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1. Introduction

In this paper, we will investigate the status of the Steinhaus and Bergman properties
for infinite products of finite groups in various axiomatic frameworks. Our interest
in these properties is partially motivated by the automatic continuity problem for
Polish groups. More specifically, we will be interested in the question of which
infinite products G =

∏
Gn of nontrivial finite groups have the automatic continuity

property, i.e. have the property that every homomorphism ϕ : G → H from G

into a Polish group H is necessarily continuous. In set theory with the Axiom of
Choice, infinite products of finite groups typically fail to have this property; and,
in fact, no examples of infinite products of finite groups with this property are

1250002-1

http://dx.doi.org/10.1142/S1793744212500028


September 25, 2012 11:16 WSPC/S1793-7442 251-CM 1250002 2–26

S. Thomas & J. Zapletal

currently known. The basic example of a discontinuous homomorphism involves a
nonprincipal ultrafilter U over the set ω of natural numbers.

Example 1.1. Suppose that there exists a fixed nontrivial finite group F such that
Gn

∼= F for all n ∈ ω. Then the corresponding ultraproduct
∏

U Gn is isomorphic
to F and the associated homomorphism ϕ :

∏
Gn → F is not continuous, since

kerϕ is a dense subgroup and hence is not closed.

The automatic continuity property for some more interesting infinite products
of finite groups can be shown to fail for more complicated reasons.

Example 1.2. Let d ≥ 2 and suppose that Gn = SL(d, pn), where (pn |n ∈ ω) is
an increasing sequence of primes. If K =

∏
U Fpn is the corresponding ultraproduct

of the fields Fpn of order pn, then

∏
U

SL(d, pn) ∼= SL

(
d,
∏
U

Fpn

)
= SL(d,K)

and thus SL(d,K) is a homomorphic image of
∏

SL(d, pn). Since K is a field of
characteristic 0 and cardinality 2ℵ0 , it follows that K embeds into C and hence
SL(d,K) embeds into SL(d,C). (The fact that an ultraproduct of finite structures,
if infinite, actually has cardinality 2ℵ0 is due to Shelah [28].) Once again, it is clear
that the associated homomorphism ϕ :

∏
SL(d, pn) → SL(d,C) is not continuous.

Remark 1.3. In Sec. 3, we will present a more sophisticated construction involving
an embedding of K into the field of Puiseux series over the field Q of algebraic num-
bers, which yields a discontinuous homomorphism of

∏
SL(d, pn) into the infinite

symmetric group Sym(ω).

It is natural to ask whether the existence of a nonprincipal ultrafilter U over ω
is either necessary or sufficient in the above constructions of discontinuous homo-
morphisms. (The existence of a nonprincipal ultrafilter U is clearly sufficient in
Example 1.1. However, the construction in Example 1.2 also makes use of the exis-
tence of an embedding of the field K =

∏
U Fpn into C and the usual proofs of this

result rely on the existence of transcendence bases for both K and C.) Of course,
when considering this kind of question, we cannot work with the usual ZFC axioms
of set theory since these already imply the existence of nonprincipal ultrafilters over
arbitrary infinite sets. Instead we will work with the axiom system ZF+DC, where
DC is the following weak form of the Axiom of Choice.

Axiom of Dependent Choice. (DC) Suppose that X is a nonempty set and
that R is a binary relation on X such that for all x ∈ X , there exists y ∈ X with
x R y. Then there exists a function f : ω → X such that f(n) R f(n + 1) for all
n ∈ ω.

The axiom system ZF +DC is sufficient to develop most of real analysis and
descriptive set theory, but is insufficient to prove the existence of pathologies such
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as nonmeasurable sets. (For example, see Moschovakis [23].) In particular, since
nonprincipal ultrafilters over ω are nonmeasurable when regarded as subsets of the
Cantor space 2N, it follows that ZF + DC does not prove the existence of such
ultrafilters.

We will provide a structured answer to the above question. Firstly, the following
result is well known. (For example, see Rosendal [26, Sec. 2].)

Theorem 1.4. It is consistent with ZF +DC that if G,H are any Polish groups,
then every homomorphism ϕ : G→ H is continuous.

In fact, assuming the existence of suitable large cardinals, this is true in L(R),
the canonical minimal model of ZF which contains all of the ordinals and all of
the real numbers. Of course, this implies the well known result that L(R) does not
contain any nonprincipal ultrafilters over ω. While it seems almost certain that the
existence of a nonprincipal ultrafilter over ω is necessary to prove the failure of
the automatic continuity property for suitably chosen infinite products G =

∏
Gn

of finite groups, we have not completely settled this question. However, in Sec. 4,
we will prove a number of partial results in this direction, including the following
theorem.

Theorem 1.5. (ZF +DC) Suppose that d ≥ 2 and that (pn |n ∈ ω) is an
increasing sequence of primes. If there exists a discontinuous homomorphism ϕ :∏

SL(d, pn) → Sym(ω), then there exists a nonprincipal ultrafilter over ω.

On the other hand, we will show that the existence of a nonprincipal ultrafilter
over ω is not sufficient to prove the failure of the automatic continuity property for
suitably chosen infinite products of finite groups. In order to explain this result, it
will be necessary in the remainder of this section to assume the existence of suitable
large cardinals. We will not specify the precise large cardinal hypothesis that we
need until it becomes necessary to do so in Sec. 7. (This paper has been written
so that the first six sections can be read by mathematicians with no knowledge
of advanced set theory, such as forcing, large cardinals, etc. It is only in the final
section that some knowledge of advanced set theory is needed and this section can
be omitted by mathematicians without the necessary background.) Following the
usual convention [35], we will indicate the use of a large cardinal hypothesis by
writing (LC) before the statement of the relevant theorem. The following result is
a special case of a more general result that we will present in Sec. 5.

Theorem 1.6. (LC) It is consistent with ZF +DC that

(i) there exists a nonprincipal ultrafilter U over ω; and
(ii) for each d ≥ 2, if (pn |n ∈ ω) is a sufficiently fast growing sequence of primes,

then
∏

SL(d, pn) has the automatic continuity property.

In fact, assuming the existence of suitable large cardinals, this is true in L(R)[U ],
the minimal model of ZF containing all of the ordinals and real numbers, together

1250002-3



September 25, 2012 11:16 WSPC/S1793-7442 251-CM 1250002 4–26

S. Thomas & J. Zapletal

with a Ramsey ultrafilter U over ω. Under a suitable large cardinal hypothesis,
L(R)[U ] has canonicity features parallel to those of L(R); and, in particular, its
theory does not depend on the choice of the Ramsey ultrafilter U . Di Prisco–
Todorcevic [7] have shown that many of the regularity properties of L(R) continue
to hold in L(R)[U ]. For example, in L(R)[U ], every uncountable set of reals has
a perfect subset. Thus it seems natural to regard L(R)[U ] as a canonical model
of ZF + DC in which a minimal number of the pathological consequences of the
Axiom of Choice holds, modulo the existence of a nonprincipal ultrafilter U over ω.
The results of this paper provide yet more evidence for this point of view.

Up until this point, we have considered two examples of infinite products of finite
groups; namely, infinite products of a fixed finite group F and infinite products of
the form

∏
SL(d, pn) for various increasing sequences (pn |n ∈ ω) of primes. In

the first example, we have seen that the existence of a nonprincipal ultrafilter U
over ω is sufficient to prove the failure of the automatic continuity property; while
in the second example, this is not sufficient. Now we should also consider a third
example; namely, the infinite product

∏
Alt(n) of the finite alternating groups. In

this case, as we will explain in Sec. 6, it is natural to conjecture that the automatic
continuity property does hold. So what is the essential difference between these
three examples? Perhaps surprisingly, the key to our analysis of the infinite product∏
Gn of finite groups turns out to be the “asymptotic representation theory” of

the sequence (Gn |n ∈ ω). In order to state this more precisely, it is necessary to
introduce the following definitions.

Definition 1.7. Let H be a nontrivial finite group.

(i) If K is a field, then dK(H) denotes the minimal dimension of a nontrivial
K-representation of H ; i.e. the least d such that there exists a nontrivial homo-
morphism θ : H → GL(d,K).

