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PROJET : Un critére d’irréductibité de
polyndomes

1 Enveloppes convexes inférieures

On considére un ensemble fini € = {Ey = (x,yr)/0 < k < n} de points du plan. On suppose
que les abcisses des points de € sont deux ¢ deux distinctes (pour une abscisse donnée, on ne garde
dans &€ que le point d’ordonnée minimale) et que & est ordonné selon les abscisses croissantes.
Pour tout M € R on pose :

wyr = min({yr — Mx/0 <k <n})
et on désigne par Ajs la droite d’équation :
Y=MX+ (Vs

On a EN Ay # D et tous les points de € sont situés au dessus de la doite Ajyy.
On désigne par i, (resp. ’ﬁ]\;[) le plus petit (resp. le plus grand) indice & (0 < k < n) pour lequel
B € Ay
Lemme 1 Soient M,M' € R :
1. On suppose M' > M ; alors pour tout x < Tyt (resp. © < xle) on a Mx+wy > M'x+wyp
resp. Mz +wyr > Mz + wyy)
2. On suppose M' < M ; alors pour tout x > T (resp. x > xifw) on a Mx+wy > M'x+wyp
resp. Mx +wy > M'x + wyy )

v Plagons nous dans le cas M’ > M et posons j = zj(/[ de sorte que wy = y; — Mx;. Pour z < x;
on a alors :

Mx+wy = Mx+y; — Mzx;
= Mz —zj) +y;
> M’(m—xj)+yj
= Mz +(y; — M'zy)
= Max+wyy

Pour x =z, on a:

Mzx; +wy, = y;
= M'z;+ (y; — M'z;)
Z M/$j+wM/

On procéde de méme dans le cas M/ < M. A

Lemme 2 Pour M < M’ on a z}\t[ <y



v On pose j = ZL Pour tout 0 < k < j , on a x, < x; de sorte que :
Yy > Mxp +wyr > M'xj, + wap
de sorte que iy, > j. A

Lemme 3 Pour M' > M assez proche de M on a :

vV On pose j = i]t[. Puisque j est le plus grand indice pour lequel le minimum est réalisé on a
pour tout j < k <mn:
Yk —Mack > Yj —Macj

Comme le nombre des indices k est fini, pour M’ assez proche de M on a encore :
Y — M/l'k >Yj— M’.%‘j

ce qui montre que :
lM/ S Z]\4/ S] _Z]\/j S ZM’
A

Lemme 4 Pour tout x, vo < x < xn, il existe M tel que :

r.- <z < x4
M M

vV Pour z fixé, la fonction ¢ : M — Mx + wys est continue puisque c’est le minimum des
fonctions continues M — M(x — x) + yg pour 0 < k < n. De plus on a Mlim o(M) = —o0:
i

comme = < x, on a M(z — x,) + y, — —00 pour M — 400

De méme on a lim ¢(M) = —oc.

M——oc0

Soit M un point en lequel ¢ atteint un maximum local. Supposons que & > .+ . Pour M’ > M
- et par suite x > x,- . Il en résulterait que (M) =

M/’ g

assez proche de M on aurait Tyt =
Mz 4wy < M'z 4+ wyp = @(M') ce qui contredirait le fait que M soit un maximum local. A

Lemme 5 Pour tout x, vo < x < xp il existe un unique M tel que v,- < x <@+ .
M M

V Les intervalles [x%,xix{[ sont deux a deux disjoints d’ot "unicité.
Six & {xx/0 <k <n} (ie. n’est pas ’abscisse d'un point de &) le lemme précédent montre qu’il

existe M tel que .- <x < x.+.
M M

. 0
Supposons maintenant que x = x avec 0 < k < n. Prenons 2’ tel que z = xp < 2’ < 5 ol ¢ est

la distance minimale entre les abscisses des points de £.
Il existe alors M tel que z,- <2’ <z.+ desortequel’onax,- <z=x, <2 <z.4.A
‘M ‘M ‘M ‘M

On définit I'enveloppe conveze inférieure de £ comme 'ensemble :
C() ={(z,y)/x0 <z <z, et y > Mz + wys pour tout M € R}

Proposition 1 Soit P = (x,y) un point du plan tel que vo < © < x,; on a P € C(E) si et
seulement sl existe M € R tel que T <z < Tyt ety > Mx + wyy.



