Feuille de TD 1

Espaces vectoriels normés, Intégration.

 $(\Omega, \mu, \mathcal{T})$ désigne toujours un espace mesuré σ -fini.

Exercice 1

Vérifier que la fonction $(x, y) \mapsto max(|x + 3y|, |x - y|)$ définit une norme sur \mathbb{R}^2 .

Exercice 2 Normes sur les matrices

Pour tout élément $A = (a_{ij})$ de $M_n(\mathbb{R})$, on pose :

$$||A||_{\infty} = \max_{1 \le i, j \le n} |a_{ij}|, \quad |||A|||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|.$$

1. Montrer que si on identifie $M_{n,1}(\mathbb{R})$ à \mathbb{R}^n :

$$||A||_{\infty} = \sup\{||AB||_{\infty} \mid B \in M_{n,1}(\mathbb{R}) : ||B||_{1} \leqslant 1\},$$

$$|||A|||_{\infty} = \sup\{||AB||_{\infty} \mid B \in M_{n,1}(\mathbb{R}) : ||B||_{\infty} \le 1\}.$$

2. Montrer que l'on définit ainsi des normes sur $M_n(\mathbb{R})$ vérifiant $||AB||_{\infty} \leq n||A||_{\infty} ||B||_{\infty}$ et $|||AB|||_{\infty} \leq |||A|||_{\infty} |||B|||_{\infty}$.

Exercice 3

Soit E un espace vectoriel, et soit $p: E \to [0, \infty[$ une fonction telle que

- 1. $p(x) = 0 \iff x = 0$
- 2. $p(\lambda x) = |\lambda| p(x) \forall x \in X, \lambda \in \mathbb{R}$.

Prouver que p est une norme sur E ssi l'ensemble $C = \{x \in E : p(x) \leq 1\}$ est convexe, c'est-à-dire

$$\forall t \in]0,1[,x,y \in C \Rightarrow tx + (1-t)y \in C.$$

Exercice 4 Soit Λ une forme linéaire réelle (pas forcément continue) non nulle sur E evn réel. Prouver que $\Lambda(V)$ est ouvert dans \mathbb{R} quand V est un ouvert dans E.

Exercice 5 Soit E un e.v.n., et soit L un sous-espace de E de dimension finie. Montrer que L est fermé.

Exercice 6 Transformée de Fourier Soit $f \in L^1(\mathbb{R}^n, Leb)$ une fonction intégrable. On note $\langle \xi, x \rangle = \sum_{i=1}^n \xi_i x_i$ le produit scalaire usuel.

1. Montrer que la fonction suivante est bien définie

$$\hat{f}(\xi) = \int_{\mathbb{IR}^n} e^{-i\langle \xi, x \rangle} f(x) dx.$$

- 2. Montrer que \hat{f} et continue sur \mathbb{R}^n .
- 3. Montrer que \hat{f} tend vers 0 à l'infini : $\lim_{\|x\|\to\infty} \hat{f}(x) = 0$.

Exercice 7

Montrer l'inégalité de Minkowski en utilisant celle de Hölder, à savoir, si $f,g \in L^p(\Omega,\mu,\mathcal{T}), 1 alors <math>||f+g||_p \leq ||f||_p + ||g||_p$.

Exercice 8 Soit $1 \leq p < q \leq +\infty$. Montrer que $\ell^p(\mathbb{N}) \subset \ell^q(\mathbb{N})$, et que l'injection est continue.

Exercice 9 Soit $1 \leq p < +\infty, 1 \leq q \leq +\infty$.

- 1. Soit $\alpha > 0$, $f(x) = (1 + ||x||_2)^{-\alpha}$ sur \mathbb{R}^d pour quel p a-t-on $f \in L^p(\mathbb{R}^d, Leb)$.
- 2. Soit Ω un ouvert de \mathbb{R}^d . Montrer que $L^1(\Omega, Leb) \cap L^{\infty}(\Omega, Leb)$ est dense dans $L^p(\Omega, Leb)$.
- 3. Montrer que $\{f \in L^p(\Omega, Leb) : ||f||_q \leq 1\}$ est fermé dans $L^p(\Omega, Leb)$.

Exercice 10 Soit $1 \le p < q \le +\infty$.

