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CONVERGENCE OF MASS REDISTRIBUTION METHOD
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Abstract. This paper focuses on a one-dimensional wave equation being subjected to a unilateral
boundary condition. Under appropriate regularity assumptions on the initial data, a new proof of
existence and uniqueness results is proposed. The mass redistribution method, which is based on a
redistribution of the body mass such that there is no inertia at the contact node, is introduced and its
convergence is proved. Finally, some numerical experiments are reported.
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1. Introduction

We consider an elastic bar of length L vibrating vertically. More precisely, one end of the bar is free to move,
as long as it does not hit a material obstacle, while the other end is clamped (see Fig. 1). The obstacle constrains
the displacement of the extremity to be greater than or equal to 0.

We describe now the mathematical situation. We assume that the material of the bar is homogeneous and
satisfies the theory of small deformations. Let x be the spatial coordinate along the bar, with the origin at
the material obstacle, let u(x, t) be the displacement at time t ∈ [0, T ], T > 0, of the material point of spatial
coordinate x ∈ [0, L]. Then the mathematical problem can be formulated as follows:

ü(x, t) − u′′(x, t) = 0, (x, t) ∈ (0, L) × (0, T ), (1.1)

with Cauchy initial data

u(x, 0) = u0(x) and u̇(x, 0) = v0(x), x ∈ (0, L), (1.2)

and Signorini and Dirichlet boundary conditions at x = 0 and x = L, respectively,

0 ≤ u(0, t) ⊥ u′(0, t) ≤ 0 and u(L, t) = 0, t ∈ [0, T ], (1.3)
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Figure 1. An elastic bar vibrating on impacting obstacle.

where u̇ def= ∂u
∂t and u′ def= ∂u

∂x . The orthogonality has the natural meaning; namely if we have enough regularity,
it means that the product u(0, ·)u′(0, ·) vanishes almost everywhere at the boundary. If it is not the case, the
above inequality is integrated on an appropriate set of test functions, leading to a weak formulation for the
unilateral condition.

Observe that from mathematical viewpoint, the Signorini conditions mean that when the bar touches the
obstacle in x = 0, its reaction can be only upwards, so that u′(0, t) ≤ 0 on the set {t : u(0, t) = 0}. While in the
case where the bar does not touch the obstacle, its end is free to move. More precisely, we have u′(0, t) = 0 on
the set {t : u(0, t) > 0}.

We suppose that the initial displacement u0 belongs to the Sobolev space H1(0, L) and satisfies the compat-
ibility conditions, i.e. u0(L) = 0 and u0(0) ≥ 0 and the initial velocity v0 belongs to L2(0, L).

We describe now the weak formulation of the problem. To this aim, we denote by K the following convex set:

K
def= {u ∈ H2 : u(·, t) ∈ K for almost every t},

where H2
def= {u ∈ L2(0, T ;V ) : u̇ ∈ L2(0, T ; L2(0, L))} and K

def= {u ∈ V : u(0) ≥ 0} with V
def= {u ∈ H1(0, L) :

u(L) = 0}.
Then the weak formulation associated to (1.1)–(1.3) is obtained by multiplying (1.1) by v− u, v ∈ K and by

integrating formally this result over QT
def= (0, L) × (0, T ):⎧⎪⎪⎪⎨

⎪⎪⎪⎩
find u ∈ K such that

−
∫ L

0

v0(v(·, 0)−u0)dx −
∫

QT

u̇(v̇−u̇)dxdt +
∫

QT

u′(v′−u′)dxdt ≥ 0

for all v ∈ K for which there exists ζ > 0 with v = u for t ≥ T − ζ.

(1.4)

The weak formulation (1.4) is derived from [32] where the contact conditions are given in a slightly different
context. Existence and uniqueness results are obtained for a vibrating string with concave obstacle in one-
dimensional space in [31] and for a wave equation with unilateral constraint at the boundary in a half space of
R

N in [22]. An existence result for a wave equation in a C2 regular bounded domain constrained by an obstacle
at the boundary in R

N for N ≥ 2 is proven in [19].
The paper is organized as follows. In Section 2, the problem (1.1)–(1.3) is reformulated as a differential

inclusion problem by using characteristic method, which is a crucial ingredient to prove the uniqueness result.
Then, the rest of this section is devoted to the proof of existence and uniqueness results as well as to the energy
balance. In Section 3, the equivalence between the weak formulation associated to (1.1)–(1.3) and the differential
inclusion obtained in Section 2 is established. Then, in Section 4, a mass redistribution method is introduced
and its convergence is proved. This method is based on a redistribution of the body mass such that there is
no inertia at the contact node (see [13, 16]). Finally, some numerical examples are reported and analyzed in
Section 5. More precisely, the energy with and without the mass redistribution method are compared as well as
the approximated solution associated to the mass redistribution method and an exact solution.
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2. Existence and uniqueness results by using the characteristic method

This section is devoted to the proof of existence and uniqueness results for the problem (1.1)–(1.3). The first
step consists in rewriting (1.1)–(1.3) as a differential inclusion problem by using the characteristic method. To
this aim, we introduce the following notations:

ξ
def= x+ t and η

def= x− t.

Therefore the chain rule gives

∂2u

∂x2
=
∂2u

∂ξ2
+ 2

∂2u

∂ξ∂η
+
∂2u

∂η2
and

∂2u

∂t2
=
∂2u

∂ξ2
− 2

∂2u

∂ξ∂η
+
∂2u

∂η2
,

which by using (1.1) implies that ∂2u
∂ξ∂η vanishes. Thus we may conclude that

u(ξ, η) = p(ξ) + q(η),

where p and q are two differentiable functions such that

u(x, t) = p(x+t) + q(x−t). (2.1)

In particular, taking t = 0 and using the initial data u0 and v0, we get

p(x) + q(x) = u0(x) and p′(x) − q′(x) = v0(x), (2.2)

which by integration gives

p(ξ) =
u0(ξ)

2
+

1
2

∫ ξ

0

v0(x̄)dx̄ and q(η) =
u0(η)

2
− 1

2

∫ η

0

v0(x̄)dx̄ (2.3)

for all ξ and η belonging to [0, L]. According to (2.1), the boundary conditions (1.3) can be rewritten as follows:

0 ≤ p(t) + q(−t) ⊥ p′(t) + q′(−t) ≤ 0 and p(L+t) + q(L−t) = 0 (2.4)

for all t belonging to [0, T ]. Thanks to the above identity, we may extend p(t) for all t ∈ [L, 2L], i.e. we have

p(L+t) = −q(L−t)
for all t belonging to [0, L]. If we choose t′ = L+ t, we get p(t′) = −q(2L−t′). We already have the solution for
q(t) with 0 ≤ t ≤ L and if L ≤ t′ ≤ 2L, we can obtain p(t′) by observing that 0 ≤ 2L − t′ ≤ L and by using
q(2L−t), it comes that

p(t) = −u
0(2L−t)

2
+

1
2

∫ 2L−t

0

v0(x̄)dx̄ (2.5)

for all t belonging to [L, 2L].
Let us introduce the multivalued function JN : R → P(R̄)\∅ defined by

JN (x) def=

⎧⎪⎨
⎪⎩
{0} if x < 0,
[0,+∞) if x = 0,
∅ if x > 0,

where P(R̄) is the set of all subsets of R̄. More precisely, JN (x) is the subdifferential of the indicator function
∂I(−∞,0](x) defined by

I(−∞,0](x)
def=

{
0 if x ∈ (−∞, 0],
+∞ if x /∈ (−∞, 0].
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Obviously, I(−∞,0] is a lower semi-continuous and convex function, for further details the reader is referred to [6].
Then, the inequalities in (2.4) can be rewritten as follows

p′(t) + q′(−t) ∈ −JN(−p(t)−q(−t))). (2.6)

Note that at this stage, q(η), η ∈ [−L, 0], is the unique unknown of (2.6). We define now

f(t) def= −p(t) − q(−t). (2.7)

We insert (2.7) into (2.6) to get
f ′(t) ∈ −JN(f(t)) − 2p′(t).

