Spectral clustering and random matrices

Florent BENAYCH-GEORGES (a) joint work with Romain COUILLET (b)

(a) Université Paris Descartes(b) CentraleSupélec

April 3, 2017 Lyon

Clustering

Clustering

Goal : cluster observations x_1, \ldots, x_n with maximum similarity intra classes and minimum similarity inter classes

$$x_1$$
 , ..., x_n \implies $\mathcal{C}_1 = \{x_3, x_{18}, \ldots\}$, ..., $\mathcal{C}_k = \{x_1, x_{20}, \ldots\}$

Clustering

Goal : cluster observations x_1, \ldots, x_n with maximum similarity intra classes and minimum similarity inter classes

$$\begin{array}{cccc} x_1 & , \dots, & x_n & \Longrightarrow & \mathcal{C}_1 = \{x_3, x_{18}, \dots\}, \dots, & \mathcal{C}_k = \{x_1, x_{20}, \dots\} \\ \downarrow & & \downarrow \\ \begin{bmatrix} x_{1,1} \\ \vdots \\ x_{1,p} \end{bmatrix} & \begin{bmatrix} x_{n,1} \\ \vdots \\ x_{n,p} \end{bmatrix} \end{array} \right\} p \text{ coordinates for each observation } : x_i \in \mathbb{R}^p$$

Goal : cluster observations x_1, \ldots, x_n with maximum similarity intra classes and minimum similarity inter classes

$$\begin{array}{cccc} x_1 & , \dots, & x_n & \Longrightarrow & \mathcal{C}_1 = \{x_3, x_{18}, \dots\}, \dots, & \mathcal{C}_k = \{x_1, x_{20}, \dots\} \\ \downarrow & & \downarrow \\ \begin{bmatrix} x_{1,1} \\ \vdots \\ x_{1,p} \end{bmatrix} & \begin{bmatrix} x_{n,1} \\ \vdots \\ x_{n,p} \end{bmatrix} \end{array} \right\} p \text{ coordinates for each observation } : x_i \in \mathbb{R}^p$$

Examples : k-means, EM, hierarchical clustering

Disadvantages :

 ${\sf Disadvantages}:$

• Not efficient in large dimension (when $p \gg 1$)

 ${\sf Disadvantages}:$

• Not efficient in large dimension (when $p \gg 1$)

► Even in low dimension : means are not always relevant :

 ${\sf Disadvantages}:$

• Not efficient in large dimension (when $p \gg 1$)

• Even in low dimension : means are not always relevant :

Disadvantages :

• Not efficient in large dimension (when $p \gg 1$)

• Even in low dimension : means are not always relevant :

Left : x_1, \ldots, x_n

First transform the observations :

Left : $x_1, \ldots, x_n \implies K := \left[e^{-c \|x_j - x_i\|^2} \right]_{i,j=1}^n$

First transform the observations :

Left : $x_1, \ldots, x_n \implies K := \left[e^{-c ||x_j - x_i||^2} \right]_{i,j=1}^n$ with eigenvectors $\vec{V}_1, \vec{V}_2, \cdots$

First transform the observations :

Left : $x_1, \ldots, x_n \implies K := \left[e^{-c\|x_j - x_i\|^2}\right]_{i,j=1}^n$ with eigenvectors $\vec{V}_1, \vec{V}_2, \cdots \implies$ right : y_1, \ldots, y_n defined by :

First transform the observations :

Left : $x_1, \ldots, x_n \implies K := \left[e^{-c\|x_j - x_i\|^2}\right]_{i,j=1}^n$ with eigenvectors $\vec{V}_1, \vec{V}_2, \cdots \implies$ right : y_1, \ldots, y_n defined by :

 $\begin{bmatrix} \vec{V}_2 & \vec{V}_1 \end{bmatrix}$

First transform the observations :

Left : $x_1, \dots, x_n \implies K := \left[e^{-c ||x_j - x_i||^2} \right]_{i,j=1}^n$ with eigenvectors $\vec{V}_1, \vec{V}_2, \dots \implies$ right : y_1, \dots, y_n defined by : $\left[\vec{V}_2 \quad \vec{V}_1 \right] =: \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$

• x_1, \ldots, x_{n_1} : small circle

- x_1, \ldots, x_{n_1} : small circle
- $x_{n_1+1}, \ldots, x_{n_1+n_2}$: large circle

- x_1, \ldots, x_{n_1} : small circle
- $x_{n_1+1}, \ldots, x_{n_1+n_2}$: large circle

$$\hookrightarrow \mathsf{Matrix}\ K := \left[e^{-c\|x_j - x_i\|^2}\right]_{i,j=1}^n :$$

• x_1, \ldots, x_{n_1} : small circle • $x_{n_1+1}, \ldots, x_{n_1+n_2}$: large circle

$$\hookrightarrow \text{ Matrix } K := \begin{bmatrix} e^{-c \|x_j - x_i\|^2} \end{bmatrix}_{i,j=1}^n : \qquad K = \begin{bmatrix} X & \varepsilon \\ \varepsilon & Y \end{bmatrix}$$

• x_1, \ldots, x_{n_1} : small circle • $x_{n_1+1}, \ldots, x_{n_1+n_2}$: large circle

$$\hookrightarrow \text{Matrix } K := \begin{bmatrix} e^{-c \|x_j - x_i\|^2} \end{bmatrix}_{i,j=1}^n : \qquad K = \begin{bmatrix} X & \varepsilon \\ \varepsilon & Y \end{bmatrix} \approx \begin{bmatrix} X & 0 \\ 0 & Y \end{bmatrix}$$

 $\hookrightarrow \text{Matrix } K := \begin{bmatrix} e^{-c \|x_j - x_i\|^2} \end{bmatrix}_{i,j=1}^n : \quad K = \begin{bmatrix} X & \varepsilon \\ \varepsilon & Y \end{bmatrix} \approx \begin{bmatrix} X & 0 \\ 0 & Y \end{bmatrix}$ $\Rightarrow \text{Maximal eigenvectors } : \approx \text{either supported by } \vec{e}_1, \dots, \vec{e}_{n_1} \text{ or by }$ $\vec{e}_{n_1+1}, \dots, \vec{e}_{n_1+n_2}$

 $\stackrel{\leftarrow}{\rightarrow} \operatorname{Matrix} K := \begin{bmatrix} e^{-c \|x_j - x_i\|^2} \end{bmatrix}_{i,j=1}^n : \quad K = \begin{bmatrix} X & \varepsilon \\ \varepsilon & Y \end{bmatrix} \approx \begin{bmatrix} X & 0 \\ 0 & Y \end{bmatrix}$ $\stackrel{\leftarrow}{\rightarrow} \operatorname{Maximal eigenvectors} : \approx \text{ either supported by } \vec{e}_1, \dots, \vec{e}_{n_1} \text{ or by }$ $\vec{e}_{n_1+1}, \dots, \vec{e}_{n_1+n_2}$

Spectral clustering : principle (2)

 $f(||x_j - x_i||) \ge 0 : \text{similarity of } x_i \text{ and } x_j$ $(ex: f(||x_j - x_i||) = e^{-c||x_j - x_i||^2})$