- 1. Montrer que $L^q([0,1], Leb)$ est un sous-espace strict de $L^p([0,1], Leb)$.
- 2. Peut-on comparer pour l'inclusion $L^q(\mathbb{R}, Leb)$ et $L^p(\mathbb{R}, Leb)$ (justifier)?
- 3. Construire un sous-espace de $L^p([0,1])$ isométrique à $\ell^p(\mathbb{N})$.

Exercice 11

Soit $(\Omega, \mu, \mathcal{T})$ un espace mesuré, $X \in L^{\infty}(\Omega, \mu)$, montrer que $|X| \leq ||X||_{\infty} p.p.$

Exercice 12

Soit U un ouvert de \mathbb{R}^n et $C_b^k(U)$ l'ensemble des fonctions C^k sur U dont les k-premières dérivées sont bornées. On note pour $\alpha \in \mathbb{N}^n, |\alpha| := \alpha_1 + \ldots + \alpha_n, \alpha! = \alpha_1! \ldots \alpha_n!, \partial^{\alpha}u = \partial^{\alpha_1}_{\alpha_1} \ldots \partial^{\alpha_n}_{\alpha_n}u$. On pose

$$||u||_{C_b^k} = \sum_{\alpha \in \mathbb{N}^n, |\alpha| \le k} \frac{1}{\alpha!} \sup_{x \in U} |\partial^{\alpha} u(x)|.$$

Montrer que c'est une norme rendant $C_b^k(U)$ un espace de Banach. De plus, montrer que c'est une algèbre de Banach : $\forall f,g\in C_b^k(U),||fg||_{C_k^k}\leqslant ||f||_{C_k^k},||g||_{C_k^k}$.

Exercice 13 Convolution Soit $f \in L^1(\Omega, \mu, \mathcal{T}), g \in L^p(\Omega, \mu, \mathcal{T}), h \in L^q(\Omega, \mu, \mathcal{T})$ avec 1/p + 1/q = 1,

1. Soit $\check{f}(x) = \overline{f}(-x)$. Montrer que :

$$\int \overline{(f*g)}h = \int \overline{g}(\check{f}*h).$$

2. Montrer que si $p=1, \widehat{f*g}=\widehat{f}\widehat{g}.$ (Notation ex 6 de la transformée de Fourier)

Exercice 14 Suites régularisantes Soit ρ_n une suite régularisante et $f \in C^0(\mathbb{R}^n)$.

1. Montrer que pour tout compact $K \subset \mathbb{R}^n$:

$$\sup_{x \in K} |(\rho_n * f)(x) - f(x)| \to_{n \to \infty} 0$$

- 2. En déduire que $C_c^{\infty}(\mathbb{R}^n)$ est dense dans $C_c^0(\mathbb{R}^n)$ pour la norme $||.||_{\infty}$ induite par $C_b^0(\mathbb{R}^n)$.
- 3. Montrer que l'adhérence de $C_c^0(\mathbbm{R}^n)$ dans $C_b^0(\mathbbm{R}^n)$ est

$$C_0^0(\mathbbm{R}^n) = \{ f \in C_b^0(\mathbbm{R}^n) : \lim_{||x|| \to \infty} |f(x)| = 0 \}.$$

Exercice 15 Inégalité d'Young Soit $f \in L^p(\mathbb{R}^n, Leb), g \in L^q(\mathbb{R}^n, Leb), 1 \leq p \leq \infty, 1 \leq q \leq \infty, 1 \leq r \leq \infty$ avec $1/r = 1/p + 1/q - 1 \geq 0, p', q'$ les exposants conjugués,

- 1. Montrer que pour presque tout $x \in \mathbb{R}^n$, $y \mapsto f(x-y)g(y)$ est intégrable (indication : en écrivant $|f(x-y)|^{p/q'}|g(y)|^{q/p'}(|f(x-y)|^{1-p/q'}|g(y)|^{1-q/p'})$).
- 2. On pose $(f * g)(x) = \int_{\mathbb{R}^n} dy f(x y) g(y)$, montrer que $f * g \in L^r(\mathbb{R}^n, Leb)$ et $||f * g||_r \leq ||f||_p ||g||_q$.
- 3. Montrer que si $r = \infty$ alors $f * g \in C_b^0(\mathbb{R}^n)$ et si $1 , <math>(f * g)(x) \to_{|x| \to \infty} 0$.