Finally, we find the following Cauchy problem

f ′(t) ∈ −JN (f(t)) − 2p′(t) a.e. t ∈ (0, L), (2.8a)
f(0) = −u0(0). (2.8b)

Observe that the Cauchy problem (2.8) formally is equivalent to (1.1)–(1.3). Note that the existence and
uniqueness results in half-space, with some appropriate conditions on u0 and v0, were established in [22].
The proof of Theorem 2.1 is rather classical. However for the reader convenience, this proof is given in the
Appendix A.

Theorem 2.1 (Existence and uniqueness results). Assume that p is bounded in W1,1(0, L). Then the Cauchy
problem (2.8) admits a unique absolutely continuous solution.

We introduce now some new notations: let X̊ and ∂X be the interior and boundary of the set X , respectively,
and let

I
def= {t ∈ [0, L] : f(t) = 0} and J

def= {t ∈ [0, L] : f(t) < 0}.
In the sequel, the notations for the constants introduced in the proofs are only valid in the proof. The aim of
the next lemma is to prove further regularity results for the solution f of Problem (2.8).

Lemma 2.2 (regularity result). Assume that p is bounded in H1(0, L). Then the solution f to problem (2.8) is
bounded in H1(0, L).

Proof. Note that Theorem 2.1 implies that f is bounded in W1,1(0, L). It follows that

f ′(t) = 0 on I̊ and f ′(t) = −2p′(t) on J.

Clearly, we have ∫
J

|f ′(t)|2 dt =
∫

J

4|p′(t)|2 dt <∞ and
∫

I̊

|f ′(t)|2 dt = 0.

Observe that if t is an accumulation point of ∂I, we may deduce that there exists a sequence tn belonging
to I such that tn → t so that f(tn) = 0 and f(t) = 0. We recall the fundamental theorem of calculus for
Lebesgue integral states that if f is an absolutely continuous function on [a, b], f is of bounded variation on
[a, b]. Consequently, f ′(x) exists for almost every x belonging to [a, b]. For further details the reader is referred
to [30], p. 160. Hence f ′ vanishes for almost all accumulation points of ∂I. It follows that f ′(t) vanishes for
almost every t belonging to ∂I. Therefore, we deduce that f ′ is bounded in L2(0, L), which implies that f
belongs to H1(0, L). This concludes the proof. �



CONVERGENCE OF MASS REDISTRIBUTION METHOD FOR A CONTACT PROBLEM 1151

It is convenient to define the following spaces:

H
def= L2(0, L) and V

def= {u ∈ H1(0, L) : u(L) = 0}

endowed with the norms ‖·‖H and ‖·‖V . Let (·, ·) and a(·, ·) the scalar products in H and V , respectively. This
allows to define

H2
def= {u ∈ L2(0, T ;V ) : u̇ ∈ L2(0, T ;H)}

endowed with the norm

‖u‖H2

def=
(∫ T

0

(‖u(·, t)‖2
V +‖u̇(·, t)‖2

H

)
dt
)1/2

,

and 〈〈·, ·〉〉 the duality corresponding product between H
′
2 and H2. We observe that H2 ↪→ C0([0, T ];H) (see [34]).

Lemma 2.3. Assume that u belongs to H2 and ü − u′′ (defined in the sense of distributions on QT ) is square
integrable. Then we have for all ε > 0, u ∈ C0([0, T ]; H1(ε, L)) ∩ C0([0, L]; H1(ε, T−ε)), u̇ ∈ C0([0, T ]; L2(ε, L))
and u′ ∈ C0([0, L]; L2(ε, T−ε)).
Proof. The proof is obtained by using the same techniques detailed in [32]. Since it is quite a routine to adapt
this proof to our case, we let the verification to the reader. �

The aim of the next lemma is to obtain some further regularity results for the solution u to (1.4).

Lemma 2.4. Let u be the solution to (1.4). Then for all ε > 0, u ∈ C0([0, L]; H1(0, T−ε)) and u′ ∈
C0([0, L]; L2(0, T−ε)).
Proof. The proof of this result exploits the local energy identity inside QT , the reader can find a detailed proof
in the Appendix as well as in [32] where a succinct proof is given. �

We deal now with the energy balance. More precisely, we prove below that the energy associated to (2.8)
given by

E(t) =
1
2

∫ L

0

(|u′(t, x)|2+|u̇(t, x)|2)dx
is constant with respect to time t.

Lemma 2.5 (energy balance). Assume that p is bounded in W1,1(0, L). Then the solution u to problem (2.8)
is energy conserving.

Proof. We observe first that (2.1) gives

E(t) =
1
2

∫ L

0

(
(p′(x+t)+q′(x−t))2+(p′(x+t)−q′(x−t))2)dx =

∫ L

0

|p′(x+t)|2 dx+
∫ L

0

|q′(x−t)|2 dx. (2.9)

We evaluate now the two integrals on the right hand side of (2.9). We note first that (2.3), (2.5) and (2.7) lead
to

p′(x+t) =

⎧⎪⎨
⎪⎩

1
2
(
u0′(x+t)+v0(x+t)

)
, 0 ≤ x+ t ≤ L,

1
2
(
u0′(2L−(x+t))−v0(2L−(x+t))

)
, L ≤ x+ t ≤ 2L,

and

q′(x−t) =

⎧⎨
⎩

1
2
(
u0′(x−t)−v0(x−t)), 0 ≤ x− t ≤ L,(

f ′(−(x−t))+p′(−(x−t))), −L ≤ x− t ≤ 0.
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On the one hand, we may deduce that∫ L

0

|p′(x+t)|2 dx =
1
4

∫ L−t

0

|u0′(x+t)+v0(x+t)|2 dx+
1
4

∫ L

L−t

|u0′(2L−x−t)−v0(2L−x−t)|2 dx

=
1
4

∫ L

t

|u0′(x)+v0(x)|2 dx+
1
4

∫ L

L−t

|u0′(x)−v0(x)|2 dx.

(2.10)

On the other hand, by using the same kind of arguments as in the proof of Lemma 2.2, we may obtain

|q′(η)|2 = |f ′(−η)+p′(−η)|2 =

{
|0+p′(−η)|2 a.e. on I,
|−2p′(−η)+p′(−η)|2 on J,

for all η belonging to [−L, 0]. It follows that |q′(η)|2 = |p′(−η)|2 almost everywhere on [−L, 0]. Hence we have
∫ L

0

|q′(x−t)|2 dx =
∫ t

0

|p′(t−x)|2 dx+
1
4

∫ L

t

|u0′(x−t)+v0(x−t)|2 dx

=
1
4

∫ t

0

|u0′(t−x)+v0(t−x)|2 dx+
1
4

∫ L

t

|u0′(x−t)+v0(x−t)|2 dx

=
1
4

∫ t

0

|u0′(x)+v0(x)|2 dx+
1
4

∫ L−t

0

|u0′(x)−v0(x)|2 dx.

