Correction de la Feuille de TD 4

Convergence faible, Espaces de Hilbert.

Exercice 1

Soit $(x_n)_{n\geqslant 1}$ une suite dans $\ell^p(\mathbb{N})(1 , où <math>x_n = (y_{i,n})_{i\geqslant 0}$. Prouver que $(x_n)_{n\in\mathbb{N}}$ converge faiblement vers 0 ssi la suite $(x_n)_{n\geqslant 1}$ est bornée dans $\ell^p(\mathbb{N})$ et pour chaque i on a $\lim_{n\to\infty} y_{i,n} = 0$.

Exercice 2

Soit $(x_n)_{n\in\mathbb{N}}$ une suite qui converge faiblement vers x dans E espace de Banach. On pose

$$K_n = \overline{Conv\{x_n, x_{n+1}...\}}.$$

Montrer que $\bigcap_{n=1}^{\infty} K_n = \{x\}$

Exercice 3 Soit $f: E \to \mathbb{R}$ E espace de Banach.

- 1. Montrer que $\partial f(x) \subset E'$ est préfaiblement fermé.
- 2. Soit $F(x) = ||x||_E$. Montrer que $\partial F(x) = \{f \in E', ||f|| \leq 1\}$.
- 3. Si f est convexe et borné par M sur $B(a, 2\epsilon)$, montrer que f est $2N/\epsilon$ -lipschitzienne sur $B(a, \epsilon)$.

[Indication : prendre $x, y \in B(a, \epsilon)$ et remarquer $z = x + \epsilon(y - x)/||y - x|| \in B(a, 2\epsilon)$]

4. Si de plus f est convexe et continue en x, montrer que $\partial f(x)$ est préfaiblement compact.

Exercice 4 On prend $E := \ell^p(\mathbb{N})$, $1 , et l'on désigne par <math>e_n$ l'élément de E dont tous les termes sont nuls à part le n-ième, qui vaut 1.

- 1. Montrer que la suite (e_n) ne converge pas dans la topologie de la norme, mais converge faiblement vers 0.
- 2. On pose $y_{n,m} := e_n + ne_m$. Montrer que l'ensemble

$$X := \{y_{n,m} : m > n \geqslant 1\}$$

est normiquement fermé dans E.

3. L'ensemble X admet 0 comme point d'adhérence faible, mais qu'aucune suite dans E ne converge faiblement vers 0. (L'ensemble de toutes les limites faibles de suites dans E n'est donc pas faiblement fermé.)

Exercice 5

Soient x_i (i = 0, 1, ..., n) des points dans un evn E. Prouver qu'il existe un point $f \in E'$ qui minimise $f \mapsto f(x_0)$ sur l'ensemble $\{f \in E' : ||f|| \le 1, f(x_i) = 0 (i = 1, 2, ..., n)\}.$

Exercice 6 Soit E un Banach de dimension infinie. On démontre que l'espace topologique $(E, \sigma(E, E'))$ n'est pas métrisable. Supposons par l'absurde que la topologie faible soit associée à une métrique d. Soit $U_n = \{x \in E, : d(0, x) < 1/n\}$ que l'on suppose donc faiblement ouvert.

- 1. Montrer qu'il existe une suite (f_n) de E' telle que tout $g \in E'$ soit une combinaison linéaire finie des f_n . [Indication Utiliser l'exercice 3 du TD2]
- 2. En déduire que $dim(E') < +\infty$ (utiliser le lemme de Baire) et conclure.

Exercice 7 Propriété de Schur de $\ell^1(\mathbb{N})$. On veut montrer que dans $\ell^1(\mathbb{N})$ une suite converge faiblement si et seulement si elle converge normiquement. On va utiliser le lemme de Baire.

- 1. Rappeler pourquoi la convergence normique implique la convergence faible.
- 2. Soit $\Gamma = \{z \in \mathbb{Z}, |z| = 1\}$. $\Omega = \Gamma^{\mathbb{I}\mathbb{N}}$. Vérifier que Ω , muni de la topologie produit, est un espace métrique complet. On écrit $\omega = (Z_n(\omega))_{n \in \mathbb{I}\mathbb{N}} \in \Omega$. On rappelle que la topologie produit (comme Γ est borné, sinon ajouter une troncation sur $|Z_n(\omega_1) Z_n(\omega_2)|$) vient par exemple de la métrique $d(x,y) = \sum_{n=0}^{\infty} \frac{1}{2^n} |Z_n(\omega_1) Z_n(\omega_2)|$.
- 3. On suppose maintenant que (f_p) converge faiblement vers 0. Par l'absurde, supposons que pour $\forall q \geqslant p, ||f_q||_1 \geqslant 3a$ pour a > 0. Posons

$$G_q = \{ \omega \in \Omega : \left| \sum_{n=1}^{\infty} Z_n(\omega) f_q(n) \right| \leqslant a \} \quad et \quad F_p = \bigcap_{q \geqslant p} G_q.$$

Montrer que $Int(F_p) = \emptyset$.

4. En utilisant le lemme de Baire obtenir $\omega \in \bigcap_{p\geqslant 1} F_p^c$ et regarder $\omega \in \ell^{\infty}(\mathbb{N})$. Trouver une sous-suite f_{p_k} tel que $\omega(f_{p_k}) \not\to 0$. Conclure.

Exercice 8 Soient E, F espaces de Banach.

Montrer qu'une application linéaire continue $T: F' \to E'$ est préfaiblement continue si et seulement si il existe $S \in L(E, F)$ telle que $T = S^t$.

Exercice 9

Soit H un espace de Hilbert et $F \subset H$ un sous-espace fermé $F \neq \{0\}$. Soit P une projection de H sur F.

Montrer l'équivalence entre

- 1. P est la projection orthogonale
- 2. ||P|| = 1
- 3. $|\langle P(x), x \rangle| \leq ||x||^2$ pour tout $x \in H$.

Exercice 10 Polynômes de Laguerre

Soit μ la mesure sur $[0, \infty[$ de densité e^{-x} par rapport à la mesure de Lebesgue. $\mu(A) = \int_A e^{-x} dx$. Soit

$$L_n = \frac{e^x}{n!} \left(\frac{d}{dx}\right)^n (e^{-x}x^n).$$

Montrer que L_n est une famille orthogonale de polynômes de $L^2([0,\infty[,\mu])$.

Exercice 11 Montrer que la famille indicée par les parties finies de \mathbb{N}^* , $(w_I)_{I \in P_f(\mathbb{N}^*)}$ définie par

$$w_I(x) = \prod_{i \in I} w_i(x), \text{ avec } w_n(x) = (-1)^{\lfloor 2^n x \rfloor}$$

est une base hilbertienne de $L^2([0,1], Leb)$. (Elle est appelée base de Walsh).

Exercice 12 Identité du parallélogramme généralisée Soit H un espace de Hilbert $\operatorname{et} x_1, ... x_n \in H$

1. Montrer que

$$\frac{1}{2^n} \sum_{(\epsilon_1, \dots, \epsilon_n) \in \{-1, 1\}^n} ||\epsilon_1 x_1 + \dots + \epsilon_n x_n||^2 = ||x_1||^2 + \dots + ||x_n||^2$$

- 2. Supposez par l'absurde qu'il existe $T: \ell^p(\mathbb{N}) \to \ell^2(\mathbb{N})$ un isomorphisme (linéaire continue d'inverse continue) et considérer $x_i = T(e_i)$ et obtenir une contradiction si $1 \leq p < 2$.
- 3. Montrer que si $p \neq 2$, on a $\ell^p(\mathbb{N}) \not\simeq \ell^2(\mathbb{N})$.