Spectral clustering : principle (2)

$$f(||x_j - x_i||) \ge 0 : \text{similarity of } x_i \text{ and } x_j$$
$$(\text{ex} : f(||x_j - x_i||) = e^{-c||x_j - x_i||^2})$$

$$L = \left[\frac{f(\|x_j - x_i\|)}{\sqrt{d_i d_j}}\right]_{i,j=1}^n, \quad d_i := \sum_k f(\|x_k - x_i\|)$$

Spectral clustering : principle (2)

$$f(||x_j - x_i||) \ge 0 : \text{similarity of } x_i \text{ and } x_j$$
$$(\text{ex} : f(||x_j - x_i||) = e^{-c||x_j - x_i||^2})$$

$$L = \left[\frac{f(\|x_j - x_i\|)}{\sqrt{d_i d_j}}\right]_{i,j=1}^n, \quad d_i := \sum_k f(\|x_k - x_i\|)$$

Spectral clustering of x_1, \ldots, x_n in k classes (2) :

L: symmetric Laplacian matrix. Replace observations x_1, \ldots, x_n by the rows of the matrix of the largest eigenvectors of L and apply k-means on these (new) observations.

: Four leading eigenvectors of L for (partial) MNIST data ($n=192,\,p=784,\,k=3)$

Model and Assumptions

Model and Assumptions

Gaussian mixture model :

Model and Assumptions

Gaussian mixture model :

• $x_1, \ldots, x_n \in \mathbb{R}^p$ independent
Gaussian mixture model :

- $x_1, \ldots, x_n \in \mathbb{R}^p$ independent
- k classes C_1, \ldots, C_k

Gaussian mixture model :

- $x_1, \ldots, x_n \in \mathbb{R}^p$ independent
- k classes C_1, \ldots, C_k
- $\blacktriangleright \ \mathcal{C}_a = \{i \mid x_i \sim \mathcal{N}(\mu_a, C_a)\},\$

Gaussian mixture model :

- $x_1, \ldots, x_n \in \mathbb{R}^p$ independent
- k classes C_1, \ldots, C_k
- $C_a = \{i \mid x_i \sim \mathcal{N}(\mu_a, C_a)\}, \quad ||C_a|| = O(1)$

Gaussian mixture model :

- $x_1, \ldots, x_n \in \mathbb{R}^p$ independent
- k classes C_1, \ldots, C_k
- $C_a = \{i \mid x_i \sim \mathcal{N}(\mu_a, C_a)\}, \quad ||C_a|| = O(1)$

Gaussian mixture model :

- $x_1, \ldots, x_n \in \mathbb{R}^p$ independent
- k classes C_1, \ldots, C_k
- $C_a = \{i \mid x_i \sim \mathcal{N}(\mu_a, C_a)\}, \quad ||C_a|| = O(1)$

Convergence rate : We have $n, p \gg 1$ and :

1. Data scaling : $c_0 := \frac{p}{n}$ away from 0 and $+\infty$

Gaussian mixture model :

- $x_1, \ldots, x_n \in \mathbb{R}^p$ independent
- k classes C_1, \ldots, C_k
- $C_a = \{i \mid x_i \sim \mathcal{N}(\mu_a, C_a)\}, \quad ||C_a|| = O(1)$

- 1. Data scaling : $c_0 := \frac{p}{n}$ away from 0 and $+\infty$
- 2. Class scaling : $c_a := \frac{\#C_a}{n}$ away from 0 and 1

Gaussian mixture model :

- $x_1, \ldots, x_n \in \mathbb{R}^p$ independent
- k classes C_1, \ldots, C_k
- $C_a = \{i \mid x_i \sim \mathcal{N}(\mu_a, C_a)\}, \quad ||C_a|| = O(1)$

- 1. Data scaling : $c_0 := \frac{p}{n}$ away from 0 and $+\infty$
- 2. Class scaling : $c_a := \frac{\#C_a}{n}$ away from 0 and 1
- 3. Mean and covariance scaling :

Gaussian mixture model :

- $x_1, \ldots, x_n \in \mathbb{R}^p$ independent
- k classes C_1, \ldots, C_k
- $C_a = \{i \mid x_i \sim \mathcal{N}(\mu_a, C_a)\}, \quad ||C_a|| = O(1)$

- 1. Data scaling : $c_0 := \frac{p}{n}$ away from 0 and $+\infty$
- 2. Class scaling : $c_a := \frac{\#C_a}{n}$ away from 0 and 1
- 3. Mean and covariance scaling : Cases where simple methods are efficient :

Gaussian mixture model :

- $x_1, \ldots, x_n \in \mathbb{R}^p$ independent
- k classes C_1, \ldots, C_k
- $C_a = \{i \mid x_i \sim \mathcal{N}(\mu_a, C_a)\}, \quad ||C_a|| = O(1)$

- 1. Data scaling : $c_0 := \frac{p}{n}$ away from 0 and $+\infty$
- 2. Class scaling : $c_a := \frac{\#C_a}{n}$ away from 0 and 1
- 3. Mean and covariance scaling : Cases where simple methods are efficient :
 - $p \gg 1 \implies x_i \mu_a = O(\sqrt{\operatorname{Tr} C_a}) = O(\sqrt{p})$ so

Gaussian mixture model :

- $x_1, \ldots, x_n \in \mathbb{R}^p$ independent
- k classes C_1, \ldots, C_k
- $C_a = \{i \mid x_i \sim \mathcal{N}(\mu_a, C_a)\}, \quad ||C_a|| = O(1)$

- 1. Data scaling : $c_0 := \frac{p}{n}$ away from 0 and $+\infty$
- 2. Class scaling : $c_a := \frac{\#C_a}{n}$ away from 0 and 1
- 3. Mean and covariance scaling : Cases where simple methods are efficient :
 - $p \gg 1 \implies x_i \mu_a = O(\sqrt{\operatorname{Tr} C_a}) = O(\sqrt{p}) \text{ so}$ $\|\mu_a \mu_b\| \gg \sqrt{p} \implies$

Gaussian mixture model :

- $x_1, \ldots, x_n \in \mathbb{R}^p$ independent
- k classes C_1, \ldots, C_k
- $C_a = \{i \mid x_i \sim \mathcal{N}(\mu_a, C_a)\}, \quad ||C_a|| = O(1)$

- 1. Data scaling : $c_0 := \frac{p}{n}$ away from 0 and $+\infty$
- 2. Class scaling : $c_a := \frac{\#C_a}{n}$ away from 0 and 1
- 3. Mean and covariance scaling : Cases where simple methods are efficient :
 - ► $p \gg 1 \implies x_i \mu_a = O(\sqrt{\operatorname{Tr} C_a}) = O(\sqrt{p})$ so $\|\mu_a - \mu_b\| \gg \sqrt{p} \implies k$ -means (possibly *well* projected) is efficient

Gaussian mixture model :

- $x_1, \ldots, x_n \in \mathbb{R}^p$ independent
- k classes C_1, \ldots, C_k
- $C_a = \{i \mid x_i \sim \mathcal{N}(\mu_a, C_a)\}, \quad ||C_a|| = O(1)$

