Factorisation des polynômes univariés

1 Factorisation dans $\mathbb{F}_p[X]$

On considère un polynôme unitaire $F \in \mathbb{F}_p[X]$, de degré $n \geq 2$ et sans facteur multiple ¹ L'algèbre $\mathcal{A} = \mathbb{F}_p[X]/\mathbb{F}_p[X]$ F est de rang n sur \mathbb{F}_p de base canonique $(\overline{X^{n-i}})_{1 \leq i \leq n}$: via la division euclidienne par F, chaque élément de $\overline{G} \in \mathcal{A}$ est représenté par un unique polynôme $G \in \mathbb{F}_p[X]$ avec G = 0 ou $\deg(G) \leq n - 1$.

On considère l'endomorphisme de Frobenius de ${\mathcal A}$:

$$\begin{array}{ccc} \mathcal{F}_{\mathcal{A}/\mathbb{F}_p} : \mathcal{A} & \longrightarrow & \mathcal{A} \\ \overline{G} & \longrightarrow & \overline{G}^p \end{array}$$

l'algèbre de Berlekamp est la sous-algèbre $\mathcal{A}^{\mathcal{F}_{\mathcal{A}/\mathbb{F}_p}} = \operatorname{Ker}(\mathcal{F}_{\mathcal{A}/\mathbb{F}_p} - \operatorname{Id}_{\mathcal{A}})$ des points fixes de $\mathcal{F}_{\mathcal{A}/\mathbb{F}_p}$:

$$\overline{G} \in \mathcal{A}^{\mathcal{F}_{A/\mathbb{F}_p}} \iff G^p \equiv G \bmod F$$

La matrice de Berlekamp est la matrice $Q=(Q_{i,j})_{1\leq i,j\leq n}$ de l'application \mathbb{F}_p -linéaire $Q=\mathcal{F}_{\mathcal{A}/\mathbb{F}_p}-\mathrm{Id}_{\mathcal{A}}$ dans la base canonique $(\overline{X^{n-i}})_{1\leq i\leq n}$ de \mathcal{A} : pour $1\leq j\leq n,\ R_j=\sum\limits_{i=1}^nQ_{i,j}X^{n-i}$ est le reste de la division euclidienne de $\mathcal{Q}(X^{n-j})=X^{p(n-j)}-X^{n-j}$ par F dans $\mathbb{F}_p[X]$.

Proposition 1

Soit $F \in \mathbb{F}_p[X]$ un polynôme unitaire sans facteur multiple; le rang² r de l'algèbre de Berlekamp $\mathcal{A}^{\mathcal{F}_{A/\mathbb{F}_p}}$ est égal au nombre r des facteurs irréductibles de F.

On a $r \geq 1$. En particulier F est irréductible si et seulement $\mathcal{A}^{\mathcal{F}_{\mathcal{A}/\mathbb{F}_p}}$ est de rang 1.

 ∇ Considérons alors la factorisation en polynômes irréductibles $F = F_1 \cdots F_r$. Chacun des polynômes F_i $(1 \leq i \leq r)$ étant irréductible, $K_i = \mathbb{F}_p[X]/\langle F_i \rangle$ est une \mathbb{F}_p -extension de degré n_i avec $n_i = \deg(F_i)$. On a $K_i^{\mathcal{F}_{K_i}/\mathbb{F}_p} = \mathbb{F}_p$.

Les polynômes irréductibles F_i , $(1 \le i \le r)$, étant deux à deux distincts, le théorème chinois fournit un isomorphisme de \mathbb{F}_p -algèbres, compatible avec les applications de Frobenius :

$$\phi: \quad \mathcal{A} \longrightarrow K_1 \times \cdots \times K_r$$

$$G \mod F \longrightarrow (G \mod F_1, \cdots, G \mod F_r)$$

de sorte que ϕ induit un $isomorphisme^3$ de \mathbb{F}_p -algèbres :

$$\phi: \mathcal{A}^{\mathcal{F}_{\mathcal{A}/\mathbb{F}_p}} \longrightarrow \mathbb{F}_p^r$$

Λ

^{1.} ce qui équivaut à $\operatorname{pgcd}(F, F') = 1$ ou à $\operatorname{discrim}_X(F) \neq 0$.

^{2.} ie. la dimension du \mathbb{F}_p -espace vectoriel $\mathcal{A}^{\mathcal{F}_{\mathcal{A}/\mathbb{F}_p}}$, on a $r = n - \operatorname{rg}(Q)$.

