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Introduction

Let S = R/Z be the unit circle. The Cauchy problem for
the periodic rod equation is written as follows:ut + γuux = −∂xp ∗

(3 − γ
2

u2 +
γ

2
u2

x

)
, t ∈ (0,T), x ∈ S,

u(0, x) = u0(x).
(1.1)

where γ ∈ R and p is the kernel of the convolution
operator (1 − ∂2

x)−1. It is the continuous 1-periodic
function given by

p(x) =
cosh(x − [x] − 1/2)

2 sinh(1/2)
,

where [·] denotes the integer part.
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Remark

If u satisfies (1.1), then u is a periodic solutions of the
rod equation.
The real parameter γ is related to the Finger
deformation tensor of the material.
The Cauchy problem (1.1) also models shallow water
waves inside channels.
When γ = 1 then (1.1) became in the Camassa–Holm
equation. (dispertionless case)

(Institut CamilleUMR 5208 du CNRS) Blowup issues for water wave propagation in shallow waterNovember 17, 2014 4 / 40



Blowup issues for
water wave

propagation in
shallow water

The Rod Equation
Introduction

Well-posedness

Blowup Phenomena

Quick overview of the main
results

Difference between R and S

Previous Blowup Criteria

Some Notations

First Theorem

Second Theorem

Outline of proof Th.1

Tools for Th. 2

Outline of proof Th.2

Bibliography

Well-posedness

If u0 ∈ Hs(S), with s > 3/2, then, ∀γ ∈ R, the Cauchy
problem (1.1) is locally well-posed: ∃ a maximal time
0 < T∗ ≤ ∞ and a unique solution
u ∈ C([0,T∗),Hs(S)) ∩ C1([0,T∗),Hs−1(S)).
The solution u depends continuously on u0. It is also
known that u admits several invariant integrals,
among which the energy integral,

E(u) =

∫
S
(u2 + u2

x) dx.

In particular, because of the conservation of the
Sobolev H1-norm, the solution u(x, t) remains
uniformly bounded up to the time T∗.
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Global Existence

In the case of the Camassa–Holm equation on the
real line, a striking necessary and sufficient condition
for the global existence of strong solution can be
given in terms on the initial potential y0 = u0 − u0,xx,
see (H. McKean 2004).
On the other hand, very little is known on the global
existence of strong solutions when γ , 1.
Smooth solitary waves that are global strong
solutions were constructed at least for some γ see (J.
Lenells,2006).
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Blowup Phenomena

Blowup Scenario
If T∗ < ∞ then lim supt→T∗ ‖u(t)‖Hs = ∞ (s > 3/2) and more
precisely (breaking mechanism):

T∗ < ∞ ⇐⇒ lim inf
t→T∗

(
inf
x∈S
γux(t, x)

)
= −∞,

see (A.Constantin, W. Strauss 2000).
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Quick overview of the main results

First Theorem
Loosely, we show that if |γ| is not too small, then there
exist a constant βγ > 0 such that if

u′0(x0) > βγ|u0(x0)| ifγ < 0, or u′0(x0) < −βγ|u0(x0)| ifγ > 0

in at least one point x0 ∈ S, then the solution arising
from u0 ∈ Hs(S) must blow up in finite time.

Second theorem
We make precise what “|γ| not too small” means,
addressing also the delicate issue of finding sharp
estimates for βγ.
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Second theorem
In the particular case of the periodic (C-H) equation
we get that a sufficient condition for the blowup is:

∃ x0 ∈ S u′0(x0) < −

√
5
2
−

3
2
·

cosh 1
2 cosh 3

2 − 1

sinh 1
2 sinh 3

2

|u0(x0)|.

Corollary
∃ an absolute constant β∞ (β∞ = 0.295 . . .)with the
following property: If u0 ∈ Hs(S), is such that for
some x0 ∈ S, u′0(x0) > β∞|u0(x0)|, or otherwise
u′0(x0) < −β∞|u0(x0)| ⇒ the solutions (depending
on γ) of (1.1) arising from u0 blow up in finite time
respectively if γ << −1 or γ >> 1.
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Difference between in the behavior of
periodic and non-periodic case

The analogue blowup result for the rod equation
on R (L., Brandolese 2012), could be established only
in the range 1 ≤ γ ≤ 4 in the non-periodic case.
The relevant estimates on S that we will establish
turn out to be much stronger.
It may be that if u0 ∈ Hs(S) and ũ0 ∈ Hs(R) agree on
an arbitrarily large finite interval, and that periodic
solution arising from u0 blows up, whereas the
solution arising from ũ0 and vanishing at infinity
exists globally.
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Difference between previous blowup criteria
and ours