(2.11)

Inserting (2.10) and (2.11) into (2.9), we get

E(t) =
1
4

∫ L

0

|u0′(x)+v0(x)|2 dx+
1
4

∫ L

0

|u0′(x)−v0(x)|2 dx,

and the conclusion is clear. �

3. The equivalence between the variational formulation

and the differential inclusion

The present section is dedicated to prove the equivalence between the weak formulation (1.4) and the differ-
ential inclusion (2.8). Consequently together with the results obtained in the previous section, it is possible to
deduce that (1.4) possesses a unique solution. To this aim, we introduce

K
def= {u ∈ V : u(0, ·) ≥ 0}.

Lemma 3.1. Assume that u0 and v0 belong to K and H, respectively. Then the unique solution to problem (2.8)
define a weak solution to (1.4) for T = L.

Proof. The idea of the proof consists to split the domain QT into four regions according to Figure 2 and to use
the expression of the solution on each region to show that u and u̇ belong to L2(0, T ;V ) and to L2(0, T ;H),
respectively (see Fig. 2).

Let us go into the details. On the one hand, we observe that x+ t ∈ [0, L] and x− t ∈ [−L, 0] in the region I
while x+ t ∈ [L, 2L] and x− t ∈ [−L, 0] in the region II and we have

u(x, t) = p(x+t) − p(t−x) − f(t−x), (3.1a)
u′(x, t) = p′(x+t) + p′(t−x) + f ′(t−x), (3.1b)
u̇(x, t) = p′(x+t) − p′(t−x) − f ′(t−x). (3.1c)
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I

II

III

IV

x

t

(L, L)

(L, 0)

(0, L)

Figure 2. Four regions allowing to determine the value of u.

Since u0 ∈ K, v0 ∈ H and (2.3)–(2.5) hold, we may infer that p belongs to H1(0, 2L) in the regions I and II.
Besides, Lemma 2.2 implies that f belongs to H1(0, L). According to (3.1), we conclude that∫ L

0

∫ L

x

(|u(x, t)|2+|u′(x, t)|2+|u̇(x, t)|2)dtdx < +∞. (3.2)

On the other hand, we note that x + t ∈ [L, 2L] and x − t ∈ [0, L] in the region III while x + t ∈ [0, L] and
x− t ∈ [0, L] in the region IV and we have

u(x, t) = p(x+t) + q(x−t), (3.3a)
u′(x, t) = p′(x+t) + q′(x−t), (3.3b)
u̇(x, t) = p′(x+t) − q′(x−t). (3.3c)

Still using the fact that u0 ∈ K, v0 ∈ H and (2.3)–(2.5) hold, we may infer that p and q belong to H1(0, L) in
the regions III and IV. Thanks to (3.3), we may infer that∫ L

0

∫ x

0

(|u(x, t)|2+|u′(x, t)|2+|u̇(x, t)|2) dtdx < +∞. (3.4)

Therefore, it follows from (3.2) and (3.4) that u and u̇ are bounded in L2(0, T ;V ) and L2(0, T ;H), respectively.
We deduce from Lemma 2.3 that u(0, ·) and u′(0, ·) belong to L2(0, T ) and to L2(ε, T−ε) for all ε > 0, respectively,
and u(·, 0) and u̇(·, 0) belong to L2(0, L) and to L2(ε, L) for all ε > 0, respectively. It remains to verify that (1.4)
holds. To this aim, we observe by using the notations introduced above that

−
∫ L

0

v0(v(x, 0)−u(x, 0))dx −
∫

QT

u̇(x, t)(v̇−u̇)(x, t)dxdt +
∫

QT

u′(x, t)(v′−u′)(x, t)dxdt

= −
∫ L

0

v0(v(x, 0)−u(x, 0))dx −
∫

QT

(p′(x+t)−q′(x−t))(v̇(x, t)−(p′(x+t)−q′(x−t)))dxdt

+
∫

QT

(p′(x+t)+q′(x−t))(v′(x, t)−(p′(x+t)+q′(x−t)))dxdt

(3.5)

for all v belonging to K such that there exists ζ > 0 with v = u for t ≥ L− ζ. We evaluate each integral on the
right hand side of (3.5). Thanks to (2.2), we have∫ L

0

v0(v(x, 0)−u(x, 0))dx =
∫ L

0

(p′(x)−q′(x))(v(x, 0)−(p(x)+q(x)))dx. (3.6)
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The second integral on the right hand side of (3.5) is integrated by parts with respect to t, we get∫
QT

(p′(x+t)−q′(x−t))(v̇(x, t)−(p′(x+t)−q′(x−t)))dxdt

= −
∫ L

0

(p′(x)−q′(x))(v(x, 0)−(p(x)+q(x)))dx

−
∫

QT

(p′′(x+t)+q′′(x−t))(v(x, t)−(p(x+t)+q(x−t)))dxdt,

(3.7)

while the third one is integrated by parts with respect to x, we find∫
QT

(p′(x+t)+q′(x−t))(v′(x, t)−(p′(x+t)+q′(x−t)))dxdt

= −
∫ T

0

(p′(t)+q′(−t))(v(0, t)−(p(t)+q(−t)))dt

−
∫

QT

(p′′(x+t)+q′′(x−t))(v(x, t)−(p(x+t)+q(x−t)))dxdt.

(3.8)

We substitute (3.6)–(3.8) into (3.5) and according to (2.4), we find

−
∫ T

0

(p′(t)+q′(−t))(v(0, t)−(p(t)+q(−t)))dt ≥ 0,

which implies that (1.4) holds. �

Lemma 3.2. The weak solution (1.4) for T = L define a solution to Cauchy problem (2.8).

Proof. Let u be a solution to (1.4), it follows from Lemma 2.3 that u has traces in L2
loc(0, L) on {t = 0}× (ε, L)

and it comes that u0 = u(·, 0) makes sense. We choose ψ = v − u such that ψ belongs to the space of infinitely
differentiable functions on QT with a compact support D(QT ). Then it comes that

−
∫ T

0

(u̇, ψ̇)dt+
∫ T

0

a(u, ψ)dt = 0,

for all ψ belonging to D(QT ) where a(u, ψ) def=
∫ L

0
u′ψ′ dxdt. This gives

〈ü, ψ〉 − 〈u′′, ψ〉 = 0

for all ψ belonging to D(QT ). Here the duality product between D′(QT ) and D(QT ) is denoted by 〈·, ·〉. Therefore,
we may deduce that ü− u′′ vanishes in the sense of distributions in QT . Thus we have∫

QT

(−u̇ψ̇+u′ψ′)dxdt = 0 (3.9)

for all ψ belonging to D(QT ). We introduce the following notations: μ+
def= x + t, μ−

def= x − t and Δ denotes
the region bounded by the lines μ+ = −μ−, μ+ = 2L− μ−, μ− = μ+ and μ− = μ+ − 2T in the plane (μ−, μ+).
Hence we have

u̇ =
∂u

∂μ+
− ∂u

∂μ−
, u′ =

∂u

∂μ+
+

∂u

∂μ−
, ψ̇ =

∂ψ

∂μ+
− ∂ψ

∂μ−
and ψ′ =

∂ψ

∂μ+
+

∂ψ

∂μ−
· (3.10)
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Carrying (3.10) into (3.9), we find

