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Random Matrices and Operators

Deterministic limits of random matrices

Fundamental observation
Many random matrices show, via concentration, for N →∞ almost surely
a deterministic behaviour.

Interesting observation
Many random matrices show, via concentration, for N →∞ almost surely
a deterministic interesting behaviour.

Interesting observation for the operator algebraic inclined
Many random matrices show, via concentration, for N →∞ almost surely
a deterministic behaviour, which can be described by interesting operators
on Hilbert spaces (or their generated C∗-algebras or von Neumann
algebras)
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Random Matrices and Operators

Random matrices and operators

Fundamental observation of Voiculescu (1991)

Limit of random matrices can often
be described by “nice” and
“interesting” operators on Hilbert
spaces
(which, in the case of several
matrices, describe interesting von
Neumann algebras)
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Random Matrices and Operators

Convergence of random matrices

(X
(N)
1 , . . . , X(N)

m ) −→ (x1, . . . , xm)

random matrices almost surely operators
(MN (C), tr) (A, τ),A ⊂ B(H)

Convergence in distribution
We have for all polynomials p in m non-commuting variables

lim
N→∞

tr[p(X
(N)
1 , . . . , X(N)

m )] = τ [p(x1, . . . , xm)]

Strong convergence
convergence in distribution
and for all polynomials p

lim
N→∞

‖p(X(N)
1 , . . . , X(N)

m )‖ = ‖p(x1, . . . , xm)‖
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Random Matrices and Operators

Our most beloved example:
independent GUE → free semicirculars

One-matrix case: classical commuting case
Note: XN → x means that all moments of XN converge to corresponding
moments of x, hence the distributions (in classical sense of probability
measures on R) converge
... so we can just look on pictures of distributions ...

Multi-matrix case: non-commutative case
(XN , YN )→ (x, y) means convergence of all moments, but this does not
correspond to convergence of probability measures on R2

... if we still want to see classical objects and pictures we can look on
p(XN , YN )→ p(x, y) for (sufficiently many) functions p in XN , YN ...
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Random Matrices and Operators

One-matrix case: classical random matrix case
XN GUE random matrix

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x

x = l + l∗,

l one-sided shift on⊕
n≥0Cen

len = en+1

l∗en+1 = en, l
∗e0 = 0

τ(a) = 〈e0, ae0〉

XN → x in distribution (Wigner 1955)
‖XN‖ → ‖x‖ = 2 (Füredi, Komlós 1981)
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Random Matrices and Operators

Multi-matrix case: non-commutative case
XN , YN independent GUE

p(x, y) = xy + yx+ x2

−6 −4 −2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x = l1 + l∗1, y = l2 + l∗2

two copies of one-sided shift in
different directions (creation and
annihilation operators on full
Fock space; Cuntz algebra)

τ(a) = 〈Ω, aΩ〉

XN , YN → x, y in distribution (Voiculescu 1991)
p(XN , YN ) → p(x, y) in distribution
‖p(XN , YN )‖ → ‖p(x, y)‖ (Haagerup and Thorbjørnsen 2005)
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Random Matrices and Operators

Goal: Go over from Polynomials to More General
Classes of Functions

For m = 1, one has
for all continuous f :

limN→∞ tr[f(X(N))] = τ [f(x)]

limN→∞ ‖f(X(N))‖ = ‖f(x)‖

Which classes of functions in non-commuting variables

continuous ???
analytic  free analysis
rational !!!
polynomials !!!
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Non-Commutative Rational Functions

Section 2

Non-Commutative Rational Functions
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Non-Commutative Rational Functions

Non-commutative rational functions
Non-commutative rational functions (Amitsur 1966, Cohn 1971)

A rational function r(y1, . . . , ym) in non-commuting variables
y1, . . . , ym is anything we can get by algebraic operations, including
inverses, from y1, . . . , ym,

like

(4− y1)−1 + (4− y1)−1y2
(
(4− y1)− y2(4− y1)−1y2

)−1
y2(4− y1)−1

modulo
I identifying “algebraically equivalent” expressions
I not inverting 0

this is not obvious to decide, e.g., one has rational identities like

y−12 + y−12 (y−13 y−11 − y
−1
2 )−1y−12 − (y2 − y3y1)−1 = 0

after all, it works and gives a skew field

C (<y1, . . . , ym )> “free field”
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Non-Commutative Rational Functions

A rational function r(y1, . . . , ym) in non-commuting variables y1, . . . , ym
can be realized more systematically by going over to matrices

r(y1, . . . , ym) = uQ−1v

where, for some N ,
I u is 1×N
I Q is N ×N and invertible in MN (C (<y1, . . . , ym )>)
I v is N × 1
I and all entries are polynomials (can actually be chosen with degree ≤ 1)

(4− y1)−1 + (4− y1)−1y2
(
(4− y1)− y2(4− y1)−1y2

)−1
y2(4− y1)−1

=
(
1
2 0

)
·
(
−1 + 1

4y1
1
4y2

1
4y2 −1 + 1

4y1

)−1
·
(

1
2
0

)
this is essentially (in the case of polynomials) the “linearization trick”
which we use in free probability, for example, to calculate distributions
of polynomials in free variables
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Non-Commutative Rational Functions

Historical remark
Note that this linearization trick is a well-known idea in many other
mathematical communities, known under various names like

Higman’s trick (Higman “The units of group rings”, 1940)
recognizable power series (automata theory, Kleene 1956,
Schützenberger 1961)
linearization by enlargement (ring theory, Cohn 1985; Cohn and
Reutenauer 1994, Malcolmson 1978 )
descriptor realization (control theory, Kalman 1963; Helton,
McCullough, Vinnikov 2006)
linearization trick (Haagerup, Thorbjørnsen 2005 (+Schultz 2006);
Anderson 2012)
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Non-Commutative Rational Functions

