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1 Représentations des groupes finis - propriétés générales

1.1 Définitions

On considére un groupe fini G; une représentation (complexe, de degré fini) de G est un
homomorphisme :

p:G— GL(V)

ot V est un C-espace vectoriel de dimension finie n; V est appelé l'espace de la représentation
et n son degré.

Lemme 1 Soit p: G — GL(V) une représentation compleze de degré fini d’un groupe fini G ;
pour tout g € G, Uautomorphisme p(g) de V est diagonalisable.

V Pour tout g € G, 'automorphisme p(g) de V est d’ordre fini, puisque g est d’ordre fini. Il existe
donc un entier k tel que p(g)* = idy de sorte que pp(g)\Xk — 1 € C[X]. Ainsi le polynéme mi-
nimal p,4) est décomposé et toutes ses racines sont simples de sorte que p(g) est diagonalisable. A

Un sous-espace W C V est stable pour p si 'on a :
plg) (W) Cc W
pour tout g € G ; on en déduit la sous-représentation
p‘W G — GL(W)
g — pl9)lw

de p. Soit
oG — GL(V')
une autre représentation de G ; un homomorphisme u de p dans p’ est une application linéaire

w:V—V

telle que, pour tout g € G :
uop(g) =p'(g)ou

(On dit encore que 'application linéaire u est compatible avec les représentations p et p’). En
particulier Ker(u) (resp. Im(u)) est un sous-espace stable de p (resp p).

Lorsque u est bijective on dit que u est un isomorphisme de p dans p’. Enfin on dit que des
représentations p et p’ sont équivalentes s’il existe un isomorphisme de p dans p'.



1.1.1 Les représentations de degré 1

Les représentations de degré 1 sont les homomorphismes de groupes :
p:G— GL(V)

ou V est un C-espace vectoriel de dimension 1; ces représentations sont de la forme p = yldy
ol x est un homomorphisme de groupes :

x:G— C*

ie. un caractére de degré 1 de G. Les caractéres de degré/l\s’identiﬁent canoniquement aux carac-
teres du groupe abélien fini G2P. Ils forment le groupe Gab. En particulier G posséde Card(G2P)
caractéres de degré 1.

Par exemple le groupe symétrique &,, posséde deux caractéres de degré 1, le caractére unité (de
valeur constante 1) et la signature.

1.1.2 Les représentations de permutation

Considérons une action de G sur un ensemble fini X. Soit |X| un ensemble en bijection avec
X wvia une application  — e,. On désigne par CX ’espace vectoriel de base | X|; on en déduit
la représention de permutation :

px : G — GL(CY)
ot pour tout g € G, px(g) est I'automorphisme de C¥ caractérisé par :
px(g)(ez) = egp pour tout z € X
En particulier, lorsque G agit sur lui-méme par translations a gauche on obtient la représentation
réquliere de G : pg : G — GL(C%)
Le groupe symétrique &,, agit canoniquement sur l'ensemble X = {1,--- ,n} d’ou la représen-
tation de permutation de &,, dans I’espace C™ de base canonique (e;)1<i<p :

p: 6, — GL(C")

ot pour tout 0 € &, et 1 <i < nonap(o)e; = eq)-
Alors les sous-espaces

V= CZei et W={z= (Zi)lgign/zzi =0}
i=1 i=1

sont des sous-espaces stables de la représentation p alors :
plV : 6, — GL(V)

est la sous-représentation triviale de degré 1 associée au caractére unité tandis que la sous-
représentation de degré n — 1 :

p|W : &, — GL(W)

est appelée la représentation standard de G,,.



1.2 Semi-simplicité

Proposition 1 On considére une représentation p : G — GL(V) de G ; tout sous-espace stable
W de V posséde un supplémentaire stable W',

V Soit p € Lk (V) un projecteur d’image W ; on considére

Card Zp opop(g)~t € Lr(V)
gGG

Alors P est un projecteur d’image W : en effet on a Im(P) C W ; d’autre part pour tout x € W
et tout g € G on a p(g) opo p(g)~(z) = p(g) o p(9)~'(x) = = de sorte que P(x) = z et donc
Po P(x) = P(x) pour tout x € V.

