Correction du Contrôle continu Jeudi 21 novembre 2013

Exercice 1 (6 points) Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction 2π - périodique paire définie par $f(t) = t^2 - \frac{\pi^2}{4}$ si $t \in [0, \frac{\pi}{2}], f(t) = \frac{\pi^2}{4} - (t - \pi)^2$ si $t \in [\frac{\pi}{2}, \pi]$.

- 1. f est C^1 sur $[0, \frac{\pi}{2}]$ et $[\frac{\pi}{2}, \pi]$ donc f est C^1 par morceau et continue (car $f(\frac{\pi}{2}-) = f(\frac{\pi}{2}+) = 0$, la continuité en 0 et π sont évidentes par parité, cela donne la continuité à tous les points de transition), donc sa série de Fourier converge normalement vers f.
- 2. Calculons la série de Fourier de f.

f est paire donc $b_n(f)=0$ f est C^1 (cf plus loin pour la continuité des dérivées) donc $b_n(f')=-na_n(f)$. Ici f'(t)=2t si $t\in[0,\frac{\pi}{2}],\ f'(t)=2(\pi-t)$ si $t\in[\frac{\pi}{2},\pi]$ et est impaire comme dérivée d'une fonction paire. Comme $f'(t)\to_{t\to\frac{\pi}{2}}=\pi=f'(\frac{\pi}{2}),\ f'$ est de nouveau C^1 par morceau et continue, donc $a_n(f'')=nb_n(f')$ et donc $a_n(f'')=-n^2a_n(f)$.

Ici f''(t) = 2 si $t \in [0, \frac{\pi}{2}]$, f''(t) = -2 si $t \in [\frac{\pi}{2}, \pi]$, et f'' est paire, donc on calcule pour $n \neq 0$

$$a_n(f'') = \frac{2}{\pi} \int_0^{\pi} f''(t) \cos(nt) dt = \frac{4}{\pi} \left(\int_0^{\frac{\pi}{2}} \cos(nt) dt - \int_{\frac{\pi}{2}}^{\pi} \cos(nt) dt \right)$$
$$= \frac{4}{\pi} \left(\left[\frac{\sin(nt)}{n} \right]_0^{\frac{\pi}{2}} - \left[\frac{\sin(nt)}{n} \right]_{\frac{\pi}{2}}^{\frac{\pi}{2}} \right) = \frac{8 \sin(n\frac{\pi}{2})}{n\pi}.$$

Il reste à calculer $a_0(f) = \frac{2}{\pi} \left(\int_0^{\pi/2} f(t) dt + \int_{\pi/2}^{\pi} f(t) dt \right) = 0$ par symétrie par rapport à $\pi/2$ La série de Fourier de f est donc :

$$S(f): \sum_{k=0}^{\infty} \frac{(-1)^{k+1}8}{\pi(2k+1)^3} \cos((2k+1)x)$$

3. En évaluant en x=0 on obtient

$$f(0) = -\frac{\pi^2}{4} = -\sum_{k=0}^{\infty} \frac{(-1)^k 8}{\pi (2k+1)^3}$$

d'où le résultat :

$$\sum_{p=0}^{\infty} \frac{(-1)^p}{(2p+1)^3} = \frac{\pi^3}{32},$$

Il reste à appliquer l'égalité de Parseval pour la deuxième somme

$$\frac{64}{2\pi^2} \sum_{p=0}^{\infty} \frac{1}{(2p+1)^6} = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(t)|^2 dt = \frac{2}{\pi} \int_{0}^{\pi/2} (t^2 - \frac{\pi^2}{4})^2 dt$$
$$= \frac{2}{\pi} \left[\frac{t^5}{5} + \frac{\pi^4 t}{16} - \frac{2\pi^2 t^3}{12} \right]_{0}^{\pi/2}$$
$$= \frac{2}{\pi} \left[\frac{\pi^5}{5 \cdot 2^5} + \frac{\pi^5}{2^5} - \frac{2\pi^5}{3 \cdot 2^5} \right]$$