(ii) d(H) = min{dK(H) |K is a field}.

Example 1.8. Suppose that p ≥ 5 is a prime and that H = SL(d, p).

(i) If d = 2, then dC(H) = (p− 1)/2 and d(H) = 2.
(ii) If d > 2, then dC(H) = (pd − p)/(p− 1) and d(H) = d.

(For example, see Humphreys [12] and Tiep–Zalesskii [32].)

Example 1.9. If n > 8 and H = Alt(n), then dC(H) = n− 1 and d(H) = n − 2.
(For example, see James [14] and Wagner [33, 34].)

Suppose that (Gn |n ∈ ω) is an arbitary sequence of nontrivial finite groups.
Then we will prove that:

(a) if lim inf d(Gn) <∞, then
∏
Gn does not have the automatic continuity prop-

erty in the actual set-theoretic universe V .
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It seems reasonable to conjecture that the converse of (a) also holds, perhaps after
imposing some suitable algebraic conditions (such as simplicity) on the groups Gn.
In particular, it seems likely that

∏
Alt(n) has the automatic continuity property

in V . Now suppose that lim inf d(Gn) <∞. Then we will prove that:

(b) if lim inf dC(Gn) <∞, then the existence of a nonprincipal ultrafilter U over ω
is enough to prove that

∏
Gn does not have the automatic continuity property.

On the other hand, if the groups Gn are members of a suitably chosen class C, such
as the class of groups of the form SL(d, p) for some fixed d ≥ 2, then we will prove
that:

(c) assuming (LC), if (dC(Gn) |n ∈ ω) grows sufficiently fast, then
∏
Gn has the

automatic continuity property in L(R)[U ].

This paper is organized as follows. In Sec. 2, we will discuss the Steinhaus and
Bergman properties for infinite products of finite groups. In Sec. 3, working with
the usual ZFC axioms of set theory, we will prove that the Steinhaus and Bergman
properties fail for various infinite products of finite groups. In Sec. 4, working with
the axiom system ZF +DC, we will prove that the failure of the Bergman property
for suitably chosen infinite products of finite groups implies the existence of a
nonprincipal ultrafilter over ω; and we will show that the failure of a weak form of
the Steinhaus property also implies the existence of such an ultrafilter. In Sec. 5, we
will present a partition property PP for products of finite sets with measures; and
we will show that ZF + DC + PP implies that various infinite products of finite
groups have both the Bergman property and the Steinhaus property. In Sec. 6,
we will briefly discuss the questions of which infinite products of nonabelian finite
simple groups have either the Bergman property or the Steinhaus property in the
actual set-theoretic universe V . Finally, in Sec. 7, assuming the existence of suitable
large cardinals, we will prove that L(R)[U ] satisfies PP .

Notation 1.10. Let (Hn |n ∈ ω) be a sequence of finite groups and let H =
∏
Hn.

Suppose that A ⊆ ω.

(i)
∏

n∈AHn denotes the subgroup of H consisting of those elements (hn) ∈ H

such that hn = 1 for all n ∈ ω�A.
(ii) If h = (hn) ∈ H , then h � A denotes the element (gn) ∈ ∏n∈AHn such that

gn = hn for all n ∈ A.

Recall that H =
∏
Hn is a Polish topological group with neighborhood basis of the

identity given by {∏n∈AHn |A is a cofinal subset of ω}.

Suppose that U is a subset of the group G. Then for each t ≥ 1, U t denotes the
set of elements g ∈ G which can be expressed as a product g = u1 · · ·ut, where each
ui ∈ U . The subset U is said to be symmetric if U = U−1 is closed under taking
inverses.
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2. The Steinhaus and Bergman Properties

In this section, we will discuss the Steinhaus and Bergman properties for infinite
products of finite groups. The Steinhaus property was introduced by Rosendal–
Solecki [25] in the context of the automatic continuity problem for homomorphisms
between topological groups. In the following definition, a subset W of a group G

is said to be countably syndetic if there exist elements gn ∈ G for n ∈ ω such that
G =

⋃
n∈ω gnW .

Definition 2.1. Let G be a topological group. Then G has the Steinhaus property if
there exists a fixed integer k ≥ 1 such that for every symmetric countably syndetic
subset W ⊆ G, the k-fold product W k contains an open neighborhood of the
identity element 1G.

Proposition 2.2. (Rosendal–Solecki [25]) If G is a topological group with the
Steinhaus property and ϕ : G → H is a homomorphism into a separable group
H, then ϕ is necessarily continuous.

The class of groups with the Steinhaus property includes Polish groups with
ample generics [16], Aut(Q, <), Homeo(R) [25] and full groups of ergodic countable
Borel equivalence relations [17]. However, no infinite product of finite groups is
currently known to have the Steinhaus property. Of course, by Example 1.2 and
Proposition 2.2, it follows that if (pn |n ∈ ω) is an increasing sequence of primes
and d ≥ 2, then

∏
SL(d, pn) does not have the Steinhaus property. We will prove

the following more general result in Sec. 3.

Theorem 2.3. Suppose that (Gn |n ∈ ω) is a sequence of nontrivial finite groups.
If lim inf d(Gn) < ∞, then

∏
Gn does not have the automatic continuity property

and hence does not have the Steinhaus property.

As the reader has probably guessed, the proof of Theorem 2.3 involves the use
of a suitable ultraproduct

∏
U Gn. However, the following strengthening of Theo-

rem 1.6, which we will prove in Sec. 5, shows that the existence of a nonprincipal
ultrafilter over ω is not always enough to prove that such a product

∏
Gn does not

have the Steinhaus property.

Theorem 2.4. (LC) It is consistent with ZF +DC that

(i) there exists a nonprincipal ultrafilter U over ω; and
(ii) for each d ≥ 2, if (pn |n ∈ ω) is a sufficiently fast growing sequence of primes,

then
∏

SL(d, pn) has the Steinhaus property.

Once again, assuming the existence of suitable large cardinals, this is true in
L(R)[U ], the minimal model of ZF containing all of the ordinals and real numbers,
together with a Ramsey ultrafilter U over ω.
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The Bergman property was introduced by Bergman [2] as a strengthening of
the notion of uncountable cofinality which was introduced earlier by Macpherson–
Neumann [21].

Definition 2.5. Suppose that G is a non-finitely generated group.

(a) G has countable cofinality if G =
⋃

n∈ω Gn can be expressed as the union of a
countable increasing chain of proper subgroups. Otherwise, G has uncountable
cofinality.

(b) G is Cayley bounded if for every symmetric generating set S, there exists an
integer n ≥ 1 such that every element g ∈ G can be expressed as a product
g = s1 · · · sn, where each si ∈ S ∪ {1}.

(c) G has the Bergman property if G has uncountable cofinality and is Cayley
bounded.

By de Cornulier [6], a group G has the Bergman property if and only if whenever
G acts isometrically on a metric space, every G-orbit has a finite diameter. For this
reason, groups with the Bergman property are often said to be “strongly bounded”.
The class of groups with the Bergman property includes the symmetric groups
over infinite sets [2], automorphism groups of various infinite structures [9, 13] and
oligomorphic groups with ample generics [16]. The following easy observation is
essentially contained in Bergman [2, Lemma 10].

Lemma 2.6. If G is a non-finitely generated group, then the following conditions
are equivalent.

(a) G has the Bergman property.
(b) If G =

⋃
n∈ω Un is the union of an increasing chain of symmetric subsets such

that UnUn ⊆ Un+1 for all n ∈ ω, then there exists an n ∈ ω such that Un = G.

In [6], improving an earlier result of Koppelberg–Tits [18], de Cornulier proved
that if G is a product of infinitely many copies of a fixed finite perfect group,
then G has the Bergman property; and Zalan Gyenis has recently checked that the
arguments of Saxl–Shelah–Thomas [27] can be modified to prove that an infinite
product

∏
Hn of finite simple groups has the Bergman property if and only if∏

Hn has uncountable cofinality. This yields an explicit classification of the infinite
products

∏
Hn of finite simple groups satisfying the Bergman property, which we

will discuss in Sec. 6. On the other hand, there are many infinite products of finite
groups which are known not to have the Bergman property. In particular, the
following result holds.

