Introduction	Limit of transition operators	Processes on Lie groups	Segal-Bargmann coherent state transform

The large-N limit of transition kernels

Guillaume Cébron

Université Toulouse 3

04/03/2017

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Introd ●000	uction	Limit of transition operators	Processes on Lie groups	Segal-Bargmann coherent state transform
Int	roduc	tion		
	X: rea	al Gaussian variable	with law $\gamma(\mathrm{d} x) =$	$e^{-\frac{x^2}{2}}\frac{\mathrm{d}x}{\sqrt{2\pi}}.$
	Heat k	ernel operator		
	For f	$\in L^2(\mathbb{R})$ and $z\in \mathbb{R}$, v	ve have	
		$e^{rac{1}{2}\Delta}f(z) = \mathbb{E}[f(\lambda$	$(x + z)] = \langle f \psi_z \rangle_L$	$^{2}(\mathbb{R},\gamma)\cdot$
$\int_{\mathbb{R}} f$	$(x)e^{-\frac{(x)}{2}}$	$\frac{-z)^2}{2}\frac{\mathrm{d}x}{\sqrt{2\pi}} = \int_{\mathbb{R}} f(x +$	$z)e^{-\frac{x^2}{2}}\frac{\mathrm{d}x}{\sqrt{2\pi}} = \int_{\mathbb{R}}$	$\int_{\mathbb{R}} f(x)\psi_z(x)e^{-\frac{x^2}{2}}\frac{\mathrm{d}x}{\sqrt{2\pi}}$
				- ²

where
$$\psi_z(x) = e^{-\frac{z^2}{2} + zx}$$

Questions: In large-N limit? In free probability? *q*-deformation?

Results about the q-deformation in collaboration with Ching-Wei Ho

 X_N : **Gaussian matrix** in the space \mathbb{H}_N of Hermitian matrices, normalized by the following covariance for the entries:

$$\mathbb{E}[X_N(i,j)X_N(k,l)] = \frac{\delta_{ij}\delta_{kl}}{N}\delta_{ij}\delta_{kl}.$$

 Y_N : deterministic matrix in \mathbb{H}_N .

Theorem (Wigner, 1958)

The empirical spectral distribution of X_N converges to the semicircular measure

$$\sigma(\mathrm{d} x) = \frac{1}{4\pi} \sqrt{4 - x^2} \mathbb{1}_{[-2,+2]} \mathrm{d} x.$$

The basic construct: a noncommutative algebra \mathcal{A} of "random variables" equipped with an "expectation functional" $\tau : \mathcal{A} \to \mathbb{C}$.

Theorem (Voiculescu, 1991)

If the empirical spectral distribution of Y_N converges to a compactly supported measure, there exists x and y elements of (\mathcal{A}, τ) such that, for any noncommutative polynomial P,

$$\frac{1}{N}\operatorname{Tr}(P(X_N,Y_N)) \xrightarrow[N \to \infty]{} \tau(P(x,y)).$$

The variables x and y are **freely independent**: the quantity $\tau(P(x, y))$ can be deduced from the semi-circular law of x and the law of y.

Limit of transition operators 00000

Processes on Lie groups

Segal-Bargmann coherent state transform 00000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Transition operator for $N = \infty$

Theorem (Biane 1998)

If x has a semicircular law and y is **freely independent** from x in (A, τ) , there is a kernel K_y such that, for all bounded function f,

$$\tau[f(x+y)|y] = (K_y f)(y).$$

Compare to the classical case: if X is Gaussian and Y independent from X,

$$\mathbb{E}[f(X+Y)|Y] = e^{\frac{1}{2}\Delta}f(Y).$$

Introduction	Limit of transition operators	Processes on Lie groups	Segal-Bargmann coherent state transform
0000	•0000		00000000
Transitic	on kernel		

 X_N : Hermitian Gaussian matrix. Let $f \in L^2(\mathbb{H}_N)$. The function

$$Y_N \in \mathbb{H}_N \mapsto \mathbb{E}\Big[f(X_N + Y_N)\Big]$$

is given by $e^{\frac{1}{2}\Delta_N f}$, the heat-kernel semigroup at time 1.

This transition operator extends to matrix-valued functions, by applying it **entrywise**. If $f : \mathbb{H}_N \to \mathbb{H}_N$, then $e^{\frac{1}{2}\Delta_N}f : \mathbb{H}_N \to \mathbb{H}_N$ is such that

$$e^{\frac{1}{2}\Delta_N}f(Y_N)=\mathbb{E}\Big[f(X_N+Y_N)\Big].$$

First step: Take a function $f : \mathbb{H}_N \to \mathbb{H}_N$ which is defined from a function $f : \mathbb{R} \to \mathbb{R}$ by functional calculus.

