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PROJET : Un critère d'irréductibité de
polynômes

1 Enveloppes convexes inférieures

On considère un ensemble �ni E = {Ek = (xk, yk)/0 ≤ k ≤ n} de points du plan. On suppose

que les abcisses des points de E sont deux à deux distinctes (pour une abscisse donnée, on ne garde

dans E que le point d'ordonnée minimale) et que E est ordonné selon les abscisses croissantes.
Pour tout M ∈ R on pose :

wM = min({yk −Mxk/0 ≤ k ≤ n})

et on désigne par ∆M la droite d'équation :

Y = MX + wM

On a E ∩∆M 6= ∅ et tous les points de E sont situés au dessus de la doite ∆M .

On désigne par i−M (resp. i+M ) le plus petit (resp. le plus grand) indice k (0 ≤ k ≤ n) pour lequel
Ek ∈ ∆M .

Lemme 1 Soient M,M ′ ∈ R :

1. On supposeM ′ > M ; alors pour tout x ≤ xi+M
(resp. x < xi+M

) on aMx+wM ≥M ′x+wM ′

resp. Mx+ wM > M ′x+ wM ′)

2. On supposeM ′ < M ; alors pour tout x ≥ xi−M
(resp. x > xi−M

) on aMx+wM ≥M ′x+wM ′

resp. Mx+ wM > M ′x+ wM ′)

O Plaçons nous dans le casM ′ > M et posons j = i+M de sorte que wM = yj−Mxj . Pour x < xj

on a alors :

Mx+ wM = Mx+ yj −Mxj

= M(x− xj) + yj

> M ′(x− xj) + yj

= M ′x+ (yj −M ′xj)
= M ′x+ wM ′

Pour x = xj on a :

Mxj + wm = yj

= M ′xj + (yj −M ′xj)
≥ M ′xj + wM ′

On procède de même dans le cas M ′ < M . M

Lemme 2 Pour M < M ′ on a i+M ≤ i
−
M ′ .
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O On pose j = i+M . Pour tout 0 ≤ k < j , on a xk < xj de sorte que :

yk ≥Mxk + wM > M ′xk + wM ′

de sorte que i−M ′ ≥ j. M

Lemme 3 Pour M ′ > M assez proche de M on a :

i+M = i−M ′ = i+M ′

O On pose j = i+M . Puisque j est le plus grand indice pour lequel le minimum est réalisé on a

pour tout j < k ≤ n :

yk −Mxk > yj −Mxj

Comme le nombre des indices k est �ni, pour M ′ assez proche de M on a encore :

yk −M ′xk > yj −M ′xj

ce qui montre que :

i−M ′ ≤ i
+
M ′ ≤ j = i+M ≤ i

−
M ′

M

Lemme 4 Pour tout x, x0 < x < xn, il existe M tel que :

xi−M
≤ x ≤ xi+M

O Pour x �xé, la fonction ϕ : M −→ Mx + wM est continue puisque c'est le minimum des

fonctions continues M −→M(xk − x) + yk pour 0 ≤ k ≤ n. De plus on a lim
M→+∞

ϕ(M) = −∞ :

comme x < xn on a M(x− xn) + yn → −∞ pour M → +∞
De même on a lim

M→−∞
ϕ(M) = −∞.

Soit M un point en lequel ϕ atteint un maximum local. Supposons que x > xi+M
. Pour M ′ > M

assez proche de M on aurait xi+M
= xi−

M′
et par suite x > xi−

M′
. Il en résulterait que ϕ(M) =

Mx+ wM < M ′x+ wM ′ = ϕ(M ′) ce qui contredirait le fait que M soit un maximum local. M

Lemme 5 Pour tout x, x0 ≤ x < xn il existe un unique M tel que xi−M
≤ x < xi+M

.

O Les intervalles [xi−M
, xi+M

[ sont deux à deux disjoints d'où l'unicité.

Si x 6∈ {xk/0 ≤ k ≤ n} (ie. n'est pas l'abscisse d'un point de E) le lemme précédent montre qu'il

existe M tel que xi−M
< x < xi+M

.

