Université Claude Bernard LYON 1 Master MA Mathématiques générales Algèbre et calcul formel

TD 5

Exercice 1.

Evaluer la complexité du critère d'irréductibilité d'un polynôme sans facteur multiple $F \in \mathbb{F}_p[X]$, puis celle de l'algorithme de Berlekamp.

Exercice 2.

Soient $f \in \mathbb{Z}[X]$ et $n = \deg(f)$, montrer que l'on a

$$|\operatorname{discrim}_X(f)| \le n^n (n+1)^{2n-2} ||f||_{\infty}^{2n-2}$$

 $(indication : on pourra montrer que | discrim_X(f)| \le n^n M(f)^{2n-2}$ en appliquant le lemme de Hadamard au déterminant de Van der Monde)

Exercice 3.

1. Soit K un corps commutatif ; on désignera par $K[X]_{\leq n}$ l'espace vectoriel formé du polynôme nul et des polynômes de degré $\leq n$.

Soit $x=(x_1,\cdots,x_{n+1})$ une suite de n+1 éléments de K deux à deux distincts; alors montrer que l'application linéaire :

$$L_x: K[X]_{\leq n} \longrightarrow K^{n+1}$$

 $f \longrightarrow (f(x_1), \cdots, f(x_{n+1}))$

est bijective.

Pour $1 \le i \le n+1$, considérons le polynôme :

$$L_{x,i} = \frac{\prod\limits_{k \neq i} (X - x_k)}{\prod\limits_{k \neq i} (x_i - x_k)}$$

Pour tout $y = (y_1, \dots, y_{n+1}) \in K^{n+1}$, on pose $f = \sum_{i=1}^{n+1} y_i L_{x,i} \in K[X]_{\leq n}$; montrer que $L_x(f) = y$ (polynômes d'interpolation de Lagrange).

2. Soit $f \in \mathbb{Z}[X]$ un polynôme primitif de degré n avec n = 2s ou n = 2s + 1. On fixe une suite strictement croissante d'entiers (x_1, \dots, x_{s+1}) dont aucune n'est racine

Soit $g \in \mathbb{Z}[X]$ un diviseur de f de degré $\leq s$; montrer que g est déterminé de manière unique par les entiers $y_i = g(x_i)$ pour $1 \leq i \leq s+1$ et que l'on a $y_i | f(x_i)$ pour $1 \leq i \leq s+1$. En déduire un algorithme permettant de factoriser f (algorithme de Kronecker).