) = u0 + ∇w(t), we deduce that in this case

divu(t) = divu0χE(t) (3.18)

for any t > 0. In particular, formally, we deduce from (3.2) that

divu0

∂χE(t)

∂t
= ∆v(t) , (3.19)

and since ∆v(t) is the jump of the normal derivative of v(t) on ∂E±(t), we find
that these sets shrink with a normal speed |∇v(t)|/|divu0|.

This can be written rigorously in the sense of distributions: (E+, E−, v) are
such that v ∈ L1([0, T );H1

0 (A; [−1, 1])), v = ±1 on E± for a.e. t and x, and for any
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φ ∈ C∞
c ([0, T )×A),∫

A

divu0(x)φ(0, x) dx +
∫ T

0

∫
A

divu0(x)χE(t)(x)
∂φ

∂t
(x, t) dx dt

−
∫ T

0

∫
A

∇v(t, x) · ∇φ(t, x) dx dt = 0. (3.20)

We observe that the evolution equation (3.20) is reminiscent of the enthalpy for-
mulation of the one-phase Stefan problem [19].

We expect that with either the additional information that divu0 is a.e. non-
negative on E+ and nonpositive on E−, or that the maps E±(t) are nonincreasing,
then (3.20) characterizes the unique evolution (3.2). On the other hand, without
this additional assumption, then a time-reversed evolution will satisfy the same
weak equation, with u0 replaced with −u0. With both assumptions we can actually
show the following result.

Proposition 3.1. Let E+, E− be measurable subsets of A × [0, T ], and v ∈
L1([0, T );H1

0 (A)) with |v| ≤ 1 a.e., v = ±1 a.e. on E±, and satisfying (3.20).
Assume in addition that ±divu0 ≥ 0 a.e. on E±, and

E±(t) ⊆ E±(s) for a.e. t > s. (3.21)

Then u(t, x) := u0(x) + ∇ ∫ t
0
v(s, x) ds is the unique solution of (3.2).

Proof. Let w(t) =
∫ t
0
v(s) ds. Thanks to (3.21), we have that |w(t, x)| ≤ t for

a.e. x ∈ A, and w(t, x) = ±t for a.e. x ∈ E±(t), for all t. We can approach test
functions of the form χ[0,t]φ(x), φ ∈ H1

0 (A), with smooth functions and pass to the
limit to check that∫

A

divu0φdx −
∫
E(t)

divu0φdx =
∫
A

∇w(t) · ∇φdx,

for almost all t (up to a negligible set, which we can actually choose independently
of φ, as H1

0 (A) is separable).
If we choose φ− w(t, ·) as the test function in this equation, we find∫
A

divu0(x)φ(x) dx −
∫
A

divu0(x)w(x, t) dx −
∫
E(t)

divu0(x)(φ(x) − w(x, t)) dx

=
∫
A

∇w(t, x) · ∇φ(x) dx −
∫
A

|∇w(t, x)|2 dx

= −1
2

∫
A

|∇w(t, x) −∇φ(x)|2 dx+
1
2

∫
A

|∇φ(x)|2 dx− 1
2

∫
A

|∇w(t, x)|2 dx.

If |φ| ≤ t, we have that −divu0(x)(φ(x) − w(x, t)) ≥ 0 for a.e. x ∈ E(t), so that
w(t) is the minimizer of (3.3) and the thesis follows.

Remark 3.4. As mentioned above, it is a natural question whether assump-
tion (3.21) is necessary to prove this result. For instance, in case E+ and E− are
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closed sets in [0, T ) × A with E+(t) ∩ E−(t) = ∅ for any t > 0, and {divu0 = 0}
is a negligible set, then one can actually deduce (3.21) from (3.20). Indeed, using
localized test functions φ(x)χ[s,t], one shows first that v is harmonic in A \E(t) for
a.e. t, and then that

∫
E(s)

divu0φdx − ∫
E(t)

divu0φdx ≥ 0, and (3.21) follows.

Remark 3.5. When p > N/2, we can deduce some further properties of w from the
regularity theory for the obstacle problem [9]. Indeed, letting Ψ ∈ H1

0 (A)∩W 2,p(A)
such that −∆Ψ = g, we have that w̃ = w−Ψ ∈ H1

0 (A) solves the obstacle problem

min
−t−Ψ≤w̃≤t−Ψ

1
2

∫
A

|∇w̃(x)|2 dx.

Since p > N/2, we have w(t) ∈ Cα(A), with α = 2−N/p, so that E(t) = {|w(t)| =
t} is a closed set. In this case, v(t) can be defined as the harmonic function in
A\E(t) with Dirichlet boundary condition v(t) = 0 on ∂A and v(t) = ±1 on E±(t).
Moreover, it is easy to check that −∇v(t) ∈ ∂0D(u(t)), and v(t) is continuous out
of the singular points of ∂A ∪ ∂E(t).

Remark 3.6. If A = R
N one can easily show by a translation argument that

u0 ∈ H1(A; RN ) ⇒ u(t) ∈ H1(A; RN ) with same norm, so that the H1-norm of
u(t) is nonincreasing. In this case, E+

u(t) is a.e.-equivalent to the support of (divu)+

and since from the equation it follows u = u0 a.e. on E± (since v = ±1 a.e. on
E±, so that ∇v = 0 a.e., the problem being in general that this will not be true
quasi-everywhere), we deduce that div u = divu0 a.e. on E+ ∪ E− = spt(divu).