Example: $f(Y_N) = Y_N^3$.

Second step: Apply
$$e^{\frac{1}{2}\Delta_N}$$
 to f .

Example:
$$e^{\frac{1}{2}\Delta_N}f(Y_N) = Y_N^3 + Y_N + \frac{1}{2N}\operatorname{Tr}(Y_N).$$

However, $e^{\frac{1}{2}\Delta_N}f:\mathbb{H}_N\to\mathbb{H}_N$ is not anymore a function given by functional calculus.

Is it possible to make sense of $\lim_N e^{\frac{1}{2}\Delta_N}f: \mathbb{H}_N \to \mathbb{H}_N$ as $N \to \infty$?

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

 Introduction
 Limit of transition operators
 Processes on Lie groups
 Segal-Bargmann coherent state transform

 0000
 00000
 000000
 000000000

Limit of $e^{\frac{1}{2}\Delta_N}$ when $N \to \infty$?

Is it possible to make sense of $\lim_N e^{rac{1}{2}\Delta_N}f:\mathbb{H}_N o\mathbb{H}_N?$

Yes, if we enlarge the space of functional calculus.

- Consider normalized trace $tr = \frac{1}{N} Tr$.
- Consider trace polynomials, i.e. polynomials in Y_N and normalized traces of power of Y_N .

Example :
$$f(Y_N) = Y_N^3 + Y_N \operatorname{tr}(Y_N) + \operatorname{tr}(Y_N^2) \operatorname{tr}(Y_N^3)$$
.

• The trace polynomials form an invariant space for $e^{\frac{1}{2}\Delta_N}$.

Example : If
$$f(Y_N) = Y_N^3$$
,

then
$$e^{\frac{1}{2}\Delta_N}f(Y_N) = Y_N^3 + Y_N + \frac{1}{2N}\operatorname{tr}(Y_N).$$

Limit of transition operators

Processes on Lie groups

Segal-Bargmann coherent state transform 00000000

Limit of $e^{\frac{1}{2}\Delta_N}$ when $N \to \infty$?

$\mathbb{C}{X}$: space of trace polynomials.

Fact

The action of Δ_N on $\mathbb{C}\{X\}$ decomposes as

$$\Delta_N = \Delta_\infty + \frac{1}{N^2}L,$$

for operators Δ_{∞} and L whose actions are **independent of** N.

As a consequence, $\lim_{N \to \infty} e^{\frac{1}{2}\Delta_N} = e^{\frac{1}{2}\Delta_\infty} : \mathbb{C}\{X\} \to \mathbb{C}\{X\}.$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

Introduction 0000	Limit of transition operators	Processes on Lie groups	Segal-Bargmann coherent state transform
Converge	ence for Gaussia	n Hermitian ma	atrices (Wigner)

• Convergence of the mean

$$\mathbb{E}\Big[\frac{1}{N}\operatorname{Tr}(P(X_N))\Big] = e^{\frac{1}{2}\Delta_N}(\operatorname{tr}(P))(0) = e^{\frac{1}{2}(\Delta_\infty + \frac{1}{N^2}L)}(\operatorname{tr}(P))(0)$$
$$\xrightarrow[N \to \infty]{} e^{\frac{1}{2}\Delta_\infty}(\operatorname{tr}(P))(0) + O(1/N^2).$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Concentration around the mean

$$\mathbb{V}ar\Big[\frac{1}{N}\operatorname{Tr}(P(X_N))\Big] = \left[e^{\frac{1}{2}\Delta_N}\Big(\operatorname{tr}(P) - (e^{\frac{1}{2}\Delta_N}\operatorname{tr}(P))(0)\Big)^2\right](0)$$
$$\xrightarrow{}_{N\to\infty} \left[e^{\frac{1}{2}\Delta_\infty}\Big(\operatorname{tr}(P) - (e^{\frac{1}{2}\Delta_\infty}\operatorname{tr}(P))(0)\Big)^2\right](0) + O(1/N^2).$$
Check that $e^{\frac{1}{2}\Delta_\infty}\Big(\operatorname{tr}(P) - (e^{\frac{1}{2}\Delta_\infty}\operatorname{tr}(P))(0)\Big)^2$ is 0.