A huge number of previous papers addressed the
blowup issue of solutions to equation (1.1), (R.
Camassa, L. Holm,J. Hyman 93,A. Constantin, J.
Escher 98).
Typically, conditions of the form
u′0(x0) < −cγ‖u0‖H1(S1) or some other integral
conditions on u0, or otherwise antisymmetry
conditions, etc.
Our blowup criteria is that it they are local-in-space.
This means that these criteria involve a condition only
on a small neighborhood of a single point of the datum.
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Some Notations

For any real constant α and β, let I(α, β) ≥ −∞ defined
by

I(α, β) = inf
{∫ 1

0

(
p + βpx)

(
αu2 + u2

x

)
dx,u ∈ H1(S)

}
.

For γ ∈ R∗, the quantity βγ ∈ [0,+∞] defined by

βγ = inf
{
β ∈ R+ : β2 + I

(3−γ
γ , β

)
−

3−γ
γ ≥ 0

}
,

with the usual convention that βγ = +∞ if the infimum is
taken on the empty set.
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First Theorem

Let γ ∈ R∗ be such that βγ < +∞. Let u0 ∈ Hs(S) with
s > 3/2 and assume that there exists x0 ∈ S, such that

u′0(x0) > βγ|u0(x0)| if γ < 0, or u′0(x0) < −βγ|u0(x0)| if γ > 0,

then maximal time T∗ is estimated by

T∗ ≤
2

γ
√

u′0(x0)2 − β2
γu0(x0)2

< ∞
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Second Theorem

In order to state our next theorem, let us introduce
the complex number

µ =
1
2

√
1 + 4(3 − γ)/γ, γ , 0,

where
√

1 + 4(3 − γ)/γ denotes any of the two
complex square roots. We also consider the four
constants:

γ−1 = −1.036 . . . γ+
1 = 0.269 . . .

γ−2 = −1.508 . . . γ+
2 = 0.575 . . .
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Second Theorem

For any γ ∈ (−∞, γ−1 ] ∪ [γ+
1 ,+∞), we have βγ < +∞,

so that Theorem 1 applies in such range. More
precisely, if γ ∈ (−∞, γ−2 ] ∪ [γ+

2 ,∞), then

βγ ≤

√
3
γ
−

1
2
− µ ·

cosh 1
2 coshµ − 1

sinh 1
2 sinhµ

.

The limit β∞ = limγ→±∞ βγ does exist and

β∞ ≤

√√√√√ √3
(
1 − cosh 1

2 cos
√

3
2

)
2 sinh 1

2 sin
√

3
2

−
1
2

= 0.296 . . . .
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Second Theorem

Figure: The upper-bound estimate of βγ given by Theorem 1.
The estimate is valid outside the interval [γ−1 , γ

+
1 ] (gray region).
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Main Tools

First properties of I(α, β)
For any real β, let us consider the 1− periodic
function

ω(x) = p(x) + βp′(x),

The non-negativity condition ω ≥ 0 is equivalent to
the inequality cosh(1/2) ≥ ±β sinh(1/2), i.e., to the
condition

−
e+1
e−1 ≤ β ≤

e+1
e−1 .

Throughout this section, we will work under the
above condition on β.
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Let us introduce the weight Sobolev space

Eβ =
{
u ∈ L1

loc(0, 1) : ‖u‖2Eβ =

∫ 1

0
ω(x)(u2+u2

x)(x) dx < ∞
}

Let us consider the closed subspace Eβ,0 of Eβ defined
as closure of C∞c (0, 1) in Eβ.
Notice that, with slightly abusive notation :

Eβ,0 =
{
u ∈ Eβ : u(0) = u(1) = 0

}
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Remark

If |β| < e+1
e−1

Notice that Eβ agrees with the classical Sobolev space
H1(0, 1) when |β| < e+1

e−1

Eβ,0 = H1
0(0, 1)

If |β| = e+1
e−1

Eβ is strictly larger that H1(0, 1). For instance,
| log(x/2)|3 ∈ E e+1

e−1
but does not belong to H1(0, 1).
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If |β| = e+1
e−1

If u ∈ E e+1
e−1 ,0

, then u(x) = O(
√
| log x|) as x→ 0+ and

u(1) = 0.
If u ∈ E

−( e+1
e−1 ),0, then u(x) = O(

√
| log(1 − x)|) as x→ 1−

and u(0) = 0.

Lemma
For all − e+1

e−1 ≤ β ≤
e+1
e−1 , there exists a constant C > 0

such that

∀ v ∈ Eβ,0 :
∫ 1

0
ω(x)v(x)2 dx ≤ C

∫ 1

0
ω(x)vx(x)2 dx.