Theorem 2.7. If d ≥ 2 and (pn |n ∈ ω) is an increasing sequence of primes, then:

(a)
∏

SL(d, pn) has countable cofinality; and
(b)

∏
SL(d, pn) is not Cayley bounded.
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Theorem 2.7(a) is essentially contained in Saxl–Shelah–Thomas [27]. However,
for the sake of completeness, we will quickly sketch the very easy proof. (We will
present the proof of Theorem 2.7(b) in Sec. 3.) Let U be a nonprincipal ultrafilter
over ω and let K =

∏
U Fpn be the corresponding ultraproduct of the fields Fpn of

order pn. Then K is an uncountable field and

∏
U

SL(d, pn) ∼= SL

(
d,
∏
U

Fpn

)
= SL(d,K).

It follows that SL(d,K) is a homomorphic image of
∏

SL(d, pn) and hence Theo-
rem 2.7(a) is an immediate consequence of the following observation.

Proposition 2.8. If F is an uncountable field, then SL(d, F ) has countable
cofinality.

Proof. Let B be a transcendence basis of F over its prime subfield. Then B is
uncountable and hence we can express B =

⋃
n∈ω Bn as the union of a countable

strictly increasing chain of proper subsets. For each n ∈ ω, let Fn be the algebraic
closure of Bn in F . Then the strictly increasing chain of proper subgroups

SL(d, F ) =
⋃
n∈ω

SL(d, Fn)

witnesses that SL(d, F ) has countable cofinality.

The following result, which will be proved in Sec. 4, shows that the existence of
a nonprincipal ultrafilter over ω is necessary in order to prove either Theorem 2.7(a)
or Theorem 2.7(b).

Theorem 2.9. (ZF +DC) Let d ≥ 2 and let (pn |n ∈ ω) be an increasing sequence
of primes. If

∏
SL(d, pn) does not have the Bergman property, then there exists a

nonprincipal ultrafilter over ω.

On the other hand, we will also show that the existence of a nonprincipal ultra-
filter over ω is not sufficient to prove either of the parts of Theorem 2.7.

Theorem 2.10. (LC) If d ≥ 2 and (pn |n ∈ ω) is a sufficiently fast growing
sequence of primes, then

∏
SL(d, pn) has the Bergman property in L(R)[U ].

Examining the above proof of Theorem 2.7(a), we see that it relies upon the
following three consequences of the Axiom of Choice:

(i) the existence of a nonprincipal ultrafilter U over ω;
(ii) the existence of a transcendence basis B of the field

∏
U Fpn ; and

(iii) the existence of an expression of B as the union of a countable strictly increas-
ing chain of proper subsets.
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Clearly L(R)[U ] satisfies (i); and since DC implies that every infinite set has a
denumerably infinite subset, it follows easily that every infinite set can be expressed
as the union of a countable strictly increasing chain of proper subsets in L(R)[U ].
Consequently, assuming LC, if (pn |n ∈ ω) is a sufficiently fast growing sequence
of primes, then (ii) must fail in L(R)[U ].

Corollary 2.11. (LC) If (pn |n ∈ ω) is a sufficiently fast growing sequence of
primes, then the field

∏
U Fpn does not have a transcendence basis in L(R)[U ].

3. On the Failure of the Bergman and Steinhaus Properties

In this section, we will first show that if (pn |n ∈ ω) is an increasing sequence of
primes and d ≥ 2, then:

• There exists a discontinuous homomorphism of
∏

SL(d, pn) into Sym(ω).
• ∏SL(d, pn) is not Cayley bounded.

Then we will prove that if (Gn |n ∈ ω) is a sequence of nontrivial finite groups
such that lim inf d(Gn) < ∞, then

∏
Gn does not have the automatic continuity

property and hence does not have the Steinhaus property.
Once again, let U be a nonprincipal ultrafilter over ω and let K =

∏
U Fpn be

the corresponding ultraproduct of the fields Fpn of order pn. Our arguments depend
upon the existence of a suitable valuation υ : K → Q ∪ {∞}.

Definition 3.1. Let F be a field and let t be an indeterminate over F . Then F ((t))
denotes the corresponding field of formal power series; and

P(F ) =
⋃
n≥1

F ((t1/n))

denotes the corresponding field of Puiseux series. Let υF : P(F ) → Q ∪ {∞} be
the valuation such that if

0 �= a =
∞∑

k≥M

akt
k/n ∈ P(F ),

where ak ∈ F , aM �= 0, k, M ∈ Z and n ≥ 1, then υF (a) = M/n. (As usual, we set
υF (0) = ∞.)

It is well known that if F is an algebraically closed field of characteristic 0,
then P(F ) is algebraically closed. (For example, see Chevalley [4].) In particular,
if Q is the field of algebraic numbers, then P(Q) is an algebraically closed field
of cardinality 2ℵ0 . Hence, since K =

∏
U Fpn is a field of characteristic 0 and

cardinality 2ℵ0 , we can assume that K is a subfield of P(Q). Furthermore, since
K is uncountable and the automorphism group of P(Q) acts transitively on non-
algebraic elements, we can assume that t ∈ K. From now on, we let υ = υ

Q
� K

denote the corresponding valuation of K and let R = {a ∈ K | υ(a) ≥ 0} be the
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corresponding valuation ring. We will make use of the following result, which was
proved in Thomas [31, Sec. 2].

Theorem 3.2. [SL(d,K) : SL(d,R)] = ω.

Corollary 3.3. There exists a discontinuous homomorphism of
∏

SL(d, pn) into
Sym(ω).

Proof. Let π :
∏

SL(d, pn) → SL(d,K) be the canonical surjective homomor-
phism and let H = π−1(SL(d,R)). Then [

∏
SL(d, pn) : H ] = ω and the action of∏

SL(d, pn) on the cosets of H induces a homomorphism

ϕ :
∏

SL(d, pn) → Sym(ω)

such that ϕ(H) is the stabilizer of 0 in ϕ(
∏

SL(d, pn)). If S is the stabilizer of 0
in Sym(ω), then S is an open subgroup of Sym(ω) and ϕ−1(S) = H . Since H is
clearly not an open subgroup of

∏
SL(d, pn), it follows that ϕ is not continuous.

Next we will prove that
∏

SL(d, pn) is not Cayley bounded. By the following
easy observation, it is enough to show that SL(d,K) is not Cayley bounded.

Lemma 3.4. Suppose that G is a group and that N � G is a normal subgroup. If
G is Cayley bounded, then H = G/N is also Cayley bounded.

Proof. Suppose that the symmetric generating set S ⊆ H witnesses that H is not
Cayley bounded. Let π : G → H be the canonical surjective homomorphism and
let T = π−1(S). Then T witnesses that G is not Cayley bounded.

From now on, in order to simplify notation, we will assume that d = 2. Recall
that after identifying K with its image under a suitable embedding into the field
P(Q) of Puiseux series in the indeterminate t, we have that t ∈ K. Also note that
υ(t) = 1 and that υ(t−1) = −1. For each k ∈ K∗ = K � {0}, let

x(k) =

(
1 k

0 1

)
y(k) =

(
1 0

k 1

)
d(k) =

(
k 0

0 k−1

)
.