^{3.} Etant donné $G \in \mathbb{F}_p[X]$, on a $\overline{G} \in \mathcal{A}^{\mathcal{F}_{A/\mathbb{F}_p}}$ si et seulement le reste de la division euclidienne (dans $\mathbb{F}_p[X]$) de G par F_i est une constante $c_i \in \mathbb{F}_p$ pour $1 \leq i \leq r$ et l'on a alors $\phi(\overline{G}) = (c_i)_{1 \leq i \leq r}$.

Proposition 2

Soit $F \in \mathbb{F}_p[X]$ un polynôme unitaire sans facteur multiple; pour tout $\overline{G} \in \mathcal{A}^{\mathcal{F}_{\mathcal{A}/\mathbb{F}_p}}$ non constant on a la factorisation non triviale de F:

$$F = \prod_{x \in \mathbb{F}_p} \operatorname{pgcd}(F, G - x)$$

 ∇ On a dans $\mathbb{F}_p[X]$ l'égalité :

$$X^p - X = \prod_{x \in \mathbb{F}_p} (X - x)$$

de sorte que pour tout $G \in \mathbb{F}_p[X]$ avec $\deg(G) \geq 1$ (pour G constant on a une égalité triviale) on a 4 :

$$G^p - G = \prod_{x \in \mathbb{F}_p} (G - x)$$

les facteurs $G-x,\,x\in\mathbb{F}_p,$ étant deux à deux premiers entre eux 5 on a :

$$\operatorname{pgcd}(F, G^p - G) = \prod_{x \in \mathbb{F}_p} \operatorname{pgcd}(F, G - x)$$

Cette factorisation est non triviale lorsque \overline{G} n'est pas constant, sinon il existerait $x \in \mathbb{F}_p$ tel que $F = \operatorname{pgcd}(F, G - x)$ de sorte que F diviserait G - x. Par division euclidienne ⁶ de G par F on se ramène au cas où $\deg(G) \leq n - 1 < \deg(F)$. \triangle

Pour obtenir la factorisation complète de F on applique successivement cette égalité aux éléments G d'une base $(G_k)_{1 \le k \le r}$ de $\mathcal{A}^{\mathcal{F}_{\mathcal{A}/\mathbb{F}_p}}$ dans laquelle $G_r = 1$ par l'algorithme suivant :

Algorithme 1 (algorithme de Berlekamp)

- 1. entrée : $F \in \mathbb{F}_p[X]$ unitaire et sans facteur multiple.
- 2. $initialisation : \mathcal{E} = \{F\}^7$
- $\it 3. \,\,\, calculer\,\, la\,\, matrice\,\, de\,\, Berlekamp\,\, Q$
- 4. calculer une base $G_1, \dots, G_{r-1}, G_r = 1$ de $\mathcal{A}^{\mathcal{F}_{\mathcal{A}/\mathbb{F}_p}}$
- 5. boucle pour k variant de 1 à r-1 :
 - (a) sortir si $Card(\mathcal{E}) = r$.
 - (b) soit $\mathcal{E} = \{E_1, \dots, E_s\}$; calculer $\widetilde{\mathcal{E}}$ l'ensemble des $\operatorname{pgcd}(E_j, G_k x)$, $1 \leq j \leq s$ et $x \in \mathbb{F}_p$, qui sont non constants⁸
 - $(c) \ \mathcal{E} := \widetilde{\mathcal{E}}$
- 6. sortie : \mathcal{E} l'ensemble $\{F_1, \dots, F_r\}$ des facteurs irréductibles de F.
- 4. considérer l'homomorphisme d'algèbre $\phi: \mathbb{F}_p[X] \longrightarrow \mathbb{F}_p[X]$ caractérisé par $\phi(X) = G$
- 5. si E_1, \dots, E_s sont deux à deux premiers entre eux on a $\operatorname{pgcd}(\prod_{i=1}^s E_j, F) = \prod_{i=1}^s \operatorname{pgcd}(E_j, F)$
- 6. si R est le reste de la division euclidienne de G par F on a $\operatorname{pgcd}(F,G)=\operatorname{pgcd}(F,R)$
- 7. En général $\mathcal{E} = \{E_1, \dots, E_s\}$ est un ensemble fini de polynômes unitaires tels que $F = \prod_{j=1}^s E_j$; remarquons que les éléments E_j de \mathcal{E} sont deux à deux premiers entre eux.
 - 8. ie. différents de 1.

