Feuille de TD 1

Espaces vectoriels normés.

Exercice 1

Vérifier que la fonction $(x,y) \mapsto max(|x+3y|,|x-y|)$ définit une norme sur \mathbb{R}^2 .

Exercice 2 Normes sur les matrices

Pour tout élément $A = (a_{ij})$ de $M_n(\mathbb{R})$, on pose :

$$||A||_{\infty} = \max_{1 \le i, j \le n} |a_{ij}|, \quad |||A|||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|.$$

1. Montrer que si on identifie $M_{n,1}(\mathbb{R})$ à \mathbb{R}^n :

$$||A||_{\infty} = \sup\{||AB||_{\infty} \mid B \in M_{n,1}(\mathbb{R}) : ||B||_{1} \leq 1\},$$

$$|||A|||_{\infty} = \sup\{||AB||_{\infty} \mid B \in M_{n,1}(\mathbb{R}) : ||B||_{\infty} \le 1\}.$$

2. Montrer que l'on définit ainsi des normes sur $M_n(\mathbb{R})$ vérifiant $||AB||_{\infty} \leq n||A||_{\infty} ||B||_{\infty}$ et $|||AB|||_{\infty} \leq |||A|||_{\infty} |||B|||_{\infty}$.

Exercice 3

Prouver que $E = C^0([0, 1], \mathbb{R})$ est un espace vectoriel de dimension infinie. Est-ce que les polynômes forment un ouvert dans E? Un fermé?

Exercice 4

Soit E un espace vectoriel normé (evn). Quels sont les sous-espaces vectoriels F de E qui contiennent une boule?

Exercice 5

Soit E un espace vectoriel, et soit $p: E \to [0, \infty[$ une fonction telle que

- 1. $p(x) = 0 \iff x = 0$
- 2. $p(\lambda x) = |\lambda| p(x) \forall x \in X, \lambda \in \mathbb{R}$.

Prouver que p est une norme sur E ssi l'ensemble $C = \{x \in E : p(x) \leq 1\}$ est convexe, c'est-à-dire

$$\forall t \in]0, 1[, x, y \in C, tx + (1 - t)y \in C.$$

Exercice 6 Soit Λ une forme linéaire (pas forcément continue) non nulle sur E evn. Prouver que $\Lambda(V)$ est ouvert dans \mathbbm{R} quand V est un ouvert dans E.

Exercice 7 Soit E un e.v.n., et soit L un sous-espace de E de dimension finie. Montrer que L est fermé

Exercice 8 Soit $1 \leq p < q \leq +\infty$. Montrer que $\ell^p(\mathbb{N}) \subset \ell^q(\mathbb{N})$, et que l'injection est continue.

Exercice 9 Soit $1 \le p < q \le +\infty$.

- 1. Montrer que $L^q([0,1], Leb)$ est un sous-espace strict de $L^p([0,1], Leb)$.
- 2. Peut-on comparer pour l'inclusion $L^q(\mathbb{R}, Leb)$ et $L^p(\mathbb{R}, Leb)$ (justifier)?
- 3. Construire un sous-espace de $L^p([0,1])$ isométrique à $\ell^p(\mathbb{N})$.

Exercice 10 Soit l'application $S : \ell^p(\mathbb{N}) \to \ell^p(\mathbb{N})$ qui envoie $(x_1, x_2, x_3...)$ à $(x_2, x_3, x_4, ...)$ (le shift à gauche).

- 1. Montrer que S appartient à $L(\ell^p(\mathbb{N}), \ell^p(\mathbb{N}))$, et trouver sa norme d'opérateur.
- 2. Soit $1 , en identifiant <math>(\ell^p(\mathbb{N}))'$ à $\ell^q(\mathbb{N})$ avec 1/p + 1/q = 1 calculer $S^t \in L(\ell^q(\mathbb{N}), \ell^q(\mathbb{N}))$.
- 3. Montrer que S^t est une isométrie. S est il une isométrie?