Then it is well known that T = {x(k) | k ∈ K∗}∪ {y(k) | k ∈ K∗} generates
SL(2,K). (For example, see Lang [19, Lemma XIII.8.1].) Let

U = {d(t), d(t−1)} ∪ {x(k) | 0 ≤ υ(k) ≤ 2} ∪ {y(k) | 0 ≤ υ(k) ≤ 2}.
Since υ(−k) = υ(k) for all k ∈ K, it follows that U is a symmetric subset of
SL(2,K). We claim that U generates SL(2,K). To see this, note that

d(t)x(k)d(t)−1 = x(t2k), d(t)−1x(k)d(t) = x(t−2k)

and that

υ(t2k) = υ(t2) + υ(k) = υ(k) + 2, υ(t−2k) = υ(t−2) + υ(k) = υ(k) − 2.
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Hence if k ∈ K∗, then there exists m ∈ Z such that d(t)mx(k)d(t)−m ∈ U ; and
similarly, there exists m ∈ Z such that d(t)my(k)d(t)−m ∈ U . It follows that T ⊆
〈U〉 and hence 〈U〉 = SL(2,K). Next for each matrix

A =

(
a1 a2

a3 a4

)
∈ SL(2,K),

we define

τ(A) = min{υ(ai) | 1 ≤ i ≤ 4}.
Notice that since(

a1 a2

a3 a4

)(
b1 b2

b3 b4

)
=

(
a1b1 + a2b3 a1b2 + a2b4

a3b1 + a4b3 a3b2 + a4b4

)

and since, for example,

υ(a1b1 + a2b3) ≥ min{υ(a1b1), υ(a2b3)}
= min{υ(a1) + υ(b1), υ(a2) + υ(b3)},

it follows that τ(AB) ≥ τ(A) + τ(B) for all A, B ∈ SL(2,K). Finally recall that
for each m ∈ N, we have that υ(t−m) = −m and so τ(d(tm)) = −m. It now follows
easily that for each n ∈ N, there exists m ∈ N such that d(tm) is not a product of
n elements of U ∪ {1}. Thus SL(2,K) is not Cayley bounded and it follows that∏

SL(2, pn) is also not Cayley bounded.
The remainder of this section is devoted to the proof of Theorem 2.3. Suppose

that (Gn |n ∈ ω) is a sequence of nontrivial finite groups with lim inf d(Gn) < ∞.
Then there exists an infinite subset I ⊆ ω and a fixed d ≥ 1 such that for each
n ∈ I there exists a nontrivial homomorphism

ϕn : Gn → GL(d, Fn)

for some field Fn. In order to simplify notation, we will assume that I = ω. Let U
be a nonprincipal ultrafilter over ω and let

ϕ :
∏
U
Gn →

∏
U

GL(d, Fn)

be the homomorphism defined by (gn)U �→ (ϕn(gn))U . Let F =
∏

U Fn and H =
ϕ(
∏

U Gn). By Thomas [31, Theorem 2.1], since F is a field of cardinality at most
2ℵ0 and

1 �= H ≤
∏
U

GL(d, Fn) ∼= GL(d, F ),

it follows that there exists a proper subgroup H0 < H such that 1 < [H : H0] ≤ ω.
(As with our earlier arguments, the proof of Thomas [31, Theorem 2.1] involves
defining a suitable valuation on F .) Let L = ϕ−1(H0). Then L is a proper subgroup
of
∏

U Gn of countable (possibly finite) index. Let π :
∏
Gn → ∏

U Gn be the
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canonical surjective homomorphism and let M = π−1(L). Then M is a proper
subgroup of

∏
U Gn of countable (possibly finite) index. IfM has infinite index, then

arguing as in the proof of Corollary 3.3, it follows that there exists a discontinuous
homomorphism of

∏
Gn into Sym(ω). Hence we can assume that [

∏
Gn : M ] =

� > 1 is finite. Since U is nonprincipal, it follows that if P is any open subgroup
of
∏
Gn, then π(P ) =

∏
U Gn. In particular, M is not an open subgroup and

hence there exists a discontinuous homomorphism from
∏
Gn into the finite group

Sym(�). This completes the proof of Theorem 2.3.

4. On the Existence of Nonprincipal Ultrafilters

In this section, working with the axiom system ZF + DC, we will prove that the
failure of the Bergman property for suitably chosen infinite products

∏
Hn of finite

groups implies the existence of a nonprincipal ultrafilter over ω. It is currently not
known whether failures of the Steinhaus property also imply the existence of a
nonprincipal ultrafilter over ω. However, we will show that failures of a weak form
of the Steinhaus property do indeed imply the existence of such an ultrafilter.

Theorem 4.1. (ZF +DC) Let (Hn |n ∈ ω) be a sequence of nontrivial finite
groups which satisfies the following condition:

(†) There is a fixed integer t ≥ 1 such that for all n ∈ ω, there is a conjugacy class
Cn ⊆ Hn such that Ct

n = Hn.

If
∏
Hn does not have the Bergman property, then there exists a nonprincipal

ultrafilter over ω.

Proof. Suppose that G =
∏
Hn does not have the Bergman property. Then we

can express G =
⋃

k∈ω Uk as the union of a strictly increasing chain of symmetric
proper subsets such that UkUk ⊆ Uk+1 for all k ∈ ω. Consider

I =

{
A ⊆ ω

∣∣∣∣ ∏
n∈A

Hn ⊆ Uk for some k ∈ ω

}
.

Then clearly I is an ideal which contains all the finite subsets of ω. Hence it is
enough to prove that there exists a set B /∈ I such that I ∩ P(B) is a prime ideal
over B.

Suppose that no such set B exists. Then for each A /∈ I, there exists A′ ⊆ A such
that A′ /∈ I and A�A′ /∈ I; and hence we can inductively find pairwise disjoint
subsets {Ak | k ∈ ω} of ω such that Ak /∈ I and ω�

⋃
�≤k A� /∈ I for all k ∈ ω.

Claim 4.2. There exists k ∈ ω such that for every h ∈ ∏n∈Ak
Hn, there exists

g ∈ Uk such that g � Ak = h.

Proof of Claim 4.2. If not, then there exists h ∈ G such that for all k ∈ ω and
g ∈ Uk, we have that g � Ak �= h � Ak. But this means that h /∈ ⋃k∈ω Uk, which is
a contradiction.
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Fix some such k ∈ ω. For each n ∈ Ak, let Cn be the conjugacy class of Hn

given by condition (†) and let h = (hn) ∈ ∏n∈Ak
Hn be such that hn ∈ Cn for all

n ∈ Ak. Let h ∈ U� and let m = max{k, �}. Then it follows that the conjugacy class
C of h in

∏
n∈Ak

Hn is contained in U 3
m; and hence

∏
n∈Ak

Hn is contained in U 3t
m .

But this means that
∏

n∈Ak
Hn ⊆ Us for some s ≥ m, which contradicts the fact

that Ak /∈ I. This completes the proof of Theorem 4.1.

Clearly Theorem 2.9 is an immediate consequence of Theorem 4.1, together with
the following result.

Proposition 4.3. (Ellers–Gordeev–Herzog [10]) Suppose that K is any field such
that |K| > 5 and that C is any noncentral conjugacy class of SL(d,K).

(i) If d = 2, then C8 = SL(2,K).
(ii) If d > 2, then C2d = SL(d,K).

In the remainder of this section, we will consider the following weak form of the
Steinhaus property.

Definition 4.4. The Polish group G is said to have the weak Steinhaus property
if for every symmetric countably syndetic subset W ⊆ G, there exists an integer
k ≥ 1 such that W k contains an open neighborhood of the identity element 1G.

For example, if the Polish group G has a non-open subgroup of countable index,
then clearly G does not have the weak Steinhaus property. In particular, if we work
with ZFC, then the results of Sec. 3 show that

∏
SL(d, pn) does not have the weak

Steinhaus property. The rest of this section is devoted to the proof of the following
result.

Theorem 4.5. (ZF +DC) Suppose that d ≥ 2 and that (pn |n ∈ ω) is an increas-
ing sequence of primes. If

∏
SL(d, pn) does not have the weak Steinhaus property,

then there exists a nonprincipal ultrafilter over ω.

Notice that Theorem 1.5 is an easy consequence of Theorem 4.5. For assume that
ϕ :
∏

SL(d, pn) → Sym(ω) is a discontinuous homomorphism. Then there exists an
open subgroup U ≤ Sym(ω) such that ϕ−1(U) is not open in

∏
SL(d, pn). Since

U has countable index in Sym(ω), it follows that ϕ−1(U) is a non-open subgroup
of countable index in

∏
SL(d, pn) and hence

∏
SL(d, pn) does not have the weak

Steinhaus property.
Most of our effort will go into proving the following special case of Theorem 4.5.

Theorem 4.6. (ZF +DC) Suppose that d ≥ 2 and that (pn |n ∈ ω) is an increas-
ing sequence of primes. If there exists a subgroup H <

∏
SL(d, pn) such that

[
∏

SL(d, pn) : H ] = ω, then there exists a nonprincipal ultrafilter over ω.