V pour P = (z,y) € C(£) on a zy < z < x,, de sorte qu’il existe M avec T <z< Tit et 'on
ay > Mz + wy par défintion de C(E).

Réciproquement soit P = (x,y) tel qu'il existe M € R avec Ty <z< Tt ety > Mx+wy,. Pour
M eR, st M' > M comme z < T+ ona Mz +wy > Mz +wyy de sorte que y > Mz + wyyr.
De méme si M’ < M comme x > ;- on a euncore y > Mx +wy > M'x + wyp et finalement
PeCé). a

Corollaire 1 C(E) est le plus petit ensemble contenant £ qui est conveze et stable par translations
vers le haut (ie. pour (x,y) € C(E) on a (x,y") € C(E) pour tout y' > y).

v Il est clair que C(€) est convexe (car intersection de demi-espaces), contient & et est stable par

les translations vers le haut.

Réciproquement si C' vérifie ces propiétés, pour tout M, il contient les points E,— et E . , donc
M M

le segment [Ei&, Eijcf] et la bande verticale située au dessus. Finalement on a C(£) C C'. A

Ainsi il existe un nombre fini de réels M tels que le segment [E.— , E.+ | ne soit pas réduit a
M M
un point. On a M; < My < --- < M, et To = Ty <T+ =T <-~~<xiL =T,.

1 Uy UMy r
Onpose Pp=E- ,Pi=E+ =FE- pourl<r—1letP.=E. .Laligne polygonale N de
My M; My My
sommets Py, -, Py est le polygone de Newton de €. Les sommets P; de N se calculent alors au

moyen de D'algorithme (rudimentaire) suivant :

Algorithme 1 (Convexelnf)
1. entrée : la liste L des points du nuage

2. construire la liste LO obtenue en ordonnant par abscisses croissantes les points de L et,
dans le cas d’abcisses égales, en ne conservant que le point d’ordonné minimale

3. soit n le nombre d’éléments de LO

. initialiser PN en prenant la liste contenant le premier point de LO.

‘QJ‘(%\

boucle "parcours” : pour i variant de 2 an

(a) prendre Psy le dernier point de la liste PN

(b) prendre Poy le i®™¢ point de la liste LO

(¢) former Uéquation Y = aX + b de la droite D; passant par les points Pser et Pyt
(d) boucle "cherche" : pour j de i+ 1 an

{

si le point LO; est au dessous de la droite D; alors sortir de la boucle "cherche”

} fin boucle "cherche"
(e) si j =n—+1 alors rajouter Pyy a la fin de la liste PN
} fin boucle "parcours”

6. sortie : la liste PN des sommets de 'enveloppe convexe inférieure de L

Remarque : les conditions (d) et (e) signifie que s’il n’existe aucun point LO;, i+1 < j <n
en dessous ou sur la droite D; alors on rajoute Pyt & la fin de la liste PIV.



2 Le critére de Dumas
Soit K un corps (commutatif) ; une valuation est une application :
v: K — RU{+00}

vérifiant les propriétés suivantes :
1. v(0) = +oo et v(K*) CR
2. v: K* — R est un homomorphisme de groupes

3. v(z +y) > min(v(z),v(y)) pour tout z,y € K* tels que x +y # 0.
Lemme 6 Siv(z) # v(y) on a v(x + y) = min(v(z),v(y))

v Supposons par exemple que v(z) < v(y). On a évidemment v(z+y) > v(z). Mais ¢ = (z+y)—y
de sorte que v(z) > min(v(z + y),v(y)). On a donc v(z) > v(z +y). A

Prenons K = Q et p un entier premier. Pour z € Z, x # 0 on désigne par v,(z) > 0 le plus
x x

grand entier tel que p*»®) divise z. Pour ~ € Qx on pose v,(=) = vp(x) —v,(y). On définit ainsi
Y

la valuation p-adique sur Q.