- 1. Data scaling : $c_0 := \frac{p}{n}$ away from 0 and $+\infty$
- 2. Class scaling : $c_a := \frac{\#C_a}{n}$ away from 0 and 1
- 3. Mean and covariance scaling : Cases where simple methods are efficient :
 - ▶ $p \gg 1 \implies x_i \mu_a = O(\sqrt{\operatorname{Tr} C_a}) = O(\sqrt{p})$ so $\|\mu_a - \mu_b\| \gg \sqrt{p} \implies k$ -means (possibly *well* projected) is efficient
 - $\|\mu_a\| \ll \sqrt{p}$ et $|\operatorname{Tr} C_a \operatorname{Tr} C_b| \gg \sqrt{p} \implies$

Gaussian mixture model :

- $x_1, \ldots, x_n \in \mathbb{R}^p$ independent
- k classes C_1, \ldots, C_k
- $C_a = \{i \mid x_i \sim \mathcal{N}(\mu_a, C_a)\}, \quad ||C_a|| = O(1)$

- 1. Data scaling : $c_0 := \frac{p}{n}$ away from 0 and $+\infty$
- 2. Class scaling : $c_a := \frac{\#C_a}{n}$ away from 0 and 1
- 3. Mean and covariance scaling : Cases where simple methods are efficient :
 - ► $p \gg 1 \implies x_i \mu_a = O(\sqrt{\operatorname{Tr} C_a}) = O(\sqrt{p})$ so $\|\mu_a - \mu_b\| \gg \sqrt{p} \implies k$ -means (possibly *well* projected) is efficient
 - ► $\|\mu_a\| \ll \sqrt{p}$ et $|\operatorname{Tr} C_a \operatorname{Tr} C_b| \gg \sqrt{p} \implies k$ -means on $\|x_i\|$ is efficient

Gaussian mixture model :

- $x_1, \ldots, x_n \in \mathbb{R}^p$ independent
- k classes C_1, \ldots, C_k
- $C_a = \{x \mid x \sim \mathcal{N}(\mu_a, C_a)\}, \quad ||C_a|| = O(1)$

- 1. Data scaling : $c_0 := \frac{p}{n}$ away from 0 and $+\infty$
- 2. Class scaling : $c_a := \frac{\#C_a}{n}$ away from 0 and 1
- 3. Mean scaling :

Gaussian mixture model :

- $x_1, \ldots, x_n \in \mathbb{R}^p$ independent
- k classes C_1, \ldots, C_k
- $C_a = \{x \mid x \sim \mathcal{N}(\mu_a, C_a)\}, \quad ||C_a|| = O(1)$

- 1. Data scaling : $c_0 := \frac{p}{n}$ away from 0 and $+\infty$
- 2. Class scaling : $c_a := \frac{\#C_a}{n}$ away from 0 and 1
- 3. Mean scaling : with $\sum_{a=1}^{k} c_a \mu_a = \vec{0}$,

Gaussian mixture model :

- $x_1, \ldots, x_n \in \mathbb{R}^p$ independent
- k classes C_1, \ldots, C_k
- $C_a = \{x \mid x \sim \mathcal{N}(\mu_a, C_a)\}, \quad ||C_a|| = O(1)$

- 1. Data scaling : $c_0 := \frac{p}{n}$ away from 0 and $+\infty$
- 2. Class scaling : $c_a := \frac{\#C_a}{n}$ away from 0 and 1
- 3. Mean scaling : with $\sum_{a=1}^{k} c_a \mu_a = \vec{0}$, $\|\mu_a\| = O(1)$

Gaussian mixture model :

- $x_1, \ldots, x_n \in \mathbb{R}^p$ independent
- k classes C_1, \ldots, C_k
- $C_a = \{x \mid x \sim \mathcal{N}(\mu_a, C_a)\}, \quad ||C_a|| = O(1)$

- 1. Data scaling : $c_0 := \frac{p}{n}$ away from 0 and $+\infty$
- 2. Class scaling : $c_a := \frac{\#C_a}{n}$ away from 0 and 1
- 3. Mean scaling : with $\sum_{a=1}^{k} c_a \mu_a = \vec{0}$, $\|\mu_a\| = O(1)$
- 4. Covariance scaling :

Gaussian mixture model :

- $x_1, \ldots, x_n \in \mathbb{R}^p$ independent
- k classes C_1, \ldots, C_k
- $C_a = \{x \mid x \sim \mathcal{N}(\mu_a, C_a)\}, \quad ||C_a|| = O(1)$

- 1. Data scaling : $c_0 := \frac{p}{n}$ away from 0 and $+\infty$
- 2. Class scaling : $c_a := \frac{\#C_a}{n}$ away from 0 and 1
- 3. Mean scaling : with $\sum_{a=1}^{k} c_a \mu_a = \vec{0}$, $\|\mu_a\| = O(1)$
- 4. Covariance scaling : with $C^{\circ} := \sum_{a=1}^{k} c_a C_a$ and $C_a^{\circ} := C_a C^{\circ}$,

Gaussian mixture model :

- $x_1, \ldots, x_n \in \mathbb{R}^p$ independent
- k classes C_1, \ldots, C_k
- $C_a = \{x \mid x \sim \mathcal{N}(\mu_a, C_a)\}, \quad ||C_a|| = O(1)$

- 1. Data scaling : $c_0 := \frac{p}{n}$ away from 0 and $+\infty$
- 2. Class scaling : $c_a := \frac{\#C_a}{n}$ away from 0 and 1
- 3. Mean scaling : with $\sum_{a=1}^{k} c_a \mu_a = \vec{0}, \|\mu_a\| = O(1)$
- 4. Covariance scaling : with $C^{\circ} := \sum_{a=1}^{k} c_a C_a$ and $C_a^{\circ} := C_a C^{\circ}$, we have

$$||C_a|| = O(1), \quad \operatorname{Tr} C_a^\circ = O(\sqrt{p})$$

Gaussian mixture model :

- $x_1, \ldots, x_n \in \mathbb{R}^p$ independent
- k classes C_1, \ldots, C_k
- $C_a = \{x \mid x \sim \mathcal{N}(\mu_a, C_a)\}, \quad ||C_a|| = O(1)$

- 1. Data scaling : $c_0 := \frac{p}{n}$ away from 0 and $+\infty$
- 2. Class scaling : $c_a := \frac{\#C_a}{n}$ away from 0 and 1
- 3. Mean scaling : with $\sum_{a=1}^{k} c_a \mu_a = \vec{0}, \|\mu_a\| = O(1)$
- 4. Covariance scaling : with $C^{\circ} := \sum_{a=1}^{k} c_a C_a$ and $C_a^{\circ} := C_a C^{\circ}$, we have

$$||C_a|| = O(1), \quad \operatorname{Tr} C_a^\circ = O(\sqrt{p})$$

Then
$$\frac{1}{p} ||x_j - x_i||^2 \approx \tau := \frac{2}{p} \operatorname{Tr} C^{\circ}$$

We study the normalized Laplacian matrix :

 $L = nD^{-\frac{1}{2}}KD^{-\frac{1}{2}}$

with

$$K = \left[f\left(\frac{1}{p} \|x_j - x_i\|^2 \right) \right]_{i,j=1}^n,$$

$$D = \operatorname{diag}(d_i, 1 \le i \le n),$$
 $d_i = \sum_j K_{ij}$

We want to derive, for each leading eigenvector \vec{V} and each class C_a $(a = 1, \ldots, k)$:

