Correction du Contrôle continu 1 Jeudi 15 octobre 2015

Exercice 1 (5 points)

1. (1 point) On a par croissance comparée usuelle $n+e^n+1=e^n(1+\frac{n+1}{e^n})\sim e^n$ et $2n^5+1\sim 2n^5$ d'où

$$\lim_{n \to \infty} \frac{n + e^n + 1}{2n^5 + 1} = \lim \frac{e^n}{n^5} = +\infty$$

(1 point) Comme $tan(x) \sim_{x\to 0} x, sin(x) \sim_{x\to 0} x$ et $1/n \to 0$

$$\lim_{n \to \infty} \frac{\sin(\frac{1}{n^2})}{\tan(\frac{2}{n^2})} = \lim_{n \to \infty} \frac{\left(\frac{1}{n^2}\right)}{\left(\frac{2}{n^2}\right)} = \frac{1}{2}$$

(1 point) $\left(1 + \frac{2}{n^2}\right)^{n^2} = \exp(n^2 \ln(1 + \frac{2}{n^2}))$. or $\ln(1+x) \sim_{x\to 0} x$ donc $n^2 \ln(1 + \frac{2}{n^2}) \sim 2$ d'où par composition des limites

$$\lim_{n \to \infty} \left(1 + \frac{2}{n^2} \right)^{n^2} = \exp(2).$$

2. (2 points : pas plus de 1/2 si réponse avec somme d'équivalents...)

Donnons un équivalent asymptotique (pour $n \to +\infty$) de la suite : $u_n = \left(\cos\left(\frac{(-1)^n}{\sqrt{n}}\right) - \frac{n}{n+1}\right)$. On a $\frac{n}{n+1} = \frac{1}{(1+1/n)} = 1 - \frac{1}{n} + \frac{1}{n^2} + o(\frac{1}{n^2})$ et $\cos(x) =_{x\to 0} 1 - x^2/2 + x^4/4! + o(x^4)$ donc

$$\cos\left(\frac{(-1)^n}{\sqrt{n}}\right) = 1 - \frac{1}{2n} + \frac{1}{24n^2} + o(\frac{1}{n^2})$$

donc on fait la somme des DL (et PAS DES EQUIVALENTS!) d'où :

$$u_n = \left(\cos\left(\frac{(-1)^n}{\sqrt{n}}\right) - \frac{n}{n+1}\right) = 1 - \frac{1}{2n} + \frac{1}{24n^2} - \left(1 - \frac{1}{n} + \frac{1}{n^2}\right) + o\left(\frac{1}{n^2}\right)$$

donc

$$u_n = \frac{1}{2n} + o(\frac{1}{n}) \sim \frac{1}{2n}$$

Exercice 2 (5 points) Indiquons (en justifiant) de quelle nature (convergente ou divergente) sont les séries suivantes :

- (1 point, pas plus de 0,5 si pas de mention de positif...) $\left(\frac{1}{n\ln(n+2)^2}\right) \to 0$, et $\sin(x) \sim_{x\to 0} x$ donc $\sin\left(\frac{1}{n\ln(n+2)^2}\right) \sim \left(\frac{1}{n^2\ln(n+2)^2}\right)$ qui est le terme d'une série convergente (Bertrand $\alpha = 1, \beta = 2 > 1$) et LA SUITE EST POSITIVE donc par la règle des équivalents $\sum \sin\left(\frac{1}{n\ln(n+2)^2}\right)$ converge.
- (1 point) Si $u_n = \left(1 \frac{2}{n^2}\right)^{n^3}$, $\sqrt[n]{u_n} = \left(1 \frac{2}{n^2}\right)^{n^2} \to exp(-2) < 1$ (comme à l'exo 1) donc par la règle de Cauchy, $\sum u_n$ converge.

- $(0.5 \text{ point}) \frac{3n^5+n}{2n+1} \sim \frac{3n^5}{2n} \to \infty$ donc la série $\sum \frac{3n^5+n}{2n+1}$ diverge grossièrement. $(1.5 \text{ points})u_n = \frac{(3n)!n!}{((2n)!)^2}$ est non nul, on calcule

$$\frac{u_{n+1}}{u_n} = \frac{(3n+3)!(n+1)!}{((2n+2)!)^2} \frac{((2n)!)^2}{(3n)!n!} = \frac{(3n+3)(3n+2)(3n+1)(n+1)}{(2n+2)^2(2n+1)^2} \sim \frac{27n^4}{16n^4} \to \frac{27}{16} > 1$$

donc par la règle de d'Alembert, $\sum \frac{(3n)!n!}{((2n)!)^2}$ diverge.

— (1 point) pour $u_n = \left(1 - \cos\left(\frac{1}{n}\right)\right)^n \ge 0$ on a

$$\sqrt[n]{u_n} = \left(1 - \cos(\frac{1}{n})\right) \to 0 < 1$$

donc par la règle de Cauchy, $\sum u_n$ converge.

Exercice 3 (5 points)

1. (1,5 points) Soit la suite définie par récurrence par $v_{n+2}=2v_{n+1}+v_n,\,v_0=v_1=1.$ Trouvons

$$\lim_{n\to\infty}v_n$$
.

méthode 1 : on remarque par récurrence que $v_n \geq 0$ donc $v_{n+2} = 2v_{n+1} + v_n \geq 2v_{n+1} \geq 0$

méthode 2 : on calcule v_n en résolvant l'équation caractéristique $x^2 = 2x + 1$ $\Delta = 4 + 4$ d'où $x_{\pm} = \frac{2\pm 2\sqrt{2}}{2} = 1\pm\sqrt{2}$ et donc les solutions sont de la forme $v_n = C_1(1+\sqrt{2})^n + C_2(1-\sqrt{2})^n$ avec $C_1 + C_2 = 1$ et $(1 + \sqrt{2})C_1 + C_2(1 - \sqrt{2}) = 1$ soit $C_1 = C_2 = 1/2$ donc $v_n \sim C_1(1 + \sqrt{2})^n \to \infty$.

2. (2 points) Soit la suite définie par récurrence par $x_{n+1} = x_n \sqrt{1 + \frac{1}{x_n}}$ et $x_0 = 1$.

Par récurrence, on montre $x_n > 0$ et $x_n \ge x_{n-1}$. On a bien $x_0 = 1 > 0$ et $x_1 = \sqrt{2} > 1$ puis au rang n+1 si $x_n > 0, 1/x_n > 0$ donc $\sqrt{1+\frac{1}{x_n}} > 1$ donc $x_{n+1} \ge x_n > 0$.

Comme x_n croissante, si par l'absurde elle était bornée, on aurait $x_n \to l$ et en passant à la limite dans la relation de récurrence (par continuité), on aurait $l=l\sqrt{1+\frac{1}{l}}>l$ une contradiction. Donc x_n est croissante non majorée donc

$$\lim_{n \to \infty} x_n = +\infty$$

(1,5 points) Trouvons la limite de :

$$x_{n+1} - x_n = x_n(\sqrt{1 + \frac{1}{x_n}} - 1) = x_n(\frac{1}{2x_n} + o(\frac{1}{2x_n})) \to \frac{1}{2}$$

en utilisant $\sqrt{1+x} =_{x\to 0} 1 + x/2 + o(x)$ et $\frac{1}{x_n} \to 0$