 ∇ Supposons qu'à l'étape k-1 on ait $F=\prod_{j=1}^s E_j$; à l'étape k on a alors :

$$F = \prod_{x \in \mathbb{F}_p} \operatorname{pgcd}(F, G_k - x)$$

$$= \prod_{x \in \mathbb{F}_p} \operatorname{pgcd}(\prod_{j=1}^s E_j, G_k - x)$$

$$= \prod_{x \in \mathbb{F}_p} \prod_{j=1}^s \operatorname{pgcd}(E_j, G_k - x)$$

Si l'on sort de la boucle en (a), le nombre de facteurs non constants de F est égal à r donc ce sont nécessairement les facteurs irréductibles.

Remarquons ensuite qu'un élément E de \mathcal{E} calculé à l'étape k de la boucle est de la forme $\operatorname{pgcd}(E,G_k-s_k)$ où E est un élément de \mathcal{E} obtenu à l'étape k-1; de sorte que \widetilde{E} divise G_k-x_k et E donc, en raisonnant par récurrence, divise aussi des éléments G_j-x_j pour $1 \leq j \leq k-1$. Supposons que l'on a parcouru les r-1 étapes de la boucle et soit $\mathcal{E} = \{E_1, \dots, E_s\}$ l'ensemble obtenu. Ainsi pour tout $k, 1 \leq k \leq r-1$, il existe donc $x_k \in \mathbb{F}_p$ tel que :

$$G_k \equiv x_k \mod E$$

C'est encore vrai pour k=r en prenant $x_r=1$. Puisque $(G_k)_{1\leq k\leq r}$ est une base de $A^{\mathcal{F}}$, pour tout $G\in A^{\mathcal{F}_A/\mathbb{F}_p}$, il existe $x_G,\ 0\leq s\leq p-1$ tel que :

$$G \equiv x_G \mod E$$

S'il existait $E \in \mathcal{E}$ qui ne soit pas irréductible; il existerait alors des facteurs irréductibles distincts F_i et F_j de F qui diviseraient E. Pour tout $G \in A^{\mathcal{F}}$, on aurait alors:

$$G \equiv x_G \mod F_i$$
 $G \equiv x_G \mod F_i$

ce qui contredirait la surjectivité de l'homorphisme :

$$\phi: \mathcal{A}^{\mathcal{F}_{\mathcal{A}/\mathbb{F}_p}} \longrightarrow \mathbb{F}_n^r$$

Ainsi E_j est irréductible pour $1 \le i \le s$ et comme $F = \prod_{j=1}^s E_j$ on a s=r et $E_j=F_j$ pour $1 \le j \le r$. Δ

2 Le lemme de Hensel

Proposition 3 (lemme de Hensel)

Soit $F \in \mathbb{Z}[X]$ un polynôme unitaire de degré d; on suppose donnés des polynômes unitaires $G_1, H_1 \in \mathbb{Z}[X]$, de degrés respectifs r et s, tels que :

- 1. $\overline{G_1}$ et $\overline{H_1}$ premiers entre eux dans $\mathbb{F}_p[X]$
- 2. $F \equiv G_1 H_1 \mod p\mathbb{Z}[X]$

Alors pour tout entier $n \geq 2$, il existe des polynômes unitaires $G_n, H_n \in \mathbb{Z}[X]$, uniques modulo $p^n\mathbb{Z}[X]$ vérifiant les conditions suivantes :

- 1. $G_n \equiv G_{n-1} \mod p^{n-1}\mathbb{Z}[X]$ et $H_n \equiv H_{n-1} \mod p^{n-1}\mathbb{Z}[X]$
- 2. $F \equiv G_n H_n \mod p^n \mathbb{Z}[X]$

 ∇ On a $\deg(\overline{G_1}) = r$, $\deg(\overline{H_1}) = s$ et par suite d = r + s. De plus, puisque $\overline{G_1}$ et $\overline{H_1}$ sont premiers entre eux dans $\mathbb{F}_p[X]$, l'application $\mathbb{F}_p[X]$ -linéaire :

$$\partial: K[X]_{\leq s-1} \oplus K[X]_{\leq r-1} \longrightarrow K[X]_{\leq d-1}$$

$$(B,A) \longrightarrow B\overline{G_1} + A\overline{H_1}$$

est bijective.