Supposons maintenant que x = xk avec 0 ≤ k < n. Prenons x′ tel que x = xk < x′ <
δ

2
où δ est

la distance minimale entre les abscisses des points de E .
Il existe alors M tel que xi−M

< x′ < xi+M
de sorte que l'on a xi−M

≤ x = xk < x′ < xi+M
. M

On dé�nit l'enveloppe convexe inférieure de E comme l'ensemble :

C(E) = {(x, y)/x0 ≤ x ≤ xn et y ≥Mx+ wM pour tout M ∈ R}

Proposition 1 Soit P = (x, y) un point du plan tel que x0 ≤ x ≤ xn ; on a P ∈ C(E) si et
seulement s'il existe M ∈ R tel que xi−M

≤ x ≤ xi+M
et y ≥Mx+ wM .
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O pour P = (x, y) ∈ C(E) on a x0 ≤ x ≤ xn de sorte qu'il existe M avec xi−M
≤ x ≤ xi+M

et l'on

a y ≥Mx+ wM par dé�ntion de C(E).
Réciproquement soit P = (x, y) tel qu'il existeM ∈ R avec xi−M

≤ x ≤ xi+M
et y ≥Mx+wM . Pour

M ′ ∈ R, si M ′ > M comme x ≤ xi+M
on a Mx+wM ≥M ′x+wM ′ de sorte que y ≥M ′x+wM ′ .

De même si M ′ < M comme x ≥ xi−M
on a encore y ≥ Mx + wM ≥ M ′x + wM ′ et �nalement

P ∈ C(E). M

Corollaire 1 C(E) est le plus petit ensemble contenant E qui est convexe et stable par translations
vers le haut (ie. pour (x, y) ∈ C(E) on a (x, y′) ∈ C(E) pour tout y′ ≥ y).

O Il est clair que C(E) est convexe (car intersection de demi-espaces), contient E et est stable par

les translations vers le haut.

Réciproquement si C′ véri�e ces propiétés, pour tout M , il contient les points Ei−M
et Ei+M

, donc

le segment [Ei−M
, Ei+M

] et la bande verticale située au dessus. Finalement on a C(E) ⊂ C′. M

Ainsi il existe un nombre �ni de réels M tels que le segment [Ei−M
, Ei+M

] ne soit pas réduit à
un point. On a M1 < M2 < · · · < Mr et x0 = xi−M1

< xi+M1

= xi−M2

< · · · < xi+Mr
= xn.

On pose P0 = Ei−M1

, Pi = Ei+Mi

= Ei−Mi+1

pour 1 ≤ r− 1 et Pr = Ei+Mr
. La ligne polygonale N de

sommets P0, · · · , Pr est le polygone de Newton de E . Les sommets Pi de N se calculent alors au

moyen de l'algorithme (rudimentaire) suivant :

Algorithme 1 (ConvexeInf)

1. entrée : la liste L des points du nuage

2. construire la liste LO obtenue en ordonnant par abscisses croissantes les points de L et,
dans le cas d'abcisses égales, en ne conservant que le point d'ordonné minimale

3. soit n le nombre d'éléments de L0

4. initialiser PN en prenant la liste contenant le premier point de LO.

5. boucle "parcours" : pour i variant de 2 à n
{

(a) prendre Pscr le dernier point de la liste PN

(b) prendre Pbut le i
ème point de la liste LO

(c) former l'équation Y = aX + b de la droite Di passant par les points Pscr et Pbut

(d) boucle "cherche" : pour j de i+ 1 à n
{
si le point LOj est au dessous de la droite Di alors sortir de la boucle "cherche"
} �n boucle "cherche"

(e) si j = n+ 1 alors rajouter Pbut à la �n de la liste PN

} �n boucle "parcours"

6. sortie : la liste PN des sommets de l'enveloppe convexe inférieure de L

Remarque : les conditions (d) et (e) signi�e que s'il n'existe aucun point LOj , i+ 1 ≤ j ≤ n
en dessous ou sur la droite Di alors on rajoute Pbut à la �n de la liste PN .
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2 Le critère de Dumas

Soit K un corps (commutatif) ; une valuation est une application :

v : K −→ R ∪ {+∞}

véri�ant les propriétés suivantes :

1. v(0) = +∞ et v(K?) ⊂ R

2. v : K? −→ R est un homomorphisme de groupes

3. v(x+ y) ≥ min(v(x), v(y)) pour tout x, y ∈ K? tels que x+ y 6= 0.