We want to derive, for each leading eigenvector \vec{V} and each class C_a $(a = 1, \ldots, k)$:

Class-wise eigenvector means :

$$\alpha_a(\vec{V}) := \frac{1}{\#\mathcal{C}_a} \left\langle \vec{V}, \mathbf{1}_{\mathcal{C}_a} \right\rangle$$

We want to derive, for each leading eigenvector \vec{V} and each class C_a $(a = 1, \ldots, k)$:

Class-wise eigenvector means :

$$\alpha_a(\vec{V}) := \frac{1}{\#\mathcal{C}_a} \left\langle \vec{V}, \mathbf{1}_{\mathcal{C}_a} \right\rangle$$

Class-wise eigenvector fluctuations :

$$\left\| \operatorname{diag}(1_{\mathcal{C}_a}) \left(\vec{V} - \alpha_a(\vec{V}) 1_{\mathcal{C}_a} \right) \right\|$$

We want to derive, for each leading eigenvector \vec{V} and each class C_a $(a = 1, \ldots, k)$:

Class-wise eigenvector means :

$$\alpha_a(\vec{V}) := \frac{1}{\#\mathcal{C}_a} \left\langle \vec{V}, \mathbf{1}_{\mathcal{C}_a} \right\rangle$$

Class-wise eigenvector fluctuations :

$$\left\| \operatorname{diag}(1_{\mathcal{C}_a}) \left(\vec{V} - \alpha_a(\vec{V}) 1_{\mathcal{C}_a} \right) \right\|$$

Class-wise cross correlations :

$$\left\langle \left(\vec{V} - \alpha_a(\vec{V}) \mathbf{1}_{\mathcal{C}_a} \right), \operatorname{diag}(\mathbf{1}_{\mathcal{C}_a}) \left(\vec{W} - \alpha_a(\vec{W}) \mathbf{1}_{\mathcal{C}_a} \right) \right\rangle$$

for \vec{W} another leading eigenvector

Class-wise eigenvector means and fluctuations

: MNIST data : four leading eigenvectors of L (red) and theoretical findings (blue).

Class-wise eigenvector means and fluctuations

: MNIST data : four leading eigenvectors of L (red) and theoretical findings (blue).

Class-wise eigenvector means and fluctuations

: MNIST data : four leading eigenvectors of L (red) and theoretical findings (blue).

Class-wise means, fluctuations and cross correlations

: 2D representation of eigenvectors of L, for the MNIST dataset. Theoretical means and 1- and 2-standard deviations in blue. Class 1 in red, Class 2 in black, Class 3 in green.

Class-wise means, fluctuations and cross correlations

: 2D representation of eigenvectors of L, for the MNIST dataset. Theoretical means and 1- and 2-standard deviations in blue. Class 1 in red, Class 2 in black, Class 3 in green.

We study the normalized Laplacian matrix :

 $L = nD^{-\frac{1}{2}}KD^{-\frac{1}{2}}$

with

$$K = \left[f\left(\frac{1}{p} \|x_j - x_i\|^2 \right) \right]_{i,j=1}^n,$$

$$D = \operatorname{diag}(d_i, 1 \le i \le n),$$
 $d_i = \sum_j K_{ij}$

Dominant Eigenvector : $(\sqrt{d_1}, \dots, \sqrt{d_n})^{\mathsf{T}}$

Dominant Eigenvector : $(\sqrt{d_1}, \dots, \sqrt{d_n})^{\mathsf{T}}$

Proposition (Eigenvector $D^{\frac{1}{2}}1_n$) We have

$$\frac{D^{\frac{1}{2}}\mathbf{1}_{n}}{\sqrt{\mathbf{1}_{n}^{\mathsf{T}}D\mathbf{1}_{n}}} = \frac{1_{n}}{\sqrt{n}} + \frac{1}{n\sqrt{c_{0}}}\frac{f'(\tau)}{2f(\tau)} \left[\left\{ t_{a}\mathbf{1}_{\mathcal{C}_{a}} \right\}_{a=1}^{k} + \operatorname{diag} \left\{ \sqrt{\frac{2}{p}}\operatorname{Tr}(C_{a}^{2})\mathbf{1}_{\mathcal{C}_{a}} \right\}_{a=1}^{k} \right] + o(n^{-1})$$
with $t_{a} := \frac{1}{\sqrt{p}}\operatorname{Tr}C_{a}^{\circ}$ $(a = 1, \dots, k)$ and $\varphi \sim \mathcal{N}(0, I_{n})$.

Dominant Eigenvector : $(\sqrt{d_1}, \dots, \sqrt{d_n})^{\mathsf{T}}$

Proposition (Eigenvector $D^{\frac{1}{2}}1_n$) We have

$$\frac{D^{\frac{1}{2}}\mathbf{1}_{n}}{\sqrt{\mathbf{1}_{n}^{\mathsf{T}}D\mathbf{1}_{n}}} = \frac{\mathbf{1}_{n}}{\sqrt{n}} + \frac{1}{n\sqrt{c_{0}}}\frac{f'(\tau)}{2f(\tau)} \left[\left\{ t_{a}\mathbf{1}_{\mathcal{C}_{a}} \right\}_{a=1}^{k} + \operatorname{diag} \left\{ \sqrt{\frac{2}{p}}\operatorname{Tr}(C_{a}^{2})\mathbf{1}_{\mathcal{C}_{a}} \right\}_{a=1}^{k} \right] + o(n^{-1})$$
with $t_{a} := \frac{1}{\sqrt{p}}\operatorname{Tr}C_{a}^{\circ}$ $(a = 1, \dots, k)$ and $\varphi \sim \mathcal{N}(0, I_{n})$.

To sum up :

• structure of $D^{\frac{1}{2}} 1_n$: block-wise constant + noise

Dominant Eigenvector : $(\sqrt{d_1}, \dots, \sqrt{d_n})^{\mathsf{T}}$

Proposition (Eigenvector $D^{\frac{1}{2}}1_n$) We have

$$\frac{D^{\frac{1}{2}}\mathbf{1}_{n}}{\sqrt{\mathbf{1}_{n}^{\mathsf{T}}D\mathbf{1}_{n}}} = \frac{\mathbf{1}_{n}}{\sqrt{n}} + \frac{1}{n\sqrt{c_{0}}}\frac{f'(\tau)}{2f(\tau)} \left[\{t_{a}\mathbf{1}_{\mathcal{C}_{a}}\}_{a=1}^{k} + \operatorname{diag}\left\{\sqrt{\frac{2}{p}}\operatorname{Tr}(C_{a}^{2})\mathbf{1}_{\mathcal{C}_{a}}\right\}_{a=1}^{k}\right] + o(n^{-1})$$
with $t_{a} := \frac{1}{\sqrt{p}}\operatorname{Tr}C_{a}^{\circ}$ $(a = 1, \dots, k)$ and $\varphi \sim \mathcal{N}(0, I_{n})$.