On procède par récurrence sur $n \geq 2$ en supposant le résultat établi jusqu'à l'ordre n-1. Puisque

$$\begin{cases}
F \equiv G_{n-1}H_{n-1} \mod p^{n-1}\mathbb{Z}[X] \\
\deg(G_{n-1}) = r \\
\deg(H_{n-1}) = s \\
F, G_{n-1}, H_{n-1} \text{ sont unitaires}
\end{cases}$$

il existe un polynôme $C \in \mathbb{Z}[X]$ tel que

$$F = G_{n-1}H_{n-1} + p^{n-1}C$$
 et $\deg(C) \le d-1$

Il existe alors des polynômes $A, B \in \mathbb{Z}[X]$ avec $\deg(A) < r$ et $\deg(B) < s$ tels que 9 :

$$\overline{G_1}\,\overline{B} + \overline{H_1}\,\overline{A} = \overline{C} \text{ dans } \mathbb{F}_p[X]$$

avec \overline{A} et \overline{B} uniques dans $\mathbb{F}_p[X]$.

Notons que:

$$\overline{G_{n-1}} = \overline{G_1}$$
 et $\overline{H_{n-1}} = \overline{H_1}$

de sorte que :

$$G_{n-1}B + H_{n-1}A = C + pD$$
 avec $D \in \mathbb{Z}[X]$

On pose alors:

$$G_n = G_{n-1} + p^{n-1}A$$
 et $H_n = H_{n-1} + p^{n-1}B$

de sorte que G_n et H_n sont unitaires et vérifient les conditions :

$$\begin{cases} \deg(G_n) = \deg(G_{n-1}) \\ \deg(H_n) = \deg(H_{n-1}) \\ G_n \equiv G_{n-1} \mod p^{n-1} \\ H_n \equiv H_{n-1} \mod p^{n-1} \end{cases}$$

On a de plus :

$$F - G_n H_n = F - (G_{n-1} + p^{n-1}A)(H_{n-1} + p^{n-1}B)$$

$$= F - G_{n-1}H_{n-1} - p^{n-1}(G_{n-1}B + H_{n-1}A) - p^{2n-2}AB$$

$$= \hat{p}^{n-1}C - p^{n-1}(C + pD) - p^{2n-2}AB$$

$$= p^nD - p^{n-2}AB$$

d'où finalement :

$$F \equiv G_n H_n \bmod p^n \mathbb{Z}[X]$$

$$\overline{G_1}\,\overline{U} + \overline{H_1}\,\overline{V} = \overline{1}$$

Pour calculer A et B, on effectue la division euclidienne de \overline{CV} par $\overline{G_1}:\overline{CV}=\overline{G_1Q}+\overline{A}$ avec $\deg(A)\leq r-1$ et on prend $\overline{B}=\overline{UC}+\overline{H_1Q}$ de sorte que $\deg(B)\leq s-1$.

^{9.} L'algorithme d'Euclide étendu permet de calculer des polynômes $U,V\in\mathbb{Z}[X]$ avec $\deg(U)\leq s-1$ et $\deg(V)\leq r-1$ tels que :

Pour établir l'unicité, supposons que l'on ait d'autres polynômes $\widetilde{G_n}$ et $\widetilde{H_n}$ satisfaisant aux mêmes conditions. On a alors :

$$\widetilde{G_n} = G_n + p^{n-1}M$$
 et $\deg(M) < \deg(\widetilde{G_n}) = \deg(G_n)$
 $\widetilde{H_n} = H_n + p^{n-1}N$ et $\deg(N) < \deg(\widetilde{H_n}) = \deg(H_n)$

de sorte que

$$\underbrace{\widetilde{G_n}\widetilde{H_n}}_{=F+p^n\widetilde{P}} = \underbrace{G_nH_n}_{=F+p^nP} + p^{n-1}(G_nN + H_nM) + p^{2n-2}MN$$

Il en résulte que dans K[X] on a

$$\overline{G_nN} + \overline{H_nM} = \overline{0}$$

Mais $\overline{G_n} = \overline{G_1}$ et $\overline{H_n} = \overline{H_1}$ sont premiers entre eux dans K[X] de sorte que $\overline{M} = \overline{N} = \overline{0}$ et p divise M et N. Finalement on :

$$\widetilde{G_n} \equiv G_n \mod \mathbb{Z}[X]p^n \text{ et } \widetilde{H_n} \equiv H_n \mod \mathbb{Z}[X]p^n$$

Δ

On en déduit l'algorithme suivant :

Algorithme 2 (Relèvement de Hensel)

