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E. Oñate, J. Oliver and A. Huerta (Eds)

NUMERICAL STUDY OF CONVERGENCE OF THE MASS

REDISTRIBUTION METHOD FOR ELASTODYNAMIC

CONTACT PROBLEMS

F. Dabaghi∗, A. Petrov∗, J. Pousin∗ and Y. Renard∗
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Abstract. This note deals with two and three–dimensional elastodynamic contact
problems. An approximated solution combining the finite element and mass redistribu-
tion methods is exhibited. The mass redistribution method consists in a redistribution of
the body mass such that the inertia at the contact node vanishes. Some numerical ex-
periments using two time–integration methods, the Crank–Nicolson as well as backward
Euler methods, highlighted the convergence properties of the mass redistribution method.

1 INTRODUCTION

This note aims to give some numerical results for the evolution of an elastic material
being subjected to unilateral boundary conditions by employing the mass redistribution
method introduced in [5]. The contact phenomena is modelled by using the so–called
Signorini’s boundary conditions in displacement, which are based on a linearization of
the physically meaningful non penetrability of masses. A considerable engineering and
mathematical literature is devoted to contact problems, however a few existence of solu-
tions results has been established, the reader is referred to [9, 6]. Therefore a challenging
task consists to elaborate efficient numerical methods able to approximate this problem.
The present work adopt the approach consisting to remove the mass at the contact nodes
which prevents the oscillations at the contact boundaries as already observed for the one
dimensional elastodynamic contact problems in [2].

We consider an elastic bar vibrating vertically such that one end of this bar is free to
move, as long as it does not hit a material obstacle, while the other end is clamped . The
obstacle constrains the displacement of the extremity to be greater than or equal to 0. We
have supposed that the material of the bar is a homogeneous and isotropic. Let us define
Ωd ⊂ R

d, d = 2, 3, the reference configuration of the bar and its boundary by ∂Ωd

def

=
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Γ
Dir

d ∪Γ
Neu

d ∪Γ
Sig

d where ΓDird , ΓNeud and ΓSigd denote the Dirichlet, Neumann and unilateral

contact boundaries, respectively. In our case, we assume that Ω2
def

= [0, L1] × [0, L2] and

Ω3
def

= [0, L1] × [0, L2] × [0, L3] together with Li > 0, i = 1, 2, 3. We denote by u(x, t) the
displacement field at time t ∈ [0, T ], T > 0, of the material point of spatial coordinate
x ∈ Ω ⊂ R

d. Furthermore, let f(x, t) be the density of external forces depending on time
and space. The mathematical problem is formulated as follows:

ρutt − divσ(u) = f in Ωd × (0, T ), (1)

where ρ > 0 is the mass density, (·)t
def

= ∂(·)
∂t

and σ(u) is the stress tensor with σij(u)
def

=

Aijklεkl(u) where Aijkl and εkl(u)
def

= 1
2
(∂uk

∂xl

+ ∂ul

∂xk

) are the Hooke and strain tensors, re-
spectively. Here the summation convention on repeated indices is used. Besides assuming
isotropy of the material, the Hooke tensor is defined via Lamé constants λ and µ as
Aijkl

def

= λδijδkl + 2µδklδjk where δij denotes the Kronecker symbol. The Cauchy initial
data are

u(·, 0) = u0 and ut(·, 0) = v0 on Ωd, (2)

and the boundary conditions are

u = 0 on ΓDird × (0, T ) and σ(u)ν = 0 on ΓNeud × (0, T ), (3a)

0 ≥ νTu ⊥ νT(σ(u)ν) ≤ 0 and τ T(σ(u)ν) = 0 on ΓSigd × (0, T ), (3b)

where ν and τ denote the outward unit normal and tangential vectors and (·)T is the
transpose of a tensor. Here the orthogonality has the natural meaning; namely if we have
enough regularity, it means that the product νTu(νTσ(u)ν) vanishes almost everywhere
at the contact boundary. If it is not the case, the above inequality is integrated on
an appropriate set of test functions, leading to a weak formulation for the unilateral
condition. Let us describe now the functional hypotheses on the data; if X is a space of
scalar functions, the bold–face notation X denotes the space Xd. For the final result, we
require the initial displacement u0 belongs to the H