Lemme 6 Si v(x) 6= v(y) on a v(x+ y) = min(v(x), v(y))

O Supposons par exemple que v(x) < v(y). On a évidemment v(x+y) ≥ v(x). Mais x = (x+y)−y
de sorte que v(x) ≥ min(v(x+ y), v(y)). On a donc v(x) ≥ v(x+ y). M

Prenons K = Q et p un entier premier. Pour x ∈ Z, x 6= 0 on désigne par vp(x) ≥ 0 le plus

grand entier tel que pvp(x) divise x. Pour
x

y
∈ Q? on pose vp(

x

y
) = vp(x)− vp(y). On dé�nit ainsi

la valuation p-adique sur Q.

On considère une valuation v = vp la valuation p-adique sur le corps K = Q Pour tout

polynôme f =
n∑

i=0
aiX

i ∈ K[X] on considère l'ensemble :

E(f) = {(i, v(ai))/0 ≤ i ≤ n et ai 6= 0}

et son enveloppe convexe inférieure C(f). Pour tout M ∈ R on pose

vM (f) = min({v(ai)−Mi/0 ≤ i ≤ n})

On désigne par i+M (f) (resp. i−M (f)) le plus grand (resp. le plus petit) indice pour lequel ce

minimum est atteint.

Si lM (f) = i+M (f) − i−M (f) > 0, M est l'une des pentes du polygone de Newton de f et on dit

lM (f) est sa largeur. Notons que l'on a M ∈ Q.

On désignera parM(f) ⊂ Q l'ensemble des pentes du polygone de Newton de f ; on a∑
M∈M(f)

lM (f) = deg(f)− ord(f)

Proposition 2 vM est une valuation et l'on a pour tout polynôme f ∈ K[X] :

i+M (fg) = i+M (f) + i+M (g)
i−M (fg) = i−M (f) + i−M (g)

En particulier on a :

lM (fg) = lM (f) + lM (g)

et

M(fg) =M(f) ∪M(g)
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O Les relations vM (f) = 0 si et seulement si f = 0 et vM (f + g) ≥ min(vM (f), vM (g)) sont

immédiates. C'est la relation vM (f + g) = vM (f) + vM (g) qu'il s'agit d'établir.

Posons f =
m∑

i=0
aiX

i, g =
n∑

j=0
bjX

j et fg =
m+n∑
k=0

ckX
k où ck =

k∑
i=0
aibk−i.

On a alors :

v(ck) ≥ min
0≤i≤k

(v(ai) + v(bk−i)

de sorte que :

v(ck)−Mk ≥ min
0≤i≤k

((v(ai)−Mi) + (v(bk−i −M(k − i))

d'où

v(ck)−Mk ≥ vM (f) + vM (g)

pour 0 ≤ k ≤ m+ n et �nalement :

vM (fg) ≥ vM (f) + vM (g)

Posons r = i−M (f) et s = i−M (g). Il faut donc montrer les relations :{
i−M (fg) = r + s
vM (fg) ≤ vM (f) + vM (g)

Pour cela considérons la somme :

cr+s =
k∑

i=0

aibr+s−i

Par dé�nition de r et s on a :{
vM (f) = v(ar)−Mr
v(ai)−Mi > vM (f) pour i < r

{
vM (g) = v(bs)−Ms
v(bj)−Mj > vM (g) pour j < s

Dans la somme cr+s le terme arbs pour lequel i = r (et r + s− i = s) est tel que :

v(arbs) = v(ar) + v(bs)
= vM (f) + vM (g) +M(r + s)

et tous les autres termes sont de valuation strictement supérieure : par exemple pour i < r
on a v(ai) > vM (f) + Mi et v(br+s−i) ≥ vM (g) + M(r + s − i) de sorte que v(aibr+s−i) >
vM (f) + vM (g) +M(r + s).
Ainsi on a :

v(cr+s) = vM (f) + vM (g) +M(r + s)

de sorte que :

v(cr+s)−M(r + s) = vM (f) + vM (g)

et donc que :

vM (fg) ≤ vM (f) + vM (g)

le minimum étant atteint pour r+s. Si k < r+s chaque terme de ck est de valuation strictement

supérieure à vM (f) + vM (g) +Mk de sorte que i−M (fg) = r + s. M

Pour toute pente M ∈M(f) de largeur lM ; on pose hM = MlM et λM = pgcd(hM , lM ). On
a alors :

M =
hM

lM
=
λMrM
λMsM

=
rM
sM

avec la fraction
rM
sM

irréductible.