−
∫

Δ

(
∂u

∂μ+
− ∂u

∂μ−

)(
∂ψ

∂μ+
− ∂ψ

∂μ−

)
dμ−dμ+ +

∫
Δ

(
∂u

∂μ+
+
∂u

∂μ−

)(
∂ψ

∂μ+
+
∂ψ

∂μ−

)
dμ− dμ+ = 0

for all ψ belonging to D(Δ). We observe that∫
Δ

∂u

∂μ+

∂ψ

∂μ−
dμ−dμ+ +

∫
Δ

∂u

∂μ−
∂ψ

∂μ+
dμ− dμ+ = 0 (3.11)

for all ψ belonging to D(Δ). The first term in (3.11) is integrated by parts with respect to μ− while the second
one is integrated by parts with respect to μ+ to get

−
〈

∂2u

∂μ+∂μ−
, ψ

〉
−
〈

∂2u

∂μ−∂μ+
, ψ

〉
= 0,

for all ψ belonging to D(Δ). Since we have〈
∂2u

∂μ+∂μ−
, ψ

〉
=
〈
u,

∂2ψ

∂μ+∂μ−

〉
=
〈

∂2u

∂μ−∂μ+
, ψ

〉
,

it follows that 〈
∂2u

∂μ+∂μ−
, ψ

〉
= 0

for all ψ belonging to D(Δ). Then we conclude that ∂2u
∂μ+∂μ− vanishes which holds if and only if u = p(μ+)+q(μ−).

We observe that Lemmas 2.3 and 2.4 imply that u̇(·, 0) = v0 and u′(0, ·) belong to H and to L2(0, T−ε),
respectively. According to Theorem 5.1 (given in Appendix B), it comes that the following Green’s formulas
make sense∫ T

0

∫ L

0

(ü−u′′)ψdxdt = −
∫ T

0

(
(u̇, ψ̇)−a(u, ψ)

)
dt+

∫ T

0

u′(L, t)ψ(L, t)dt−
∫ T

0

u′(0, t)ψ(0, t)dt

+
(
u̇(x, T ), ψ(x, T )

)− (v0, ψ(x, 0)
) (3.12)

for all ψ belonging to H2. We insert (3.12) into (1.4) and we choose v = u+ ψ, we obtain

−
∫ T

0

u′(0, t)(v(0, t)−u(0, t))dt ≥ 0 (3.13)

for all v belonging to K. Thanks to (2.1), we may deduce that (3.13) is equivalent to

−
∫ T

0

(p′(t)+q′(−t))(v(0, t)−(p(t)+q(−t)))dt ≥ 0 (3.14)

for all v belonging to K. Since p(t) + q(−t) ≥ 0, it follows that

v(0, t) = p(t) + q(−t) + α(t)

for all α(t) ≥ 0. Therefore we may infer from (3.14) that

−
∫ T

0

(p′(t)+q′(−t))α(t)dt ≥ 0

for all α(t) ≥ 0, which implies that p′(t) + q′(−t) ≤ 0 for almost every t ∈ (0, T ). Finally we choose v(0, t) = 0
and v(0, t) = 2(p(t)+q(−t)) in (3.14), we get∫ T

0

(p′(t)+q′(−t))(p(t)+q(−t))dt = 0,

which allows us to infer that (p′(t)+q′(−t))(p(t) + q(−t)) vanishes for almost every t ∈ (0, T ). This concludes
the proof. �
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4. Convergence of mass redistribution method

The semi-discretized problem by using finite elements is not well-posed which emphasizes some instabilities
of time integration schemes (see [16,23,24,26,27]). In the literature many different approaches were elaborated
to overcome this difficulty. For instance the uniqueness for an impact law of rigid bodies can be recovered by
introducing a restitution coefficient (see [25]). However, this approach is not totally satisfactory for deformable
bodies. Indeed the presence of oscillations due to displacement and to normal stress on the contact boundary
induces some difficulties in the construction of energy conserving schemes (see [20, 21, 25]). Another approach
consists in using the penalty method which introduces some oscillations as well but which can be reduced with
a damping technique (see [33]). One of the key point to avoid oscillations is to use the mass redistribution
method, the reader is referred to [16] and the references therein.

We first approximate (1.1)–(1.3) by using the Lagrange affine finite element method. To this aim, we define
h = L

n where n is an integer and

V h def= {vh ∈ C0([0, L]) : vh|[ai,ai+1] ∈ P1, i = 0, . . . , n− 1, vh(L) = 0}.

Here, ai
def= ih, i = 0, 1, . . . , n, and P1 is the space of polynomials of degree less than or equal to 1. A classical

basis of V h is given by the sequence of shape functions ϕi ∈ V h for i = 0, 1, . . . , n− 1, defined by

ϕi(x)
def=

{
1 − |x−ai|

h if x ∈ [amax(i−1,0), ai+1],
0 otherwise.

Note that ϕi(aj) = δij , j = 0, 1, . . . , n − 1, i.e. δij = 1 if i = j and δ vanishes otherwise (δ is the Kronecker
symbol). We approximate the solution u belonging to V to the weak formulation (1.4) by

uh(x, t) =
n−1∑
j=0

uj(t)ϕj(x).

Consequently, we have ui = uh(ai), i = 0, 1, . . . , n− 1. The weak formulation (1.4) is approximated as follows

(Puh)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

find uh : [0, T ] → V h and λ : [0, T ] → R such that for all vh ∈ V h

∫ L

0

ühvh dx+ a(uh, vh) = −λvh(0) a.e. t ∈ [0, T ],

0 ≤ uh(0, ·) ⊥ λ ≤ 0 a.e. t ∈ [0, T ],

uh(·, 0) = u0h and u̇h(·, 0) = v0h,

where u0h and v0h belong to V h such that

lim
h→0

(‖u0h−u0‖V +‖v0h−v0‖H

)
= 0, (4.1)

where λ is the Lagrange multiplier. We introduce now the following notations: U def= (u0, . . . , un−1)T and e0
def=

(1, 0, . . . , 0)T. The corresponding algebraic formulation is given by

(PUλ)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

find U : [0, T ] → R
n and λ : [0, T ] → R such that

MÜ + SU = −λe0 a.e. t ∈ [0, T ],

0 ≤ u0 ⊥ λ ≤ 0 a.e. t ∈ [0, T ],

U(0) = U0 and U̇(0) = V 0,
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where M and S denote the mass and stiffness matrices, respectively;

Mij
def=
∫ L

0

ϕiϕj dx and Sij
def= a(ϕi, ϕj) =

1
h

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 · · · · · · 0

−1 2 −1
. . .

...

0 −1 2
. . . . . .

...
...

. . . . . . . . . . . . 0
...

. . . −1 2 −1
0 · · · · · · 0 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

for all i, j ∈ [0, n− 1].
We define now the modified mass matrix as follows: Mmod

ij
def=
∫ L

h
ϕiϕj dx. Clearly, we may observe that

M0i = Mi0 = 0 for all i = 0, . . . , n− 1. Therefore, the modified mass matrix reads

Mmod def=
(

0 0
0 M̄

)
.

Note that M̄ij = Mi+1,j+1 for all i, j = 1, . . . , n − 2. We introduce now the following notations: Ū def=
(u1, . . . , un−1)T and S̄ij

def= Si+1,j+1 with C def=
∫

Ω ϕ
′
i+1ϕ

′
0 dx, i = 0, . . . , n− 2. Observe that C = (S10, 0, . . . , 0)T.

