Correction du Partiel Lundi 20 novembre 2017

Durée: 2H

Les documents de toute nature, les calculatrices et les téléphones sont interdits.

On prendra soin de justifier les réponses aux exercices.

On munit toujours un dual E' de E de sa norme (d'opérateur) usuelle que l'on note $||.||_{E'} = |||.|||$.

Exercice 1 (sur le cours : 5 points)

Soit H un espace de Hilbert.

- 1. Enoncer le théorème de projection sur un convexe fermé C.
- 2. Montrer la partie existence, c'est à dire que l'infimum $\inf_{y \in C} ||y x||$ est atteint.
- 3. Soit, $f \in H'$, K = Ker(f) un hyperplan fermé de H donné par le noyau de f. Montrer que H s'écrit comme la somme directe orthogonale $K \oplus K^{\perp}$.
- 4. En déduire le théorème de représentation de Riesz.

Exercice 2 (9 points) On rappelle que $\ell^{\infty}([0,1])$ est l'algèbre des fonctions bornées sur [0,1]. Soit $0 < \alpha < 1$. On définit

$$lip^{\alpha}([0,1]) = \Big\{ f \in \ell^{\infty}([0,1]) : \lim_{\delta \to 0} \sup_{0 < |x-y| \le \delta} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}} = 0 \Big\}.$$

On rappelle que

$$Lip^{\alpha}([0,1]) = C^{0,\alpha}([0,1]) := \Big\{ f \in \ell^{\infty}([0,1]) : \sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}} < \infty \Big\}.$$

On munit $lip^{\alpha}([0,1]) \subset C^{0,\alpha}([0,1])$ de la norme :

$$||f||_{Lip^{\alpha}} = \max \Big(\sup_{x \in [0,1]} |f(x)|, \sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}} \Big).$$

1. Montrons que $lip^{\alpha}([0,1])$ et $C^{0,\alpha}([0,1])$ sont des espaces de Banach. On a vu en cours que $C^{0,\alpha}([0,1])$ est un evn complet pour la norme

$$||f||_{C^{0,\alpha}} = \left(\sup_{x \in [0,1]} |f(x)| + \sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}}\right).$$

On a l'équivalene des normes $|||f||_{Lip^{\alpha}} \le ||f||_{C^{0,\alpha}} \le 2||f||_{Lip^{\alpha}}$ donc $C^{0,\alpha}([0,1])$ est aussi complet pour la nouvelle norme (cf plus bas pour voir que c'est une norme).

On peut aussi voir que $C^{0,\alpha}([0,1])$ est complet de la façon suivante.

Soit $I: C^{0,\alpha}([0,1]) \to \ell^{\infty}([0,1]) \oplus^{\infty} \ell^{\infty}([0,1]^2 - D)$ défini par $I(f) = (f,g_f)$ avec $g_f(x,y) = \frac{f(x) - f(y)}{|x-y|^{\alpha}}$. Noter l'absence de valeur absolu au numérateur pour garantir la linéarité. L'espace source est exactement défini pour que I soit bien défini, i.e. g_f bornée. Par définition, $||f||_{Lip^{\alpha}} = ||I(f)||_{\infty}$ donc $||\cdot||_{Lip^{\alpha}}$ est bien une norme comme composée d'une application linéaire injective

(d'inverse la première projection sur son image, l'injectivité donne la séparation ||f|| = 0 = ||I(f)|| implique I(f) = 0 donc f = 0) et d'une norme.

Et la norme est ainsi défini pour que I soit une isométrie. Il suffit de voir que Im(I) qui est donc isométriquement isomorphe à $C^{0,\alpha}([0,1])$ est fermé. Soit donc f_n avec $(f_n,g_{f_n}) \to (f,g)$ alors g_{f_n} converge ponctuellement vers g_f de sorte que $g_f = g$ ce qui montre que Im(I) fermé. Voyons que $lip^{\alpha}([0,1])$ est sev fermé dans $C^{0,\alpha}([0,1])$ qu'on vient de voir complet. Cela impliquera que c'est un sev complet donc un espace de Banach.

