TP7 Exercice 1 restart: with(Groebner); N0RJJkJhc2lzRzYiSSVGR0xNR0YkSTFIaWxiZXJ0RGltZW5zaW9uR0YkSTJIaWxiZXJ0UG9seW5vbWlhbEdGJEkuSGlsYmVydFNlcmllc0dGJEkrSG9tb2dlbml6ZUdGJEksSW5pdGlhbEZvcm1HRiRJLEludGVyUmVkdWNlR0YkSShJc0Jhc2lzR0YkSSlJc1Byb3BlckdGJEkySXNaZXJvRGltZW5zaW9uYWxHRiRJM0xlYWRpbmdDb2VmZmljaWVudEdGJEkwTGVhZGluZ01vbm9taWFsR0YkSSxMZWFkaW5nVGVybUdGJEksTWF0cml4T3JkZXJHRiRJNk1heGltYWxJbmRlcGVuZGVudFNldEdGJEkuTW9ub21pYWxPcmRlckdGJEk1TXVsdGlwbGljYXRpb25NYXRyaXhHRiRJOU11bHRpdmFyaWF0ZUN5Y2xpY1ZlY3RvckdGJEkrTm9ybWFsRm9ybUdGJEkqTm9ybWFsU2V0R0YkSUFSYXRpb25hbFVuaXZhcmlhdGVSZXByZXNlbnRhdGlvbkdGJEknUmVkdWNlR0YkSS5SZW1lbWJlckJhc2lzR0YkSSxTUG9seW5vbWlhbEdGJEkmU29sdmVHRiRJNVN1Z2dlc3RWYXJpYWJsZU9yZGVyR0YkSShTdXBwb3J0R0YkSSpUZXN0T3JkZXJHRiRJMFRvcmljSWRlYWxCYXNpc0dGJEktVHJhaWxpbmdUZXJtR0YkSTVVbml2YXJpYXRlUG9seW5vbWlhbEdGJEklV2Fsa0dGJEkvV2VpZ2h0ZWREZWdyZWVHRiQ= n:=8: A:=[[1,2],[1,5],[1,6],[2,3],[2,4],[2,8],[3,4],[3,8],[4,5], [4,7],[5,6],[5,7],[6,7],[7,8]]; NzA3JCIiIiIiIzckRiQiIiY3JEYkIiInNyRGJSIiJDckRiUiIiU3JEYlIiIpNyRGK0YtNyRGK0YvNyRGLUYnNyRGLSIiKDckRidGKTckRidGNDckRilGNDckRjRGLw== F0:=seq(X[i]^3-1,i=1..n); NiosJiokJkkiWEc2IjYjIiIiIiIkRikhIiJGKSwmKiQmRiY2IyIiI0YqRilGK0YpLCYqJCZGJjYjRipGKkYpRitGKSwmKiQmRiY2IyIiJUYqRilGK0YpLCYqJCZGJjYjIiImRipGKUYrRiksJiokJkYmNiMiIidGKkYpRitGKSwmKiQmRiY2IyIiKEYqRilGK0YpLCYqJCZGJjYjIiIpRipGKUYrRik= F1:=seq(X[a[1]]^2+X[a[1]]*X[a[2]]+X[a[2]]^2,a in A); NjAsKCokJkkiWEc2IjYjIiIiIiIjRikqJkYlRikmRiY2I0YqRilGKSokRixGKkYpLChGJEYpKiZGJUYpJkYmNiMiIiZGKUYpKiRGMUYqRiksKEYkRikqJkYlRikmRiY2IyIiJ0YpRikqJEY3RipGKSwoRi5GKSomRixGKSZGJjYjIiIkRilGKSokRj1GKkYpLChGLkYpKiZGLEYpJkYmNiMiIiVGKUYpKiRGQ0YqRiksKEYuRikqJkYsRikmRiY2IyIiKUYpRikqJEZJRipGKSwoRkBGKSomRj1GKUZDRilGKUZGRiksKEZARikqJkY9RilGSUYpRilGTEYpLChGRkYpKiZGQ0YpRjFGKUYpRjRGKSwoRkZGKSomRkNGKSZGJjYjIiIoRilGKSokRlVGKkYpLChGNEYpKiZGMUYpRjdGKUYpRjpGKSwoRjRGKSomRjFGKUZVRilGKUZYRiksKEY6RikqJkY3RilGVUYpRilGWEYpLChGWEYpKiZGVUYpRklGKUYpRkxGKQ== F:=[F0,F1]; NzgsJiokJkkiWEc2IjYjIiIiIiIkRikhIiJGKSwmKiQmRiY2IyIiI0YqRilGK0YpLCYqJCZGJjYjRipGKkYpRitGKSwmKiQmRiY2IyIiJUYqRilGK0YpLCYqJCZGJjYjIiImRipGKUYrRiksJiokJkYmNiMiIidGKkYpRitGKSwmKiQmRiY2IyIiKEYqRilGK0YpLCYqJCZGJjYjIiIpRipGKUYrRiksKCokRiVGMEYpKiZGJUYpRi5GKUYpKiRGLkYwRiksKEZPRikqJkYlRilGPEYpRikqJEY8RjBGKSwoRk9GKSomRiVGKUZBRilGKSokRkFGMEYpLChGUUYpKiZGLkYpRjNGKUYpKiRGM0YwRiksKEZRRikqJkYuRilGN0YpRikqJEY3RjBGKSwoRlFGKSomRi5GKUZLRilGKSokRktGMEYpLChGWkYpKiZGM0YpRjdGKUYpRmduRiksKEZaRikqJkYzRilGS0YpRilGam5GKSwoRmduRikqJkY3RilGPEYpRilGVEYpLChGZ25GKSomRjdGKUZGRilGKSokRkZGMEYpLChGVEYpKiZGPEYpRkFGKUYpRldGKSwoRlRGKSomRjxGKUZGRilGKUZjb0YpLChGV0YpKiZGQUYpRkZGKUYpRmNvRiksKEZjb0YpKiZGRkYpRktGKUYpRmpuRik= G:=Basis(F,plex(seq(X[i],i=1..n))); NyosJiokJkkiWEc2IjYjIiIpIiIkIiIiISIiRissKCokJkYmNiMiIigiIiNGKyomRi9GK0YlRitGKyokRiVGMkYrLCZGJUYsJkYmNiMiIidGKywoRi9GK0YlRismRiY2IyIiJkYrLCZGJUYsJkYmNiMiIiVGKywmRi9GLCZGJjYjRipGKywoRi9GK0YlRismRiY2I0YyRissJkYvRiwmRiY2I0YrRis= map(g->LeadingMonomial(g,plex(seq(X[i],i=1..n))),G); NyoqJCZJIlhHNiI2IyIiKSIiJCokJkYlNiMiIigiIiMmRiU2IyIiJyZGJTYjIiImJkYlNiMiIiUmRiU2I0YpJkYlNiNGLiZGJTYjIiIi IsZeroDimensional(F); SSV0cnVlRyUqcHJvdGVjdGVkRw== for i from 1 to n do p[i]:=UnivariatePolynomial(X[i],F) end do; LCYqJCZJIlhHNiI2IyIiIiIiJEYoISIiRig= LCYqJCZJIlhHNiI2IyIiIyIiJCIiIiEiIkYq LCYqJCZJIlhHNiI2IyIiJEYoIiIiISIiRik= LCYqJCZJIlhHNiI2IyIiJSIiJCIiIiEiIkYq LCYqJCZJIlhHNiI2IyIiJiIiJCIiIiEiIkYq LCYqJCZJIlhHNiI2IyIiJyIiJCIiIiEiIkYq LCYqJCZJIlhHNiI2IyIiKCIiJCIiIiEiIkYq LCYqJCZJIlhHNiI2IyIiKSIiJCIiIiEiIkYq sol:=[solve({op(G)},{seq(X[i],i=1..n)})]; NyU8Ki8mSSJYRzYiNiMiIiItSSdSb290T2ZHNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHRic2IywoKiRJI19aR0YsIiIjRilGMkYpRilGKS8mRiY2I0YzLCZGKiEiIkY4RikvJkYmNiMiIiRGKi8mRiY2IyIiJUYpLyZGJjYjIiImRjcvJkYmNiMiIidGKS8mRiY2IyIiKEYqLyZGJjYjIiIpRik8Ki9GJUYpRjQvRjpGKS9GPkYqRkEvRkZGKi9GSkYpL0ZORio8Ki9GJUY3L0Y1RikvRjpGN0ZUL0ZCRilGVS9GSkY3Rlc= toutessol:=map(allvalues,sol); Nyg8Ki8mSSJYRzYiNiMiIiIsJiMhIiIiIiNGKSomXiMjRilGLUYpIiIkRjBGKS8mRiY2I0YtLCZGK0YpKiZeI0YrRilGMUYwRikvJkYmNiNGMUYqLyZGJjYjIiIlRikvJkYmNiMiIiZGNS8mRiY2IyIiJ0YpLyZGJjYjIiIoRiovJkYmNiMiIilGKTwqL0YlRjUvRjNGKi9GOUY1RjsvRkBGKkZDL0ZIRjVGSzwqL0YlRilGMi9GOUYpL0Y8RipGPy9GREYqL0ZIRikvRkxGKjwqRlZGUUZXL0Y8RjVGUy9GREY1RlovRkxGNTwqRlAvRjNGKUZSRlgvRkBGKUZZRlRGZW48KkYkRltvRjhGZ25GXG9GaG5GR0Zpbg== nops(toutessol); IiIn Exercice 2 restart; with(Groebner): f1:=X^2*Y-Y+Z; LCgqJkkiWEc2IiIiI0kiWUdGJSIiIkYoRichIiJJIlpHRiVGKA== f2:=X*Y^2-X+Z; LCgqJkkiWEc2IiIiIkkiWUdGJSIiI0YmRiQhIiJJIlpHRiVGJg== f3:=X+Y+Z-1; LCpJIlhHNiIiIiJJIllHRiRGJUkiWkdGJEYlISIiRiU= on calcule la base de Gr\303\266bner r\303\251duite pour l'ordre lexicographique G:=Basis([f1,f2,f3],plex(X,Y,Z)); NyYsLCokSSJaRzYiIiIlIiIjKiRGJSIiJCEiKCokRiVGKCEjOkYlIiM6ISIkIiIiLCwqJkkiWUdGJkYwRiVGMEYnRixGKEYzISIjRiVGL0YwRjAsLkYpRigqJEYzRihGJ0YsRitGM0Y0RiUhIzwiIidGMCwqSSJYR0YmRjBGM0YwRiVGMCEiIkYw puis les mon\303\264mes dominants de chaque \303\251l\303\251ment de G lmG:=map(e->LeadingMonomial(e,plex(X,Y,Z)),G); NyYqJEkiWkc2IiIiJSomRiQiIiJJIllHRiVGKCokRikiIiNJIlhHRiU= les mon\303\264mes standard sont les mon\303\264mes qui ne sont divisilbes par aucub des \303\251l\303\251ments de lmG de sorte que l'on a: B := [1, Y, Z, Z^2, Z^3]; NyciIiJJIllHNiJJIlpHRiUqJEYmIiIjKiRGJiIiJA== ces mon\303\264mes forment une base du quotient Q[X,Y,Z]/I qui esr donc de dimension 5 u_ := X^5+Y^5+Z^5-5*X^2*Y-5*Y^2*Z-5*Z*X^2-1; LDAqJEkiWEc2IiIiJiIiIiokSSJZR0YlRiZGJyokSSJaR0YlRiZGJyomRiQiIiNGKUYnISImKiZGJEYtRitGJ0YuKiZGKUYtRitGJ0YuISIiRic= u:=NormalForm(u_,G,plex(X,Y,Z)); LCwjIiM6IiIjIiIiKiRJIlpHNiIiIiQjIiNORiUqJEYoRiUjIiNYRiVJIllHRikhIiZGKCMhI2xGJQ== u est inversible si et seulement s'il existe v avec uv=1; de plus si v existe il est unique. on