Thus by using the above notations, we have

S =
(
S00 C

T

C S̄

)
and U =

(
u0

Ū

)
.

This leads to an algebraic formulation of the semi-discrete approximation with mass redistribution method given
by

(Pmod
Uλ )

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

find U : [0, T ] → R
n and λ : [0, T ] → R such that

M̄ ¨̄U + S̄Ū = −Cu0 a.e. t ∈ [0, T ],

S00u0 + CTŪ = −λ a.e. t ∈ [0, T ],
0 ≤ u0 ⊥ λ ≤ 0 a.e. t ∈ [0, T ],

U(0) = U0 and U̇(0) = V 0.

It follows that

u0 =
(−λ−CTŪ

S00

)
=
(−λ−S10u1

S00

)
·

If S10u1 ≥ 0 then the compatibility condition gives u0 = 0, so λ = (CTŪ)− otherwise we have λ = 0. This

implies that u0 =
(

−S10u1
S00

)+

, and then we may conclude that (Pmod
Uλ ) is equivalent to the following second order

Lipschitz continuous ordinary differential equation:

(Pmod
Ū )

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

find Ū : [0, T ] → R
n−1 such that

M̄ ¨̄U + S̄Ū = −C
(−S10u1

S00

)+

a.e. t ∈ [0, T ],

U(0) = U0 and U̇(0) = V 0.

Lemma 4.1 (existence and uniqueness results for (Pmod
Uλ )). Problem (Pmod

Uλ ) admits an unique solution (U, λ)
which is Lipschitz continuous.
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Proof. We use the fact that M̄ is not a singular matrix as well as the same techniques detailed in [7] to establish
that (Pmod

Ū
) possesses a unique Lipschitz continuous solution. On the other hand, we may deduce from (Pmod

Uλ )
that u0 = (−S10u1

S00
)+ and λ = (CTŪ)−. This allows us to conclude that u0 and λ are also Lipschitz continuous

and then the conclusion is clear. �

We deal with the energy balance and we establish the energy conservation of the solution to problem (Pmod
Uλ ).

More precisely, the discrete energy associated to problem (Pmod
Uλ ) is given by

E(t) = 1
2 (U̇TMmodU̇+UTSU)(t). (4.2)

Lemma 4.2. The solution (U, λ) to problem (Pmod
Uλ ) is energy conserving.

Proof. We observe first that
U̇TMmodÜ + U̇TSU = −U̇Tλe0.

Therefore, we integrate this expression over (0, t) to get

∀t ∈ [0, T ] : E(t) − E(0) = −
∫ t

0

u̇0(s)λ(s)ds.

Let us define ω def= {t ∈ [0, T ] : u0(t) > 0}. On the one hand, the contact conditions imply that λ = 0 on ω. On
the other hand, the continuity of λ on [0, T ] gives that λ = 0 on ω̄ where ω̄ is the closure to ω. Furthermore,
u̇0 vanishes in the interior of the set [0, T ]\ω. Hence u̇0λ = 0 on [0, T ] and we conclude that E(t) = E(0) for all
t ∈ [0, T ]. �

We observe that (Pmod
Uλ ) is equivalent to

(Pmod
uh )

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

find uh : [0, T ] → V h such that for all vh ∈ Kh

∫ T

0

(∫ L

h

üh(vh−uh)dx+ a
(
uh, vh−uh

))
dt ≥ 0,

uh(·, 0) = u0h and u̇h(·, 0) = v0h.

We establish below the convergence of the solution uh of (Pmod
uh ) to the solution of (1.4) by using some ideas

developed in [32].

Theorem 4.3. Assume that (4.1) holds. Then, the solution uh of (Pmod
uh ) converges strongly in H2 to the unique

solution of (1.4) as h tends to 0.

Proof. We observe that ∫ L

0

|u̇h(x, t)|2 dx =
∫ h

0

|u̇h(x, t)|2 dx+
∫ L

h

|u̇h(x, t)|2 dx. (4.3)

We evaluate now the right hand side of (4.3). To this aim, we note that u0(t) = −S10
S00

(
u1(t)

)+ implies that

|u̇0(t)| ≤ |u̇1(t)|, (4.4)

since −S10
S00

= 1. Therefore, by using (4.4) and Cauchy Schwarz’s inequality, we may deduce that there exists
C0 > 0 such that ∫ h

0

|u̇h(x, t)|2 dx =
∫ h

0

|u̇1(t)ϕ1(x)+u̇0(t)ϕ0(x)|2 dx ≤ C0h|u̇1(t)|2.
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Furthermore, the energy conservation of Lemma 4.2 implies that there exists C1 > 0 such that∫ L

h

|u̇h(x, t)|2 dx ≤ C1.

Consequently, we deduce that

∫ (i+1)h

ih

|u̇h(x, t)|2 dx =
∫ (i+1)h

ih

|u̇i+1(t)ϕi+1(x)+u̇i(t)ϕi(x)|2 dx ≤ C1

for i = 1, . . . , n− 1. We conclude that for sufficiently small h, we get

|u̇i+1(t)|2 + |u̇i(t)|2 ≤ 6C1

h

for i = 1, . . . , n − 1. Therefore |u̇1(t)|2 ≤ 6C1
h which implies that ‖u̇h(·, t)‖L2(0,h) is bounded independently of

h and then ‖u̇h(·, t)‖H is also bounded independently of h. By using Lemma 4.2, we can prove that ‖uh‖V is
bounded. It follows that there exists C > 0 independent of t such that

sup
t∈[0,T ]

(‖uh(·, t)‖V +‖u̇h(·, t)‖H) ≤ C.

Then, it is possible to extract a subsequence, still denoted by uh, such that

uh ⇀ u in L∞(0, T ;V ) weak ∗, (4.5a)

u̇h ⇀ u̇ in L∞(0, T ;H) weak ∗ . (4.5b)

Let us define
H∞

def= {u ∈ L∞(0, T ;V ) : u̇ ∈ L∞(0, T ;H)}
endowed with the following norm

‖u‖H∞
def= ess sup

t∈[0,T ]

(‖u(·, t)‖V + ‖u̇(·, t)‖H

)
.

We may infer from (4.5) that
uh ⇀ u in H∞ weak ∗ .

Since for all α < 1
2 the following injections H∞ ↪→ C0, 1

2 (QT ) ↪→↪→ C0,α(QT ) hold (see [32]), where ↪→ is
continuous embedding and ↪→↪→ is compact embedding, we get

uh → u in C0,α(QT )

for all α < 1
2 . We observe that both uh(t) and u(t) belong to K.

In order to prove that the limit u satisfies (1.4), it is necessary to choose convenient test functions. We
approximate the elements of K before projecting them onto V h. Indeed, the L2 projection does not conserve
the constraint at x = 0, and therefore, the elements of K need another approximation in order to satisfy the
constraint strictly. To this aim, let v be an element of K which is equal to u for t ≥ T − ε and let

vβ(x, t) def=

⎧⎨
⎩u(x, t) +

1
β

∫ t+β

t

(v(x, s)−u(x, s))ds+ k(β)(L−x)g(t) if t ≤ T − β,

u(x, t) if t ≥ T − β,

for all β ≤ ε
4 . Here g(t) is smooth, positive function (see Fig. 3) and satisfying
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g(t)

1

t
0 T − 2 T − 4 T

Figure 3. Smooth and positive function g(t).

g(t) def=

{
1 if t ∈ [0, T− ε

2 ],
0 if t ∈ [T− ε

4 , T ].