4. Examples

4.1. The antiplane case in dimension 2

Let N = 2 and k = 1. We have

J(ψ) = |rotψ|(A) = sup
{∫

A

∇⊥ · ψ : v ∈ C∞
c (A; [−1, 1])

}
,

where rotψ = ∂1ψ2 − ∂2ψ1 and ∇⊥ = (∂2,−∂1). Then, we check easily that in
L2(A; R2) the functional J is the support function of the closed convex set

K =
{∇⊥v : v ∈ H1

0 (A; [−1, 1])
}
.

As we mentioned in Sec. 1, this functional appears as limit of the Ginzburg–Landau
model in a suitable energy regime [20].

Letting ψ⊥ = (ψ2,−ψ1), we get J(ψ) =
∫
A |divψ⊥|, so that the flow can be

described as above.

Proposition 4.1. Let u0 ∈ L2(A; R2) with rotu0 = g ∈ Lp(A), p > 1. Then
for t > 0 there exist nonincreasing left-continuous closed (and disjoint) sets
E±(t) ⊂ {±g ≥ 0}, such that rotu(t) = rotu0(χE−(t)∪E+(t)). Moreover, letting
E± = ∪t≥0{t} × E±(t), there exists a function v(t, x) with v = ±1 a.e. on E±
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such that (E+, E−, v) are the unique closed sets and function solution of the weak
Hele–Shaw flow (3.20).

4.2. The one-dimensional Total Variation flow

Let now N = 1, k = 0: the previous analysis also provides interesting qualitative
information on the behavior of the flow of the Total Variation, in dimension 1.

We consider u0 ∈ L2((a, b)), a < b, and the flow u(t) of the total variation
J(u) := sup{∫ b

a
uv′ dt : v ∈ C∞

c (a, b; [−1, 1])}. Notice that in this situation, the
function w which minimizes (3.3), being in H1

0 (a, b), is also in C1/2([a, b]) with
w(a) = w(b) = 0. In particular, the sets E±(t) defined in (3.13) are closed, disjoint
sets compactly contained in (a, b).

We can state the following result.

Proposition 4.2. The function u(t) is the unique minimizer of

min
u
J(u) +

1
2t

∫ b

a

|u− u0|2 dx. (4.1)

Moreover there exist nonincreasing, disjoint closed sets E±(t) ⊂ (a, b) such that
u(t) = u0 a.e. on E±(t), u0 is nondecreasing on any interval contained in E+(t),
nonincreasing on any interval contained in E−(t), and u(t) is constant on each
connected component of (a, b)\(E+(t) ∪ E−(t)).

If u0 is smooth enough, one can also characterize the speed of the boundary
points of E±(t) in term of u0 and the size of the intervals of (a, b)\(E+(t)∪E−(t)).

Proof of Proposition 4.2. The first part of the thesis is a consequence of
Remark 3.1. Then, if u0 ∈ BV(a, b), the thesis is a consequence of Lemma 3.2.
Indeed, for a.e. x on E±(t), we have ∂xw(t, x) = 0 and u(t, x) = u0(x) +
∂xw(t, x) = u0(x). If I ⊂ E+(t) is an interval, since the measure Du(t) I must
be non-negative, u(t) is non-decreasing on I, but as u(t) = u0 a.e. on I it follows
that u0 is non-decreasing on I.

If u0 �∈ BV(a, b), we use the fact that for all ε > 0, u(ε) ∈ BV(a, b). Then
the proposition holds for t > ε, and we have u(t) = u(ε) a.e. on E±(t), u(ε) is
nondecreasing on any interval contained in E+(t), nonincreasing on any inter-
val contained in E−(t), and u(t) is constant on each connected component of
(a, b)\(E+(t) ∪ E−(t)). The sets do not depend on ε, as they are defined as the
contact sets in (3.3). Sending then ε→ 0 we deduce the result.

We can deduce the following, quite interesting result — see also [18, 7, 14] for
other results on the one-dimensional Total Variation flow and in particular [18,
Proposition 4] for a similar statement.

Corollary 4.1. Let u0 = ū0 + n where ū0 ∈ BV(a, b) and n is a stochastic process
(a, b) with n ∈ L2(a, b) a.s. and such that |Dn|(I) = +∞ for any interval I ⊂ (a, b),
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almost surely. Let u(t) be the total variation flow starting from u0. Then almost
surely, at t > 0, there is “staircasing ” everywhere in the interval (a, b) :u(t) is
constant on each connected component of an open set A(t) which is dense in (a, b).

Remark 4.1. The property that |Dn|(I) = +∞ for any interval I, almost surely,
is satisfied for instance by the Wiener process (as its quadratic variation is positive
a.s.). For a Gaussian stationary process, it will depend on the behavior of the auto-
correlation function and can be characterized by conditions on the power spectrum
of the process, see, for instance, [6] for (nonsharp) conditions.

Proof of Corollary 4.1. We let A(t) = (a, b)\(E+(t)∪E−(t)), and from the pre-
vious result we know that u(t) is constant on each connected component of A(t)
while u = u0 on (a, b)\A(t). Now assume there is an interval I with I ∩ A(t) = ∅:
without loss of generality we may assume that I ⊂ E+(t). Then u0 must be non-
decreasing on I, in particular there exists I ′ ⊂ I with |Du0|(I ′) < +∞. But this
yields that |Dn|(I ′) < +∞, which is a.s. impossible.
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