1(Ωd) and satisfies the compatibility
conditions, i.e. u0 = 0 on ΓDird and the initial velocity v0 belongs to L

2(Ωd). It is

convenient to introduce the following notations: V
def

= {u ∈ H
1(Ωd) : u = 0 a.e. on ΓSigd },

H
def

= L
2(Ωd) and the convex set K

def

= {u ∈ L
2(0, T ;V) : ut ∈ L

2(0, T ;H), u(·, t) ∈
V for a.e. t, νTu ≤ 0 a.e. on ΓSigd }. Then the weak formulation associated to (1)–(3) is
given by



















find u : [0, T ] → K such that
∫

Ω
ρutt·(v−u)dx+ a(u, v−u) ≥

∫

Ω
f ·(v−u)dx,

for all v ∈ K,

(4)

where a(u, v)
def

=
∫

Ω Aijklεij(u)εkl(v)dx. Observe that existence and uniqueness of the
solution to (1)–(3) is still an open question. However, we have exhibited an approximated
solution associated to (4) combining the finite element and mass redistribution methods.

2
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The present note is organized as follows. A space semi–discretization based on a
redistribution of mass is introduced in Section 2.1. Then two time–integration methods,
namely the Crank–Nicolson and backward Euler methods are presented in Section 2.2.
In Section 3, the comparison between the convergence rates for the solution and energy
evolution obtained with and without the mass redistribution highlighted the efficiency of
mass redistribution method.

2 THE FINITE ELEMENT APPROXIMATION OF PROBLEM

2.1 The semi–discretization in space

We introduce the semi–discrete problem in space associated to (4) by using a Lagrange
finite element method defined on Ωd. To this aim, we introduce the following notations:
Let Th be a regular mesh of Ωd, Vh

def

= {vh ∈ C0(Ωd) : vh is piecewise linear over each Kl

∈ Th \ ΓDird , vh = 0 on Γ
Dir
d }, nd and nc denote the number of degree of freedom and the

number of nodes on ΓSigd , respectively, and ai, i = 1, . . . , n, denotes the finite element
nodes. The basis of Vh is defined using the set of shape functions ϕi ∈ Vh, i = 1, . . . , nd.
Then the vector of degree of freedom of the finite element field uh(x, t) denoted by Uh =
(u1(t), . . . , und

(t))T such that uh(x, t) =
∑nd

j=1 uj(t)ϕj(x). Let Mij = ρ
∫

Ω ϕi·ϕj dx, Sij =
a(ϕi, ϕj) and Fi =

∫

Ω f ·ϕi dx denote the components of the mass and stiffness matrices

and the external forces, i, j = 1, . . . , nd, respectively. Furthermore let B
def

= (ν1, . . . , νnc
)T

and λ
def

= (λ1, . . . , λnc
)T. According to these notations, a finite element semi–discretization

of (4) with nodal approximation of the contact condition is given by



























find Uh : [0, T ] → R
nd and λ : [0, T ] → R

nc such that

MUh,tt + SUh = F+BTλ for a.e. t ∈ [0, T ],

0 ≥ νT

i Uh ⊥ λi ≤ 0 for all i ∈ Ic and for a.e. t ∈ [0, T ],

Uh(0) = U0

h and Uh,t(0) = V0

h,

(5)

where Ic
def

= {i : ai ∈ ΓSigd } and such that (νTuh)(ai, t) = (νT

i Uh)(t) for all i ∈ Ic with
νT

i νj = δi,j and ‖νi‖ = 1, ‖ · ‖ being the Euclidean norm. Note that the Lagrange
multipliers are indeed the nodal contact equivalent forces. The discrete energy associated
to problem (5) is given by

Eh(t) =
1

2
(UT

h,tMUh,t+UT

h SUh−UT

h,tF)(t). (6)