Applying nc rational functions to operators

... there are a couple of issues arising ...
Not every relation in C (<y1, . . . , ym )> must necessarily hold in any algebra
(even if it makes sense there)

In C (<y1, y2 )> we have

y1(y2y1)
−1y2 = 1

Let v be an isometry which is not unitary, i.e. vv∗ = 1, v∗v 6= 1 Then
we have

v∗(vv∗)−1v = v∗v 6= 1

Solution: By Cohn, we know that the above is the only issue, hence
we are okay if we avoid non-unitary isometries (also in matrices over
the algebra);

I hence only work in stably finite algebras
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Non-Commutative Rational Functions

Applying nc rational functions to operators

... there are a couple of issues arising ...
In C (<y1, . . . , ym )> every r(y1, . . . , ym) 6= 0 is invertible. This is of
course not true when we apply r to operators:

I r(x1, . . . , xm) = 0 could happen for 0 6= r ∈ C (<y1, . . . , ym )>
I even if r(x1, . . . , xm) 6= 0, it does not need to be invertible in general

Possible solutions:
I consider only r for which r(x1, . . . , xm) is invertible as bounded

operator
I or allow also unbounded operators
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Non-Commutative Rational Functions

Rational functions of random matrices and their
limit
Proposition (Sheng Yin 2017)

Consider random matrices (X
(N)
1 , . . . , X

(N)
m ) which converge to operators

(x1, . . . , xm) in the strong sense: for any polyomial p ∈ C〈x1, . . . , xm〉 we
have

limN→∞ tr[p(X
(N)
1 , . . . , X

(N)
m )] = τ [p(x1, . . . , xm)]

limN→∞ ‖p(X(N)
1 , . . . , X

(N)
m )‖ = ‖p(x1, . . . , xm)‖

Then this strong convergence remains also true for rational functions: Let
r ∈ C (<y1, . . . , ym )>, such that r(x1, . . . , xm) is defined as bounded
operator.Then we have almost surely that

r(X
(N)
1 , . . . , X

(N)
m ) is defined for sufficiently large N

limN→∞ tr[r(X
(N)
1 , . . . , X

(N)
m )] = τ [r(x1, . . . , xm)]
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Non-Commutative Rational Functions

Proof
by recursion on complexity of formulas with respect ot inversions
main step: controlling taking inverse, by approximations by
polynomials, uniformly in approximating matrices and limit operators

convergence for polynomials  convergence for rational functions

strong =⇒ strong
in distribution 6=⇒ in distribution
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Non-Commutative Rational Functions

Distribution of random matrices and their limit for
r(x, y) = (4− x)−1 + (4− x)−1y

(
(4− x)− y(4− x)−1y

)−1
y(4− x)−1

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
0

1

2

3

4

5

6

7

XN , YN independent GUE

x = l1 + l∗1, y = l2 + l∗2

two copies of one-sided shift in
different directions (creation and
annihilation operators on full
Fock space; Cuntz algebra)

τ(a) = 〈Ω, aΩ〉

r(XN , YN ) → r(x, y) in distribution
‖r(XN , YN )‖ → ‖r(x, y)‖
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Unbounded Operators

Section 3

Unbounded Operators
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Unbounded Operators

In the limit (x1, . . . , xm) ⊂ (A, τ) we are in a II1-situation
unbounded operators U(A) affiliated to vN algebra A form a ∗-algebra
and a ∈ U(A) is invertible if and only if a has no zero divisors

(a has zero divisor: ∃b ∈ U(A) with b 6= 0 and ab = 0)

we expect
r(x1, . . . , xm) for r ∈ C (<y1, . . . , ym )> is well-defined and has no zero
divisors for

x1, . . . , xm free semicirculars
more general, limit operators of “nice” random matrix models
(which should be operators having maximal free entropy dimension)

we know (by Shlyakhtenko-Skoufranis and Mai-Speicher-Weber)
p(x1, . . . , xm) for p ∈ C〈y1, . . . , ym〉 has no zero divisors for

x1, . . . , xm free semicirculars
x1, . . . , xm with maximal free entropy dimension = m
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Unbounded Operators

What do we expect of nice operators

(X
(N)
1 , . . . , X

(N)
m ) → (x1, . . . , xm)

nice random matrices → nice operators

limit operators should be without algebraic
relations in a very general sense

we know
I no polynomial relations
I no “local” polynomial relations

we don’t know (but would like to)
I no rational relations
I no “local rational” relations

Note
no polynomial relations 6=⇒ no rational relations
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Unbounded Operators

Question
How much “regularity” of the distribution of (x1, . . . , xm) ⊂ (A, τ) is
necessary to have

C (<x1, . . . , xm )> ≡ free field
division closure in unbounded operators

Question: Consider (XN)
1 , . . . , X

(N)
m )→ (x1, . . . , xm)

Assume that
the random matrices are very nice (like independent GUE),
and that r(x1, . . . , xm) makes sense as unbounded operator.

When do we have almost surely:

r(X
(N)
1 , . . . , X

(N)
m ) makes sense

tr[r(X
(N)
1 , . . . , X

(N)
m )]→ τ [r(x1, . . . , xm)]

Thank you!
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Unbounded Operators

Distribution of random matrices and their limit for
p(x1, x2, x3, x4) = x1x2 + x2x3 + x3x4 + x4x1
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