Exercice 11 Il est clair que $c_0 = c_0(\mathbb{N})$ est un sous-espace vectoriel $\ell^{\infty}(\mathbb{N})$, $\ell^1(\mathbb{N})$ est un sous-espace de c_0 . Soit $c := \{u \in \ell^{\infty}(\mathbb{N}) : \lim_{n \to \infty} u_n \text{ existe}\} \subset \ell^{\infty}(\mathbb{N})$

- 1. Est-ce que ce sont des sous-espaces fermés? denses?
- 2. Soit pour $u \in c$, $l(u) = \lim_{n \to \infty} u_n$. Montrer que l est une forme linéaire continue sur c.
- 3. En utilisant le théorème de Hahn-Banach, obtenir une forme linéaire $\phi \in (\ell^{\infty}(\mathbb{N}))'$ tel que $\phi \notin \ell^{1}(\mathbb{N})$.
- 4. Soit $T: c \to c_0$ l'application telle que T(f) = g avec g(0) = l(f) et g(n) = (f(n-1) l(f))/2 pour n > 1. Montrer que $||T|| \le 1$, T est inversible et $||T^{-1}|| \le 3$.

Exercice 12

Soit U un ouvert de \mathbb{R}^n et et $C_b^k(U)$ l'ensemble des fonctions C^k sur U dont les k-premières dérivées sont bornées. On note pour $\alpha \in \mathbb{N}^n, |\alpha| := \alpha_1 + \ldots + \alpha_n, \alpha! = \alpha_1! \ldots \alpha_n!, \partial^{\alpha}u = \partial^{\alpha_1}_{\alpha_1} \ldots \partial^{\alpha_n}_{\alpha_n}u$. On pose

$$||u||_{C_b^k} = \sum_{\alpha \in \mathbb{N}^n, |\alpha| \le k} \frac{1}{\alpha!} \sup_{x \in U} |\partial^{\alpha} u(x)|.$$

Montrer que c'est une norme rendant $C_b^k(U)$ un espace de Banach. De plus montrer que c'est une algèbre de Banach : $\forall f,g\in C_b^k(U),||fg||_{C_b^k}\leqslant ||f||_{C_b^k},||g||_{C_b^k}$.

Exercice 13 Extension de Tietze-Urysohn

Soit K un compact de X espace métrique. Soit $E=C_b^0(X,\mathbb{R})$ et $p:E\to C^0(K,\mathbb{R})$ l'application de restriction. On va montrer que p est surjective (et un peu mieux).

1. Soit $g \in C^0(K)$ avec $||g||_{\infty} \le 1$. Soient $K_1 := g^{-1}([1/3, 1])$ et $K_2 := g^{-1}([-1, -1/3])$. Soit :

$$f(x) = \frac{1}{3} \frac{d(x, K_2) - d(x, K_1)}{d(x, K_2) + d(x, K_1)}, \quad d(x, K_i) := \inf\{d(x, y), y \in K_i\}.$$

Vérifier que $f \in E$, $||f||_{\infty} \le 1/3$ et $||p(f) - g||_{\infty} \le \alpha = 2/3$. (on dit que p est presque surjective)

- 2. En déduire, qu'il existe $F \in E$, $||F||_{\infty} \leq 1$ telle que p(F) = g. (Indication : construire une suite f_n par récurrence à partir du résultat précédent)
- 3. Montrer que p induit une isométrie $E/Ker(p) \simeq C^0(K)$ (on dit que p est une surjection métrique).

Exercice 14 On fixe $1 \le p < \infty$.

Soit $AC^p([a,b])$ l'ensemble des fonctions continues $f:[a,b]\to\mathbb{R}$ telle qu'il existe $g\in L^p([a,b],Leb)$ avec $:f(t)=f(a)+\int_a^tg(u)du.$

Le théorème de dérivation de Lebesgue montre alors que g est unique p.p. On pose alors

$$||f||_{AC^p}^p = |f(a)|^p + \int_a^b |g(t)|^p dt.$$

- 1. Soit $T: f \mapsto (f(a), g) \in \mathbb{R} \oplus_1 L^p([a, b], Leb)$. Montrer que ||T(.)|| est une norme équivalente sur $AC^p([a, b])$.
- 2. En déduire que $AC^p([a,b])$ est un espace de Banach.