The next step consists to choose adequately k(β). Since u belongs to C0, 12 (QT ), we may deduce that there exists
C > 0, such that

∣∣∣u(0, t) − β−1

∫ t+β

t

u(0, s)ds
∣∣∣ ≤ β−1

∫ t+β

t

|u(0, t)−u(0, s)|ds

≤ C‖u‖H∞β
−1

∫ β

0

√
sds =

2
3
C‖u‖H∞

√
β.

Furthermore, we have the following inequality

vβ(0, t) ≥ β−1

∫ t+β

t

v(0, s)ds− 2
3
C‖u‖H∞

√
β + k(β)Lg(t)

for all t ≤ T − ε
2 . Choosing k(β) = 5

3LC‖u‖H∞
√
β, we get

vβ(0, t) ≥ C‖u‖H∞

√
β

for all t ≤ T − ε
2 . On the other hand, we have

vβ(x, t) = u(x, t) + k(β)(L−x)g(t)

for all t belonging to [T− ε
2 , T−β]. Hence vβ belongs to K and in the other hand vβ belongs to L∞(0, T ;V )

because
‖vβ(·, t)−u(·, t)‖V ≤ k(β)Lg(t) +

1√
β
‖v−u‖H2 .

We denote by Qh the orthogonal projection onto V h with respect to the scalar product in H such that
‖Qhz−z‖V → 0 when h → 0 for all z ∈ V (see [12]). The Sobolev injections imply that there exists a se-
quence αh converging to zero as h tends to zero such that

‖Qhz−z‖C0 ≤ αh‖z‖V ,

for all z belonging to V with limh→0 αh = 0. The test function is defined as follows:

vh(·, t) def= uh(·, t) +Qh(vβ−u)(·, t) (4.6)
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for all t belonging to [0, T ]. By using a continuity argument, vh(0, ·) ≥ 0 for h small enough. Carrying (4.6) into
(Pmod

uh ) and using the integration by parts, we find

−
∫ L

0

u̇h(·, 0)Qh(vβ−u)(·, 0)dx+
∫ h

0

u̇h(·, 0)Qh(vβ−u)(·, 0)dx−
∫ T

0

∫ L

0

u̇h(·, t)Qh(v̇β−u̇)(·, t)dxdt

+
∫ T

0

∫ h

0

u̇h(·, t)Qh(v̇β−u̇)(·, t)dxdt +
∫ T

0

a(uh(·, t), Qh(vβ−u)(·, t)dt ≥ 0.

Since (vβ−u)(·, t) is bounded in H∞, the above integration makes sense. Thus we may pass to the limit when
h tends to zero. Since we have

Qh(v̇β−u̇) → (v̇β−u̇) in L2(0, T ;H) and Qh(vβ−u) → (vβ−u) in L2(0, T ;V ).

Then, we conclude that

−
∫ L

0

v̇0(vβ−u)(·, 0)dx−
∫ L

0

∫ T

0

u̇(·, t)(v̇β−u̇)(·, t)dtdx +
∫ T

0

a(u(·, t), (vβ−u)(·, t))dt ≥ 0.

We pass now to the limit with respect to β so we obtain variational formulation (1.4).
On the one hand, we observe that Lemma 2.5 leads to∫ L

0

(|u̇(·, t)|2+|u′(·, t)|2)dx =
∫ L

0

(|v0|2+|u0′|2)dx. (4.7)

On the other hand, Lemma 4.2 implies that∫ L

h

|u̇h(·, t)|2 dx+ a(uh(·, t), uh(·, t)) =
∫ L

h

|u̇h(·, 0)|2 dx+ a(uh(·, 0), uh(·, 0)),

which by using (4.1) and (4.5) gives

lim
h→0

∫ L

h

(|u̇h(·, t)|2+|uh′
(·, t)|2)dx =

∫ L

h

(|v0|2+|u0′|2)dx. (4.8)

Therefore from (4.7) and (4.8), it comes that

lim
h→0

∫ L

h

(|u̇h(·, t)|2+|uh′
(·, t)|2)dx =

∫ L

0

(|u̇(·, t)|2+|u′(·, t)|2)dx.

Since uh converges weakly to u in H∞ and ‖uh‖H∞ converges to ‖u‖H∞ and since H∞ ↪→ H2 then we conclude
that uh converges strongly to u in H2. �

5. Numerical examples

We perform a finite element discretization in space and we use a classical Newmark time stepping method.
This leads to consider the following problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Un+1 = Un +ΔtU̇n +
(

1
2
−β
)
Δt2Ün + βΔt2Ün+1,

U̇n+1 = U̇n + (1−γ)ΔtÜn + γΔtÜn+1,

MÜn+1 + SUn+1 = −λn+1e0,

0 ≤ un+1
0 ⊥ λn+1 ≤ 0,

U(0) = U0 and U̇(0) = V 0,

(5.1)
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Figure 4. Numerical experiments with standard mass matrix (left) and with modified mass
matrix (right).

Figure 5. Numerical experiments with standard mass matrix (left) and with modified mass
matrix (right) in the contact point x = 0.

where β ∈]0, 1/2[ and γ ∈]1/2, 1[ are the classical parameters of the Newmark scheme. Note that if β = 0.25
and γ = 0.5, the scheme (5.1) is the so-called Crank−Nicholson scheme which is an implicit, unconditionally
stable and second-order accurate scheme for elastodynamic problems without contact conditions and moreover
it is energy conserving (see [16]). On the other hand, it is well known that the space-semi discretization of
contact problems in elastodynamics present some numerical instabilities (see [15]) which can be avoided by
using a modified mass method (see [16] and the references therein). We make below some comparisons between
two different approaches; the one using a standard mass matrix and the one using a modified mass matrix.
The parameters used in the numerical simulations are the space step Δx = 0.1, the time step Δt = 0.01, the
initial displacement u0(x) = 0.5x − 0.5, the initial velocity v0(x) = 0 and the Dirichlet value u(L, t) = 0.45
with L = 1 and T = 5. The numerical experiments are performed by employing the finite element library
Getfem++ (see [29]). In particular, the generalized Newton algorithm has been used to compute the unique
solution of (5.1) (see [1, 28]). The numerical results show that when the constraint is active, small oscillations
occur in the case where M is a standard mass matrix (see Figs. 4 and 5 (left)) while these oscillations do not
exist in the case where M is a modified matrix (see Figs. 4 and 5 (right)). Furthermore, we can observe in
Figure 6 (left), the energy is increasing with the standard mass matrix while with modified mass matrix (right),
it is almost conservative.
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Figure 6. Energy evolution for standard mass matrix (left) and for modified mass matrix (right).