On déduit donc :

$$\sum_{n=0}^{\infty} \frac{1}{(2p+1)^6} = \frac{\pi^6}{2^9} \left[\frac{1}{5} + 1 - \frac{2}{3} \right] = \frac{\pi^6}{2^9} \left[\frac{3+15-10}{15} \right] = \frac{\pi^6}{15 \cdot 2^6}.$$

et

$$\sum_{n=1}^{\infty} \frac{1}{n^6} = \sum_{p=1}^{\infty} \frac{1}{(2p)^6} + \sum_{p=0}^{\infty} \frac{1}{(2p+1)^6} = \left(1 - \frac{1}{2^6}\right)^{-1} \sum_{p=0}^{\infty} \frac{1}{(2p+1)^6} = \frac{\pi^6}{15.63}$$

Exercice 2 (6 points)

1. Calculons le rayon de convergence des séries entières :

$$\sum_{n=0}^{\infty} 2^n z^{2n+1}, \quad \sum_{n=0}^{\infty} \frac{z^{2n+1}}{(2n+1)!}.$$

On considère la variable $x=z^2$. La série $\sum_{n=0}^{\infty} 2^n x^n$ a rayon de convergence $\frac{1}{2}$ (série géométrique) donc converge pour |x|<1/2 et diverge pour |x|>1/2 donc de même pour la série initiale converge pour $|z|^2<1/2$ et diverge si $|z|^2>1/2$ donc le rayon de convergence de $\sum_{n=0}^{\infty} 2^n z^{2n+1}$ est $R=\frac{1}{\sqrt{2}}$. Pour la deuxième série $\sum_{n=0}^{\infty} \frac{x^n}{(2n+1)!}$, $a_n/a_{n+1}=(2n+3)(2n+2)\to\infty$ donc d'Alembert indique que $R=\infty$ donc de même le rayon de convergence de $\sum_{n=0}^{\infty} \frac{z^{2n+1}}{(2n+1)!}$ est $R=\infty$.

- 2. Par le cours $S(z) = sh(z) = \frac{e^{z} e^{-z}}{2}$.
- 3. Déduisons la série de Fourier de $g(x) = sh(cos(x))\cos(\sin(x))$. Par les identités trigonométriques sh(a+b) = sh(a)ch(b) + ch(a)sh(b) on a

$$\begin{aligned} \operatorname{Re}(sh(e^{ix})) &= \operatorname{Re}(sh(\cos(x) + i\sin(x))) = \operatorname{Re}(sh(\cos(x))ch(i\sin(x) + ch(\cos(x))sh(i\sin(x)) \\ &= \operatorname{Re}(sh(\cos(x))cos(\sin(x)) + ch(\cos(x))i\sin(\sin(x))) = sh(\cos(x))\cos(\sin(x)) = g(x). \end{aligned}$$

Comme la deuxième série a rayon de convergence infinie, on déduit :

$$g(x) = \text{Re}(\sum_{n=0}^{\infty} \frac{e^{ix(2n+1)}}{(2n+1)!}) = \sum_{n=0}^{\infty} \frac{\cos((2n+1)x)}{(2n+1)!}$$
. C'est la série de Fourier de g .

4. La première série entière converge normalement sur $z \in [0,1/2] \subset]-R,R[$ donc la série de fonction $\sum_{n=0}^{\infty} 2^n e^{-(2n+1)x}$ correspondant à $z=e^{-x}$ converge normalement sur l'intervalle image $[\ln(2),\infty[$ donc aussi simplement.

Exercice 3 (5 points)

- 1. On peut construire de 26^{10} mots de passe en utilisant exactement 10 lettres majuscules (parmi les 26 lettres).
- 2. On peut construire $26^4 \times 10^6 \times C_{10}^6$ mots de passe en utilisant exactement 4 lettres majuscules (parmi les 26 lettres) et 6 chiffres (parmi les 10 chiffres de bases). Le C_{10}^6 correspondant au choix de la position des chiffres ou des lettres.
- 3. Le nombre de mots que l'on peut fabriquer avec les lettres du mot CONSTITUTION est celui d'arrangements avec répétition d'ordre (1,2,2,3,1,2,1) (pour (1C,2O,2N,3T, 1S,2I,1U)) soit $\frac{12!}{(2!)^33!}$.

4.

$$\sum_{k=0}^{n} k(k-1)C_n^k x^{k-2} = \left(\frac{d}{dx}\right)^2 \sum_{k=0}^{n} C_n^k x^k = \left(\frac{d}{dx}\right)^2 (1+x)^n = n(n-1)(1+x)^{n-2}.$$

En évaluant en x=1 on obtient $\sum_{k=0}^{n} k(k-1)C_n^k = n(n-1)2^{n-2}$.