- 1. entrées :
 - (a) p premier
 - (b) $F, G, H \in \mathbb{Z}[X]$ tels que
 - i. F est unitaire
 - ii. $\overline{F} = \overline{G}.\overline{H}$ avec \overline{G} et \overline{H} unitaires et premiers entre eux dans $\mathbb{F}_p[X]$
 - iii. calculer les coefficients de Bezout U et V de G et H dans $\mathbb{F}_p[X]$: GU + HV = 1
 - (c) $n \geq 2$
- 2. boucle pour k variant de 2 à n :

(a)
$$C := (F - GH)/p^{k-1}$$

- (b) diviser dans $\mathbb{F}_p[X]$: VC = GQ + A avec deg(A) < deg(G)
- (c) $B := UC + QH \mod \mathbb{Z}[X]p$
- (d) $G := G + p^{k-1}A$
- (e) $H := H + p^{k-1}B$

3. sorties: G, H tels que $F \equiv GH \mod \mathbb{Z}[X]p^n$

Exemple:

On considère le polynôme :

$$F = X^9 + 4X^8 + X^7 + X^6 + X^5 + 2X^4 + 4X^3 + 3X^2 + 2 \in \mathbb{Z}[X]$$

On prend p = 5. Dans $\mathbb{F}_5[X]$, on a $\overline{F} = \overline{G_1 H_1}$ avec :

$$G_1 = X^3 + X^2 + 4X + 3$$
 et $H_1 = X^6 + 3X^5 + 4X^4 + 2X^3 + 4X^2 + 3X + 4$

On a alors:

$G_2 = X^3 - 4X^2 + 9X + 8$	$H_2 = X^6 + 8X^5 - X^4 - 8X^3 - 11X^2 - 12X - 6$
$G_3 = X^3 + 21X^2 + 34X + 8$	$H_3 = X^6 - 17X^5 - 51X^4 + 17X^3 + 14X^2 + 38X - 31$
$G_4 = X^3 - 229 X^2 + 284 X - 242$	$H_4 = X^6 + 233 X^5 - 51 X^4 - 108 X^3 - 111 X^2 - 212 X -$
	31
$G_5 = X^3 - 1479 X^2 + 1534 X + 1008$	$H_5 = X^6 + 1483 X^5 + 1199 X^4 + 517 X^3 - 736 X^2 +$
	413 X - 31
$G_6 = X^3 + 4771 X^2 - 4716 X + 1008$	$H_6 = X^6 - 4767 X^5 - 1926 X^4 + 3642 X^3 + 2389 X^2 +$
	413 X - 31
$G_7 = X^3 + 36021X^2 - 35966X +$	$H_7 = X^6 - 36017X^5 - 17551X^4 + 19267X^3 +$
1008	$33639 X^2 + 31663 X - 15656$
$G_8 = X^3 + 36021 X^2 - 114091 X -$	$H_8 = X^6 - 36017X^5 - 173801X^4 + 175517X^3 -$
77117	$44486 X^2 + 109788 X + 140594$
$G_9 = X^3 + 426646 X^2 - 504716 X +$	$H_9 = X^6 - 426642 X^5 + 216824 X^4 - 605733 X^3 +$
313508	$736764 X^2 + 500413 X - 250031$
$G_{10} = X^3 - 1526479 X^2 +$	$H_{10} = X^6 + 1526483 X^5 - 3689426 X^4 + 3300517 X^3 -$
1448409 X - 3592742	$3169486 X^2 + 500413 X - 2203156$

On peut généraliser facilement à plusieurs facteurs ¹⁰

3 Factorisation dans $\mathbb{Z}[X]$

3.1 Quelques inégalités.

Etant donné un polynôme $f=a_dX^d+\cdots+a_1X+a_0\in\mathbb{C}[X]$ de degré d, on définit les normes :

$$||f||_1 = \sum_{i=0}^d |a_i|$$
 , $||f||_{\infty} = \max(|a_0|, \dots, |a_d|)$ et $||f||_2 = (|a_d|^2 + \dots + |a_1|^2 + |a_0|^2)^{\frac{1}{2}}$

et la mesure de f:

$$M(f) = |a_d| \prod_{i=1}^d \max(1, |z_i|)$$

où $z_1, \dots, z_d \in \mathbb{C}$ sont les racines ¹¹ de f. Notons que l'on a M(fg) = M(f)M(g) pour $f, g \in \mathbb{C}[X]$