Soit la seminorme $p_{\delta}(f) := \sup_{0 < |x-y| \le \delta} \frac{|f(x)-f(y)|}{|x-y|^{\alpha}} \le ||f||_{Lip^{\alpha}}$ (on voit que c'est une seminorme comme avant en composant une application linéaire avec une norme) Si $f_n \in lip^{\alpha}([0,1])$ convergent vers f dans $C^{0,\alpha}([0,1])$. On veut voir $f \in lip^{\alpha}([0,1])$. Soit donc $\epsilon > 0$, il existe n tel que $||f-f_n||_{Lip^{\alpha}} \le \epsilon/2$ puis soit $\delta > 0$ tel que $p_{\delta}(f_n) \le \epsilon/2$. Alors, $p_{\delta}(f) \le p_{\delta}(f_n) + p_{\delta}(f-f_n) \le \epsilon$. Ainsi on a la limite $\lim_{\delta \to 0} p_{\delta}(f) = 0$ de sorte que $f \in lip^{\alpha}([0,1])$. Donc $lip^{\alpha}([0,1])$ est fermé. De même, $0 \in lip^{\alpha}([0,1])$ et $p_{\delta}(f + \lambda g) \le p_{\delta}(f) + |\lambda|p_{\delta}(g) \to_{\delta \to 0} 0$ si $f, g \in lip^{\alpha}([0,1])$, donc $lip^{\alpha}([0,1])$ est bien un sous-espace vectoriel.

2. Montrons que pour $\alpha < \beta < 1$, on a l'inclusion continue $C^{0,\beta}([0,1]) \subset lip^{\alpha}([0,1])$. D'abord pour $|x-y| \leq 1$, on a $|x-y|^{\beta} = exp(\beta \ln |x-y|) \leq |x-y|^{\alpha}$ (vu $\ln |x-y| \leq 0$) et donc $|x-y|^{-\alpha} \leq |x-y|^{-\beta}$ donc en multipliant, passant au sup et au max : $||f||_{Lip^{\alpha}} \leq ||f||_{Lip^{\beta}}$. D'où $C^{0,\beta}([0,1]) \subset Lip^{\alpha}([0,1])$ et la continuité de l'inclusion. Il reste à voir que l'on a inclusion dans l'espace plus petit $lip^{\alpha}([0,1])$ (la continuité sera induite comme la norme). Or soit $f \in C^{0,\beta}([0,1])$

$$\sup_{0<|x-y|\leq \delta} \frac{|f(x)-f(y)|}{|x-y|^{\beta}} |x-y|^{\beta-\alpha} \leq \delta^{\beta-\alpha} \sup_{0<|x-y|\leq \delta} \frac{|f(x)-f(y)|}{|x-y|^{\beta}} \leq \delta^{\beta-\alpha} ||f||_{Lip^{\beta}} \to_{\delta \to 0} 0.$$

Ceci donne $f \in lip^{\alpha}([0,1])$ et conclut.

3. Soit $\delta_p: C^{0,\alpha}([0,1]) \to \mathbb{R}, p \in [0,1]$ défini par $\delta_p(f) = f(p)$. Montrons que δ_p est linéaire continue et

$$|||\delta_{n}||| = 1.$$

 δ_p est clairement linéaire (évaluation). On a $|f(p)| \leq ||f||_{\infty} \leq ||f||_{Lip^{\alpha}}$ donc δ_p borné sur la boule unité donc linéaire continue de norme $|||\delta_p||| \leq 1$. Enfin, en f = 1, $\delta_p(f) = 1$ et $p_1(f) = 0$ donc $||f||_{Lip^{\alpha}} = 1$ d'où l'égalité $|||\delta_p||| = 1$.

4. Montrons que

$$|||\delta_p - \delta_q||| \le |p - q|^{\alpha}.$$

Par définition $|(\delta_p - \delta_q)(f)| = |f(p) - f(q)| \le ||f||_{Lip^{\alpha}}|p - q|^{\alpha}$ de sorte qu'on a bien en passant au sup sur f avec $||f||_{Lip^{\alpha}} \le 1 : |||\delta_p - \delta_q||| \le |p - q|^{\alpha}$.