The multiplicity of the solution to Problem (5) allow us to conclude that the considered
problem is ill–posed, the reader is referred to [10, 11, 5]) for further details. An alternative
approach to the standard discretization presented above is to consider the mass redistribu-
tions method which consists to replace the mass matrix M in by a modified mass matrix
Mmod defined by Mmod

ij

def

= ρ
∫

Ωmod

d,h
ϕi·ϕj dx with Ω

mod
d,h = {Kl : Kl ∈ Th, Kl ∩ ΓSigd = ∅} for

all i, j = 1, . . . , nd. Note that ker(M
mod) = N where N

def

= span{ν1, . . . , νnc
} denotes the
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space spanned by νi for i ∈ Ic. Thus employing the identity Uh(t) = UN
h (t) +UN ⊥

h (t)
where N ⊥ is the orthogonal complement of N , and replacing the mass matrix M by the
modified one Mmod in (5), we get



























find UN
h : [0, T ] → N , UN ⊥

h : [0, T ] → N ⊥ and λ : [0, T ] → R
nc such that

MmodUN ⊥

h,tt + S(UN
h +U

N ⊥

h ) = F+BT
λ for a.e. t ∈ [0, T ],

0 ≥ ν
T

i UN
h ⊥ λi ≤ 0 for all i ∈ Ic and for a.e. t ∈ [0, T ],

Uh(0) = U0
h and Uh,t(0) = V0

h.

(7)

Existence and uniqueness of solution associated to (7) as well as the energy balance have
been established in [1, 5]. Furthermore, the convergence of the mass redistribution method
is established in the one–dimensional case in [1] confirming the observations already made
in [2]. Note that the convergence of the mass redistribution is still an open problem in
the higher dimension space.

2.2 The time integration methods

We introduce now the time discretization. In order to fix the notations, let the time
interval [0, T ] be divided by n + 1 discrete time–points such that 0 = t0 < t1 < . . . <

tn = T . Furthermore the discrete quantities Un
h, Un

h,t, Un
h,tt and λ

n are assumed to be
given by algorithmic approximations of the displacementUh(tn), the velocityUh,t(tn), the
accelerationUh,tt(tn) and the Lagrange multiplier λ(tn), respectively. Some time–stepping
schemes allowing to obtain an approximated solution to Problem (5) are introduced below
and their efficiency is discussed and analyzed in the next section.
One of the most popular method in the community of computational mechanics is the

Crank–Nicolson method. This method is second–order consistent and unconditionally
stable in the unconstrained case. Furthermore, the total energy of the discrete evolution
is preserved, for the purely elastic case, see [8]. However, the situation is quite different
in the contact constraints case, the order of accuracy is degraded, for further details, the
reader is referred to [4, 7, 3]. Notice that the discrete evolution associated to (5) can be
described by the finite difference equations:



















































find Un+1

h : [0, T ] → R
nd and λ

n+1 : [0, T ] → R
nc such that

Un+1

h = Un
h +∆tUn

h,t +
∆t2

4
(Un

h,tt+Un+1

h,tt ),

Un+1

h,t = Un
h,t +

∆t

2
(Un

h,tt+Un+1

h,tt ),

MUn+1

h,tt + SUn+1

h = Fn+1 +BT
λ

n+1,

0 ≥ ν
T

i Un+1

h ⊥ λn+1
i ≤ 0 for all i ∈ Ic,

(8)

where ∆t is a given times step and U0
h, U0

h,t and λ
0 are given. Therefore we observe that

4
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(8) leads to the following algorithm:























find U
n+1

h : [0, T ] → R
nd and λ

n+1 : [0, T ] → R
nc such that

(

4M

∆t2
+S

)

U
n+1

h =
4M

∆t2
(Un

h+∆tUn+1

h,t ) +MU
n
h,tt + F

n+1 +B
T
λ

n+1,

0 ≥ ν
T

i U
n+1

h ⊥ λn+1

i ≤ 0 for all i ∈ Ic,

(9)

The energy evolution is defined by ∆En
h

def

= En+1

h −En
h , where En

h is supposed to be given by
an algorithmic approximation of the energy Eh(tn). Thus the energy evolution associated
to (8) by using the Crank–Nicolson method is ∆En

h = −1

2
(Un+1

h −U
n
h)

T
B

T(λn+λ
n+1).