(1.2)
We denote C(β) > 0 the best constant, which verifies
the weighted Poincaré inequality (1.2).
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Proposition

We have

I(α, β) > −∞ ⇐⇒

− e+1
e−1 ≤ β ≤

e+1
e−1 ,

α > −1/C(β),

Moreover, if |β| < e+1
e−1 , then I(α, β) is in fact a minimum and

there is only one minimizer u ∈ H1(0, 1) with u(0) = u(1) = 1.
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Proposition

The function (α, β) 7→ I(α, β) ∈ R ∪ {−∞}, defined for all
(α, β) ∈ R2, is concave with respect to each one of its variables
and is even with respect to the variable β. Moreover,

∀α ∈ R, ∀ |β| ≤ e+1
e−1 , −∞ ≤ I(α, e+1

e−1 ) ≤ I(α, β) ≤ I(α, 0) ≤ α.

Lemma

For any α, β ∈ R and all u ∈ H1(S) the following
convolution estimate holds:

∀ x ∈ S, (p + βp′) ∗ (αu2 + u2
x)(x) ≥ I(α, β) u(x)2 (1.3)

and I(α, β) is the best possible constant.
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Outline of proof Theorem 1

The starting point is the analysis of the flow map q(t, x),
defined byqt(t, x) = γu(t, q(t, x)), t ∈ (0,T), x ∈ R,

q(0, x) = x.

From the rod equation

ut + γuux = −∂xp ∗
(3−γ

2 u2 +
γ
2 u2

x

)
, (1.4)

(Institut CamilleUMR 5208 du CNRS) Blowup issues for water wave propagation in shallow waterNovember 17, 2014 23 / 40



Blowup issues for
water wave

propagation in
shallow water

The Rod Equation
Introduction

Well-posedness

Blowup Phenomena

Quick overview of the main
results

Difference between R and S

Previous Blowup Criteria

Some Notations

First Theorem

Second Theorem

Outline of proof Th.1

Tools for Th. 2

Outline of proof Th.2

Bibliography

differentiating with respect to the x variable and applying
the identity ∂2

xp ∗ f = p ∗ f − f , we get

utx + γuuxx =
3

2(α + 1)

[
αu2
− u2

x − p ∗ (αu2 + u2
x)
]
. (1.5)

Here we set

α =
3 − γ
γ

.

Let us introduce the two C1-functions of the time
variable, depending on β,

f (t) = (−ux + βu)(t, q(t, x0)), and g(t) = −(ux + βu)(t, q(t, x0))
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Computing the time derivative using the definition of the
flow q, next using equations (1.4)-(1.5), we get

df
dt

(t) =
[
(−utx − γuuxx) + β(ut + γuux)

]
(t, q(t, x0))

=
3

2(α + 1)

[
−αu2 + u2

x + (p − βp′) ∗ (αu2 + u2
x)
]
(t, q(t, x0)),

and

dg
dt

(t) =
3

2(α + 1)

[
−αu2 + u2

x + (p + βp′) ∗ (αu2 + u2
x)
]
(t, q(t, x0)).

case γ > 0. Then α > −1.From the condition βγ < ∞,
we deduce that ∃ β ≥ 0 s. t.

β2
≥ α − I(α, β). (1.6)
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Applying the estimate (1.3) and as I(α,−β) = I(α, β), we
get, for all β ≥ 0 satisfying (1.6),

df
dt

(t) ≥
3

2(α + 1)

[
u2

x −
(
α − I(α,−β)

)
u2

]
(t, q(t, x0))

≥
3

2(α + 1)

[
u2

x − β
2u2

]
(t, q(t, x0))

=
3

2(α + 1)
f (t)g(t).

In the same way,

dg
dt

(t) ≥
3

2(α + 1)

[
u2

x −
(
α − I(α, β)

)
u2

]
(t, q(t, x0))

≥
3

2(α + 1)

[
u2

x − β
2u2

]
(t, q(t, x0))

=
3

2(α + 1)
f (t)g(t).
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As u′0(x0) < −βγ|u(x0)| there ∃ β satisfying (1.6), with
β − βγ > 0 and u′0(x0) < −β|u0(x0)| For such a choice of β
we have

f (0) > 0 and g(0) > 0.

The blowup of u will rely on the following basic property:

Lemma

Let 0 < T∗ ≤ ∞ and f , g ∈ C1([0,T∗),R) be such that, for
some constant c > 0 and all t ∈ [0,T∗),

df
dt

(t) ≥ cf (t)g(t)

dg
dt

(t) ≥ cf (t)g(t).