The proof of Theorem 4.6 makes use of some of the basic properties of primitive
permutation groups. Recall that if Ω is any nonempty set and G ≤ Sym(Ω), then
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G is said to act primitively on Ω if:

(i) G acts transitively on Ω; and
(ii) there does not exist a nontrivial G-invariant equivalence relation on Ω.

It is well known that ifG ≤ Sym(Ω) is a transitive subgroup, thenG acts primitively
on Ω if and only if the stabilizer Gα = {g ∈ G | g(α) = α} is a maximal subgroup
of G for some (equivalently every) α ∈ Ω. Also if G acts primitively on Ω and
1 �= N � G is a nontrivial normal subgroup, then it follows that N must act
transitively on Ω. (For example, see Cameron [3, Theorem 1.7].)

The proof of Theorem 4.6 also makes use of the following easy consequence of
Proposition 4.3.

Lemma 4.7. (ZF +DC) Suppose that d ≥ 2 and that (pn |n ∈ ω) is an increas-
ing sequence of primes. Then every normal subgroup N of countable index in∏

SL(d, pn) is open.

Proof. Let G =
∏

SL(d, pn) and let F = {gτ = (gτ (n)) | τ ∈ 2N} ⊆ G be a family
such that for each τ �= σ ∈ 2N, there exists an integer nτ,σ ≥ 0 such that

• gτ (n) = gσ(n) for all n < nτ,σ; and
• gτ (n)−1gσ(n) is a noncentral element of SL(d, pn) for all n ≥ nτ,σ.

Since [G : N ] ≤ ω, there exist τ �= σ ∈ 2N such that gτN = gσN and hence
g = g−1

τ gσ ∈ N . Since N is a normal subgroup, the conjugacy class C = gG is
contained in N . Applying Proposition 4.3, it follows easily that N contains the
open subgroup

∏
n≥nτ,σ

SL(d, pn) and hence N is open.

Proof of Theorem 4.6. Let G =
∏

SL(d, pn) and let {Pj | j ∈ J} be the set of
open subgroups of G such that H ≤ Pj . Since H ≤ ⋂j∈J Pj and the intersection of
infinitely many open subgroups of G has index 2ω, it follows that J is finite. Let

G′ =
∏

n≥n0

SL(d, pn) ≤
⋂
j∈J

Pj .

Then after replacing G by G′ and H by its projection H ′ into G′ if necessary, we
can assume that H is not contained in any proper open subgroups of G.

LetG =
⊔

n∈ω gnH be the coset decomposition ofH inG. Then we can construct
a strictly increasing chain Hn of proper subgroups of G as follows.

• H0 = H .
• Suppose inductively that Hn has been defined and that H ≤ Hn < G. If Hn

is a maximal proper subgroup of G, then the construction terminates with Hn.
Otherwise, let kn be the least integer k such that Hn < 〈Hn, gk 〉 < G and let
Hn+1 = 〈Hn, gkn〉.

First suppose that there exists an integer n such that Hn is a maximal proper
subgroup of G. Then we claim that [G : Hn] = ω. Otherwise, [G : Hn] < ω and
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hence N =
⋂

g∈G gHng
−1 is a normal subgroup of G such that N ≤ Hn and

[G : N ] < ω. Applying Lemma 4.7, it follows that N is an open subgroup of G and
hence Hn is also an open subgroup of G. But this contradicts the fact that H is not
contained in any proper open subgroups of G. Next assume that the construction
does not terminate after finitely many steps and let Hω =

⋃
n∈ω Hn. Then either

Hω = G or else Hω is a maximal proper subgroup of G. In the former case, G
has countable cofinality and hence, by Theorem 2.9, there exists a nonprincipal
ultrafilter over ω. Thus we can assume that Hω is a maximal proper subgroup of
G and our earlier argument shows that [G : Hω] = ω.

In order to simplify notation, we will assume that H is a maximal subgroup of
G. Hence, by considering the left translation action of G on the set {gnH |n ∈ N},
we obtain a homomorphism

ψ : G→ Sym(ω)

such that ψ(G) acts primitively on ω. It follows that if N � G is any normal
subgroup, then either ψ(N) = 1 or ψ(N) acts transitively on N. Let

I =

{
A ⊆ ω

∣∣∣∣ψ
(∏

n∈A

SL(d, pn)

)
= 1

}
.

Then I is clearly an ideal on ω. Furthermore, if F ⊆ ω is a finite subset, then
ψ(
∏

n∈F SL(d, pn)) cannot act transitively on N and so F ∈ I. We will show that
I is a prime ideal.

So assume that there exists a subset A ⊆ ω such that both A /∈ I and ω�A /∈ I.
Let P =

∏
n∈A SL(d, pn) and let Q =

∏
n∈ω�A SL(d, pn). Then both ψ(P ) and ψ(Q)

act transitively on N. Suppose that g ∈ P is such that ψ(g) fixes some integer n ∈ N.
If k ∈ N is arbitrary, then there exists h ∈ Q such that ψ(h)(n) = k; and since g
and h commute, it follows that

ψ(g)(k) = (ψ(g) ◦ ψ(h))(n) = (ψ(h) ◦ ψ(g))(n) = ψ(h)(n) = k.

Thus g ∈ kerψ. It follows that N = kerψ ∩ P is a normal subgroup of P such that
[P : N ] = ω, which contradicts Lemma 4.7.

Proof of Theorem 4.5. Let G =
∏

SL(d, pn) and assume that the symmetric
countably syndetic subset W ⊆ G witnesses the failure of the weak Steinhaus
property. Let H = 〈W 〉 be the subgroup generated by W . Then clearly [G : H ] ≤ ω.
If [G : H ] = ω, then the result follows from Theorem 4.6 and so we can assume that
[G : H ] < ω. Applying Lemma 4.7, it follows easily that H is an open subgroup
of G. Let

G′ =
∏

n≥n0

SL(d, pn) ≤ H

and let π : G → G′ be the canonical projection. Consider the set W ′ = π(W ) of
generators of G′. If W ′ witnesses that G′ is not Cayley bounded, then the result
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follows from Theorem 2.9. Hence we can suppose that there exists an integer k ≥ 1
such that (W ′)k = G′. Let g = (gn) ∈ G′ be such that gn is a noncentral element of
SL(d, pn) for all n ≥ n0. Then g ∈ W � for some � ≥ 1; and Proposition 4.3 implies
that

G′ ⊆W kW �W k · · ·W kW �W k︸ ︷︷ ︸
m times

= W 2km+�m,

where m = 8 if d = 2 and m = 2d if d > 2. But this contradicts the assumption
that W witnesses the failure of the weak Steinhaus property.

5. The Bergman and Steinhaus Properties in L(R)[U]

In this section, we will present a partition property PP for products of finite sets
with measures; and we will show that ZF +DC+PP implies that if (Hn |n ∈ ω) is
a sequence of nontrivial finite groups such that (dC(Hn) |n ∈ ω) grows sufficiently
fast, then

∏
Hn has both the Bergman property and the Steinhaus property.

The Partition Property. (PP ) If (〈an, µn〉 |n ∈ ω) is a sufficiently fast growing
sequence of finite sets an with measures µn, then for every partition∏

an =
⊔

m∈ω

Xm,

there exists an integer m ∈ ω such that
∏
bn ⊆ Xm for some sequence of subsets

bn ⊆ an such that limn→∞ µn(bn) = ∞.

Here the words “sufficiently fast growing” should be interpreted in the sense that
there is a fixed function f that assigns a natural number to every finite sequence
of finite sets with measures (〈am, µm〉 |m < n) and that an infinite sequence
(〈an, µn〉 |n ∈ ω) is sufficiently fast growing if

µn(an) > f((〈am, µm〉 |m < n))

for all n ∈ ω. The exact formula for the function f is immaterial for the purposes
of this paper. We will only mention that it is primitive recursive with a growth
rate approximately that of a tower of exponentials of linear height. (The primitive
recursive bound can be extracted from the argument in Shelah–Zapletal [30].)