Lemme 1 (inégalité de Landau) Pour tout polynôme $f \in \mathbb{C}[X]$ on a :

$$M(f) \leq ||f||_2$$

^{10.} Soient un polynôme unitaire $\overline{F} \in \mathbb{Z}[X]$ et p un entier premier tel que $\overline{F} \in \mathbb{F}_p[X]$ soit sans facteurs multiples; considérons une factorisation $\overline{F} = \overline{F_1} \cdots \overline{F_r}$ dans $\mathbb{F}_p[X]$ avec les polynômes $\overline{F_i}$ unitaires deux à deux premiers entre eux. Alors, pour tout $n \geq 2$, il existe des polynômes unitaires $G_{n,i} \in \mathbb{Z}[X]$, $1 \leq i \leq r$, uniques modulo $\mathbb{Z}[X]p^n$ tels que :

i. $F \equiv G_{n,1} \cdots G_{n,r} \mod \mathbb{Z}[X]p^n$ (on pose $G_{1,i} = F_i$ pour $1 \le i \le r$)

ii. $G_{n,i} \equiv G_{n-1,i} \mod \mathbb{Z}[X]p^{n-1}$

 $^{11.\} répétées avec leur ordre de multiplicité$

 ∇ Supposons que z_1, \dots, z_s soient les racines z de f telles que $|z| \leq 1$ de sorte que :

$$M(f) = |a_d| \prod_{i=1}^{d} \max(1, |z_i|) = |a_d| \prod_{i=s+1}^{d} |z_i|$$

La formule de Jensen s'écrit :

$$\operatorname{Log}\left|\frac{f(0)}{z_1\cdots z_s}\right| = \frac{1}{2\pi} \int_0^{2\pi} \operatorname{Log}\left|f(e^{i\theta})\right| d\theta$$

On a $|a_0| = |a_d z_1 \cdots z_d|$ et $a_0 = f(0)$ d'où $|\frac{f(0)}{z_1 \cdots z_s}| = |a_d||z_{s+1}| \cdots |z_d| = M(f)$ de sorte que :

$$Log M(f) = \frac{1}{2\pi} \int_0^{2\pi} Log |f(e^{i\theta})| d\theta$$

On a encore:

$$\operatorname{Log} M(f) = \frac{1}{2} \left(\frac{1}{2\pi} \int_0^{2\pi} \operatorname{Log} |f(e^{i\theta})|^2 d\theta \right)$$

Par ailleurs, puisque la fonction Log est concave, on a l'inégalité de Jensen :

$$\frac{1}{2\pi} \int_0^{2\pi} \operatorname{Log}|f(e^{i\theta})|^2 d\theta \le \operatorname{Log}\left(\frac{1}{2\pi} \int_0^{2\pi} |f(e^{i\theta})|^2 d\theta\right)$$

Pour des polynômes f,g on considère le produit scalaire :

$$\langle f, g \rangle = \frac{1}{2\pi} \int_0^{2\pi} f(e^{i\theta}) \overline{g(e^{i\theta})} d\theta$$

pour lequel $(X^i)_{i\leq 0}$ est une base orthonormée de sorte que :

$$\frac{1}{2\pi} \int_0^{2\pi} \text{Log}|f(e^{i\theta})|^2 d\theta = \langle f, f \rangle = |a_d|^2 + \dots + |a_1|^2 + |a_0|^2 = ||f||_2^2$$

et l'on a :

$$\text{Log}M(f) \le \frac{1}{2} \text{Log}(||f||_2^2) = \text{Log}||f||_2$$

d'où l'inégalité de Landau :

$$M(f) \leq ||f||_2$$

On peut aussi démontrer l'inégalité de Landau élémentairement :

Lemme 2 Pour tout polynôme $g \in \mathbb{C}[X]$ et tout $z \in \mathbb{C}$ on a :

$$||(X-z)g||_2 = ||(\overline{z}X-1)g||_2$$

 \triangledown Posons $g = \sum_{i=0}^{e} c_i X^i$. On a alors :

$$||(X-z)g||_{2}^{2} = |zc_{0}|^{2} + \sum_{i=1}^{e} |c_{i-1} - zc_{i}|^{2} + |c_{e}|^{2}$$

$$= |zc_{0}|^{2} + \sum_{i=1}^{e} (|c_{i-1}^{2} + |z|^{2}|c_{i}|^{2} - zc_{i}\overline{c_{i-1}} - \overline{z}c_{i-1}\overline{c_{i}}) + |c_{e}|^{2}$$

$$= (1 + |z|^{2})||g||_{2}^{2} - \sum_{i=1}^{e} (zc_{i}\overline{c_{i-1}} + \overline{z}c_{i-1}\overline{c_{i}})$$