Brownian motions on Lie group

A Brownian motion $(g_t)_{t\geq 0}$ on a matrix Lie group G is a Markov process starting at 1_g whose generator is the Laplacian $\frac{1}{2}\Delta_G$ for a certain metric.

In particular, the expectation can be computed by the action of the semigroup of generator Δ_G :

$$\mathbb{E}\Big[\frac{1}{N}\operatorname{Tr}(P(g_t))\Big] = \Big(e^{\frac{t}{2}\Delta_G}(\operatorname{tr}(P))\Big)(1_g).$$

We will use exactly the same proof.

Limit of transition operators 00000

Processes on Lie groups 00000 Segal-Bargmann coherent state transform 00000000

Theorem (Biane, Rains, Xu 1997)

Convergence of the Brownian motion $(U_N(t))_{t\geq 0}$ on the unitary group \mathbb{U}_N (unitary matrices of size $N \times N$): for all $t \geq 0$, and polynomial P,

 $rac{1}{N}\operatorname{Tr}(P(U_N(t)))$ converges almost surely as $N o \infty$.

Figure: The limiting distribution of the eigenangles of $U_N(t)$

Introduction 0000	Limit of transition operators	Processes on Lie groups	Segal-Bargmann coherent state transform 000000000
Demons	tration		

The action of $\Delta_{\mathbb{U}_N}$ on $\mathbb{C}\{X\}$ decomposes as $\Delta_{\mathbb{U}_N} = \Delta_{\mathbb{U}} + \frac{1}{N^2}D_{\mathbb{U}}$, from which we can deduce that

$$\mathbb{E}\Big[\frac{1}{N}\operatorname{Tr}(P(X_N))\Big] = e^{\frac{1}{2}\Delta_{\mathbb{U}_N}}(\operatorname{tr}(P))(1) \xrightarrow[N \to \infty]{} e^{\frac{1}{2}\Delta_{\mathbb{U}}}(\operatorname{tr}(P))(1) + O(1/N^2)$$

and

$$\mathbb{V}ar\left[\frac{1}{N}\operatorname{Tr}(P(X_N))\right] \xrightarrow[N \to \infty]{} O(1/N^2).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Limit of transition operators	Processes on Lie groups	Segal-Bargmann coherent state transform
		000000	

The same proof gives similar results for Brownian motions on others Lie groups.

Lévy (2011): for the orthogonal group O_N (and for the symplectic group Sp(N))

$$\Delta_{\mathbb{O}_N} = \Delta_{\mathbb{O}} + \frac{1}{N}C_{\mathbb{O}} + \frac{1}{N^2}D_{\mathbb{O}}.$$

- C. (2013): for the general linear group GL_N
- Kemp (2015): for a two-parameter family of Brownian motions on *GL_N* which interpolates between U_N and *GL_N*

$$\Delta_{GL_N} = \Delta_{GL} + \frac{1}{N^2} D_{GL}.$$

0000 000000 000000 00000000	ntroduction	Limit of transition operators	Processes on Lie groups	Segal-Bargmann coherent state transform
			000000	

It is also possible to consider more general situations.

• Ulrich (2015): for the M^2 blocks of size $N \times N$ of a Brownian motion on \mathbb{U}_{NM} (when $N \to \infty$)

$$\Delta_{\mathbb{U}_{NM}} = \Delta_{\mathbb{U},M} + \frac{1}{N^2} L_{\mathbb{U},M}.$$

 $\mathbb{C}\{X\}$ must be replaced by the space $\mathbb{C}\{X_{ij}: 1\leq i,j\leq M\}$ of trace polynomials in the M^2 blocks.

• Gabriel (2015): for a random walk $(S_N(t))_{t\geq 0}$ on \mathfrak{S}_N with generator

$$\mathcal{L}_{\mathfrak{S}_N} = \mathcal{L} + O(1/N)$$

 $\mathbb{C}{X}$ must be replaced by a particular space of functions given by **traffic operations** (in the sense of Male), and we have

$$\mathbb{V}ar\Big[\frac{1}{N}\operatorname{Tr}(P(S_N(t)))\Big] \xrightarrow[N \to \infty]{} \left[e^{\mathcal{L}}\Big(\operatorname{tr}(P) - (e^{\mathcal{L}}\operatorname{tr}(P))(0)\Big)^2\right](1) \neq 0$$