Another time integration method to approach the semi–discrete problem (5) consists to
use the backward Euler method which gives us the following discrete evolution associated
to (5):







































find U
n+1

h : [0, T ] → R
nd and λ

n+1 : [0, T ] → R
nc such that

U
n+1

h = U
n
h +∆tUn+1

h,t ,

U
n+1

h,t = U
n
h,t +∆tUn+1

h,tt ,

MU
n+1

h,tt + SU
n+1

h = F
n+1 +B

T
λ

n+1,

0 ≥ ν
T

i U
n+1

h ⊥ λn+1

i ≤ 0 for all i ∈ Ic,

(10)

where U
0
h, U

0
h,t and λ

0 are given. Therefore notice that (10) enables us to infer the
following algorithm:























find U
n+1

h : [0, T ] → R
nd and λ

n+1 : [0, T ] → R
nc such that

(

4M

∆t2
+S

)

U
n+1

h =
4M

∆t2
(Un

h+∆tUn+1

h,t ) + F
n+1 +B

T
λ

n+1,

0 ≥ ν
T

i U
n+1

h ⊥ λn+1

i ≤ 0 for all i ∈ Ic,

(11)

In this case, the energy evolution associated to (10) reads as ∆En
h = −1

2
(Un+1

h,t − U
n
h,t)

T
M

(Un+1

h,t − U
n
h,t)− 1

2
(Un+1

h − U
n
h)

T
S(Un+1

h − U
n
h)−∆t(Un+1

h − U
n
h)

T
B

T
λ

n+1. The reader is
referred to [2, Appendix] where the energy evolutions associated to the Crank–Nicolson
and backward Euler methods are justified. Note that Uh,tt appears on the right hand
side of (11) which is not the case in (9) implying that the backward Euler method is
dissipative and stable.

3 NUMERICAL EXPERIMENTS

The parameters used in the numerical simulations are Ω2 = [0, 0.1] × [0, 1], Ω3 =
[0, 0.1]×[0, 0.1]×[0, 1], ρ = 1, the Lamé parameters λ = 0.25 and µ = 0.5, u(x1, 1, t) = 0.2,
x1 ∈ [0, 0.1] for dimension two and u(x1, x2, 1, t) = 0.2, (x1, x2) ∈ [0, 0.1] × [0, 0.1] for
dimension three. The bar is undeformed at t = 0 ant it is located at the distance of 0.2
from a rigid obstacle. The bar starts to move toward the rigid obstacle with an initial
velocity equal to −0.5 (vertical direction) and without any external forces. Note that

5
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we used the square and cubic meshes with square and cube elements for two and three
dimensional case, respectively.
The Crank–Nicolson and backward Euler methods are used below to compute (Un

h, λ
n).

These computations are performed for the standard mass matrixM as well as for the mod-
ified mass matrix M = M

mod. Contrary to the one–dimensional elastodynamic contact
problem treated in [2], we were not able here to exhibit an explicit solution associated
to (1)–(3). However the explicit solution denoted by (U, λ) can be approximated by
(Un

h, λ
n) by taking ∆t and ∆x very small. Therefore (U, λ) plays the role of an explicit

solution in the numerical simulations presented below. Similarly the energy E is assumed
to be equal to En

h for ∆t and ∆x chosen sufficiently small. The numerical simulations
were performed by employing the finite element library Getfem++ (see [12]).

3.1 The Crank–Nicolson scheme

We focus first on the two–dimensional elastodynamic contact problem for which an
approximated solution at the contact nodes as well as some convergence curves were
obtained. More precisely, some spurious oscillations can be observed for the normal
displacement at the contact nodes and the Lagrange multiplier, both of them are computed
by using the standard mass matrix after the contact takes place, see Figure 1. These
oscillations do not exist in the case where the standard mass matrix is replaced by the
modified one, see Figure 1. Note that the scaling in space is different for the Lagrange
multiplier evaluated by using standard and modified mass matrices. The scheme with the
standard mass matrix is unstable with a rapidly growing energy while the one with the
modified mass matrix is almost conservative as the space ∆x and time ∆t steps tend to 0.
The error curves for (Un