We present now some numerical results obtained for an undeformed elastic bar which is dropped with some
initial velocity on a rigid obstacle and we compare the exact solution to the approximated one obtained by using
the mass redistribution method. More precisely, we assume that this bar fall from a height u0, with an initial
velocity −v0 and under the gravity g ≥ 0. Furthermore the both ends of the bar are free to move, as long as
the bar does not hit a rigid obstacle. The length and the Young modulus of the bar are denoted by L and E,
respectively. Let u(x, t) be the displacement at time t of the material point of spatial coordinate x ∈ [0, L] and
the contact pressure equal to the normal stress −Eu′(0, ·). Then the mathematical problem can be formulated
as follows:

ü(x, t) − Eu′′(x, t) = −(g+Eu′(0, t)), (x, t) ∈ (0, L) × (0, T ), (5.2)

with Cauchy initial data
u(·, 0) = u0 and u̇(·, 0) = −v0, (5.3)

and Signorini and Neumann boundary conditions at x = 0 and x = L, respectively, for t > 0

0 ≤ u(0, ·) ⊥ Eu′(0, ·) ≤ 0 and u′(L, ·) = 0. (5.4)

The existence and uniqueness results for (5.2)–(5.4) is obtained by rewriting this problem as a differential
inclusion problem and then by using the same techniques detailed in the proof of Theorem 2.1. Since it is quite
a routine to adapt this proof to the case considered here, we let the verification to the reader. In order to
calculate the analytical solution to problem (5.2)–(5.4), we distinguish three phases, namely before the contact,
during the contact and after the contact. To this aim, we choose v0 = 0 and g > 0 so that the bar can make
several impact. The bar reaches the rigid obstacle at time t1 =

√
2u0

g with the velocity equal to
√

2u0g. After
the impact, the bar stays in contact with the rigid body as soon as a shock wave travels from bottom of the bar
to the top and vice versa then the bar takes off. The wave takes a time L√

E
to travel along the bar. The impacts

occur at time t4k+1 = 3 L√
E

+ 16k L√
E

, t4k+2 = t4k+1 + 2 L√
E

, t4k+3 = t4k+1 + 8 L√
E

, t4k+4 = t4k+1 + 10 L√
E

. We
introduce also the following notations:

h1(x, t) = −
√

2u0

g
min

(
x√
E
,
L√
E
−
∣∣∣∣t− L√

E

∣∣∣∣
)

+
∞∑

n=1

2g
ELν3

n

(cos(
√
Eνnt)−1) sin(νnx),

h2(x, t) = u0 − 1
2
g

(
t−
√

2u0

g

)2

− 2gL2

3E
+

∞∑
n=1

4g
Eλ2

n

cos(
√
Eλnt) cos(λnx),
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Figure 7. Numerical convergence of the solution associated to problem with mass redistribu-
tion method to the exact solution in the contact point x = 0 (left). Numerical convergence of
the energy evolution associated to mass redistribution method to the exact energy (right).

with νn = (n− 1
2 ) π

L and λn = n π
L . Then, the explicit solution reads as

u(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u0 − 1
2gt

2 if t ≤ t1,

h1(x, t−t4k+1) if t4k+1 < t ≤ t4k+2,

h2(x, t−t4k+2) if t4k+2 < t ≤ t4k+3,

h1(x, t4k+4 − t) if t4k+3 < t ≤ t4k+4,

u0 − 1
2g
(
t−t4k+4 −

√
2u0

g

)2

if t4k+4 < t ≤ t4(k+1)+1.

(5.5)

Here, some details are omitted, the reader is referred to [11, 35] for a detailed explanations. We choose L = 10,
T = 6.5, E = 900, g = 10, the initial data u0(x) = 5, v0(x) = 0 and Neumann value u′(L, t) = 0. The
Newmark time stepping method with β = 0.25 and γ = 0.5 is used to evaluate the approximated solution. Let
us emphasize that if the space step Δx and time step Δt tend to 0, the approximated solution obtained by
using the mass redistribution method (Pmod

Uλ ) converges to the solution of (5.2)–(5.4) explicitly given by (5.5)
(see Fig. 7 (left)). On the other hand, we can write at least formally an energy relation for (5.2): we multiply
this equation by u̇, we integrate by parts over Qτ , τ ∈ [0, T ], we get

1
2

∫ L

0

|u̇(·, τ)|2 dx+
1
2

∫ L

0

|
√
Eu′(·, τ)|2 dx = −

∫
Qτ

gu̇dxdt

for all τ belonging to [0, T ]. Observe that the energy tends to be conserved when the space step Δx and the
time step Δt tend to 0 and the energy decreases otherwise (see Fig. 7 (right)).

Appendix A

The aim of this section is to give the proofs of Theorem 2.1 and Lemma 2.4. Furthermore, a regularity result
is also presented. Notice that Theorem 2.1 is a straightforward application of ([9], p. 59, Cor. 5.4).

Proof of Theorem 2.1. We verify the assumptions of ([9], p. 59, Cor. 5.4). We define F (t, f(t)) def= −JN (f(t)) −
2p′(t). Hence we choose f(t) = y which gives that

F (t, y) = −JN (y) − 2p′(t).



CONVERGENCE OF MASS REDISTRIBUTION METHOD FOR A CONTACT PROBLEM 1165

The multivalued map F : [0, L] × (−∞, 0] → P(R̄)\∅ has closed convex values and F is measurable with
respect to its second variable. We prove now that F is upper semi-continuous with respect to its second variable
which is equivalent to establish that JN is upper semi-continuous. Note that if A ⊂ R̄, J−1

N (A) = [0,+∞) or
J−1

N (A) = {0} or J−1
N (A) = ∅ which are closed sets. According to Definition [9], p. 4, Definition 1.1, JN is upper

semi-continuous.
We verify that there is a function r(t, y) = c(t)(1+|y|) with c ∈ L1(0, L) such that

F (t, y) ∩ r(t, y)B̄1(0) ∩ T(−∞,0](y) �= ∅ on [0, L]× (−∞, 0],

where B1(0) is the ball of radius 1 at the origin and T(−∞,0](y) is the tangent cone on y, the reader is referred
to [9] for further details. Indeed, we distinguish two cases, on the one hand, if y belongs to the interior of
(−∞, 0], T(−∞,0](y) = R and F (t, y) = −2p′(t), we choose c(t) = 1 + |2p′(t)| and on the other hand, if y = 0,
T(−∞,0](0) = (−∞, 0] and F (t, y) = (−∞,−2p′(t)], we choose c(t) = 1 + |2p′(t)|. Therefore the existence of
solution to (2.8) follows.

The uniqueness result comes from the monotonicity of JN , namely JN is the subdifferential of a convex, lower
semi-continuous and proper function, the reader is referred to [6] for further details.

Proof of Lemma 2.4. We note that

(u′2+u̇2)′ − 2
∂

∂t
(u′u̇) = 0 in the sense of distributions. (A.1)

Hence we integrate (A.1) over [x0, x1] × [t0, t1], with 0 < x0 < x1 < L and 0 < t0 < t1 < T , to get

∫ t1

t0

((u′2+u̇2)(x1, t)−(u′2+u̇2)(x0, t))dt =
∫ x1

x0

((2u′u̇)(x, t1)−(2u′u̇)(x, t0))dx. (A.2)

According to Lemma 2.3, the right hand side of (A.2) is bounded independently of x0, x1, t0, t1 as long as
0 < x̄0 � x0 < x1 < L. We integrate now (A.2) with respect to x0 over [x̄0, L], we may deduce that there exists
C > 0 independent of x1, x̄0 such that

(L−x̄0)
∫ t1

t0

(u′2+u̇2)(x1, t)dt ≤
∫ L

x̄0

∫ t1

t0

(u′2+u̇2)(x0, t)dtdx0 + C(L−x̄0),

which implies that x �→ ∫ t1
t0

(u′2+u̇2)(x1, t) dt is bounded on [x̄0, L] independently of t0 and t1, it follows that

x �→ ∫ T

0 (u′2+u̇2)(x, t)dt is bounded on [x̄0, L]. Let v be the solution of the following problem⎧⎪⎨
⎪⎩
v̈ − v′′ = 0 on (0, x0) × (0, T ),
v(x0, t) = u(x0, t) and v′(x0, t) = u′(x0, t) for all t ∈ [0, T ],
v(x, 0) = u0(x) and v(x, T ) = u(x, T ) for all x ∈ [0, x0].