To sum up :

- structure of $D^{\frac{1}{2}}1_n$: block-wise constant + noise
- ▶ information about the classes depending on the numbers $\operatorname{Tr} C_a^\circ = \operatorname{Tr} C_a \operatorname{Tr} C^\circ$

Dominant Eigenvector : $(\sqrt{d_1}, \dots, \sqrt{d_n})^{\mathsf{T}}$

Proposition (Eigenvector $D^{\frac{1}{2}}1_n$) We have

$$\frac{D^{\frac{1}{2}}\mathbf{1}_{n}}{\sqrt{\mathbf{1}_{n}^{\mathsf{T}}D\mathbf{1}_{n}}} = \frac{\mathbf{1}_{n}}{\sqrt{n}} + \frac{1}{n\sqrt{c_{0}}}\frac{f'(\tau)}{2f(\tau)} \left[\{t_{a}\mathbf{1}_{\mathcal{C}_{a}}\}_{a=1}^{k} + \operatorname{diag}\left\{\sqrt{\frac{2}{p}}\operatorname{Tr}(C_{a}^{2})\mathbf{1}_{\mathcal{C}_{a}}\right\}_{a=1}^{k}\right] + o(n^{-1})$$
with $t_{a} := \frac{1}{\sqrt{p}}\operatorname{Tr}C_{a}^{\circ}$ $(a = 1, \dots, k)$ and $\varphi \sim \mathcal{N}(0, I_{n})$.

To sum up :

- structure of $D^{\frac{1}{2}}1_n$: block-wise constant + noise
- ► information about the classes depending on the numbers $\operatorname{Tr} C_a^\circ = \operatorname{Tr} C_a \operatorname{Tr} C^\circ$
- next (and main) step : study the projected normalized Laplacian :

$$L' = nD^{-\frac{1}{2}}KD^{-\frac{1}{2}} - n\frac{D^{\frac{1}{2}}\mathbf{1}_{n}\mathbf{1}_{n}^{\mathsf{T}}D^{\frac{1}{2}}}{\mathbf{1}_{n}^{\mathsf{T}}D\mathbf{1}_{n}}.$$
Theorem (Random Matrix Equivalent) As $n, p \to \infty$, in operator norm, $\left\| L' - \hat{L}' \right\| \xrightarrow{a.s.} 0$, where $\hat{L}' = PW^{\mathsf{T}}WP + \chi$,

Theorem (Random Matrix Equivalent) As $n, p \to \infty$, in operator norm, $\left\| L' - \hat{L}' \right\| \xrightarrow{a.s.} 0$, where $\hat{L}' = PW^{\mathsf{T}}WP + \chi$.

with P orthogonal projection onto $\{x_1 + \dots + x_n = 0\}$, $W = [w_1, \dots, w_n] \in \mathbb{R}^{p \times n}$ Gaussian $(x_i = \mu_a + p^{1/2}w_i)$ and

 χ is matrix with rank $\leq 2k+4$

Theorem (Random Matrix Equivalent) As $n, p \to \infty$, in operator norm, $\left\| L' - \hat{L}' \right\| \xrightarrow{a.s.} 0$, where $\hat{L}' = PW^{\mathsf{T}}WP + \chi$.

with P orthogonal projection onto $\{x_1 + \dots + x_n = 0\}$, $W = [w_1, \dots, w_n] \in \mathbb{R}^{p \times n}$ Gaussian $(x_i = \mu_a + p^{1/2}w_i)$ and

 χ is matrix with rank $\leq 2k+4$

(spiked model) depending on :

the class structure

Theorem (Random Matrix Equivalent) As $n, p \to \infty$, in operator norm, $\left\| L' - \hat{L}' \right\| \xrightarrow{a.s.} 0$, where $\hat{L}' = PW^{\mathsf{T}}WP + \chi$.

with P orthogonal projection onto $\{x_1 + \dots + x_n = 0\}$, $W = [w_1, \dots, w_n] \in \mathbb{R}^{p \times n}$ Gaussian $(x_i = \mu_a + p^{1/2}w_i)$ and

 χ is matrix with rank $\leq 2k+4$

- the class structure
- ▶ the function f through the numbers $f(\tau)$, $f'(\tau)$, $f''(\tau)$, $\tau = \frac{2}{n} \operatorname{Tr} C^{\circ}$

Theorem (Random Matrix Equivalent) As $n, p \to \infty$, in operator norm, $\left\| L' - \hat{L}' \right\| \xrightarrow{a.s.} 0$, where $\hat{L}' = PW^{\mathsf{T}}WP + \chi$.

with P orthogonal projection onto $\{x_1 + \dots + x_n = 0\}$, $W = [w_1, \dots, w_n] \in \mathbb{R}^{p \times n}$ Gaussian $(x_i = \mu_a + p^{1/2}w_i)$ and

 χ is matrix with rank $\leq 2k+4$

- the class structure
- ▶ the function f through the numbers $f(\tau)$, $f'(\tau)$, $f''(\tau)$, $\tau = \frac{2}{n} \operatorname{Tr} C^{\circ}$
- the means μ_a $(a = 1, \ldots, k)$

Theorem (Random Matrix Equivalent) As $n, p \to \infty$, in operator norm, $\left\| L' - \hat{L}' \right\| \xrightarrow{a.s.} 0$, where $\hat{L}' = PW^{\mathsf{T}}WP + \chi$.

with P orthogonal projection onto $\{x_1 + \dots + x_n = 0\}$, $W = [w_1, \dots, w_n] \in \mathbb{R}^{p \times n}$ Gaussian $(x_i = \mu_a + p^{1/2}w_i)$ and

 χ is matrix with rank $\leq 2k+4$

- the class structure
- ▶ the function f through the numbers $f(\tau)$, $f'(\tau)$, $f''(\tau)$, $\tau = \frac{2}{n} \operatorname{Tr} C^{\circ}$
- the means μ_a $(a = 1, \ldots, k)$

• the traces
$$t_a = \frac{1}{\sqrt{p}} \operatorname{Tr} C_a^\circ \ (a = 1, \dots, k)$$

Theorem (Random Matrix Equivalent) As $n, p \to \infty$, in operator norm, $\left\| L' - \hat{L}' \right\| \xrightarrow{a.s.} 0$, where $\hat{L}' = PW^{\mathsf{T}}WP + \chi$.

with P orthogonal projection onto $\{x_1 + \dots + x_n = 0\}$, $W = [w_1, \dots, w_n] \in \mathbb{R}^{p \times n}$ Gaussian $(x_i = \mu_a + p^{1/2}w_i)$ and

 χ is matrix with rank $\leq 2k+4$

- the class structure
- ▶ the function f through the numbers $f(\tau)$, $f'(\tau)$, $f''(\tau)$, $\tau = \frac{2}{n} \operatorname{Tr} C^{\circ}$
- the means μ_a ($a = 1, \ldots, k$)
- the traces $t_a = \frac{1}{\sqrt{p}} \operatorname{Tr} C_a^\circ \ (a = 1, \dots, k)$
- the cross-traces $T_{a,b} := \frac{1}{p} \operatorname{Tr} C_a^{\circ} C_b^{\circ}$ $(a, b = 1, \dots, k)$

Equivalence between L and \hat{L} : eigenvectors

: MNIST data : four leading eigenvectors of L (red), versus \hat{L} (black)