cherche v avec des coefficients ind\303\251termin\303\251s. x_1,x_2,x_3,x_3,x_5 on travaille donc dans l'extension Q(x_1,x_2,x_3,x_3,x_5) ; unassign('x'):v:=add(x[i]*B[i],i=1..nops(B)); LCwqJkkiWkc2IiIiJCZJInhHRiU2IyIiJiIiIkYrKiZGJCIiIyZGKDYjIiIlRitGKyomSSJZR0YlRismRig2I0YtRitGKyomRiRGKyZGKDYjRiZGK0YrJkYoNiNGK0Yr p:=NormalForm(expand(u*v)-1,G,plex(X,Y,Z));; LDYqJiwsJkkieEc2IjYjIiIiISRnIiZGJjYjIiIjISQ1IiZGJjYjIiIkISMhKSZGJjYjIiIlISNTJkYmNiMiIiYhIz9GKUkiWUdGJ0YpI0YpIiNLKiYsLEYlIiRnJkYrISQhKSpGLyIlIW8jRjMiJj9FIkY3IiZJLSdGKUkiWkdGJ0YxRjwqJiwsRiUiJD8oRishJSs6Ri8iJVNLRjMiJmdnIkY3IiYhUnZGKUZFRi1GPComLCxGJSElUzVGKyIkbChGLyElITMlRjMhJiFHPkY3ISZTMSpGKUZFRilGPEYlIyIjOkYtRisjISNYRj1GLyMiI2JGLUYzIyIkMCZGNUY3IyIlTloiIikhIiJGKQ== sol:=solve({coeffs(p,{X,Y,Z})},{seq(x[i],i=1..nops(B))}); PCcvJkkieEc2IjYjIiIiIyEoXilRPCIoZyU+Ni8mRiU2IyIiIyMhJGMjIiU6Ni8mRiU2IyIiJCMiKHhSayIiJ0koZiYvJkYlNiMiIiUjIicicGQjIicjKlFBLyZGJTYjIiImIyEnVkA/Rjk= assign(sol);v; LCwqJEkiWkc2IiIiJCMhJ1ZAPyInSShmJiokRiQiIiMjIicicGQjIicjKlFBSSJZR0YlIyEkYyMiJTo2RiQjIih4UmsiRikjISheKVE8IihnJT42IiIi sur cet exemple i lest possible de r\303\251soudre explicitement le syst\303\250me S1:=[solve({f1,f2,f3},{X,Y,Z})]: S2:=map(allvalues,S1): S3:=map(evalc,S2); Nyc8JS9JIlhHNiIsJiMiIiIiIiVGKSokIiM8I0YpIiIjIyEiIkYqL0kiWUdGJiwmRihGKUYrRigvSSJaR0YmRi08JS9GJUYzL0YyRidGNDwlL0YlLCoqJiIiKSNGKSIiJC1JJGNvc0c2JCUqcHJvdGVjdGVkR0koX3N5c2xpYkdGJjYjLCRJI1BpR0ZDI0YuIiIqRilGLyomRj0jRi5GP0ZARikjRjBGPSomRj9GLSwmKiZGPUY+LUkkc2luR0ZCRkVGKUYtKiZGPUZLRlBGKUYoRilGLSomXiNGKUYpLChGT0YvRlIjRilGPSomRj9GLSwmRjxGLUZKRi9GKSNGMEYuRilGKS9GMkY7L0Y1LCxGPEYtRkpGKEZNRjBGKUYpKiZGVEYpLChGT0YtRlJGL0ZXRilGKUYpPCUvRiUsKEY8Ri1GSkYoKiZGVEYpLCZGT0YtRlJGL0YpRikvRjJGW28vRjUsKkY8RjBGSkZZRilGKSomRlRGKSwmRk9GMEZSRi1GKUYpPCUvRiUsKkY8Ri9GSkZMRk1GWSomRlRGKSwoRk9GL0ZSRlZGV0YtRilGKS9GMkZlby9GNSwsRjxGLUZKRihGTUYpRilGKSomRlRGKSwoRk9GLUZSRi9GV0YwRilGKQ== nops(S3); IiIm