On considére une valuation v = v, la valuation p-adique sur le corps K = Q Pour tout

n .
polynéme f = > a; X" € K[X] on considére ’ensemble :
i=0

E(f) = {(i, v(a))/0 < i < n et a; £ 0)
et son enveloppe convexe inférieure C(f). Pour tout M € R on pose
vy (f) = min({v(a;) — Mi/0 <i <n})

On désigne par i}, (f) (resp. iy, (f)) le plus grand (resp. le plus petit) indice pour lequel ce

minimum est atteint.

Si la(f) = it (f) — iy (f) > 0, M est I'une des pentes du polygone de Newton de f et on dit
Ip(f) est sa largeur. Notons que 'on a M € Q.

On désignera par M(f) C Q 'ensemble des pentes du polygone de Newton de f; on a

5" Lu(f) = deg(f) — ord(f)

MeM(f)

Proposition 2 vy, est une valuation et l'on a pour tout polynome f € K[X] :

En particulier on a :

et



V Les relations vp(f) = 0 si et seulement si f = 0 et vp(f + g) > min(vpr(f),var(g)) sont
immediates. C’est la relation vas(f + g) = var(f) + var(g) qu’il s’agit d’établir.
k

m . n . m+n

Posons f = Y a; X% g= Y b; X7 et fg= Y cx X" olt e = Y asby_i.
i=0 §=0 k=0 i=0

On a alors :

v(cg) > o%igk(v(ai) + v(bg—;)

de sorte que :
vler) = Mk > min ((v(ai) — Mi) + (o(bg_i — M(k — i)

0<i<k
d’ou
v(ep) = Mk = v (f) +va(g)
pour 0 < k < m + n et finalement :

om(fg) = vm(f) +vm(g)

Posons r =iy,(f) et s = i},(g). Il faut donc montrer les relations :

{ iy(fg)=r+s
o (fg) <om(f) +vn(g)

Pour cela considérons la somme :
k
Cr4s = § aibr+57i
i=0

Par définition de r et s on a :

{ om(f) =v(ar) — Mr { vap(g) = v(bs) — Ms
v(a;) — Mi > vy (f) pour ¢ <r v(bj) — Mj > vp(g) pour j < s

Dans la somme ¢, le terme a,.bs pour lequel i =7 (et r + s — i = s) est tel que :

v(arbs) = wv(a,)+ v(bs)
= om(f) +vm(g) + M(r+s)

et tous les autres termes sont de valuation strictement supérieure : par exemple pour ¢ < r
on a v(a;) > vpm(f) + Mi et v(brys—i) > vm(g) + M(r + s — i) de sorte que v(a;byys—i) >
om (f) +om(g) + M(r + s).
Ainsi on a :

U(Cr+s) = UM(f) =+ UM(g) + M(’l" + 5)

de sorte que :
v(cres) — M(r+s) =om(f) +ovm(g)

et donc que :
vm(fg) < om(f) +vm(g)

le minimum étant atteint pour r+s. Si k < r+ s chaque terme de ¢ est de valuation strictement
supérieure & var(f) +vam(g) + Mk de sorte que iy, (fg) =r+s. A

Pour toute pente M € M(f) de largeur I ; on pose hyy = My et Ayp = pged(har, lyr). On

a alors :

A e Aurm oy

Iy AvusSu SM

. ™ ., .
avec la fraction — drréductible.
SM



Corollaire 2 (critére de Dumas) Soit f un polynome de coefficient constant non nul; les
degrés possibles des facteurs de f sont de la forme :

> kmsu
()

avec 0 < kyr < A\um.
En particulier si f € K[X]| est un polynéme de coefficient constant non nul (ie. tel que f(0) #0)
possédant une seule pente M vérifiant Ly = spr; alors fest irréductible.

v En effet si h est un facteur de f, le coefficient constant de h est nonnul et 'ona > Iy (h) =
MeM(h)

deg(h). De plus M(h) C M(f) et lpr(h) < la(f).