Equivalence between L and \hat{L} : eigenvectors

: MNIST data : four leading eigenvectors of L (red), versus \hat{L} (black)

1. Study eigenvalue distribution (and its support S) of $PW^{\mathsf{T}}WP$

- 1. Study eigenvalue distribution (and its support S) of $PW^{\mathsf{T}}WP$
- 2. Isolated eigenvalues of \hat{L}' : solve, for $z \notin S$,

 $\det \left(P W^{\mathsf{T}} W P + \chi - z \right) = 0$

- 1. Study eigenvalue distribution (and its support S) of $PW^{\mathsf{T}}WP$
- 2. Isolated eigenvalues of \hat{L}' : solve, for $z \notin S$,

 $\det \left(P W^{\mathsf{T}} W P + \chi - z \right) = 0$

turning this $n\times n$ determinant to a smaller one :

 $\det \left(PW^{\mathsf{T}}WP + \chi - zI_n \right)$ $= \det \left(PW^{\mathsf{T}}WP - z \right) \det \left(\underbrace{1 + \left(PW^{\mathsf{T}}WP - z \right)^{-1} \chi}_{-1} \right)$

- 1. Study eigenvalue distribution (and its support S) of $PW^{\mathsf{T}}WP$
- 2. Isolated eigenvalues of \hat{L}' : solve, for $z \notin S$,

 $\det \left(P W^{\mathsf{T}} W P + \chi - z \right) = 0$

turning this $n\times n$ determinant to a smaller one :

$$\det \left(PW^{\mathsf{T}}WP + \chi - zI_n \right)$$
$$= \det \left(PW^{\mathsf{T}}WP - z \right) \det \underbrace{\left(1 + \left(PW^{\mathsf{T}}WP - z \right)^{-1} \chi \right)}_{\mathsf{T} = \mathsf{T} = \mathsf{$$

matrix with small co-rank

- 1. Study eigenvalue distribution (and its support S) of $PW^{\mathsf{T}}WP$
- 2. Isolated eigenvalues of \hat{L}' : solve, for $z \notin S$,

 $\det \left(P W^{\mathsf{T}} W P + \chi - z \right) = 0$

turning this $n\times n$ determinant to a smaller one :

$$\det \left(PW^{\mathsf{T}}WP + \chi - zI_n \right)$$

= $\det \left(PW^{\mathsf{T}}WP - z \right) \det \underbrace{\left(1 + \left(PW^{\mathsf{T}}WP - z \right)^{-1} \chi \right)}_{\text{matrix with small co-rank}}$

3. Study the eigenvectors thanks to the Cauchy Formula :

Spectral Projection of
$$\hat{L}'$$
 on $I = \frac{1}{2i\pi} \oint_{\gamma_I} (z - \hat{L})^{-1} dz$

• Random measure $\mu_n = n^{-1} \sum_{i=1}^n \delta_{\lambda_i(PW^{\mathsf{T}}WP)}$

• Random measure $\mu_n = n^{-1}\sum_{i=1}^n \delta_{\lambda_i(PW^\intercal WP)}$ studied through its Stieltjes transform

$$S_{\mu_n}(z) = \int_{\lambda \in \mathbb{R}} \frac{\mu_n(\mathrm{d}\lambda)}{\lambda - z} = \frac{1}{n} \operatorname{Tr}(Q_z) \quad \text{for } Q_z = (PW^{\mathsf{T}}WP - z)^{-1}$$

• Random measure $\mu_n = n^{-1}\sum_{i=1}^n \delta_{\lambda_i(PW^\intercal WP)}$ studied through its Stieltjes transform

$$S_{\mu_n}(z) = \int_{\lambda \in \mathbb{R}} \frac{\mu_n(\mathrm{d}\lambda)}{\lambda - z} = \frac{1}{n} \operatorname{Tr}(Q_z) \quad \text{for } Q_z = (PW^{\mathsf{T}}WP - z)^{-1}$$

• $Q_z = z^{-1} P W^{\mathsf{T}} W P Q_z - z^{-1} I_n$ + Stein Formula for Gaussian variables $\mathbb{E}[Xf(X)] = \sigma^2 \mathbb{E}[f'(X)]$

• Random measure $\mu_n = n^{-1}\sum_{i=1}^n \delta_{\lambda_i(PW^\intercal WP)}$ studied through its Stieltjes transform

$$S_{\mu_n}(z) = \int_{\lambda \in \mathbb{R}} \frac{\mu_n(\mathrm{d}\lambda)}{\lambda - z} = \frac{1}{n} \operatorname{Tr}(Q_z) \quad \text{for } Q_z = (PW^{\mathsf{T}}WP - z)^{-1}$$

• $Q_z = z^{-1} P W^{\mathsf{T}} W P Q_z - z^{-1} I_n$ + Stein Formula for Gaussian variables $\mathbb{E}[Xf(X)] = \sigma^2 \mathbb{E}[f'(X)] \Longrightarrow$ Loop equations for Q_z

• Random measure $\mu_n = n^{-1} \sum_{i=1}^n \delta_{\lambda_i(PW^{\intercal}WP)}$ studied through its Stieltjes transform

$$S_{\mu_n}(z) = \int_{\lambda \in \mathbb{R}} \frac{\mu_n(\mathrm{d}\lambda)}{\lambda - z} = \frac{1}{n} \operatorname{Tr}(Q_z) \quad \text{for } Q_z = (PW^{\mathsf{T}}WP - z)^{-1}$$

• $Q_z = z^{-1} P W^{\mathsf{T}} W P Q_z - z^{-1} I_n$ + Stein Formula for Gaussian variables $\mathbb{E}[Xf(X)] = \sigma^2 \mathbb{E}[f'(X)] \Longrightarrow$ Loop equations for $Q_z \Longrightarrow$ fixed point characterization of a deterministic equivalent :

$$Q_z = \frac{p}{n} \operatorname{diag} \{g_a(z) \mathbf{1}_{n_a}\}_{a=1}^k + o(1)$$

• Random measure $\mu_n = n^{-1} \sum_{i=1}^n \delta_{\lambda_i(PW^{\intercal}WP)}$ studied through its Stieltjes transform

$$S_{\mu_n}(z) = \int_{\lambda \in \mathbb{R}} \frac{\mu_n(\mathrm{d}\lambda)}{\lambda - z} = \frac{1}{n} \operatorname{Tr}(Q_z) \quad \text{for } Q_z = (PW^{\mathsf{T}}WP - z)^{-1}$$

• $Q_z = z^{-1} P W^{\mathsf{T}} W P Q_z - z^{-1} I_n$ + Stein Formula for Gaussian variables $\mathbb{E}[Xf(X)] = \sigma^2 \mathbb{E}[f'(X)] \Longrightarrow$ Loop equations for $Q_z \Longrightarrow$ fixed point characterization of a deterministic equivalent :

$$Q_z = \frac{p}{n} \operatorname{diag} \{ g_a(z) \mathbf{1}_{n_a} \}_{a=1}^k + o(1)$$

for $(g_a(z))_{a=1,...,k} \in \mathbb{C}^k$ solution of

$$g_a(z) = \frac{1}{\frac{1}{n} \operatorname{tr} C_a \left(I_p + \sum_{b=1}^k \frac{n_b}{n} g_b(z) C_b \right)^{-1} - pz/n} \qquad (a = 1, \dots, k)$$