5. Bonus 1 pointSoit q > p sans perte de généralité (par symétrie et égalité évidente du cas p = q). On a égalité car soit $f(x) = (x - p)^{\alpha}_{+}$, on a pour $q \ge r \ge p$ par l'inégalité rappellé dans le sujet

$$|f(r) - f(q)| = (q - p)^{\alpha} - (r - p)^{\alpha} \le |q - r|^{\alpha}$$

si $q \ge p \ge r$

$$|f(r) - f(q)| = (q - p)^{\alpha} - 0 \le |q - r|^{\alpha}$$

par croissance de $x \mapsto x^{\alpha}$ sur [0, 1].

Enfin, l'inégalité est évidente pour $r, q \leq p$ donc f est Holderienne, vu aussi $||f||_{\infty} \leq f(1) \leq 1$, on a $||f||_{Lip^{\alpha}} \leq 1$. Enfin, $|(\delta_p - \delta_q)(f)| = (q - p)^{\alpha} - 0 = |q - p|^{\alpha}$ et donc $|||\delta_p - \delta_q||| = |p - q|^{\alpha}$.

6. Soit $f \in C^{0,\alpha}([0,1])$, on pose :

$$T(f) = \int_{[0,1]} dx \frac{f(x) - f(0)}{|x|^{\alpha}}.$$

Montrons que cette formule définit $T \in (lip^{\alpha}([0,1]))'$ et $||T||_{(lip^{\alpha}([0,1]))'} = 1$.

T est bien défini car on intègre une fonction bornée, continue sur]0,1] (car f Holderienne donc continue et par somme et quotient à dénominateur non nul) et on obtient la borne $|T(f)| \leq \int_{]0,1]} dx \frac{|f(x)-f(0)|}{|x-0|^{\alpha}} \leq \int_{]0,1]} dx p_1(f) \leq ||f||_{Lip^{\alpha}}$. T est linéaire par linéarité de l'intégrale et bornée sur la boule unité donc continue d'où $|||T||| \leq 1$.

Prenons $f(x) = x^{\beta}$ avec $\beta > \alpha$ de sorte que, par le rappel $|f(x) - f(y)| \le |x - y|^{\beta} = o(|x - y|^{\alpha})$ On a donc bien β -HOldérienne et bornée donc dans $lip^{\alpha}([0,1])$ et $T(f) = \int_{0}^{1} x^{\beta-\alpha} dx = \frac{1}{\beta-\alpha+1}$, $||f||_{\infty} = 1$ et $|f(x) - f(y)| \le |x - y|^{\alpha}$ donc $||f||_{Lip^{\alpha}} \le 1$ d'où $|||T||| \ge \frac{1}{\beta-\alpha+1} \to_{\beta\to\alpha} 1$. On conclut donc à l'égalité |||T||| = 1. Note qu'on ne peut pas prendre $\beta = \alpha$ car la fonction est seulement dans $C^{0,\alpha}([0,1])$.

- 7. Voyons qu'il n'existe pas $f \in lip^{\alpha}([0,1])$ avec $||f||_{Lip^{\alpha}} = 1$ tel que T(f) = 1? En effet si $||f||_{Lip^{\alpha}} \leq 1$ l'intégrant de T(f) est inférieur à 1 et l'intégrale ne vaut 1 que si $f(x) - f(0)/|x - 0|^{\alpha} = 1$ p.p soit par continuité cela force $f(x) = f(0) + |x|^{\alpha}$ mais la valeur en 1,0 impose $f(0) \in [-1,0]$ dans tous les cas la valeur $(f(x) - f(0))/|x - 0|^{\alpha}$ ne tend pas vers 0 quand $x \to 0$ donc $f \notin lip^{\alpha}([0,1])$.
- 8. On rappelle que $J: lip^{\alpha}([0,1]) \to (lip^{\alpha}([0,1]))''$ est défini par J(x)(f) = f(x) pour $x \in lip^{\alpha}([0,1]), f \in (lip^{\alpha}([0,1]))'$. Montrons que J n'est pas surjectif.