(A.3)

These conditions are illustrated in Figure 8. Since u′(x0, ·) and u̇(x0, ·) belong to L2(0, T ), we may infer that
there exists a unique solution to (A.3). More precisely, w = u − v satisfies (A.3) with homogeneous boundary
initial conditions and the existence and uniqueness theorem in [4] holds. Furthermore v = u on (0, x0) × (0, T )
and in particular we have v̇(x, 0) = v0(x). We solve (A.3) by employing a classical characteristic method. To
this aim, it is convenient to introduce the following notations:

β1
def= −x+ t and β2

def= −x− t.

We may deduce that ∂2v
∂β1∂β2

vanishes which implies that v(x, t) = f(β1)+g(β2). Notice that the general solution
for all of points in the rectangle (0, x0)× (0, T ) does not exist. Then we split the rectangle into three regions by
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0 T

v(x, T ) = u(x, T )

v(x0, t) = u(x0, t) v (x0, t) = u (x0, t)

v(x, 0) = u0(x)

v̇(x, 0) = v0(x)

x0

Figure 8. Initial and boundary conditions for v on the rectangle (0, x0) × (0, T ).

0 T

v(x, T ) = u(x, T )

v(x0, t) = u(x0, t) v (x0, t) = u (x0, t)

v(x, 0) = u0(x)

v̇(x, 0) = v0(x)

x0

(x, t)

I
II

III

Figure 9. On characteristics in the region I.

0 T

v(x, T ) = u(x, T )

v(x0, t) = u(x0, t) v (x0, t) = u (x0, t)

v(x, 0) = u0(x)

v̇(x, 0) = v0(x)

x0

I
II

III
A

Figure 10. Characteristics in the region II.

using characteristic lines as it is shown on Figure 9. We looking for the solution in each region. More precisely,
in region I and according to the initial condition of problem (A.3) in x = x0 for x ≤ x0, we get

v(x, t) =
1
2
(u(x0, t+(x0−x))+u(x0, t−(x0−x))) − 1

2

∫ t+(x0−x)

t−(x0−x)

u′(x0, ζ)dζ. (A.4)

Observe that Figure 9 gives a better interpretation of this phenomenon. Indeed, the interval used will be the
intersection of the line x = x0 with the forward wave cone at (x, t) which is the region between the two straight
lines having a slope of ±1 but directed upwards from an origin (x, t). The forward wave cone at the point (x, t)
will enclose all those points (x0, ζ) which motion will be influenced by what occurred at the point x at the
time t.

Concerning the region II, we use the characteristics illustrated by Figure 10.
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Let A = (xA, tA) is a point in the region II. It follows that

v′(xA, tA) − v̇(xA, tA) = u′0(xA+tA) − v0(xA+tA), (A.5a)
v′(xA, tA) + v̇(xA, tA) = u′(x0, tA+(x0−xA)) + u̇(x0, tA+(x0−xA)). (A.5b)

Therefore (A.5) leads to

v′(xA, tA) =
1
2
(u0′(xA+tA)−v0(xA+tA)+u′(x0, tA+(x0−xA))+u̇

(
x0, tA+(x0−xA))), (A.6)

and
v̇(xA, tA) =

1
2
(−u0′(xA+tA)+v0(xA+tA) + u′(x0, tA+(x0−xA))+u̇(x0, tA+(x0−xA))).

We have the solution for all the points located in the regions I and II. Concerning the solution in region III,
we need some further regularity result to conclude. We obtained some regularity results for u(x0, t), u′(x0, t)
and u̇(x0, t) in Lemma 2.3. Besides by using (A.6) and (A.4), it is possible to deduce that v′ belongs to
C0([0, x0]; L2(0, T−x0)) which implies that v belongs to C0([0, x0]; H1(0, T−x0)). As x0 is arbitrary small, the
conclusion is clear. �

Appendix B

We establish below a Green’s formula that is crucial in the proof of Lemma 3.2. To this aim, let us introduce a
linear topological space D and Hilbert spaces V ,H,Z and S with their topological duals denoted by D′,V ′,H′,Z ′

and S′.
Suppose that D is contained in V and it is dense in H. Here H is identified with its dual, namely we have

H = H′. Furthermore, Suppose that V is contained in H with finer topology and we denote by V0, the closure
of D in V such that

D ↪→ V0 ↪→ H = H′ ↪→ V ′
0

with dense embedding. More precisely, D is an abstraction of the usual space D(QT ) of test function. In our
case the spaces V , S and Z denote the admissible displacement, stresses and boundary values containing traces
of element of V , respectively. We also introduce a linear operator A ∈ L(V ,S) and its restriction to V0 denoted
by A0 ∈ L(V0,S) such that

∀v ∈ V0 : Av = A0v.

Let A∗ ∈ L(S′,V ′) be the adjoint of the operator A, defined by

〈τ, Av〉S′×S = 〈A∗τ, v〉V′×V .

Then
∀τ ∈ S′, ∀v ∈ V0 : 〈τ, Av〉S′×S = 〈A∗

0τ, v〉V′×V .

Let us define S′(A∗
0)

def= {τ ∈ S′ : A∗
0τ ∈ H}, then we have the following trace theorem.

Theorem 5.1. Suppose that V0 is the kernel of a surjective map γ ∈ L(V ,Z) from V onto Z. Then there exists
a unique linear operator π ∈ L(S′(A∗

0),Z ′) such that the following Green’s formula holds:

∀τ ∈ S′(A∗
0), ∀v ∈ V : 〈τ, Av〉S′×S − 〈A∗

0τ, v〉V′×V = 〈πτ, γv〉Z′×Z .

The detailed proof of (5.1) is given in [3]. In particular, we are interested in this work to the case where S =
S′ def= {(u1, u2) ∈ L2(QT )}, D def= D(QT ), V def= H1(QT ), V0 = H1

0(QT ), V ′
0 = H−1(QT ), H def= L2(QT ), S′(A∗

0) =
{(u1, u2) ∈ S : ∂

∂tu1− ∂
∂xu2 ∈ L2(QT ) in the sense of distributions}, A : u �→ ( ∂

∂tu,− ∂
∂xu), Z def= H1/2(∂QT ) and
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Z ′ = H−1/2(∂QT ), where (∂QT ) is the boundary of QT and the trace operator γ : V → Z. Then there exists a
unique π ∈ L(S′(A∗

0),Z ′) such that∫
QT

(
τ1
∂

∂t
v + τ2

∂

∂x
v

)
dtdx−

∫
QT

(
∂

∂t
τ1 − ∂

∂x
τ2

)
vdtdx = 〈πτ, γv〉Z′×Z ,

for all v ∈ V and (τ1, τ2) ∈ S′(A∗
0). Then by density argument, we have

〈πτ, γv〉Z′×Z =
∫

∂QT

(τ.n)vds,

where n is the outward unit normal to QT , when τ and v are regular enough.
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Mâıtrise. Masson, Paris (1984).
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