Limit of transition operators 00000

Processes on Lie groups 00000● Segal-Bargmann coherent state transform 00000000

Central limit theorems

The Taylor expansion in $\frac{1}{N^2}$ can be used to prove central limit theorems:

$$e^{\frac{t}{2}\Delta_{\mathbb{U}}}{}_{\mathsf{N}} = e^{\frac{t}{2}(\Delta_{\mathbb{U}} + \frac{1}{N^2}D_{\mathbb{U}})} = e^{\frac{t}{2}\Delta_{\mathbb{U}}} + \frac{1}{2N^2}\int_0^t e^{\frac{s}{2}\Delta_{\mathbb{U}}}D_{\mathbb{U}}e^{\frac{t-s}{2}\Delta_{\mathbb{U}}} + o(1/N^2)$$

• Lévy-Maïda (2010) : CLT for the Brownian motion on \mathbb{U}_N

$$N\left[rac{1}{N}\operatorname{Tr}(P(U_N(t))) - \mathbb{E}rac{1}{N}\operatorname{Tr}(P(U_N(t)))
ight]$$
 is asymptotically Gaussian

- **Dahlqvist (2014)** : CLT for the Brownian motion on \mathbb{O}_N and $\mathbb{S}p_N$ + estimates of the Laplace transform
- C.-Kemp (2014) : CLT for the Brownian motion on GL_N

Introduction 0000	Limit of transition operators	Processes on Lie groups	Segal-Bargmann coherent state transform ●00000000
Back to	N = 1		

X: real Gaussian variable with law
$$\gamma(dx) = e^{-\frac{x^2}{2}} \frac{dx}{\sqrt{2\pi}}$$
.

Heat kernel operator

For $f \in L^2(\mathbb{R})$ and $z \in \mathbb{R}$, we have

$$e^{rac{1}{2}\Delta}f(z)= \mathbb{E}[f(X+z)] = \langle f|\psi_z
angle_{L^2(\mathbb{R},\gamma)}$$

$$\int_{\mathbb{R}} f(x) e^{-\frac{(x-z)^2}{2}} \frac{dx}{\sqrt{2\pi}} = \int_{\mathbb{R}} f(x+z) e^{-\frac{x^2}{2}} \frac{dx}{\sqrt{2\pi}} = \int_{\mathbb{R}} f(x) \overline{\psi_z(x)} e^{-\frac{x^2}{2}} \frac{dx}{\sqrt{2\pi}}$$

where $\psi_z(x) = e^{-\frac{z^2}{2} + zx}$

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへ⊙

Limit of transition operators 00000

Processes on Lie groups

Segal-Bargmann coherent state transform

 $\langle f | \psi_z \rangle_{L^2(\mathbb{R},\gamma)}$ is the Segal-Bargmann transform

Set $\psi_z(x) = e^{-\frac{z^2}{2} + \bar{z}x}$ and $\gamma^{\mathbb{C}}(dz)$ the complex Gaussian variable of complex variance 1.

Theorem (Bargmann, Segal - 1958)

We have the resolution of the identity

$$Id_{L^2(\mathbb{R},\gamma)} = \int_{\mathbb{C}} |\psi_z\rangle \langle \psi_z| \, \mathrm{d}\gamma^{\mathbb{C}}(z).$$

In the sense that

$$\langle f|f\rangle_{L^2(\mathbb{R},\gamma)} = \int_{\mathbb{C}} \langle f|\psi_z\rangle_{L^2(\mathbb{R},\gamma)} \langle \psi_z|f\rangle_{L^2(\mathbb{R},\gamma)} \,\mathrm{d}\gamma^{\mathbb{C}}(z).$$

Equivalently, the functional which maps f to $z \mapsto \langle f | \psi_z \rangle_{L^2(\mathbb{R},\gamma)}$ is an isometry of Hilbert space.

q-Gaussian variables (Bozejko and Speicher, 1991)

Interpolation between the Gaussian and the semicircular law

- q = 1: Gaussian distribution $d\gamma_1$
- 0 < q < 1:

Introduction

$$d\gamma_q(x) = 1_{|x| \le 2/\sqrt{1-q}} \frac{1}{\pi} \sqrt{1-q} \sin \theta \prod_{n=1}^{\infty} (1-q^n) |1-q^n e^{2i\theta}|^2 dx$$

where $\theta \in [0, \pi]$ is such that $x = 2\cos(\theta)/\sqrt{1-q}$

• q = 0: semicircular distribution $d\gamma_0$

Processes on Lie groups

Segal-Bargmann coherent state transform 000000000

q-deformation of the Segal-Bargmann transform

For
$$0 \leq q < 1$$
, and $|z| < 1/\sqrt{1-q}$, set

$$\psi_z^q(x) = \prod_{k=0}^\infty rac{1}{1-(1-q)q^k ar z x + (1-q)q^{2k} ar z^2},$$

and $\gamma_q^{\mathbb{C}}$ a particular measure on \mathbb{C} concentrated on a family of concentric circles.