De plus P est compatible avec la représentation p : en effet, pour tout h € G, on a :

p(h)o Pop(h)™" = Zp (hg)opop(hg)™' =P

Card geG

puisque les translations sont des permutations de G. Dans ces conditions W’ = Ker(P) est un
sous-espace supplémentaire de W stable par p. A

Une représentation p : G — GL(V) est irréductible si les seuls sous-espaces stables de V
sont {0} et V.

Soient p : G — GL(V) et p' : G — GL(V’) deux représentations de G, la somme directe
est la représentation de G définie par :

p®p — GLWVaV)
g — plg)®r'(9)

Corollaire 1 Toute représentation p : G — GL(V') se décompose en une somme directe de
représentations irréductibles.

V Si p n’est pas irréductible, il existe un sous-espace stable non trivial W de V' qui posséde un
supplémentaire stable W’ et I'on a p = p|lw @ p|w et on conclut par récurrence sur la dimension
de V.V

Proposition 2 Soient p: G — GL(V) et p' : G — GL(V') deuz représentations irréductibles
de G ; alors tout homomorphisme u de p vers p' est nul ou est un isomorphisme.

V Soit u un homomorphisme non nul de p vers p’; Ker(u) est un sous-espace stable de V' de sorte
que Ker(u) = {0} tandis que Im(u) est un sous-espace stable de V’ de sorte que Im(u) = V' et
u est un isomorphisme. A

Corollaire 2 Soit p : G — GL(V) une représentation irréductible ; tout endomorphisme u de
p est une homothétie.

V Considérons alors v un endomorphisme de p; si A est une valeur propre de u, v = Ald — v est
un endomorphisme de p qui n’est pas injectif donc v =0 et u = Ald. A



2 Caractéres

2.1 Deéfinition et propriétés de base
Soit p: G — GL(V') une représentation de G'; le caractére de p est 'application :
Xp:G — C
g — Tr(p(g))
Proposition 3
1. Pour toute représentation p : G — GL(V'), x,(1) est le degré de p.
2. Pour toute représentation p: G — GL(V) on a x,(971) = x,(g9) pour tout g € G.
3. Pour toute représentation p : G — GL(V') x,(g) est un entier algébrique pour tout g € G.
4

. Pour toute représentation p : G — GL(V) on a x,(hgh™) = x,(g) pour tout g,h € G
(x, est une fonction centrale i.e. constante sur les classes de conjugaison de G).

5. Si des représentations p : G — GL(V) et p' : G — GL(V’) sont équivalentes on a :
Xp = Xp'
6. Pour des représentations p: G — GL(V) et p' : G — GL(V') on a :
Xp@p' = Xp T Xp/

vV On a x,(1) = Tr(idy) = dim(V') d’ou 1).
Puisque p(g) est un automorphisme d’ordre fini de V', ses valeurs propres A\; (1 < i < n) sont
des racines de 1'unité d’otu :

X(g™h) = Te(plg™h) =D A"
=1

d’ott 2). Or les racines de 'unité sont des entiers algébriques et une somme d’entiers algébriques
est un entier algébrique d’ou 3).
Si u est un endomorphisme de V et v un automorphisme on a Tr(vuv~!) = Tr(u) d’ot1 4) et 5).

Enfin comme (p @ p')(g) = <,0(Og) p’(()g)> ona6). A

2.2 Quelques exemples
2.2.1 Caractéres de degré 1
Ce sont les caractéres des représentations de degré 1, donc les homomorphismes de groupes
x:G— C*.
2.2.2 Représentation réguliére

Le caractére xg de la représentation réguliére pg : G — GL(C®) est donné par :

(g) = 0 sig#e
XGR9) = Card(G) sig=e

V En effet pour g # e la matrice de xg(g) dans la base canonique (eg)geq de C% n’a que des 0
sur la diagonale. A



2.2.3 Représentations de permutation

Plus généralement le caractére yx de la représentation de permutation px : G — GL(CX)
associée a l'action de G sur un ensemble fini X est donné par :

xx(g) = Card({x € X/gz = x})
V En effet soit M la matrice de xx(g) dans la base canonique X de CX ; pour tout 2 € X on a