• Random measure $\mu_n = n^{-1} \sum_{i=1}^n \delta_{\lambda_i(PW^{\intercal}WP)}$ studied through its Stieltjes transform

$$S_{\mu_n}(z) = \int_{\lambda \in \mathbb{R}} \frac{\mu_n(\mathrm{d}\lambda)}{\lambda - z} = \frac{1}{n} \operatorname{Tr}(Q_z) \quad \text{for } Q_z = (PW^{\mathsf{T}}WP - z)^{-1}$$

• $Q_z = z^{-1} P W^{\mathsf{T}} W P Q_z - z^{-1} I_n$ + Stein Formula for Gaussian variables $\mathbb{E}[Xf(X)] = \sigma^2 \mathbb{E}[f'(X)] \Longrightarrow$ Loop equations for $Q_z \Longrightarrow$ fixed point characterization of a deterministic equivalent :

$$Q_z = \frac{p}{n} \operatorname{diag} \{ g_a(z) \mathbf{1}_{n_a} \}_{a=1}^k + o(1)$$

for $(g_a(z))_{a=1,...,k} \in \mathbb{C}^k$ solution of

$$g_a(z) = \frac{1}{\frac{1}{n} \operatorname{tr} C_a \left(I_p + \sum_{b=1}^k \frac{n_b}{n} g_b(z) C_b \right)^{-1} - pz/n} \qquad (a = 1, \dots, k)$$

 \Longrightarrow deterministic equivalent of μ_n

Eigenvalue distribution of $PW^{\mathsf{T}}WP$

: Eigenvalues of $PW^{\mathsf{T}}WP$ (across 1 000 realizations) versus deterministic equivalent density, n = 32, p = 256, k = 3.

Deterministic equivalent computed throught its Stieltjes transform :

$$S(z) = \frac{p}{n} \sum_{a=1}^{k} \frac{n_a}{n} g_a(z)$$

and the formula

density(x) =
$$\lim_{\eta \downarrow 0} \frac{1}{\pi} \Im(S(x + i\eta))$$

Step 2 : isolated eigenvalues of \hat{L}'

$\hat{L}' = PW^{\mathsf{T}}WP + \chi = PW^{\mathsf{T}}WP + UBU^{\mathsf{T}}, \qquad B: r \times r$

$$\hat{L}' = PW^{\mathsf{T}}WP + \chi = PW^{\mathsf{T}}WP + UBU^{\mathsf{T}}, \qquad B: r \times r$$

 $\det(I_n + XY) = \det(I_r + YX)$, (true even for rectangular matrices X, Y!)

$$\hat{L}' = PW^{\mathsf{T}}WP + \chi = PW^{\mathsf{T}}WP + UBU^{\mathsf{T}}, \qquad B: r \times r$$

 $\det(I_n + XY) = \det(I_r + YX),$ (true even for rectangular matrices $X,Y\,!)$

 $\det(z - \hat{L}') =$

$$\hat{L}' = PW^{\mathsf{T}}WP + \chi = PW^{\mathsf{T}}WP + UBU^{\mathsf{T}}, \qquad B: r \times r$$

 $det(I_n + XY) = det(I_r + YX)$, (true even for rectangular matrices X, Y!)

 $\det(z - \hat{L}') = \det(I_n - (z - PW^{\mathsf{T}}WP)^{-1}\chi)\det(z - PW^{\mathsf{T}}WP)$

$$\hat{L}' = PW^{\mathsf{T}}WP + \chi = PW^{\mathsf{T}}WP + UBU^{\mathsf{T}}, \qquad B: r \times r$$

 $det(I_n + XY) = det(I_r + YX)$, (true even for rectangular matrices X, Y!)

$$det(z - \hat{L}') = det(I_n - (z - PW^{\mathsf{T}}WP)^{-1}\chi) det(z - PW^{\mathsf{T}}WP)$$

=
$$det(I_r - U^{\mathsf{T}}(z - PW^{\mathsf{T}}WP)^{-1}BU) det(z - PW^{\mathsf{T}}WP)$$

$$\hat{L}' = PW^{\mathsf{T}}WP + \chi = PW^{\mathsf{T}}WP + UBU^{\mathsf{T}}, \qquad B: r \times r$$

 $det(I_n + XY) = det(I_r + YX)$, (true even for rectangular matrices X, Y!)

$$det(z - \hat{L}') = det(I_n - (z - PW^{\mathsf{T}}WP)^{-1}\chi) det(z - PW^{\mathsf{T}}WP)$$

=
$$det(I_r - U^{\mathsf{T}}(z - PW^{\mathsf{T}}WP)^{-1}BU) det(z - PW^{\mathsf{T}}WP)$$

 \hookrightarrow key-tool : the $r \times r$ matrix $U^{\mathsf{T}}(z - PW^{\mathsf{T}}WP)^{-1}BU$

Step 2 : isolated eigenvalues of \hat{L}^\prime

As

$$(z - PW^{\mathsf{T}}WP)^{-1} = -\frac{p}{n}\operatorname{diag} \{g_a(z)\mathbf{1}_{n_a}\}_{a=1}^k + o(1)$$
for $(g_a(z))_{a=1,\dots,k} \in \mathbb{C}^k$ solution of fixed point equation

$$g_a(z) = \frac{1}{\frac{1}{\frac{1}{n}\operatorname{tr} C_a\left(I_p + \sum_{b=1}^k \frac{n_b}{n}g_b(z)C_b\right)^{-1} - pz/n} \quad (a = 1,\dots,k),$$

we get :

Step 2 : isolated eigenvalues of \hat{L}'

As

$$(z - PW^{\mathsf{T}}WP)^{-1} = -\frac{p}{n} \operatorname{diag} \{g_a(z)\mathbf{1}_{n_a}\}_{a=1}^k + o(1)$$
for $(g_a(z))_{a=1,\dots,k} \in \mathbb{C}^k$ solution of fixed point equation

$$g_a(z) = \frac{1}{\frac{1}{n} \operatorname{tr} C_a \left(I_p + \sum_{b=1}^k \frac{n_b}{n} g_b(z) C_b\right)^{-1} - pz/n} \qquad (a = 1,\dots,k),$$

we get :

Theorem

There is a (complicated but human) function F(z) such that (up to some technical hypotheses) the isolated eigenvalues of \hat{L}' are the roots of

F(z) = 0.