Soit M € M(f); Si M € M(f)\ M(h) on a ky =0;si M € M(h), lpr(h) # 0 est un multiple
(entier) de sps (le dénominateur irréductible de M) inférieur ou égal a Iy (f) = Anprsy d’ou
l]\/[(h) = ]{imSm avec 1 < k:M < >\M-

Supposons en particulier M(f) = {M} et lpy = deg(f) = sa te. Ay = 1. les degrés possibles
des facteurs irréductibles de f sont de la forme kjprsps avec 0 < kpyr < Apy donce égaux a 0 ou

deg(f). &

Corollaire 3 (critére d’Eisenstein) Soit f € K[X] un polynome de degré n tel que v(ay,) = 0,
v(ag) =1, v(a;) > 1 pour 1 <i < n, alors [ est irréductible.

1
V Le polygone de Newton de f possede une unique pente M = —— et on a iy, = 0 et ’LL =n

n
de sorte que lpy = n = spr. On peut alors appliquer le critére de Dumas. A

Exercices.

Exercice 1.
1. Tracer les points de la liste L = [[6, 4], [-3, 5], [1,4], [0,1], [3, 3], [4, 5], [-2, 2], [1, 7], [-3, 6]].
2. Ecrire une fonction Prepare qui étant donné une liste L, pour des points de méme abs-

cisse ne conserve que celui d’ordonnée minimale puis ordonne la liste selon les abscisses
croissantes.

3. Ecrire une fonction convexe_inf permettant de calculer ’enveloppe convexe inférieure
d’une liste de points.
Calculer la liste PN des sommets de 1’enveloppe conveze inférieure de L.

4. Tracer sur un méme dessin le nuage de points L et son enveloppe convese inférieure.

Exercice 2.
On considére les polynomes f = X10+11X94+55X84+165X"+330X04+462X°+462X*44+330X3+
165X2 +55X +11, g = X7 +1320X5 — 14751.X° — 1330X3 + 1330X2 — 161172X* — 1320X — 11
et h = fg.

1. Ecrire une fonction polygone_newton permettant de calculer un polynome de Newton.

2. Tracer sur une méme dessin les polygones de Newton de f, g et h en utilisant des couleurs
différentes pour p = 11.



3. Ecrire une fonction bouts_pente ( qui & une polygone de Newton L (décrit par la liste de
ses sommets) et un nombre rationnel M associe la plus petite et la plus grande des abscisses
iy et i]t[ des points d’intersertion L N Ayy.

4. Ecrire une fonction pentes permettant de calculer les pentes d’un polygone de Newton.
5. Ecrire une fonction bouts permettant de calculer pour chaque pente M les bouts (i), z']&)

6. Lcrire une fonction degree_facteurs_irreduc( qui & partir de la liste des pentes M et
de la liste des couples (i}, zX/[) correspondants d’un polygone de Newton d’un polynéme
renvoie les degrés possibles des facteurs irréductibles de ce polynome.

Tester cette fonction avec les polynémes f, g et h.

Exercice 3.
On considére le polynéme f = 25X% — 3X3 + 15X? + 45.

1. Tracer le polygone de Newton de f pour p = 5; en déduire les degrés possibles des facteurs
irréductibles de f

2. Faire de méme pour p = 3.

3. En déduire que f est irréductible.

Exercice 4.
On considére le polynéme exponentiel tronqué :

Jn = Z%Xk
k=0 "

1. Tracer les polygones de Newton de f,, pour les diviseurs premiers p de n (fixé au préalable)
2. Etudier lirréductibilité de f,.

3. Peut-on énoncer et démontrer un résultat général ?