Mm,:r = 5g:v,m- A

3 Annexe : Irréductibilité de la représentation standard du groupe
symétrique S,

Considérons la représentation standard de G,, :
p|lW : &, — GL(W)
Pour 1 <i <n—1, posons ¢ = e; — e;11; alors (€)1<i<n—1 est une base de 'hyperplan de C" :
n
W ={z=(2)1zizn/ )_2 =0}
i=1

Soit ¢ le cycle ¢ = (1,--- ,n);on a:

pc)(e1) = e

PN (en-2) = en1
(N enr) = —(e1 4+ en1)

de sorte que la matrice de p(c) dans la base (€;)1<i<n—1 de W est la matrice compagnon :

0 0 0 -1
1 0 -+ 0 -1
Cp=10
0 0 -1
0 1 -1
n_
du polynéme P = X" 4 ...+ X +1 = X1 de sorte que Xp(c) = Pp(c) = P

Remarque : Pour une matrice A, py désigne le polynéme minimal de A et y4 = det(XId — A) le
polynéme caractéristique (unitaire) de A. De plus si A est la matrice compagnon d’un polynome
Ponayxa=pa=P. _

Puisque P est décomposé et a toutes ses racines ek%, 1 <k <n-—1, simples, on a la décom-

position en sous-espaces propres de dimension 1 de W :

n—1
W= "W 2mi(p(c)
k=1

n—1
Soient ¢ I'une de ces valeurs propres et v = Y v;e; € We(p(c)) un vecteur propre associé; on a :
i=1

p(e)(v) = Cv



d’ol :

n—1 n—1
—Up—_1€1 + Z(Uz’—l — Up—1)€ = (V1€ + sziﬁi

ce qui donne les équations :

—Up—1 = (V1 (1)
vii1 = (vitvp,ipour2<i<n-—1 (2)

On a ainsi, d’aprés les relations (2) :

Upn—2 = (C + 1)”71—1

Vp—jo1 = (+ I+ + C+ Dop

v = (.Cn_Q + gn—?; +- -4+ C+ vy

Enfin, puisque :
Cn72+gn73+u_+g+1:_gnfl :_gfl

la relation (1) est vérifiee. En particulier on retrouve que le sous-espace propre We(p(c)) est de
dimension 1.

Soit W' C W un sous-espace stable non nul de W; p(c)|W’ est diagonalisable et on a, pour au
moins I'une des valeurs propres ¢ de p(c) :

We(p(e)) € W
Pour 1 < k <n —1, soit 7 la transposition 7 = (k,k+1); on a :
(i) (W) c W

Pour k=1ona:
p(m1)(€1) = —e1
p(11)(€2) = €1 + €9
p(11)(€;) =€ pour 3<i<n-—1
de sorte que :
n—1

p(11)(v) = v+ (v2 — 2v1)€g pour v = Z%’Ei € We(p(e))
=1

Comme vy —2v; 0 ona e € W'
Pour2<k<n-—2ona-:

P(Tk)(ek—l) = €1+ €

p(7i)(ex) =

() (€r+ ) = ¢k + €kt1

p(1i)(€;) =€ pour i & {k — 1,k k+ 1}

de sorte que :

n—1

p(7i) (V) = v + (Vk—1 + Vk+1 — 2Uk)€x pour v = Zviei € We(p(e))
i=1



Comme vj_1 + vpy1 — 20, #0on a ¢, € W'.
Enfin pour k=n—1on a:

p(Tn*1>(€n72) = €p—2+ €n_1
p(Tn—l)(ﬁn—l) = —€p—1
p(tn-1)(e;) = €; pour 1 <i<n—3

de sorte que :

n—1

p(Tn—1)(v) = v+ (vp—2 — 205_1)€p—1 pOUr ¥ = Zviei € We(p(ce))
i=1

Comme v, o —2v,_1#0onae, 1 € W.
Finalement on a W’ = W et la représentation standard p|W : &,, — GL(W) est irréductible.