The partition property PP fails in ZFC, since the Axiom of Choice can be
used to construct highly irregular partitions. However, it does hold in ZFC if we
restrict our attention to partitions into Borel sets; and it also holds for arbitrary
partitions in many models of set theory in which the Axiom of Choice fails. In
particular, in Sec. 7, we will prove the following result, which extends the work of
Di Prisco–Todorcevic [8, Sec. 7].

Theorem 5.1. (LC) L(R)[U ] satisfies PP.

We will also make use of the following recent result of Babai–Nikolov–Pyber [1]
in the newly flourishing area of “arithmetic combinatorics”. Recall that if H is a
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nontrivial finite group and K is a field, then dK(H) denotes the minimal dimension
of a nontrivial K-representation of H ; i.e. the least d such that there exists a
nontrivial homomorphism θ : H → GL(d,K).

Theorem 5.2. (Babai–Nikolov–Pyber [1]) Let H be a nontrivial finite group and
let k be an integer such that 1 ≤ k3 ≤ dC(H). If A ⊆ H is a subset such that
|A| ≥ |H |/k, then A3 = H.

Proof. By Babai–Nikolov–Pyber [1, Corollary 2.6], if 1 ≤ k3 ≤ dR(H) and A ⊆ H

with |A| ≥ |H |/k, then A3 = H . Since dC(H) ≤ dR(H), the result follows.

Remark 5.3. If H is a nontrivial finite group, then either dR(H) = dC(H) or
dR(H) = 2dC(H). For the purposes of this paper, it does not matter whether we
work with dC(H) or dR(H). Since most of the literature on the representation
theory of finite groups deals with complex representations, we have chosen to state
our results in terms of dC(H).

Theorem 5.4. (ZF +DC + PP ) Let (Hn |n ∈ ω) be a sequence of nontrivial
finite groups; and for each n ∈ ω, let kn = �dC(Hn)1/3� and let µn be the measure
on Hn defined by µn(A) = kn(|A|/|Hn|). If (〈Hn, µn〉 |n ∈ ω) grows sufficiently
fast, then

∏
Hn has both the Bergman property and the Steinhaus property.

Proof. To see that G =
∏
Hn has the Steinhaus property, suppose that W ⊆ G is

a symmetric countably syndetic subset and let G =
⋃

m∈ω gmW . Then PP implies
that there exists m ∈ ω such that

∏
An ⊆ gmW for some sequence of subsets

An ⊆ Hn such that limn→∞ µn(An) = ∞; and after replacing
∏
An by g−1

m

∏
An,

we can suppose that
∏
An ⊆ W . Let n0 ∈ ω be such that µn(An) ≥ 1 and hence

|An| ≥ |Hn|/kn for all n ≥ n0. Clearly we can suppose that An = {an} is a singleton
for each n < n0. Applying Theorem 5.2, it follows that W 3 ⊇ gG′, where

• g = (a3
0, . . . , a

3
n0−1, 1, 1, . . .) and

• G′ is the open subgroup
∏

n≥n0
Hn.

Since W is symmetric, it follows that W 6 ⊇ (gG′)−1gG′ = G′. This completes the
proof that

∏
Hn has the Steinhaus property.

To see that G =
∏
Hn has the Bergman property, suppose that G =

⋃
m∈ω Um

is the union of an increasing chain of symmetric subsets such that UmUm ⊆ Um+1

for all m ∈ ω. Arguing as above, it follows that there exists m ∈ ω such that U6
m

contains an open subgroup G′ and hence G′ ⊆ Um+3. Since [G : G′] < ω, this
implies that there exists k ∈ ω such that G = Uk, as required.

Unfortunately the statement of Theorem 5.4 is a little involved. However, we
can obtain a much cleaner statement if we impose the following natural condition
on the collection {Gn |n ∈ ω} of groups.
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Definition 5.5. A class C of nontrivial finite groups is said to be a Jordan class
if for each integer d ≥ 1, there exist only finitely many groups H ∈ C up to
isomorphism such that dC(H) = d.

The following result is an immediate consequence of Theorem 5.4. Here the
phrase “grows sufficiently fast” means that there is a function fC : N → N such
that (dC(Hn) |n ∈ ω) grows sufficiently fast if dC(Hn+1) > fC(dC(Hn)) for all
n ∈ ω. And the phrase has a similarly natural interpretation in the statements of
Corollaries 5.7 and 5.8.

Corollary 5.6. (ZF +DC + PP ) Let C be a Jordan class of nontrivial finite
groups. If Hn ∈ C for all n ∈ ω and (dC(Hn) |n ∈ ω) grows sufficiently fast,
then

∏
Hn has both the Bergman property and the Steinhaus property.

Corollary 5.7. (LC) If d ≥ 2 and (pn |n ∈ ω) is a sufficiently fast growing
sequence of primes, then

∏
SL(d, pn) has both the Bergman property and the Stein-

haus property in L(R)[U ].

Proof. Recall that if p ≥ 5 is a prime, then dC(SL(2, p)) = (p − 1)/2; and that
if d > 2, then dC(SL(d, p)) = (pd − p)/(p − 1). Thus the result is an immediate
consequence of Theorem 5.1 and Corollary 5.6.

It is perhaps worth pointing out that the proof of the following corollary does
not make use of the classification of the finite simple groups.

Corollary 5.8. (LC) Suppose that (Hn |n ∈ ω) is a sequence of nonabelian finite
simple groups. If (|Hn| |n ∈ ω) is sufficiently fast growing, then

∏
Hn has both the

Bergman property and the Steinhaus property in L(R)[U ].

Proof. By Jordan’s theorem, there exists a function ϕ : N → N such that if H
is a finite subgroup of GL(n,C), then H contains an abelian normal subgroup N

with [H : N ] ≤ ϕ(n). (For example, see Curtis–Reiner [5, Theorem 36.13].) Thus
the class C of nonabelian finite simple groups is a Jordan class; and if |Hn| grows
sufficiently fast, then dC(Hn) also grows sufficiently fast.

We will conclude this section with a result which shows that it is necessary to
impose some condition on the growth rate of the sequence (dC(Hn) |n ∈ ω) if we
wish to obtain the conclusion of Theorem 5.4.

Theorem 5.9. (ZF +DC) Suppose that there exists a nonprincipal ultrafilter over
ω. Then whenever (Hn |n ∈ ω) is a sequence of nontrivial finite groups such that
lim inf dC(Hn) < ∞, then

∏
Hn does not have the automatic continuity property

and hence does not have the Steinhaus property.

Proof. Recall that every complex representation of a finite group is similar to a
unitary representation. (For example, see Curtis–Reiner [5, Exercise 10.6].) Hence
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there exist an infinite subset I ⊆ ω and a fixed integer d ≥ 1 such that for each
n ∈ I, there exists a nontrivial homomorphism ϕn : Hn → U(d,C), where U(d,C)
denotes the compact group of d× d unitary matrices. In order to simplify notation,
we will assume that I = ω.

For each gn ∈ Hn and 1 ≤ i, j ≤ d, let ϕn(gn)ij denote the ij entry of the matrix
ϕn(gn) ∈ U(d,C). Then if U is a nonprincipal ultrafilter over ω, we can define a
homomorphism

ψ :
∏

Hn → U(d,C)

(gn) �→ (zij),

where zij = limU ϕn(gn)ij . We claim that ψ is not continuous. To see this, suppose
that ψ is continuous and let W ⊆ U(d,C) be an open neighborhood of the identity
element which contains no nontrivial subgroups. (For the existence of such a neigh-
borhood, see Helgason [11, II.B.5].) Then there exists an open subgroup H ⊆∏Hn

such that ψ(H) ⊆ W and hence H ≤ kerψ. In particular, there exists a cofinite
subset A ⊆ ω such that

∏
k∈AHk ≤ kerψ. For each k ∈ A, choose gk ∈ Hk such

that ϕk(gk) /∈ W . Then, letting g = (gk) ∈ ∏k∈AHk, we have that ψ(g) /∈ W ,
which is a contradiction.

Remark 5.10. Recall that de Cornulier [6] has shown that if G is a product of
infinitely many copies of a fixed finite perfect group H , then G has the Bergman
property. Thus the analog of Theorem 5.9 is false for the Bergman property.