 Par Hahn-Banach, il existe $g \in (lip^{\alpha}([0,1]))''$ avec $||g|| \le 1$ tel que g(T) = |||T||| = 1 si on avait $g = J(f), f \in lip^{\alpha}([0,1])$ cela impliquerait T(f) = 1 or J est isométrique par Hahn-Banach encore, donc $||f|| \le 1$ ce qui contredirait la question précédente.
- 9. Soit $g \in \ell^{\infty}([0,1])$, on pose

$$g_{\alpha}(x) = \inf_{y \in [0,1]} g(y) + |x - y|^{\alpha}.$$

Montrons que $g_{\alpha} \in C^{0,\alpha}([0,1])$.

D'abord $g_{\alpha}(x) \leq g(x) \leq ||g||_{\infty} g_{\alpha}(x) \geq \inf_{y \in [0,1]} g(y) \geq -||g||_{\infty}$ donc g_{α} est bornée.

On va utiliser que par l'inégalité triangulaire et l'inégalité de convexité rappelée : $|x-y|^{\alpha} \le (|x-z|+|z-y|)^{\alpha} \le |z-y|^{\alpha}+|x-z|^{\alpha}$

Donc pour tout y

$$g_{\alpha}(x) \le g(y) + |x - y|^{\alpha} \le g(y) + |z - y|^{\alpha} + |x - z|^{\alpha}$$

Soit en passant à l'infimum en y:

$$g_{\alpha}(x) \le g_{\alpha}(z) + |x - z|^{\alpha}.$$

Par symétrie cela donne $p_1(g_\alpha) \leq 1$.

Exercice 3 (6 points)

Soit E un espace vectoriel normé (sur \mathbb{R}). Soit l'espace vectoriel $G = E \times \mathbb{R}$ muni de la norme $||(x,y)||_G = \max(||x||_E,|y|)$.

On considère $F: E \to \mathbb{R}$ convexe continue. On définit :

$$A = Epi(F) = \{(x, t) \in G : F(x) \le t\}, \quad B = \{(x, t) \in G : F(x) < t\}$$

Soit $x \in E$ fixé, on pose enfin

$$\partial F(x) = \{ g \in E' : \forall y \in E : g(y - x) \le F(y) - F(x) \}.$$

1. Rappelons pourquoi Epi(F) est un convexe fermé.

Cela vient du fait que F convexe continue. En effet, f(x,t) = (F(x) - t) est encore continue et $A = f^{-1}(]-\infty,0]$) est fermé comme image inverse d'un fermé par une application continue. Pour convexe c'est la defintion du cours mais à l'agreg il faudrait le revoir avec la definition usuelle : si $(x_i,t_i) \in A$ d'où $F(x_i) \leq t_i$, $\lambda \in]0,1[$

$$F(\lambda x_1 + (1 - \lambda)x_2) \le \lambda F(x_1) + (1 - \lambda)F(x_2) \le \lambda t_1 + (1 - \lambda)t_2$$
 donc $(\lambda x_1 + (1 - \lambda)x_2, \lambda t_1 + (1 - \lambda)t_2) \in A$

2. Montrons que B est l'intérieur de Epi(F) :

$$B = Int(Epi(F)).$$

Clairement $B \subset Epi(F)$ et $B = f^{-1}(]-\infty,0[)$ est ouvert comme image inverse d'un ouvert par une application continue f. Donc $B \subset Int(Epi(F))$. Montrons que $B^c \subset \overline{A^c}$, en effet si $(x,t) \in B^c$ $F(x) \geq t > t - 1/n$ donc $(x,t-1/n) \in A^c$ donc $(x,t) = \lim_{x \to \infty} (x,t) \in \overline{A^c}$ d'où l'inclusion qui se réécrit en passant au complémentaire : $B \supset Int(A) = (\overline{A^c})^c$.