0n a alors

$$||(\overline{z}X - 1)g||_{2} = |\overline{z}|^{2}||(X - \frac{1}{\overline{z}})g||_{2}^{2}$$

$$= |\overline{z}|^{2} \left((1 + \frac{1}{|\overline{z}|^{2}})||g||_{2}^{2} - \sum_{i=1}^{e} (\frac{1}{\overline{z}}c_{i}\overline{c_{i-1}} + \frac{1}{z}c_{i-1}\overline{c_{i}}) \right)$$

$$= (1 + |z|^{2})||g||_{2}^{2} - \sum_{i=1}^{e} (zc_{i}\overline{c_{i-1}} + \overline{z}c_{i-1}\overline{c_{i}})$$

$$= ||(X - z)g||_{2}^{2}$$

Λ

On déduit de ce lemme l'inégalité de Landau :

Soit s le plus grand indice tel que $|z_s| > 1$ de sorte que $M(f) = |a_n| \prod_{i=1}^{s} |z_i|$.

Considérons alors le polynôme :

$$g = a_n \prod_{i=1}^{s} (\overline{z_i}X - 1) \prod_{i=s+1}^{d} (X - z_i)$$

On a alors $||f||_2 = ||g||_2 \ge |\mathrm{lc}(g)| = M(f)$. \triangle

Corollaire 1

On les inégalités :

$$||f||_{\infty} \le ||f||_2 \le ||f||_1 \le (d+1)||f||_{\infty}$$
 et $2^{-d}||f||_1 \le M(f) \le ||f||_2$

 ∇ Le premier groupe reprend les inégalités sur les normes de \mathbb{C}^{d+1} . Par ailleurs on a les relations entre coefficients et racines :

$$a_{d-i} = (-1)^i a_d E_i(z_1, \dots, z_d) \text{ pour } 1 \le i \le d$$

où E_1, \cdots, E_d désignent les polynômes symétriques élémentaires en d indéterminées X_1, \cdots, X_d . On a :

$$||f||_{1} = \sum_{i=0}^{d} |a_{i}|$$

$$= |a_{d}| + \sum_{i=1}^{d} |a_{d-i}|$$

$$\leq |a_{d}|(1 + \sum_{i=1}^{d} |E_{i}(z_{1}, \dots, z_{d})|)$$

$$\leq |a_{d}| \prod_{i=0}^{d} (1 + |z_{i}|)$$

$$\leq |a_{d}| \prod_{i=0}^{d} 2\max(1, |z_{i}|)$$

$$\leq 2^{d} M(f)$$

La dernière relation étant l'inégalité de Landau. △

Corollaire 2 (borne de Mignotte)

Soient $f, g \in \mathbb{Z}[X]$ avec g|f; on pose $d = \deg(f)$; on a:

$$||g||_{\infty} \le 2^d ||f||_2 \le 2^d (d+1)||f||_{\infty}$$

 ∇ Soit $e = \deg(g)$; si f = gh on a:

$$||g||_{\infty}||h||_{\infty} \le ||g||_{1}||h||_{1}$$

 $\le 2^{e} M(f)2^{d-e}M(h)$
 $\le 2^{d} M(f)$
 $\le 2^{d} ||f||_{2}$
 $\le 2^{d} (d+1)||f||_{\infty}$

Δ

3.2 Factorisation dans $\mathbb{Z}[X]$

On considère un polynôme unitaire ¹² sans facteur multiple ¹³ $f \in \mathbb{Z}[X]$. On détermine alors un entier premier p impair tel que la réduction \overline{f} de f modulo p reste sans facteur multiple ¹⁴. On factorise ¹⁵ alors \overline{f} dans $\mathbb{Z}/p\mathbb{Z}[X]$.

On choisit ensuite une borne 16 B pour les coefficients des facteurs g de f puis le plus petit exposant n tel que $p^n > 2B$.

On utilise la représentation symétrique des éléments de $\mathbb{Z}/\mathbb{Z}p^n$ i.e. on prend comme système de représentants l'intervalle entier $[-\frac{p^n-1}{2},\frac{p^n-1}{2}]$, ainsi les coefficients b_j d'un diviseur g de f s'écrivent de la même manière dans \mathbb{Z} et dans $\mathbb{Z}/\mathbb{Z}p^n$ puisque que l'on a $|b_j| \leq B \leq \frac{p^n-1}{2}$.