Theorem (van Leeuwen and Maassen, 1995)

We have the resolution of the identity

$$Id_{L^{2}(\mathbb{R},\gamma_{q})} = \int_{\mathbb{C}} |\psi_{z}^{q}\rangle \langle \psi_{z}^{q}| \, \mathrm{d}\gamma_{q}^{\mathbb{C}}(z).$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Limit of transition operators 00000

Processes on Lie groups

Segal-Bargmann coherent state transform 000000000

q-deformation of the Segal-Bargmann transform

Between the Gaussian (q = 1) and the semicircular (q = 0):

Theorem (C.-Ho, 2017)

For any polynomial P, we have

•
$$q = 1$$
: $e^{\frac{1}{2}\Delta}f(z) = \mathbb{E}[f(X+z)|z] = \langle f|\psi_z\rangle_{L^2(\mathrm{d}\gamma)}$

• 0 < q < 1: $??? = \tau[P(x + z)|z] = \langle P|\psi_z^q \rangle_{L^2(d\gamma_q)}$ for $x \sim d\gamma_q$ and $z \sim d\gamma_q^{\mathbb{C}}$ which are "q-independent"

•
$$q = 0$$
: $e^{\frac{1}{2}\Delta_{\infty}}P(z) = \tau[P(x+z)|z] = \langle P|\psi_z^0 \rangle_{L^2(d\gamma_0)}$
for $x \sim d\gamma_0$ and $z \sim d\gamma_0^{\mathbb{C}}$ which are freely independent

Limit of transition operators 00000

Processes on Lie groups

Segal-Bargmann coherent state transform 000000000

Random matrices and *q*-deformation

In 2001, Śniady defines a random matrix model for the measure $\mathrm{d}\gamma_{\pmb{q}}$:

- γ_N is a measure on \mathbb{H}_N such that, if $X_N \sim \gamma_N$, then X_N converges in noncommutative distribution to γ_q .
- γ^C_N is a measure on M_N such that, if Z_N ~ γ_N, then Z_N
 converges in noncommutative distribution to γ^C_a.

Because $\tau[P(x+z)|z] = \langle P|\psi_z^q \rangle_{L^2(d\gamma_q)}$ for $x \sim d\gamma_q$ and $z \sim d\gamma_q^{\mathbb{C}}$ which are "q-independent", we have the following result.

Theorem (q=0 by Biane in 1997, 0<q<1 by C.-Ho in 2017)

The following **classical Segal-Bargmann transform** of a polynomial P

 $M \mapsto \langle P | \psi_M \rangle_{L^2(\mathbb{H}_N, \gamma_N)}$

converges to the q-deformed Segal-Bargmann transform of the same polynomial

 $z \mapsto \langle P | \psi_z \rangle_{L^2(\mathbb{R}, \gamma_q)}$

in the following sense: if Z_N is a random matrix of law $\gamma_N^{\mathbb{C}}$,

$$\mathbb{E}\left[\left\|\langle P|\psi_{Z_N}\rangle_{L^2(\mathbb{H}_N,\gamma_N)}-\langle P|\psi_{Z_N}\rangle_{L^2(\mathbb{R},\gamma_q)}\right\|^2\right]\underset{N\to\infty}{\longrightarrow}0.$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Introduction	Limit of transition operators	Processes on Lie groups	Segal-Bargmann coherent state transform
			000000000

Sketch of proof: If X_N is a random matrix with law X_N , we have $\langle P | \psi_{Z_N} \rangle_{L^2(\mathbb{H}_N,\gamma_N)} = \mathbb{E}[P(X_N + Z_N)|Z_N]$, and we can prove that

$$\mathbb{E}\left[\left\|\mathbb{E}[P(X_N+Z_N)|Z_N]-\langle P|\psi_{Z_N}\rangle_{L^2(\mathbb{R},\gamma_q)}\right\|^2\right]$$

converges to

$$\left\|\tau[P(x+z)|z]-\langle P|\psi_z\rangle_{L^2(\mathbb{R},\gamma_q)}\right\|^2=0$$

where $x \sim d\gamma_q$ and $z \sim d\gamma_q^{\mathbb{C}}$ are "q-independent".

Introduction	Limit of transition operators	Processes on Lie groups	Segal-Bargmann coherent state transform
			00000000

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Thank you!