h, λ
n) in Figure 3 highlighted that the norms ‖U

n
h−U‖L2(0,T ;V), and

‖λ
n−λ‖L2(0,T ) converge to 0 when M = M

mod as n tends to +∞, which is unfortunately
not the case for the standard mass matrix, while the norms ‖U

n
h−U‖Lp(0,T ;H), p = 2, ∞,

converges to 0 as n tends to 0 in the both cases. Furthermore, we may observe that
Figure 2 shows that the norm ‖En

h −E‖Lp(0,T ), p = 2,+∞, converges when M = M
mod

while this norm diverges when the standard mass matrix is considered.
The evolution of the von Mises stress in a three–dimensional bar by using the standard

and modified mass matrices is represented in Figures 4 and 5. Note that the von Mises
stress is usually used to predict yielding of materials under any loading condition from
results of simple uniaxial tensile test. As in the two–dimensional case, some spurious
oscillations can be observed in a neighborhood of the contact nodes in the case where
the standard matrix is considered. Then these oscillations propagated along the bar (see
Figure 4). In the case where the standard mass matrix is replaced by the modified one,
these oscillations do not exist anymore (see Figure 5).
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Figure 1: Approximated solutions obtained by using the standard (left) and modified (right) mass
matrices in the contact node.

Figure 2: Energy associated to the approximated solution for the standard (left) and modified (right)
mass matrices.
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(a) ‖Un
h−U‖L∞(0,T ;H) (b) ‖Un

h−U‖L2(0,T ;H)

(c) ‖Un
h−U‖L2(0,T ;V) (d) ‖λ

n−λ‖L2(0,T )

(e) ‖Eh−E‖L∞(0,T ) (f) ‖Eh−E‖L2(0,T )

Figure 3: Comparison of the convergence curves obtained by the modified and standard mass matrices
with square elements and ∆x

∆t
= 2

.
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(a) t=0 (b) t=0.2 (c) t=0.4 (d) t=0.6

(e) t=0.8 (f) t=1 (g) t=1.5 (h) t=2

Figure 4: The evolution of the von Mises stress in a bar by using the standard mass matrix.

(a) t=0 (b) t=0.2 (c) t=0.4 (d) t=0.6

(e) t=0.8 (f) t=1 (g) t=1.5 (h) t=2

Figure 5: The evolution of the von Mises stress in a bar by using the modified mass matrix.
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3.1.1 The backward Euler method

The normal displacement at the contact nodes and the Lagrange multiplier obtained by
using the standard mass as well as modified mass matrices do not oscillate (see Figure 6) as
it can be observed for the Crank–Nicolson method. Furthermore, the error curves converge
for both methods (see Figure 8) and the energy are almost the same (see Figure 7).

0
2

4
6

8
10

0
0.02

0.04
0.06

0.08
0.1

−0.2

0

0.2

0.4

0.6

TimeSpace

N
o

rm
a
l 
d

is
p

la
c
e
m

n
t 

o
n

 c
o

n
ta

c
t 

b
o

u
n

d
a
ry

0
2

4
6

8
10

0
0.02

0.04
0.06

0.08
0.1

−0.2

0

0.2

0.4

0.6

TimeSpace

N
o

rm
a
l 
d

is
p

la
c
e
m

n
t 

o
n

 c
o

n
ta

c
t 

b
o

u
n

d
a
ry

Figure 6: Approximated solutions obtained by using the standard (left) and modified (right) mass
matrices in the contact node.

Figure 7: Energy associated to the approximated solution for the standard (left) and modified (right)
mass matrices.
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(a) ‖Un
h−U‖L∞(0,T ;H) (b) ‖Un

h−U‖L2(0,T ;H)

(c) ‖Un
h−U‖L2(0,T ;V) (d) ‖λ

n−λ‖L2(0,T )

(e) ‖Eh−E‖L∞(0,T ) (f) ‖Eh−E‖L2(0,T )

Figure 8: Comparison of the convergence curves obtained by the modified and standard mass matrices
with square elements ∆x

∆t
= 2

.
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