If f (0) > 0 and g(0) > 0, then

T∗ ≤
1

c
√

f (0)g(0)
< ∞.
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The minimization problem with β = e+1
e−1 and

α > −1/C( e+1
e−1)

In this case the weight function becomes

w(x) =
2e

(e − 1)2 sinh(x) x ∈ (0, 1).

Now, we call ν(α):

ν(α) = −
1
2

+
1
2

√

1 + 4α ∈ {z ∈ C Im(z) ≥ 0}.

By our computations (variational calculation), we get

I(α, e+1
e−1 ) ≥ (e+1)2

2e
P′
ν(α)

Pν(α)
(cosh 1).
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where Pν(α) is the associate Legendre function of the first
kind, of degree ν(α) and Pν(α) is bounded as y→ 1+.
Moreover, Pν is a polynomial when ν is an integer.

case β = 1
The associated Euler–Lagrange boundary value
problem can be explicitly solved.
The computation below will be valid for α > −1/C(1).
As a byproduct of our calculations, we will find the
explicit expression

C(1) = 4/(1 + 4π2)

and the weight function becomes

w(x) =
ex

(e − 1)
.

(Institut CamilleUMR 5208 du CNRS) Blowup issues for water wave propagation in shallow waterNovember 17, 2014 29 / 40



Blowup issues for
water wave

propagation in
shallow water

The Rod Equation
Introduction

Well-posedness

Blowup Phenomena

Quick overview of the main
results

Difference between R and S

Previous Blowup Criteria

Some Notations

First Theorem

Second Theorem

Outline of proof Th.1

Tools for Th. 2

Outline of proof Th.2

Bibliography

Now, if we call µ(α) as

µ(α) =
1
2

√

1 + 4α ∈ {z ∈ C Im(z) ≥ 0}.

Thus by our computations (variational calculation), we
get

I(α, 1) = −
1
2

+ µ(α) ·
cosh 1

2 cosh(µ(α))

sinh 1
2 sinh(µ(α))

.
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Outline of proof Theorem 2

Let us recall the definition of βγ

βγ = inf
{
β ∈ R+ : β2 + I(α, β) − α ≥ 0

}
,

where the one-to-one relation between α and γ is

α =
3 − γ
γ

, or γ =
3

1 + α
.

Using the results of the previous section we can now give
explicit bounds from below for I(α, β) that can be used for
the estimate of βγ.
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Using the results of the previous section we getI(α, β) ≥ I(α, 1), if 0 ≤ β ≤ 1
I(α, β) ≥ R(α, β), if 1 ≤ β ≤ e+1

e−1 .

where

R(α, β) =
e − 1

2

(
I(α, e+1

e−1 ) − I(α, 1)
)
β + e+1

2 I(α, 1) − e−1
2 I(α, e+1

e−1 )

Under our assumptions we have that

I(α, 1) ≥ I(α, e+1
e−1 ) > −∞.
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Thus, by our computations we have that: a sufficient
condition on α guaranteeing βγ < +∞ is :

1 + I(α, 1) − α ≥ 0 or
(e + 1
e − 1

)2
+ I

(
α, e+1

e−1

)
− α ≥ 0.

Therefore, there exists α−1 < 0 < α+
1 such that(e + 1

e − 1

)2
+ I

(
α, e+1

e−1

)
− α ≥ 0 ⇐⇒ α−1 ≤ α ≤ α

+
1 .

For the same reason, there exists α−2 < 0 < α+
2 such

that

1 + I(α, 1) − α ≥ 0 ⇐⇒ α−2 ≤ α ≤ α
+
2 .
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Figure: The plot of α 7→ I(α, e+1
e−1 ) and of the straight line

α 7→ α −
(

e+1
e−1

)2
, intersecting the curve at α−1 and α+

1 .
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Figure: Plot of α 7→ I(α, 1) and of the straight line α 7→ α − 1,
intersecting the curve at α−2 and α+

2 .
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The above zeros can be easily estimated via
Newton’s method. We find in this way

α−1 < α
−

2 < 0 < α+
2 < α

+
1 ,

According to (1), let us introduce the four constants

γ−1 = 3
1+α−1

= −1.036 . . . γ+
1 = 3

1+α+
1

= 0.269 . . .

γ−2 = 3
1+α−2

= −1.508 . . . γ+
2 = 3

1+α+
2

= 0.575 . . .
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The above constants γ−1 , γ+
1 , γ−2 , γ+

2 are precisely the
constants arising in the statement of theorem 2

Figure: The upper-bound estimate of βγ given by Theorem 1.
The estimate is valid outside the interval [γ−1 , γ

+
1 ] (gray region).
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