On construit alors le relèvement de Hensel dans $\mathbb{Z}/p^n\mathbb{Z}[X]$ de la factorisation précédente et l'on obtient donc $f \equiv P_1 \cdots P_r \mod p^n$.

Enfin on essaie des combinaisons $P_{j_1} \cdots P_{j_k}$ jusqu'à obtenir une factorisation complète de f.

Algorithme 3 (Factorisation de Zassenhaus)

- 1. entrée : $f \in \mathbb{Z}[X]$ sans facteur multiple
- 2. calculer p premier tel que \overline{f} soit sans facteur multiple dans \mathbb{F}_p
- 3. calculer une borne B pour les coefficients des facteurs de f
- 4. calculer le plus petit entier n tel que $p^n > 2B$
- 5. factoriser $f \mod p$. On a $\overline{f} = \overline{F_1} \cdots \overline{F_N}$
- 6. former l'ensemble $\mathfrak{P}(\{1,\cdots,N\})$ des parties de $\{1,\cdots,N\}$ d'au plus $\frac{N}{2}$ éléments
- 7. pour S parcourant $\mathfrak{P}(\{1,\cdots,N\})$, boucle :
 - (a) prendre $G = \prod_{i \in S} F_i$ et $H = \prod_{i \notin S} F_i = F/G$
 - (b) calculer le relèvement de Hensel (G_n, H_n) dans $\mathbb{Z}/\mathbb{Z}pk[X]$ de la factorisation $\overline{F} = \overline{GH}$.
 - (c) si G_n divise F dans $\mathbb{Z}[X]$ mémoriser (dans une liste) la factorisation $(G_n, F/G_n)$ obtenue
- 8. sortie: la liste des facteurs de f dans $\mathbb{Z}[X]$.

^{12.} On ramène le cas d'un polynôme primitif $f \in \mathbb{Z}[X]$ de degré d et de coefficient dominant a au cas du polynôme unitaire $\widetilde{f} = a^{d-1}f(\frac{1}{a}X)$. Si l'on a une factorisation $\widetilde{f} = g.h$, on a $a^{d-1}f = g(dX)h(dX)$ et il suffit de considérer les parties primitives des deux membres

^{13.} comme f est primitif il revient au même qu'il soit sans facteur multiple dans $\mathbb{Q}[X]$.

^{14.} ie. tel que $pgcd(\overline{f}, \overline{f}') = \overline{1}$. Cela revient à ce que p ne divise pas le $discriminant \Delta$ de f. Comme f n'a pas de racine multiple on a $\Delta \neq 0$. Remarquons de plus que, d'après le $th\acute{e}or\grave{e}me$ de Hermite-Minkowski on a $\Delta \neq \pm 1$.

^{15.} par exemple à l'aide de l'algorithme de Berlekamp

 $^{16.\,}$ grâce à la borne de Mignotte

Exemple:

On considère le polynôme $X^8+7\,X^7+9\,X^6+55\,X^5+8\,X^4+35\,X^3-86\,X^2-27\,X-2\in\mathbb{Z}[X]$; son discriminant est $\Delta=2^4.3^{18}.5.7^3.73^2.1399$. On peut prendre p=11 pour que $\overline{F}\in\mathbb{F}_{11}[X]$ soit sans facteur multiple. Une borne pour les coefficients des diviseurs de F est F est F est F on a alors F est F

$$X-4, X-1, X+3, X+4, X+5, X^3-4X+1$$

Leurs relèvements de Hensel dans $\mathbb{Z}/p^n\mathbb{Z}[X]$ sont :

$$X + 78393, X - 1, X + 70656, X - 70649, X - 78392, X^3 + 7X + 1$$

Parmi ceux-ci, lus dans $\mathbb{Z}[X]$:

$$X - 1, X^3 + 7X + 1$$

sont des facteurs irréductibles de F. Il faut ensuite tester des regroupements des polynômes restants:

$$X + 78393, X + 70656, X - 70649, X - 78392$$

Les produits dans $\mathbb{Z}/p^n\mathbb{Z}[X]$ lus dans $\mathbb{Z}[X]$:

$$(X + 78393)(X - 78392) = X^2 + X + 2$$
 et $(X + 70656)(X - 70649) = X^2 + 7X + 1$

sont les autres facteurs irréductibles de F.