6. The Bergman and Steinhaus Properties in V

Suppose that (Hn |n ∈ ω) is a sequence of nonabelian finite simple groups. Then, in
the previous section, assuming the existence of suitable large cardinals, we proved
that if (|Hn| |n ∈ ω) is sufficiently fast growing, then

∏
Hn has both the Bergman

property and the Steinhaus property in L(R)[U ]. In this section, we will briefly
discuss the question of when

∏
Hn has either the Bergman property or the Stein-

haus property in the actual set-theoretic universe V . In particular, throughout this
section, we will work with the usual ZFC axioms of set theory.

Recall that the classification of the finite simple groups says that if S is a
nonabelian finite simple group, then one of the following cases must hold.

(i) S is one of the 26 sporadic finite simple groups.
(ii) S is an alternating group Alt(n) for some n ≥ 5.
(iii) S is a group L(q) of (possibly twisted) Lie type L over a finite field Fq for some

prime power q.

The following condition is the key to understanding when the product
∏
Hn

has countable cofinality.
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Definition 6.1. A sequence (Hn |n ∈ ω) of nonabelian finite simple groups satisfies
the Malcev condition if there exists an infinite subset I of ω such that the following
properties hold.

(a) There exists a fixed (possibly twisted) Lie type L such that for all n ∈ I,
Hn = L(qn) for some prime power qn.

(b) If n, m ∈ I and n < m, then qn < qm.

Arguing as in the proof of Theorem 2.7(a), it follows easily that if (Hn |n ∈ ω)
satisfies the Malcev condition, then

∏
Hn has countable cofinality. Conversely, by

Saxl–Shelah–Thomas [27, Theorem 1.9], if (Hn |n ∈ ω) does not satisfy the Malcev
condition, then

∏
Hn has uncountable cofinality. Furthermore, as we mentioned

earlier, Zalan Gyenis has recently checked that the arguments of Saxl–Shelah–
Thomas [27] can be modified to prove that an infinite product

∏
Hn of finite simple

groups has the Bergman property if and only if
∏
Hn has uncountable cofinality.

Consequently, we have the following classification of the infinite products
∏
Hn of

finite simple groups satisfying the Bergman property.

Theorem 6.2. If (Hn |n ∈ ω) is a sequence of nonabelian finite simple groups,
then the following are equivalent:

(a) (Hn |n ∈ ω) does not satisfy the Malcev condition.
(b)

∏
Hn has the Bergman property.

The proof of Theorem 2.3 shows that if (Hn |n ∈ ω) satisfies the Malcev con-
dition, then there exists a subgroup K ≤ ∏

Hn with [
∏
Hn : K] = ω and hence∏

Hn does not have the Steinhaus property. Also, it is clear that if (Hn |n ∈ ω)
satisfies the following condition, then

∏
Hn has a non-open subgroup of finite index

and so once again the Steinhaus property fails. (See Example 1.1.)

Definition 6.3. A sequence (Hn |n ∈ ω) of nonabelian finite simple groups satisfies
the Saxl–Wilson condition if there exists an infinite subset I of ω and a fixed group
S such that Hn = S for all n ∈ I.

In Thomas [31], it was shown that
∏
Hn has a non-open subgroup K such that

[
∏
Hn : K] < 2ℵ0 if and only if (Hn |n ∈ ω) satisfies either the Malcev condition

or the Saxl–Wilson condition. Consequently, it seems natural to make the following
conjecture.

Conjecture 6.4. If (Hn |n ∈ ω) is a sequence of nonabelian finite simple groups,
then the following are equivalent:

(a) (Hn |n ∈ ω) satisfies neither the Malcev condition nor the Saxl–Wilson
condition.

(b)
∏
Hn has the Steinhaus property.
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Remark 6.5. Using the classification of the finite simple groups, it is easily seen
that condition (a) is equivalent to:

(a)′ lim inf d(Hn) = ∞.

7. The Partition Property (PP )

Suppose that the Ramsey ultrafilter U is L(R)-generic for the notion of forcing
P(ω)/Fin. In this section, assuming the existence of suitable large cardinals, we
will prove that the Partition Property (PP ) holds in L(R)[U ]. More specifically, we
will make use of the following large cardinal assumption.

(LC) There exist infinitely many Woodin cardinals below a measurable cardinal.

Remark 7.1. It is perhaps worth pointing out that LC is certainly not the min-
imal large cardinal assumption necessary to prove that PP holds in L(R)[U ]. For
example, it is enough to assume the statement Aκ of Neeman–Zapletal [24] for a
sufficiently large cardinal κ, and this is weaker in consistency strength than LC.

If we merely want to prove the consistency of ZF + DC + PP , then it is only
necessary to assume the existence of an inaccessible cardinal. In more detail, suppose
that κ ∈ V is an inaccessible cardinal and that Coll(ω,< κ) is the usual Lévy
collapse. (For the basic properties of the Lévy collapse, see Jech [15, Chap. 26].)
Let G ⊆ Coll(ω,< κ) be a V -generic filter and let R̄ be the set of reals in the
generic extension V [G]. Then the corresponding Solovay model V (R̄) consists of
the sets z ∈ V [G] which are hereditarily definable in V [G] from parameters in
R̄∪ V . Let the Ramsey ultrafilter Ū be V [G]-generic for P(ω)/Fin. Then clearly Ū
is also V (R̄)-generic for P(ω)/Fin. Most of our effort in this section will be devoted
to proving the following result.

Theorem 7.2. With the above hypotheses, V (R̄)[Ū ] satisfies PP.

To transfer this result from V (R̄)[Ū ] to L(R)[U ], we will make use of the fact
that, assuming LC, if κ ∈ V is the least inaccessible cardinal, then the theory
of L(R)[U ] is not altered by forcing with Coll(ω,< κ). In more detail, assuming
LC, the theory of L(R) is not altered by forcing with Coll(ω,< κ); i.e. L(R̄) is
elementarily equivalent to L(R). (For example, see Larson [20, Corollary 3.1.16].)
Since P(ω)/Fin is a homogeneous notion of forcing, it follows that if ϕ is any
sentence in the language of set theory, then

L(R)[U ] � ϕ ⇐⇒ L(R) � P(ω)/Fin � ϕ

⇐⇒ L(R̄) � P(ω)/Fin � ϕ

⇐⇒ L(R̄)[Ū ] � ϕ.

Proof of Theorem 5.1. (LC) Let κ be the least inaccessible cardinal and let
V (R̄)[Ū ] be as in Theorem 7.2. Then the Ramsey ultrafilter Ū is also L(R̄)-generic
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for P(ω)/Fin. Working inside L(R̄)[Ū ], suppose that (〈an, µn〉 |n ∈ ω) is a suffi-
ciently fast growing sequence of finite sets an with measures µn and that∏

an =
⊔

m∈ω

Xm

is any partition. Since V (R̄)[Ū ] satisfies PP , there exists an integer m ∈ ω and
a sequence of subsets (bn ⊆ an |n ∈ ω) ∈ V (R̄)[Ū ] such that

∏
bn ⊆ Xm and

limn→∞ µn(bn) = ∞. Since L(R̄)[Ū ] and V (R̄)[Ū ] have the same reals, it follows
that (bn ⊆ an |n ∈ ω) ∈ L(R̄)[Ū ]. Thus L(R̄)[Ū ] satisfies PP . Finally since the
theory of L(R)[U ] is not altered by forcing with Coll(ω,< κ), it follows that L(R)[U ]
also satisfies PP .

The remainder of this section will be devoted to the proof of Theorem 7.2. As
usual, we will identify the notion of forcing P(ω)/Fin with the quasi-order ([ω]ω,⊆∗)
of infinite subsets of ω, quasi-ordered by c ⊆∗ d if and only if |c�d| < ω. The key
element of the proof is the work of Shelah–Zapletal [30] showing that for every
sufficiently fast growing sequence (〈an, µn〉 |n ∈ ω) of finite sets an with measures
µn, there is a notion of forcing P with the following properties:

(1) P adds a new element ẋ ∈ ∏ an.
(2) P is proper, ωω-bounding and adds no independent reals.
(3) P is defined in a way which depends only on the reals; i.e. if M ⊆ N are

transitive models of set theory with the same reals, then PM = PN .
(4) Suppose that M is a transitive model of set theory such that P(P(R))M is

countable. Then for every p ∈ PM , there exist a sequence of sets (bn |n ∈ ω)
with bn ⊆ an and µn(bn) → ∞ such that the product

∏
bn consists only of

M -generic points for the poset PM
p = {q ∈ PM | q ≤ p}.

