Devoir Maison pour le lundi 2 novembre 2015

Opérateurs compacts.

Soient E, F, G des espaces de Banach. On dit que l'application linéaire continue $u: E \to F$ est compacte si l'adhérence dans F de l'image de la boule unité de $E: \overline{u(B_E(0,1))}$ est compacte. On note K(E,F) l'ensemble des opérateurs compacts dans (L(E,F),|||.|||) muni de la norme d'opérateur.

- 1. Montrer que si $u: E \to F$ est linéaire continue de rang fini (c'est-à -dire Im(u) de dimension finie) alors u est compacte.
- 2. Montrer que K(E, F) est un sous-espace vectoriel.
- 3. Montrer que K(E, F) est un espace de Banach (pour |||.|||).
- 4. Soit $E = (C^0([0,1], \mathbb{R}), ||.||_{\infty})$ et $g \in C^0([0,1]^2, \mathbb{R})$. On définit $u : E \to E$ par :

$$[u(f)](s) = \int_0^1 g(s,t)f(t)dt.$$

Montrer que u est une application linéaire continue compacte (indication : utiliser le Théorème de Stone-Weierstrass pour approcher g par des polynômes)

- 5. Si $u \in K(E, F)$ et $v \in L(F, G)$ montrer que $v \circ u \in K(E, G)$.
- 6. Si $u \in L(E, F)$ et $v \in K(F, G)$ montrer que $v \circ u \in K(E, G)$.
- 7. Soit $u \in K(E, F)$ et soit une suite bornée (x_n) qui converge vers 0 pour la topologie faible $\sigma(E, E')$, c'est à dire que pour tout $f \in E'$, $f(x_n) \to 0$, montrer que $||u(x_n)|| \to 0$.
- 8. Soit $a_1, ... a_n \in E$ des vecteurs linéairement indépendants. Montrer qu'il existe $\epsilon > 0$ tel que si $||b_i|| \leq \epsilon$ alors $a_1 + b_1, ..., a_n + b_n$ sont linéairement indépendants (Indication : utiliser Hahn-Banach).
 - En déduire que l'ensemble $F_n(E, E)$ des application linéaires continues de rang $dim(Im(u)) \leq n$ est un fermé non-vide.
- 9. On rappelle le théorème de Baire selon lequel dans un espace de Banach toute union dénombrable de fermés d'intérieur vide est d'intérieur vide.
 - En déduire de la question précédente que pour tout espace de Banach de dimension infinie E, il existe un opérateur compact de K(E, E) qui n'est pas de rang fini.