5



Corollaire 2 (critère de Dumas) Soit f un polynôme de coe�cient constant non nul ; les
degrés possibles des facteurs de f sont de la forme :∑

M∈M(f)

kMsM

avec 0 ≤ kM ≤ λM .
En particulier si f ∈ K[X] est un polynôme de coe�cient constant non nul (ie. tel que f(0) 6= 0)
possédant une seule pente M véri�ant lM = sM ; alors f est irréductible.

O En e�et si h est un facteur de f , le coe�cient constant de h est non nul et l'on a
∑

M∈M(h)

lM (h) =

deg(h). De plusM(h) ⊂M(f) et lM (h) ≤ lM (f).
Soit M ∈ M(f) ; Si M ∈ M(f) \M(h) on a kM = 0 ; si M ∈ M(h), lM (h) 6= 0 est un multiple

(entier) de sM (le dénominateur irréductible de M) inférieur ou égal à lM (f) = λMsM d'où

lM (h) = kmsm avec 1 ≤ kM ≤ λM .

Supposons en particulier M(f) = {M} et lM = deg(f) = sM ie. λM = 1. les degrés possibles
des facteurs irréductibles de f sont de la forme kMsM avec 0 ≤ kM ≤ λM donc égaux à 0 ou

deg(f). M

Corollaire 3 (critère d'Eisenstein) Soit f ∈ K[X] un polynôme de degré n tel que v(an) = 0,
v(a0) = 1, v(ai) ≥ 1 pour 1 ≤ i ≤ n, alors f est irréductible.

O Le polygone de Newton de f possède une unique pente M = − 1
n

et on a i−M = 0 et i+M = n

de sorte que lM = n = sM . On peut alors appliquer le critère de Dumas. M

Exercices.

Exercice 1.

1. Tracer les points de la liste L = [[6, 4], [−3, 5], [1, 4], [0, 1], [3, 3], [4, 5], [−2, 2], [1, 7], [−3, 6]].

2. Ecrire une fonction Prepare qui étant donné une liste L, pour des points de même abs-

cisse ne conserve que celui d'ordonnée minimale puis ordonne la liste selon les abscisses

croissantes.

3. Ecrire une fonction convexe_inf permettant de calculer l'enveloppe convexe inférieure

d'une liste de points.

Calculer la liste PN des sommets de l'enveloppe convexe inférieure de L.

4. Tracer sur un même dessin le nuage de points L et son enveloppe convese inférieure.

Exercice 2.

On considère les polynômes f = X10+11X9+55X8+165X7+330X6+462X5+462X4+330X3+
165X2 + 55X + 11, g = X7 + 1320X6− 14751X5− 1330X3 + 1330X2− 161172X4− 1320X − 11
et h = fg.

1. Ecrire une fonction polygone_newton permettant de calculer un polynôme de Newton.

2. Tracer sur une même dessin les polygones de Newton de f , g et h en utilisant des couleurs

di�érentes pour p = 11.
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3. Ecrire une fonction bouts_pente( qui à une polygone de Newton L (décrit par la liste de

ses sommets) et un nombre rationnelM associe la plus petite et la plus grande des abscisses

i−M et i+M des points d'intersertion L ∩∆M .

4. Ecrire une fonction pentes permettant de calculer les pentes d'un polygone de Newton.

5. Ecrire une fonction bouts permettant de calculer pour chaque pente M les bouts (i−M , i
+
M )

6. Ecrire une fonction degree_facteurs_irreduc( qui à partir de la liste des pentes M et

de la liste des couples (i−M , i
+
M ) correspondants d'un polygone de Newton d'un polynôme

renvoie les degrés possibles des facteurs irréductibles de ce polynôme.

Tester cette fonction avec les polynômes f , g et h.

Exercice 3.

On considère le polynôme f = 25X8 − 3X3 + 15X2 + 45.

1. Tracer le polygone de Newton de f pour p = 5 ; en déduire les degrés possibles des facteurs

irréductibles de f

2. Faire de même pour p = 3.

3. En déduire que f est irréductible.

Exercice 4.

On considère le polynôme exponentiel tronqué :

fn =
n∑

k=0

1
k!
Xk

1. Tracer les polygones de Newton de fn pour les diviseurs premiers p de n (�xé au préalable)

2. Etudier l'irréductibilité de fn.

3. Peut-on énoncer et démontrer un résultat général ?

7