3. On munit $E' \times \mathbb{R}$ de la norme $||(f,t)||_1 = ||x||_{E'} + |t|$. Montrons que $I : E' \times \mathbb{R} \to F'$, défini par

$$I(f,t):(x,y)\mapsto f(x)+ty, x\in E, y\in\mathbb{R}, f\in E', t\in\mathbb{R},$$

est une isométrie surjective.

D'abord, I est bien défini car par linéarité de f, I(f,t) est bien linéaire et :

$$|I(f,t)(x,y)| = |f(x)+ty| \le ||f||_{E'}||x||_E + |t||y| \le \max(||x||_E,|y|)(||x||_{E'} + |t|) = ||(f,t)||_1||(x,y)||_F$$

donc $I(f,t)$ est bien continue et $||I(f,t)||_{F'} \le ||(f,t)||_1$.

Réciproquement, soit $x \in E$ avec $||x||_E \le 1$, on a si $\epsilon = |f(x)|/f(x)1_{f(x)\neq 0}$ Soit $X = (x\epsilon, |t|/t1_{t\neq 0})$ alors $||X||_F \le \max(||x||_E, 1) \le 1$ donc

$$||I(f,t)||_{F'} \ge I(f,t)(X) = |f(x)| + |t|.$$

Comme ceci est pour tout x avec $||x||_E \le 1$ en passant au sup, on obtient : $||I(f,t)||_{F'} \ge ||f||_{E'} + |t| = ||(f,t)||_1$ d'où l'égalité qui donne l'isométrie. La surjectivité est évidente car si $y \in F'$, on pose f(x) = y(x,0) et t = y(0,1) et on voit par linéarité que y(x,x') = f(x) + tx' = I(f,t)(x,x') donc y = I(f,t).

- 4. Peut-on appliquer le théorème de séparation de Hahn-Banach à A et $C = \{(x, F(x))\}$? Non car $(x, F(x)) \in A$ les deux convexes ne sont pas disjoints.
- 5. Appliquons le théorème de séparation de Hahn-Banach à B et C. C est un convexe car un point et on n'a pas F(x) < F(x) donc C et B disjoints. On a vu en cours (thm des jauges) que l'intérieur d'un convexe est convexe donc B convexe ouvert. La première forme géométrique de Hahn-Banach donne $f \in G'$ $c \in \mathbb{R}$ tel que :

$$\forall (y, s) \in B, \quad f(y, s) < c \le f(x, F(x)).$$

6. $f = I(h, \lambda)$ par le 3 donc le résultat de la question précédente se réécrit :

$$\forall (y, s) \in B, \quad h(y) + \lambda s < c \le h(x) + \lambda F(x).$$

or $(y, F(y) + 1) \in B$ donc $h(x) + \lambda(F(x) + 1) < c \le h(x) + \lambda F(x)$ ce qui implique $\lambda < 0$ On pose $g = -h/\lambda$ ce qui donne l'équation :

$$\forall (y, s) \in B, \quad g(y) - s < c \le g(x) - F(x).$$

ce qui donne bien pour tout $(y,r) \in B$:

$$g(y-x) \le r - F(x).$$

7. Montrons que $g \in \partial F(x)$ donc $\partial F(x)$ est non vide.

En effet $(y, F(y) + 1/n) \in B$ donc $g(y - x) \le F(y) + 1/n - F(x)$.

En passant à la limite on obtient l'équation voulue : $g(y-x) \le F(y) - F(x)$.

8. Montrons que $\partial F(x)$ est convexe fermé.

En effet, pour $\lambda \in]0,1[,g,h\in\partial F(x)$, on a $(\lambda g+(1-\lambda)h)(y-x)\leq \lambda(F(y)-F(x))+(1-\lambda)(F(y)-F(x))=(F(y)-F(x)).$ Cela donne le convexité.

De plus si $g_n \to g$, a fortiori on a convergence faible donc $g_n(y-x) \to g(y-x)$. donc On passe à la limite dans l'inégalité dans le cas $g_n \in \partial F(x)$, $g_n(y-x) \leq F(y) - F(x)$ ce qui donne $g(y-x) \leq F(y) - F(x)$ soit $g \in \partial F(x)$ qui est donc bien fermé.