Here an independent real is an infinite subset a ⊆ ω in the generic extension such
that neither a nor ω�a contains an infinite ground model subset.

Let κ ∈ V be an inaccessible cardinal and let G ⊆ Coll(ω,< κ) be a V -generic
filter. Suppose that V (R̄) is the corresponding Solovay model and that the Ram-
sey ultrafilter Ū is V [G]-generic (and hence also V (R̄)-generic) for P(ω)/Fin. Let
(〈an, µn〉 |n ∈ ω) ∈ V (R̄)[Ū ] be a sufficiently fast growing sequence of finite sets
an with measures µn and let

∏
an =

⊔
m∈ω Xm be a partition of the product into

countably many pieces within the model V (R̄)[Ū ]. Working inside V [G], let c0 ∈ [ω]ω

be any infinite subset of ω. Then it is enough to find a subset c ∈ [ω]ω with c ⊆∗ c0
and a sequence of subsets (bn ⊆ an |n ∈ ω) ∈ V [G] with limn→∞ µn(bn) = ∞ such
that for some m ∈ ω,

c �
∏

bn ⊆ Ẋm.

Let f :
∏
an → ω be the function defined by

f(x) = m⇐⇒ x ∈ Xm
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and let ḟ ∈ V (R̄) be a P(ω)/Fin-name for f . By the standard homogeneity argu-
ments with respect to the Lévy collapse Coll(ω,< κ), we can assume that c0,
(an |n ∈ ω) ∈ V and that the P(ω)/Fin-name ḟ is definable from the elements of
the ground model V . In particular, it follows that there exists a formula ϕ(v0, v1, v2)
with parameters in V such that for every V -generic filter H ⊆ Coll(ω,< κ) and
every c ∈ [ω]ω, x ∈∏ an and m ∈ ω,

V [H ] � c �P(ω)/Fin x̌ ∈ Ẋm ⇐⇒ V [H ] � ϕ(c, x,m). (7.3)

Working inside the ground model V , consider the product of the forcing P with
Q = P(ω)/Fin. Then the poset Q adds a Ramsey ultrafilter u and P adds a point
x ∈ ∏ an. Since the definition of the forcing P only depends on the real numbers,
it follows that PV = PV [u]. Hence if u, x are mutually generic, then x will be
PV [u]-generic over the model V [u].

Lemma 7.4. In V [u][x], u still generates a Ramsey ultrafilter.

Proof. By Shelah [29, VI.5.1], since PV = PV [u] is proper and ωω-bounding in V [u],
it is enough to show that u still generates an ultrafilter in V [u][x]. First note that
since Q is σ-closed and P is proper, it follows that P(ω) ∩ V [u][x] = P(ω) ∩ V [x].
(Since P is proper, each real r ∈ V [u][x] is obtained from a countable collection
C = {Cn |n ∈ ω} ∈ V [u] of countable subsets Cn ⊆ P such that each Cn is predense
below some condition p ∈ P; and since Q is σ-closed, it follows that C ∈ V and
hence r ∈ V [x].) Now suppose that p ∈ P, q ∈ Q are conditions and that p � τ ⊆ ω.
Since P does not add any independent reals, there exists a condition p′ ≤ p and an
infinite subset q′ ⊆ q such that either p′ � q′ ⊆ τ or p′ � τ ∩ q′ = ∅. Hence either
〈q′, p′〉 � τ ∈ u̇ or 〈q′, p′〉 � ω� τ ∈ u̇. It follows that u still generates an ultrafilter
in V [u][x].

From now on, fix some u ∈ V [G] such that u is V -generic for Q and c0 ∈ u.
Let D ∈ V [u] be the poset consisting of the conditions (s, S), where s ∈ [ω]<ω and
S ∈ u, partially ordered by

(s, S) ≤ (t, T ) ⇐⇒ s ⊇ t and s� t ⊆ T.

Then D adds an infinite subset ċ ⊆ ω which diagonalizes the Ramsey ultrafilter u;
i.e. a subset ċ such that |ċ�S| < ω for all S ∈ u. In fact, by Mathias [22], every set
diagonalizing u is V [u]-generic for the poset D. By Lemma 7.4, if ū is the upwards
closure of u in the model V [u][x], then ū is a Ramsey ultrafilter in V [u][x]. Hence
if D̄ ∈ V [x, u] is the corresponding poset diagonalizing ū, then D is dense in D̄ and
every set diagonalizing u is V [u][x]-generic for both D̄ and D. Let ϕ(v0, v1, v2) be
the formula with parameters in V given by (7.3).

Lemma 7.5. In V [u][x], there exists a natural number m ∈ ω such that

〈1, 1〉 �D×Coll(ω,<κ) ϕ(ċ, x̌, m̌);
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in other words, in V [u][x], we have that

〈1, 1〉 �D×Coll(ω,<κ) ċ �P(ω)/Fin x̌ ∈ Ẋm.

Proof. Suppose not. Then there exist distinct numbers m0, m1 ∈ ω and conditions
for the associated 3-step iteration

〈r0, s0, ḋ0〉, 〈r1, s1, ḋ1〉 ≤ 〈1, 1, ċ〉
such that 〈r0, s0, ḋ0〉 � x̌ ∈ Ẋm0 and 〈r1, s1, ḋ1〉 � x̌ ∈ Ẋm1 . Choose mutually
V [u][x]-generic filters H0 ⊆ D, K0 ⊆ Coll(ω,< κ) such that 〈r0, s0〉 ∈ H0×K0; and
note that, since d = ḋ0/(H0 ×K0) ⊆∗ ċ/H0, it follows that d is V [u][x]-generic for
the poset D. Hence, after making a finite adjustment to the set d if necessary, we can
find a V [u][x]-generic filter H1 ⊆ D such that r1 ∈ H1 and d = ċ/H1. A standard
homogeneity argument with respect to the Lévy collapse Coll(ω,< κ) now shows
that there exists a V [u][x][H1]-generic filter K1 ⊆ Coll(ω,< κ) such that s1 ∈ K1

and V [u][x][H0 × K0] = V [u][x][H1 × K1]. Let d′ = ḋ1/(H1 × K1). Consider the
notion of forcing P(ω)/Fin inside the model V [u][x][H0 ×K0] = V [u][x][H1 ×K1].
Working with the V [u][x]-generic filter H0 ×K0, it follows that d � x̌ ∈ Ẋm0 and
so V [u][x][H0 ×K0] � ϕ(d, x,m0). Furthermore, since

d′ = ḋ1/(H1 ×K1) ⊆∗ ċ/H1 = d,

it follows that V [u][x][H0×K0] � ϕ(d′, x,m0) and so V [u][x][H0×K0] �� ϕ(d′, x,m1).
On the other hand, working with the V [u][x]-generic filter H1 ×K1, it follows that
d′ � x̌ ∈ Ẋm1 and so V [u][x][H1 ×K1] � ϕ(d′, x,m1), which is a contradiction.

Next, working in the model M = V [u], let p ∈ PM be a condition that identifies
the natural number m in the statement of Lemma 7.5. Then, since P(P(R))M is
countable in V [G], there exists a sequence of sets (bn |n ∈ ω) ∈ V [G] with bn ⊆ an

and µn(bn) → ∞ such that the product
∏
bn consists only of M -generic points

for the poset PM
p = {q ∈ PM | q ≤ p}. Let c ∈ V [G] be an infinite subset of

ω which diagonalizes the ultrafilter u ∈ M . Then clearly c ⊆∗ c0 and we claim
that c �

∏
bn ⊆ Ẋm. To see this, suppose that x ∈ ∏ bn. Then u, x are mutually

V -generic and c is V [u][x]-generic for D. Hence, working in V [G], Lemma 7.5 implies
that the condition c ∈ P(ω)/Fin forces x̌ ∈ Ẋm. This completes the proof of
Theorem 7.2.
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