We want to derive, for each such eigenvector $ec{V}$ and each $a=1,\ldots,k$:

We want to derive, for each such eigenvector $ec{V}$ and each $a=1,\ldots,k$:

Class-wise eigenvector means :

$$\alpha_a(\vec{V}) := \frac{1}{\#\mathcal{C}_a} \left\langle \vec{V}, 1_{\mathcal{C}_a} \right\rangle$$

We want to derive, for each such eigenvector $ec{V}$ and each $a=1,\ldots,k$:

Class-wise eigenvector means :

$$\alpha_a(\vec{V}) := \frac{1}{\#\mathcal{C}_a} \left\langle \vec{V}, 1_{\mathcal{C}_a} \right\rangle$$

Class-wise eigenvector fluctuations :

$$\left\| \operatorname{diag}(1_{\mathcal{C}_a}) \left(\vec{V} - \alpha_a(\vec{V}) 1_{\mathcal{C}_a} \right) \right\|$$

We want to derive, for each such eigenvector $ec{V}$ and each $a=1,\ldots,k$:

Class-wise eigenvector means :

$$\alpha_a(\vec{V}) := \frac{1}{\#\mathcal{C}_a} \left\langle \vec{V}, 1_{\mathcal{C}_a} \right\rangle$$

Class-wise eigenvector fluctuations :

$$\left\| \operatorname{diag}(1_{\mathcal{C}_a}) \left(\vec{V} - \alpha_a(\vec{V}) 1_{\mathcal{C}_a} \right) \right\|$$

Class-wise cross correlations :

$$\left\langle \left(\vec{V} - \alpha_a(\vec{V}) \mathbf{1}_{\mathcal{C}_a} \right), \operatorname{diag}(\mathbf{1}_{\mathcal{C}_a}) \left(\vec{W} - \alpha_a(\vec{W}) \mathbf{1}_{\mathcal{C}_a} \right) \right\rangle$$

for \vec{W} another leading eigenvector
Step 3 : isolated eigenvectors of \hat{L}'

We want to derive, for each such eigenvector $ec{V}$ and each $a=1,\ldots,k$:

Class-wise eigenvector means :

$$\alpha_a(\vec{V}) := \frac{1}{\#\mathcal{C}_a} \left\langle \vec{V}, 1_{\mathcal{C}_a} \right\rangle$$

Class-wise eigenvector fluctuations :

$$\left\| \operatorname{diag}(1_{\mathcal{C}_a}) \left(\vec{V} - \alpha_a(\vec{V}) 1_{\mathcal{C}_a} \right) \right\|$$

Class-wise cross correlations :

$$\left\langle \left(ec{V} - lpha_a(ec{V}) \mathbf{1}_{\mathcal{C}_a}
ight), ext{diag}(\mathbf{1}_{\mathcal{C}_a}) \left(ec{W} - lpha_a(ec{W}) \mathbf{1}_{\mathcal{C}_a}
ight)
ight
angle$$

for \vec{W} another leading eigenvector \hookrightarrow one needs, for $\Pi = \vec{V}\vec{V}^{\mathsf{T}}$ and $\Pi' = \vec{W}\vec{W}^{\mathsf{T}}$, the numbers $p^{-1}J^{\mathsf{T}}\Pi J$; $p^{-1}J^{\mathsf{T}}\Pi \operatorname{diag}(1_{\mathcal{C}_a})\Pi' J$ $(1 \le a \le k)$ for $J = [1_{\mathcal{C}_1} \cdots 1_{\mathcal{C}_k}] \in \mathbb{R}^{n \times k}$.

Step 3 : isolated eigenvectors of \hat{L}^\prime

► Cauchy Formula :

Spectral Projection of
$$\hat{L}'$$
 on $I = -\frac{1}{2i\pi} \oint_{\gamma_I} (\hat{L}' - z)^{-1} dz$

Step 3 : isolated eigenvectors of \hat{L}'

► Cauchy Formula :

Spectral Projection of
$$\hat{L}'$$
 on $I = -\frac{1}{2i\pi} \oint_{\gamma_I} (\hat{L}' - z)^{-1} dz$

• Woodbury matrix identity : for $Q_z = (PW^{\mathsf{T}}WP - z)^{-1}$,

$$(\hat{L}'-z)^{-1} = Q_z - Q_z U (B^{-1} + U^{\mathsf{T}} Q_z U)^{-1} U^{\mathsf{T}} Q_z$$

Step 3 : isolated eigenvectors of \hat{L}'

Cauchy Formula :

Spectral Projection of
$$\hat{L}'$$
 on $I = -\frac{1}{2i\pi} \oint_{\gamma_I} (\hat{L}' - z)^{-1} dz$

• Woodbury matrix identity : for $Q_z = (PW^{\mathsf{T}}WP - z)^{-1}$,

$$(\hat{L}'-z)^{-1} = Q_z - Q_z U (B^{-1} + U^{\mathsf{T}} Q_z U)^{-1} U^{\mathsf{T}} Q_z$$

Theorem

The deterministic equivalents of the $k \times k$ matrices

$$p^{-1}J^{\mathsf{T}}\Pi J$$
 ; $p^{-1}J^{\mathsf{T}}\Pi\operatorname{diag}(1_{\mathcal{C}_a})\Pi'J$ $(1 \le a \le k)$

can be computed thanks to the parameters and the solutions of the fixed point equations $g_a(z)$, a = 1, ..., k.

Class-wise eigenvector means and fluctuations

: MNIST data : four leading eigenvectors of L (red) and theoretical findings (blue).

Class-wise eigenvector means and fluctuations

: MNIST data : four leading eigenvectors of L (red) and theoretical findings (blue).

Class-wise eigenvector means and fluctuations

: MNIST data : four leading eigenvectors of L (red) and theoretical findings (blue).

Class-wise means, fluctuations and cross correlations

: 2D representation of eigenvectors of L, for the MNIST dataset. Theoretical means and 1- and 2-standard deviations in blue. Class 1 in red, Class 2 in black, Class 3 in green.

Class-wise means, fluctuations and cross correlations

: 2D representation of eigenvectors of L, for the MNIST dataset. Theoretical means and 1- and 2-standard deviations in blue. Class 1 in red, Class 2 in black, Class 3 in green.

Summing up :

Although Gaussian-based, adequately mimics real world examples

- Although Gaussian-based, adequately mimics real world examples
- Noticeable Results :

- Although Gaussian-based, adequately mimics real world examples
- Noticeable Results :
 - \blacktriangleright importance of derivatives of f at τ

- Although Gaussian-based, adequately mimics real world examples
- Noticeable Results :
 - \blacktriangleright importance of derivatives of f at τ
 - \blacktriangleright choice of $f(\tau), f'(\tau), f''(\tau)$ determines importance of means, covariances

- Although Gaussian-based, adequately mimics real world examples
- ► Noticeable Results :
 - \blacktriangleright importance of derivatives of f at τ
 - \blacktriangleright choice of $f(\tau), f'(\tau), f''(\tau)$ determines importance of means, covariances
 - eigenvector may or may not contain information (upon separability condition !)

- Although Gaussian-based, adequately mimics real world examples
- Noticeable Results :
 - \blacktriangleright importance of derivatives of f at τ
 - choice of $f(\tau), f'(\tau), f''(\tau)$ determines importance of means, covariances
 - eigenvector may or may not contain information (upon separability condition !)
 - number of isolated eigenvalues not obvious

Summing up :

- Although Gaussian-based, adequately mimics real world examples
- Noticeable Results :
 - \blacktriangleright importance of derivatives of f at τ
 - \blacktriangleright choice of $f(\tau), f'(\tau), f''(\tau)$ determines importance of means, covariances
 - eigenvector may or may not contain information (upon separability condition !)
 - number of isolated eigenvalues not obvious

Perspectives :

- (joint) class-wise eigenvector fluctuations
- implications to spectral clustering performance
- algorithm comparison
- ideally, (data-driven) algorithm improvement.