Université Claude Bernard LYON 1 Master MA Mathématiques générales Algèbre et calcul formel

Contrôle terminal du 16 avril 2014

durée 2h

Exercice 1.

On considère la courbe algébrique $\mathcal C$ d'équation

$$F = X^3 + Y^3 - 3XY$$

- 1. Montrer que \mathcal{C} est un ensemble infini.
- 2. Montrer que C est irréductible
- 3. Montrer que \mathcal{C} possède un unique point singulier.
- 4. Préciser la nature de ce point.

Exercice 2.

1. Soient $\mathcal{I} = \langle f_1, \dots, f_r \rangle$ et $\mathcal{J} = \langle g_1, \dots, g_s \rangle$ deux idéaux de $K[X_1, \dots, X_n]$ où K est un corps ; on considère l'idéal

$$\mathcal{K} = \langle Y f_1, \cdots, Y f_r, (1 - Y) g_1, \cdots, (1 - Y) g_s \rangle$$

de $K[X_1, \dots, X_n, Y]$. Montrer que $\mathcal{K} \cap K[X_1, \dots, X_n] = \mathcal{I} \cap \mathcal{J}$.

- 2. En déduire un algorithme qui étant donnés un système générateur $[f_1, \dots, f_r]$ de \mathcal{I} et un système générateur $[g_1, \dots, g_s]$ de \mathcal{J} permet de construire un système générateur de $\mathcal{I} \cap \mathcal{J}$.
- 3. Montrer que si la formule de Bezout est valide dans $K[X_1, \dots, X_n]$, on a n=1.
- 4. Expliquer comment calculer le pgcd de deux polynômes $f, g \in K[X_1, \dots, X_n]$ $(n \geq 2)$ sans factoriser f et g.

Exercice 3.

Soient \mathbb{F}_q un corps fini de caractéristique p avec $\operatorname{Card}(\mathbb{F}_q) = q$ et Ω une clôture algébrique de \mathbb{F}_q . Pour tout sous-corps $K \subset \Omega$ de Ω et tout idéal I de $K[X_1, \dots, X_n]$, on désigne par $Z_K(I) \subset K^n$ l'ensemble des zéros de I dans K^n .

De même, pour toute partie algébrique $E \subset \Omega^n$ on désigne par $\mathcal{I}_K(E)$ l'idéal de $K[X_1, \dots, X_n]$ formé des polynômes $f \in K[X_1, \dots, X_n]$ tels que $\widetilde{f}|_E = 0$ où $\widetilde{f}: \Omega^n \longrightarrow \Omega$ est l'application polynomiale associée à f.

- 1. Montrer que $V = \mathbb{F}_q^n$ est une partie algébrique de Ω^n .
- 2. Montrer que $\mathbf{G} = \{X_1^q X_1, \cdots, X_n^q X_n\}$ est une base de Gröbner *universelle* de l'idéal $\mathcal{N} = \langle X_1^q X_1, \cdots, X_n^q X_n \rangle$ de $\mathbb{F}_q[X_1, \cdots, X_n]$.
- 3. Montrer que $\mathcal{N} = \mathcal{I}_{\mathbb{F}_q}(V)$
- 4. Déterminer le rang de la \mathbb{F}_q -algèbre $\mathbb{F}_q[X_1, \cdots, X_n]/\mathcal{N}$.

5. On désigne par $\mathcal{F}(\mathbb{F}_q^n, \mathbb{F}_q)$ la \mathbb{F}_q -algèbre des applications de \mathbb{F}_q^n dans \mathbb{F}_q . Montrer que l'homomorphisme canonique :

$$\begin{array}{ccc}
\mathbb{F}_q[X_1, \cdots, X_n] & \longrightarrow & \mathcal{F}(\mathbb{F}_q^n, \mathbb{F}_q) \\
f & \longrightarrow & \widetilde{f}|_{\mathbb{F}_q^n}
\end{array}$$

induit un isomorphisme de \mathbb{F}_q -algèbres :

$$\mathbb{F}_q[X_1,\cdots,X_n]/\mathcal{N} \xrightarrow{\simeq} \mathcal{F}(\mathbb{F}_q^n,\mathbb{F}_q)$$

- 6. Montrer que toute partie $E \subset \mathbb{F}_q^n$ de \mathbb{F}_q^n est une partie algébrique de Ω^n .
- 7. Pour tout idéal I de $\mathbb{F}_q[X_1,\cdots,X_n]$, montrer que $\mathcal{I}_{\mathbb{F}_q}(Z_{\mathbb{F}_q}(I))=I+\mathcal{N}$
- 8. Montrer que l'application $I \longrightarrow Z_{\Omega}(I)$ est une bijection de l'ensemble des idéaux $I \supset \mathcal{N}$ de $\mathbb{F}_q[X_1, \dots, X_n]$ contenant \mathcal{N} sur l'ensemble des parties de \mathbb{F}_q^n .
- 9. Pour tout idéal I de $\mathbb{F}_q[X_1, \dots, X_n]$, montrer que $\operatorname{Card}(Z_{\mathbb{F}_q}(I))$ est égal au rang de la \mathbb{F}_q -algèbre $\mathbb{F}_q[X_1, \dots, X_n]/(I + \mathcal{N})$.
- 10. On prend q=7 et n=2 et on considère la courbe elliptique $\mathcal C$ d'équation :

$$F = Y^2 - X^3 - 2X - 4$$

Déterminer le nombre de points rationnels de C (ie. les points $(x,y) \in C \cap \mathbb{F}_7^2$). La base de Gröbner réduite de l'idéal $\langle F, X^7 - X, Y^7 - Y \rangle$ de $\mathbb{F}_7[X,Y]$, pour l'ordre lexicographique tel que $X \prec Y$, calculée avec SAGE, est :

$$B = [Y^2 - X^3 + 5X + 3, YX^4 + 3YX^3 + YX^2 - YX, X^5 + 2X^4 + 5X^3 + 5X^2 + X]$$